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ABSTRACT OF THE DISSERTATION

Leak Detection in Fluid Distribution Networks

by

Abdulrahman Amin Alawadhi
Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)
University of California San Diego, 2019

Professor Daniel M. Tartakovsky, Chair
Professor Prabhakar Rao Bandaru, Co-Chair

Leakage is an undesired abnormality that causes economical losses and impacts the
environment. Leak detection tests in pipe networks are usually interpreted using water-hammer
equations (WHE). These equations are nonlinear hyperbolic partial differential equations (PDEs)
used to describe transient flows in pipes. The associated uncertainties in initial and boundary
conditions, parameters, and leak strength and location increases the stochastic behavior of these
equations. The method of distributions is used to derive a deterministic PDE for probability
density function (PDF) of pressure head and flow velocity under uncertain initial conditions. The

derivation requires a closure approximation that ensures its consistency with the mean and the

xii



variance of the state variables. A series of numerical experiments confirms the computational
gain of this method over Monte Carlo simulations.

The PDF of pressure head obtained using the method of distributions serves as a prior
PDF for data assimilation. Bayesian framework is used to update this distribution with a statistical
model for observations obtained from the data collected by a pressure sensor. The result is
posterior PDFs for leak location and leak strength. Series of numerical experiments are conducted
for a single pipe and pipe networks under uncertain initial velocity and measurement noise to
identify leak location and leak strength. The results are compared with the best fitness function

that is used in inverse transient analysis.
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1 Introduction



1.1 Introduction

Water is a vital natural resource. It is crucial for the environment and human beings.
Water is usually transmitted through distribution networks from the source to the end user.
These networks consist of a large number of interconnected pipes, and most of them are buried
underground. This raises questions of the reliability of these pipes and leak detection.

As a pipe ages it becomes more susceptible to erosion and corrosion, which leads to
unwanted abnormalities in the system. Brothers (2001) reported that real water losses in distri-
bution and transmission systems are between 20% and 50%. An abnormality in any pipe can
lead to high risk for human health. A partial blockage in a pipe due to contamination might be
associated with a high concentration of harmful particles in drinking water. A leak is another
abnormality that can introduce unhealthy materials to the distributed water. It also can impact
the environment by discharging the fluid to the surrounding (Kirmeyer & Martel 2001, Karim
et al. 2003). This risk might be even higher if the discharged fluid is a chemical other than water.
These abnormalities are associated with potential economic losses as well. The wasted water
through leakages decreases potential profits. This will also lead to increased use of energy to pay
off for the wasted fluid. In addition to that, there will be a direct cost required for locating these
abnormalities and repairing them. The World Bank estimated the global non-revenue water to be
worth $14.7 billion per year (Thornton et al. 2008).

The common leak detection techniques are hardware based methods. Examples of these
techniques are leak noise correlation (Muggleton & Brennan 2004, Gao et al. 2009), gas injection
(Ratcliffe & Field 1978, Hargesheimer 1985), ground penetrating radar (O’Brien et al. 2003,
Demirci et al. 2012), and acoustic sensing (Mergelas & Henrich 20035, Fletcher & Chandrasekaran
2008). Hardware based methods have high cost due to their need for equipment and manpower.
Moreover, there might be significant delay between the time of leak occurrence and the time

that these methods are used, especially for small leaks of which the facility owners are unaware.



Therefore, there is a need to have software based methods that are cheaper and can capture small
leaks as soon as they occur. Since the pipes carry fluids, it is beneficial to utilize this fluid as a
vehicle that delivers the information about any abnormalities.

Transient methods are the most promising software based methods since they require
fewer sensors and can lead to a conclusion regarding the abnormality in shorter time than the
steady state methods. Colombo et al. (2009) provide a comprehensive review on transient test
based techniques (TTBTs). Direct transient approach (Jonsson & Larson 1992, Brunone 1999,
Brunone & Ferrante 2001, Wang et al. 2002), frequency domain approach (Mpesha et al. 2001,
Lee et al. 2005, Covas et al. 2005, Ghazali et al. 2012, Lee et al. 2013), and inverse transient
analysis approach (Liggett & Chen 1994, Vitkovsky et al. 2000, 2007, Covas & Ramos 2010,

Soares et al. 2011) are three approaches that fall under TTBTs.

1.2 Transient Test Based Techniques

The idea for TTBTs is based on a sudden change of pressure in a point, which creates a
wave that travels to the sensor carrying information about the abnormality. In reservoir-pipe-valve
system shown in figure 1.1, frictionless case will be used for demonstration, a pipe is connected
between a reservoir and a valve. The system is assumed to have initial head pressure, Hj,, and
initial velocity up. A sudden closure of the end valve creates a wave traveling upstream. This
wave increases the pressure head in the pipe to H = H;, + AH while reducing the velocity to
zero u = 0 (Fig. 1.1a). As this wave reaches the reservoir, the pressure head reduces back to the
initial pressure H = Hj, and this is associated with a velocity equal to the initial velocity but in
the opposite direction, u = —uq, with the wave traveling downstream (Fig. 1.1b). In figure 1.1c,
the wave switches and starts to travel upstream after reaching the closed valve. This results in
zero velocity u = 0 and a pressure head equal to H = H;, — AH behind the wave front. Finally

(Fig. 1.1d), the wave returns back to travel downstream after it reaches the reservoir, but this
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Figure 1.1: Propagation and reflection of a pressure wave in frictionless reservoir-pipe-valve
system (Chaudhry 2013).



time the pressure head returns to H = Hj, with the velocity being equal to the initial velocity
u = uo behind the wave front (the system returns back to the original conditions before shutting
off the valve). This whole process can be described by one-dimensional water-hammer equations
(Chaudhry 2013, Wylie et al. 1993), which is derived from the cross-sectionally averaged Navier-

Stokes equations (Appendix A.1),

oh  a*du

o Tgax 0 (1
ou oh _f

o T8ay T Kb k=755 (110

where h(x,t) and u(x,t) are cross-sectionally averaged pressure head and velocity, respectively,
a is the wave speed, g is the gravitational acceleration, f is the Darcy-Weisbach friction factor.

These equations can be solved with method of characteristics to obtain (Appendix A.2),

du gdh dx

— —_——_— = 1 Epl— 1.2
& +adt k|ulu, along ” +a (1.2)
du gdh dx

e Sl 1 —=_a 1.
T ad k|u|u, along % a (1.3)

Most of the software based methods rely on solving these equations and comparing the
predicted response to the one obtained from the sensors to locate abnormalities. The methods
succeeded in finding abnormalities in a single pipe. However, it is hard to obtain accurate results
when it comes to networks, where many uncertainty and complexity are introduced. This is
the reason of introducing a new method in this thesis to account for parametric uncertainty and

measurement noise to obtain better results.



2 Method of Distributions for Water
Hammer Equations With Uncertain

Parameters



2.1 Introduction

Pipe networks are the main way for transporting fluids (e.g., water and hydrocarbons) from
a reservoir to their final destination. However, as pipes age, they become prone to leakage due to
corrosion. This raises environmental concerns and impacts public health when contaminants enter
a compromised water distribution system or hydrocarbons spill into the ambient environment.
Leaks also lead to economical losses due to wasted resources and repair costs. The World Bank
estimates the global “nonrevenue” water, due to real and apparent losses and unbilled authorized
consumption, to be worth $14.7 billion per year (Thornton et al. 2008); real water losses in
distribution and transmission systems operated by water utilities are between 20% and 50%
(Brothers 2001). Localizing and quantifying such losses is critical for monitoring the reliability
of pipe networks and planning repairs.

Since leakage affects pressure and flow rate in a pipe, comparison between measurements
of these quantities in a compromised pipe with their counterparts in the intact pipe could, in
principle, be used to identify the location and intensity of a leak. However, each pipe in a network
rarely contains more than one pressure gauge, so that pressure values at any location along
a pipe (with and without a leak) must be inferred from an appropriate model. Practical and
financial constraints on the number and positioning of measurement devices within a pipe network
often result in the data being collected only upstream of a maneuver valve. Even if pressure
measurements were available along the length of a pipe, the leak localization from steady-state
pressure measurements would not be accurate. Consequently, transient test-based techniques
were developed, mostly for single pipes (transmission mains) but also for laboratory pipe systems
used to mimic distribution networks (Meniconi et al. 2015).

A popular leak-detection test involves an abrupt valve closure; it creates a contact-
discontinuity wave moving upstream of the valve, which conveys information about fluid pressure

and velocity to a sensor. This hydraulic regime is described by the cross-sectionally averaged



Navier-Stokes equations, which are called the water hammer equations (WHE) (Chaudhry 2013,
Wylie et al. 1993). This experimental setup for leak detection and its interpretations with the WHE
are reviewed in considerable detail by Colombo et al. (2009). (An alternative strategy, in which
pressure waves along the pipes are generated by means of water injection (Brunone et al. 2008,
Taghvaei et al. 2010), is not considered in this study). Relevant techniques for identification of a
leak’s location and intensity can be subdivided into forward methods (Brunone & Ferrante 2001,
Wang et al. 2002) and inverse methods in the time (Vitkovsky et al. 2007, Massari, Yeh, Ferrante,
Brunone & Meniconi 2013) and frequency (Mpesha et al. 2001, Covas et al. 2005) domains. In
the first class of the inverse methods, several pressure transducers installed in the pipe system
provide measurements, which are used to calibrate possibly very complex models of pressure and
flow throughout the distribution system. In the second class, time or frequency pressure signals
measured at a single location are analyzed as the system responds to a perturbation by comparing
these readings to the no-leak conditions.

Predictability of WHE-based models and their use in conjunction with data are undermined
by both uncertainty in the model parameters and measurement errors. Within the probabilistic
framework both uncertain parameters and noisy data are treated as random quantities, and
probabilistic model predictions are reported in terms of probability density functions (PDFs)
of pressure and velocity or, more often, their ensemble means and (co)variances. These PDFs
provide a complete probabilistic description of fluid flow in a pipe, including assessment of
probabilities of rate events, and serve to quantify predictive uncertainty of WHE-based models.
Probabilistic solutions of the WHE are also needed for identification of leaks and blockages in
pipes by means of stochastic successive linear estimator (Massari et al. 2014) or data assimilation
techniques based on Kalman filter (Ye & Fenner 2010).

Probabilistic solutions of the WHE can be obtained with Monte Carlo simulations (MCS)
(Zhang et al. 2011, Duan 2015). This method is robust and easy to implement, but suffers

from slow convergence and correspondingly high computational cost. If input parameters have



large correlation lengths, polynomial chaos expansions (Sattar & El-Beltagy 2016) are often,
but not always (Barajas-Solano & Tartakovsky 2016), more efficient than MCS. The first-order
perturbation analysis (Neuman et al. 1996) provides yet another alternative to MCS, which is
appropriate for small variances of the input parameters and yields the means and variances
of system states; it has been used in the WHE context by Massari, Yeh, Ferrante, Brunone &
Meniconi (2013), Massari et al. (2014). Our goal is to derive and solve deterministic equations
for the (joint) PDFs of pressure head and flow velocity governed by the stochastic WHE, without
linearizing the latter and accounting for shocks.

The stochastic WHE are formulated in Section 2.2; they describe spatiotemporal evolution
of cross-sectionally averaged fluid pressure head, i(x,t), and velocity, u(x,?), in a pipe following
an abrupt closure of a valve. In Section 2.3, we derive a deterministic equation for the joint PDF
of these two state variables, f5,;,, which provides a full probabilistic description of the system’s
behavior at any point x along the pipe at any time ¢. In Section 2.4, we report a series of numerical
experiments that demonstrate the accuracy and computational efficiency of this PDF equation
by comparing its solution with the corresponding PDF estimated with Monte Carlo simulations.

Major conclusions drawn from this study are summarized in Section 2.5.

2.2 Problem Formulation

We consider a pipe of length L and diameter D, which is equipped with a pressure sensor
at x = x* and a shut-off valve at the outlet x = L (Fig. 2.1); it forms a part of a distribution network.
Steady-state fluid flow in the pipe is pressure driven, with the inlet pressure head Hj, exceeding
the outlet pressure head Hoy (Hin > Hout). A water hammer test are often conducted in an attempt
to identify the location (x = xjeqx) and intensity (Qjeqx) Of a leak. The leak intensity is defined
as Qeak(h) = CleakAleak v/28h = Yieak V1, where Cieak and Ajeqx are the coefficient and area of

discharge, respectively, and Yjeax = CleakAleakv/2€- The test consists of an instantaneous, at time



t = 0, shutoff of the flow at the outlet, u(x = L,# > 0) = 0, and observing the pressure transients

at the sensor.

= 7 0 P T

Figure 2.1: Left: A pipe of length L equipped with a pressure sensor and a valve located at x = x*
and x = L, respectively. At steady state, i.e., with the open valve, flow is driven by the difference
in hydraulic heads at the inlet, Hy,, and the outlet, Hyy. Right: The contact discontinuities
(waves), induced by the instantaneous (at time ¢ = 0) closure of the valve, propagate with the
wave speed a along two families of characteristics defined by dx/df = a and dx/dt = —a. The
first contact discontinuity, traveling backward from the shut valve, reaches the sensor’s location
x*=L/2 attime t* = L/(2a), and the pipe’s inlet (x = 0) at time T = L/a. At that time, it turns
into the second contact discontinuity that travels forward, reaching the sensor’s location at time
2t—1".

Cross-sectionally averaged pressure head, h(x,7), and velocity, u(x,t), of the resulting
turbulent flow in the pipe (0 < x < L) are governed by the (hyperbolic partial differential) WHE
(Chaudhry 2013, Wylie et al. 1993),

oh a2 ou . Qleak

o gox A
ou oh f

e —k k=
o &g = Klulu, 2D

5()6 —xleak) (2.1a)

(2.1b)

where a is the wave speed, g is the gravitational acceleration, f is Darcy-Weisbach friction
factor. These equations describe the dynamics of contact discontinuities moving back and forth
between the inlet and outlet (Fig. 2.1). The simplified model (2.1) relies on a quasi-steady
state approximation of the wall shear stress (equating it to the squared local velocity), but the

methodology presented below can also handle unsteady friction formulations.
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These equations are subject to boundary conditions
h(x=0,t) = H; and u(x=~L,t)=0. (2.2a)

The initial conditions for both u and & correspond to the steady-state condition of the system. It
has a spatially uniform velocity ug and a spatially varying pressure head A, which is related to uq

by the steady-state WHE,
k
h()(x; uo) = §|u0|uox—|—Hm. (2.2b)

The initial value u is uncertain and treated as a random variable with prescribed PDF f,,,(Up);
the latter quantifies upon integration, e.g., the probability of ug not exceeding any given value U.

Consequently, predictions of u(x,#) and h(x,) based on (2.1)—(2.2) are uncertain as well;
their probabilistic description at a space-time point (x,7) is given by the joint PDF f,,(U, H;x,t).
It can be used to compute, e.g., the probability of both flow velocity u exceeding a certain value
U and pressure head h exceeding a certain value H. Estimating f,;,(U,H;x,t) with MCS is
computationally expensive and often prohibitively so if one has to reassemble an exhaustive set

of MC runs for each potential leak location xje,x.

2.3 PDF Solutions to Water Hammer Equations

The main result of this study is the derivation in Appendix B.1 of a deterministic equation

for the PDF f,,(U,H;x,t),

af uh
ot

+V- (Vi) =0, (2.32)
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where V = (3/0H,9/dU) " is the del operator in the phase space (H,U) of f,, and V= Vi, Vi) "
is the phase-space velocity with components
a® ot Oleak (H) - oh

Vi = ——o+ ———"8(x — Xjeax) + 011 (H — h), VU=—8$

7 9x 1 +on(U—i)+k|U|U.

(2.3b)

Here, ii(x,t) and h(x,t) are the ensemble means (averages) of random u(x,¢) and h(x,t), respec-
tively; 62(x,t) and o7 (x,?) are their respective variances; and the coefficients o and o are given

by (Appendix B.1)

19dInc?

B 'Yleaka (x - xleak) l dln 6% _
2 ot

24V 2 ot

o = and o = —2k|ia|+ (2.3¢)

As demonstrated below, these statistics are computed with MCS at the fraction of the compu-
tational cost required to generate an MC sample sufficient for accurate estimation of the full
PDF.

Probabilistic predictions of the pressure head 4(x,¢) and flow velocity u(x,t) separately
are encapsulated in the marginal PDFs f, (U;x,¢) and fj,(H;x,t). These are defined from the joint

PDF f,; as f,(U;x,t) = [ fundH and fj,(H;x,t) = [ f,,dU. They satisfy the PDF equations,

ofn  Vufn

o om0 o
and

o Vufu

S S =0, 2.5)

which are derived by integrating (2.3) over U and H, respectively.

The joint/marginal PDF equations (2.3)—(2.5) are subject to initial and boundary condi-
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tions, that reflect the information about the initial and boundary conditions of the physical system.
Specifically, the initial condition for (2.3) is given in terms of the joint PDF of the initial states u
and ho, fun, (U,H;x). Given f,,, the (marginal) PDF of uy, the latter is expressed in terms of the
conditional PDF [0 @S fughg = fg|ugSuo- Since (2.2b) provides a deterministic relation between
up and ho, knowledge of the former completely determines the latter, i.e., fj,, = O(H — ho).
Since the PDF equations (2.3)—(2.5) do not contain spatial derivatives, the space coordinate
x acts as a parameter. Consequently, one can obtain the PDFs of u and 4 only at points where they

are needed for data assimilation, e.g., where the pressure sensors are deployed.

2.4 Simulation Results

In the simulations reported below, we consider fluid flow in a pipe of length L = 3000 m
and diameter D = 0.5 m, and with the Darcy-Weisbach friction factor f = 0.03. An instantaneous
closure of the valve at the outlet (x = L) creates a transient wave whose speed is a = 1403 m/s;
the constant pressure head Hj, = 150 m is maintained at the pipe’s inlet (x = 0). The pipe is
assumed to be intact, i.e., Qieak = 0. The time required for the contact discontinuity to travel from
the valve back to the inlet is T = L/a = 2.14 s, and the time required for the contact discontinuity
to reach the point of interest (sensor) x* = L/2 = 1500 m is ©* = (L —x*)/a = 1.07 s. The
simulation time horizon is set to 7 = 5 s, which covers the first two contact discontinuities
passing through the sensor. The uncertain initial velocity ug is modeled as a lognormal random
variable such that uy = 2.0+ 0.1exp(z), where z is a Gaussian random variable with mean g, = 0
and standard deviation 6; = 0.4. This translates into the mean u,, = 2.1 m/s and standard
deviation 6, = 0.045 m/s of the lognormal initial velocity ug, such that 96% of the values of ug
fall between 2.0 m/s and 2.2 m/s.

We use a set of 30000 Monte Carlo realizations as a yardstick against which the accuracy

and computational efficiency of the method of distributions are ascertained. For each realization
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of ug, the interval (0, L) is discretized into 60 elements and the WHE (2.1) are solved using the
method of characteristics with the explicit finite-difference method Chaudhry (2013), Wylie et al.
(1993). Monte Carlo estimates of the PDFs of (x,t) and u(x,t) are obtained using a Gaussian
kernel density estimator (KDE) provided by the Matlab function ksdensity, which automatically
estimates the KDE bandwidth. The sampling errors in computing the mean (‘£;) and variance
(EG%) of h(x*,t = 3.14 s) from Nyic Monte Carlo realizations (Nyic < 30000), as well as the
corresponding errors Eq, and £, in estimating the mixed ensemble moments o and o, are

defined as

4(30000) — A(Nyic)

4=h,o’ . 2.6
/,Zl(30000) 9 7Gh7a17a2 ( )

Ea(Nmc) =

A sampling error in estimation of f;,(H;x*,t = 3.14 s), the PDF of h(x*,r = 3.14 s), is reported
in terms of the Kullback-Leibler (KL) divergence between f,(H;x*,t = 3.14 s) estimated from
30000 Monte Carlo realizations of 4(x*,t = 3.14 s), fn.30000, Which is treated as ground truth, and
its counterpart computed with a smaller number of realization Nyvic, fu n,- The latter is defined

as

iy
Es,(Nmc) = DL (fhNye» Jh,30000) = /fh,NMC 111( —ME ) dH. (2.7)
Jh.30000

As expected, all five sampling errors in (2.6) and (2.7) decrease as the number of Monte
Carlo realizations Nyc increases (Fig. 2.2). The sampling errors in estimating the means, /& and
i, and the closure variable o fall below 103 after Nyc ~ 1000 realizations, while no less than
Nnyic = 30000 realizations are required to estimate the PDFs of 4 and u with the same accuracy.
While the sampling error g, (Nyc = 1000) = O(1072), its effect on the overall predictive error
is diminished by the fact that o in (2.3)—(2.5) is multiplied by (U — i) which, during the time
period of significance for leak detection tests (see below), is 0(10*2). Since only i, h, oy and 0
are used in the PDF equations (2.3)—(2.5), the use of the latter to obtain PDFs results in significant

computation saving.
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Figure 2.2: Sampling errors in estimating, from Nyc Monte Carlo realizations, the sample
mean (a) and PDF (d) of the pressure head /% in the middle of the pipe (x = 1500 m) after the first
contact discontinuity passed through it (at time r = 3.14 s). Also shown are the corresponding
sampling errors in estimating the closure variables o (b) and o, (c). All the errors are defined
in (2.6) and (2.7).
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The coefficients in PDF equations (2.3)—(2.5) exhibit jump discontinuities at space-time
points wherein the forward and backward waves traveling along the corresponding two families
of characteristics intersect (see Appendix B.3 for detail). These discontinuities can be handled
either with an appropriate numerical method or, as we do in Appendix B.3 for the leak-free flows,

analytically by taking advantage of the fact that their dynamics are deterministic.
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Figure 2.3: Temporal snapshots of the PDF f;,(H;x*,t) of the pressure head h(x,t) at the
observation point x = x* obtained analytically in Appendix B.3 (dashed line) or by using the
kernel density estimator to post-process Nyic = 30000 (solid line) and Nyic = 1000 (dotted line)
Monte Carlo realizations. The results are presented at x* = L/2 (the middle of the pipe), for
three times #: at initial time r = 0.00 s (a); and the times r = 1.10 s (b) and ¢t = 3.24 s (c) at
which the first and second contact discontinuities pass over x*, respectively.

Figure 2.3 exhibits the marginal PDF f},(H,x*,t) for the pressure head h(x,7) in the sensor
location, x* = L/2, before the first contact discontinuity (a), after the first contact discontinuity
(b), and after the second contact discontinuity (c) pass through it. These PDFs are alternatively
computed with the PDF method and Monte Carlo simulations comprising NMyic = 1000 and
Nyic = 30000 realizations. The solution of the PDF equation, whose parametrization relies on
Nyic = 1000 realizations, agrees with the PDF estimate based on Nyc = 30000 realizations: the
difference between these two solutions, as quantified by the KL divergence, is Es, = 0.0017.
The MCS estimate of f, achieves the same accuracy with Nyc ~ 6000 realizations, which
takes about three times longer to compute than the PDF method does. If one were to rely on

the Kolmogorov-Smirnov test, fthS = supy | fh.nyue — fh30000], as a measure of the difference
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between the “exact” and approximate PDFs then the PDF method is nine times faster than MCS
(one needs Npyc =~ 19000 realizations to achieve the error fthS = 0.0016 of the PDF method),
with an even larger computational gain. The comparison between the PDF estimates provided
by the PDF method and Monte Carlo simulations with Nyjc = 30000 realizations in Figures 2.3
and 2.4 validates the accuracy of the closure approximation, which underpins the derivation of

our deterministic PDF equation (2.4).
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Figure 2.4: Temporal snapshots of the PDF f;,(H;x*,t) of the pressure head h(x,7) at the
observation point x = x* obtained, alternatively, by solving the PDF equation (2.4) (dashed
line) or by using the kernel density estimator to post-process Nyc = 30000 (solid line) and
Nyc = 1000 (dotted line) Monte Carlo realizations. The results are presented at x* = L/2 (the
middle of the pipe) for the time interval during which the first contact discontinuity passed
through x* (r = 1.10 s) and just before the second contact discontinuity has reached it (r = 3.21 s).

The support of the PDF f;,(H;-), i.e., a set of values of H for which f;,(H;-) # 0, changes
with time; the predictive uncertainty (pressure variance (5% or the PDF width) is significantly
larger after the passage of the first contact discontinuity (Fig. 2.3b) than the second one (Fig. 2.3c).
That is why many leak-detection techniques focus on the time interval after the first contact
discontinuity to determine the leak location and size, taking advantage of the fact that during
this time the pressure is highest and the effects of a leak are magnified (Covas et al. 2008).
Damping in the periodic wave gives the first cycle the advantage over the other cycles since

the leak effect is at its peak. In general, the pressure PDF f;, and its moments (e.g., the mean
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and variance of /) are discontinuous at the moving wave front. In between the two adjacent
waves carrying, e.g., the first and second contact discontinuities, the pressure A (x,?) is continuous
and the impact of uncertain parameters increases with time (Fig. 2.4); therefore, pressure (and
velocity) measurements collected during that time interval have higher information content (i.e.,
their assimilation would have a higher impact on reduction of the predictive uncertainty) than the
data collected at other times.

The fluid pressure PDF fj,(H;-) remains highly asymmetric (non-Gaussian) at all times,
with skewness that changes sign during the time cycle considered (Fig. 2.3). This suggests that
data assimilation strategies based on different flavors of the Kalman filter are suboptimal and
might yield erroneous estimators of the system states and inputs (e.g., the location and intensity of
a leak). Instead, one might have to deploy Bayesian strategies, which would treat the PDF f;,(H;-)
computed with our PDF equations as a prior distribution and then use pressure measurements to
construct a posterior PDF.

The PDFs in Figures 2.3 and 2.4 quantify the uncertainty in predictions of the fluid
pressure dynamics stemming from uncertain initial conditions in an intact pipe. In the presence of
a leak, the pressure signals typically display faster damping and more complex wave reflections.
Figure 2.5 demonstrates this effect by comparing the pressure PDFs in leaky and intact pipes; in
both cases the initial velocity is set to up = 2.1 m/s and, for the leaky pipe, the leak parameter is
set t0 CleakAleak = 0.0001 m2. The PDF behavior is significantly affected by the presence of the
leak, the most apparent feature being a significant shift of the PDF towards lower pressure values.

The comparison of PDFs in leak and no-leak conditions might help one to identify
locations where the difference between the two scenarios is the largest as the the most affected by
potential leaks and the most advantageous for measurement collection when sensor placing is
yet to be determined. In all other cases, it represents a physically-based prior distribution to be

updated via data assimilation for uncertainty reduction and possibly leak detection.
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Figure 2.5: Temporal snapshots of the PDF f,(H;x,t) of the pressure head A(x,t) for an intact
pipe and a pipe with leak at point xjeax = 2450 m with uncertain initial conditions. The results
are presented at the middle of the pipe, x = x*, at time ¢ = 3.21 s.

2.5 Conclusions

We developed a deterministic partial-differential equation for the joint probability density
function (PDF) of the fluid pressure and flow velocity in a pipe. The latter are governed by the
water hammer equations for hydraulic transients following the valve shut-down. Our probabilistic
approach accounts for uncertainty in initial and boundary conditions for the system, and represents
a computationally efficient alternative to Monte Carlo simulations.

The closure of the PDF equation relies on the knowledge of the time evolution of the first-
and second-order moments (i.e., the mean and variance of pressure and velocity) in a specific
location along the pipe. We demonstrate how using a subset of Monte Carlo simulations (MCS)
to compute the moments (and consequently the closures) for the PDF equation yields the same
accuracy in the PDF as obtained via MCS using the full set of realizations, resulting in significant
computational savings.

The (joint) PDF obtained as a solution of the PDF equation represents a physically-based
prior distribution for pressure and/or velocity, which lends itself to assimilation of flowmeters

and pressure transducers measurements. Data can thus be used for parameter identification and
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for leakage/blockage detection.
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3 Bayesian Updating and Method of
Distributions: Application to Leak
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3.1 Introduction

Underground water distribution networks are susceptible to leakage, especially as pipes
age due to mechanical fatigue and corrosion. Compromised pipes raise environmental concerns
and might impact public health if contaminants enter a distribution system. Perhaps more
significant, leaks lead to economical losses due to the wasted resources and the cost and time
required for repair. Water losses in distribution and transmission systems are estimated to be
between 20% and 50% for water utilities (Brothers 2001). This dire situation, caused by the
perennial lack of funds needed to upgrade water distribution systems, puts a special premium on
monitoring the reliability of pipe networks in order to localize leaks and to decrease time and cost
of repairs.

Leakage is a hydraulic process that affects the pressure and flow rate in pipes. This makes
tracking hydraulic characteristics and comparing them to their counterparts for intact pipes a
natural way to identify leak location and size. Unfortunately, the scarcity of pressure gauges
and their accuracy in pipe networks complicate this procedure at steady state. Consequently,
contemporary leak detection typically relies on transient test-based techniques (TTBTSs), in
which a valve downstream of the valve or water injection devices is abruptly closed to induce
unsteady flow (Taghvaei et al. 2010, Brunone et al. 2008); this procedure also creates a pressure
discontinuity, which travels upstream of the pipe and carries the information about a leak to
the sensors. This procedure is modeled by water-hammer equations (WHE) (Wylie et al. 1993,
Chaudhry 2013), hyperbolic partial differential equations obtained by cross-sectional averaging
of Navier-Stokes equations. A comprehensive review of TTBTs is provided by Colombo et al.
(2009). One of these techniques is the inverse transient analysis, which minimizes the difference
between pressure measurements and (numerical) solutions of WHE to locate defects (Liggett &
Chen 1994, Vitkovsky et al. 2000, 2007). This method requires multiple pressure sensors. Another

technique is referred to as the direct transient approach. It looks for a defect in the pressure signal
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passing through a sensor (Brunone 1999, Brunone & Ferrante 2001, Wang et al. 2002). The third
techniques is called the frequency domain method; it involves a periodically actuated device with
pressure measurements confined to a part of a network or of a single pipe (Mpesha et al. 2001,
Lee et al. 2005, Covas et al. 2005).

These and other similar techniques assume the model parameters and operating conditions
to be known with certainty (deterministic). This is seldom the case in water distribution networks
that suffer from variable/uncertain demand levels, build ups on pipes, etc. The probabilistic
framework, which equates uncertainty with randomness, provides a natural way of dealing with
such complications. Some of the probabilistic approaches used to account for uncertainty in
WHE are Monte Carlo simulations (MCS) (Zhang et al. 2011, Duan 2015), polynomial chaos
expansions (Sattar & El-Beltagy 2016), and the method of distributions (Alawadhi et al. 2018).
Instead of giving a single prediction of fluid pressure, these methods yield its probability density
function (PDF), which can be used to assign the likelihood of occurrence (probability) to a
particular prediction. It can also be used for Bayesian updating to assimilate the pressure data
into model predictions, facilitating detection of leaks and estimation of their strength.

Among various data assimilation techniques, which include variational methods (Bannister
2017), stochastic successive linear estimator (Massari, Yeh, Brunone, Ferrante & Meniconi 2013,
Massari et al. 2014), and different variants of Kalman filter (Ye & Fenner 2010), we select
Bayesian updating (Wikle & Berliner 2007) because it can handle nonlinear non-Gaussian systems.
Rougier & Goldstein (2001) used Bayesian analysis for pipelines with uncertain characteristics,
and showed that this method refines the belief about the pressure and flow. Despite its strengths,
Bayesian data assimilation is notoriously computationally expensive, in part because it requires
a large number of MC realizations to estimate a system state’s PDF. We accelerate this step by
deploying the method of distributions, which provides the prior PDF of pressure at the fraction of
the computational cost of MCS (Alawadhi et al. 2018).

Our paper is organized as follows. Section 3.2 contains a problem formulation and
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introduces WHE with random inputs. Its solution, given in terms of the PDF of fluid pressure in a
pipe, is presented in Section 3.3. This solution serves as a prior for Bayesian data assimilation,
which is used in Section 3.4 to locate a leak. Results of our numerical experiments are reported in

Section 3.5. Major conclusions drawn from this study are summarized in Section 3.6.

3.2 Problem Formulation

Following the standard practice, we consider a reservoir-pipe-valve system (Fig. 3.1),
which represents a transmission main as a pipe of length L and diameter D. The pipe is equipped
with a sensor located at x = x* and a shutoff valve at the pipe outlet x = L. A water-hammer test
consists of instantaneous shut off of the downstream valve at time ¢ = 0, which creates a pressure
wave traveling upstream, and monitoring the pressure response at the sensor. The signal carried
towards the sensor is used to identify leak location (xjeax) and its intensity (Qjeqax). Prior to the

shut off, the flow is assumed to be steady.
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Figure 3.1: Left: A reservoir-pipeline-valve system. Right: Space-time domain with the time
that the shock passes through a sensor located at x*.

This test is described by WHE (Chaudhry 2013, Wylie et al. 1993), which predict the
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response of cross-sectionally averaged pressure head, /(x,t), and velocity, u(x,):

a_h 4 fa_u . Oleak
o gox A
ou oh f

g—l—ga:kwu, k:_ﬁ

O(x — Xjeak) (3.1a)

(3.1b)

where a is the wave speed; g is the gravitational acceleration constant; A = tD? /4 is the cross-
sectional area of the pipe; f is Darcy-Weisbach friction factor; xjeax and Qjeax are the unknown
location and strength of the leak, respectively; and §(+) is the Dirac delta function used to represent
the leak as a point source/sink.

Boundary conditions for (3.1) are
h(x=0,t) = H; and u(x=_~L,t)=0, (3.2a)

where Hj, is the prescribed pressure head at the pipe inlet. The initial conditions are obtained
from the steady-state conditions before the valve shut off. The initial velocity uq is uniform along
the pipe, while the corresponding initial pressure head Ay is spatially varying and related to ug by

the steady-state WHE,
k
h()(x; Lt()) = §|u0|u0x—|—Hm. (3.2b)

Since 8(x — xjeak) = 0 for x # xjeax, Eqs. (3.1) can be replaced with their homogeneous
counterparts defined on the sub-domains 0 < x < xjeax and xjeax < x < L. Solutions of these
homogeneous equations on the two sub-domains are coupled by the interfacial conditions at
X = Xjeak- One of these conditions is pressure continuity, A(xy_,,t) = h(xfgak,t), where the

subscripts ~ and T indicate the limits of A(x,7) as x — xjeax from the left and the right of xje,k,
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respectively. The second condition stems from mass conservation (Brunone 1999),

0™ = 0"+ Qleak; Oleak (t) = CLAL\/ 28h(X = Xieax, 1), (3.2¢)

and relates the flow rates upstream, O~ = Q(x,,.?), and downstream, 0" = Q(x",,1), of the
leak. Here C and Ay are the discharge coefficient and the leak area, respectively.

In addition to xjeax and Qjeax, We allow the initial velocity ug to be uncertain. The latter
uncertainty is quantified by treating ug as a random variable with prescribed PDF f,,(Up). In the
absence of additional information, we assign to xje,x and CrAy the uniform (uninformative) prior

PDFs on the intervals (0,L) and [Ayin, Anax], respectively:

Xleak = ‘Zl(()?L) and CLAL — ‘Zl[/qmina /qmax]

We also account for measurement errors affecting the pressure sensor readings Agps (%),

hobs(2) = h(x*,1) +&(1), (3.3)

where &(¢) is the zero-mean Gaussian white noise with variance Gg, i.e., E[E(t)] = 0 and
E[&(1)&(r2)] = 028(11 —12).

A goal of Bayesian updating is to refine the uninformed estimates of xje;x and CrAL
by combining the probabilistic predictions provided by (3.1) and (3.2) with observations (3.3).
The PDF of h(x,1), the solution of (3.1) and (3.2), is computed in Section 3.3. Our strategy for

Bayesian updating of this prior PDF with data (3.3) is detailed in Section 3.4.
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3.3 Method of distributions

When applied to (3.1) and (3.2), the method of distributions (Tartakovsky & Gremaud
2015) yields a deterministic equation for the PDF f},(H;x,t) of the pressure head h(x,) (Alawadhi
et al. 2018),

8fh anh . B _612 dit Oleak . . T
g + a—H =0, V= Ea + TS(X xleak) ! (H h) (3.42)

This equation describes advection of a passive scalar, fj, in the velocity field V (h,H,t). The
latter depends explicitly on the mean flow velocity i(x,#) and the mean pressure head &(x,t), and

implicitly on the pressure head variance G% (x,t), through the closure variable o that is given by

_ CLAL\/E8 (X — Xjeak) I lah‘l 6/2,

o =
24V 2 ot

(3.4b)

These low-order statistics can be computed via, e.g., moment-differential equations (MDEs)
for (3.1) and (3.2). Instead, we compute them with Monte Carlo simulations (MCS) to avoid the
closure approximations that underpin the derivation of MDEs. This strategy is computationally
more efficient than MCS estimation of f,, since it take significantly few MC realization to
compute, with prescribed accuracy, the low moments than the full PDF.

The PDF equation (3.4) is subject to the initial and boundary conditions that reflect the
degree of certainty in the initial and boundary conditions of the physical system. This is done by
relating the output pressure head 4; to the initial velocity ug after ith discontinuity (i = 1,2,---).
This relation is obtained as follows. From the PDF f, , we draw N realizations of u(, denoted by
u(()l), E u(()N). For each of these realizations, the WHE (3.1) is solved numerically by means of
the method of characteristic with explicit finite differences Chaudhry (2013) to obtain the values
of the pressure heads after the ith discontinuity, ; = h;(ug), i = 1,2,---. This procedure results

(k)

in an array of data {u(()k) Jh; 2’:1. Then, we fit a second-order polynomial, uy = oc,-hlz + Bihi + i
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to these data, i.e., find the coefficients o, B;, and y; that minimize the mean root square error
between the polynomial and the data. Once the map between ug and 4; is available, the PDF of

the pressure head after each discontinuity is obtained as

dug

<y [fwo  Where ug = oh? + Bihi + ;. (3.5)
l

I =

Equations (3.4) and (3.5) are solved multiple times, for each node xje,x on the discretized
interval (0, L), to obtain fj,, . (H;x,t), the conditional PDF for the pressure head /(x, ) given the
leak location at x = xjeax. Since the PDF equation (3.4a) does not contain spatial derivatives, the
physical space coordinate x acts as a parameter in this equation. Hence, it is sufficient to solve (3.4)
and (3.5) only for the sensor node x = x*. The resulting conditional PDF fj, .. (H;x*,t) is used

for data assimilation.

3.4 Data Assimilation

Once the conditional PDF fj,, (H;x*,t) is computed by solving the PDF equation, the

joint PDF between 4 and Xieak, fh ., (H,X;x*,t), is computed as

fhuxleak (HvX;X*v t) = fhlxleak (H;x*, t)fxleak (X) (3.6)

where f,,, (X) is the prior PDF of the leak location, e.g., uniform PDF on [0, L] to reflect the lack
of prior knowledge. Bayesian updating (Wikle & Berliner 2007) requires a statistical model for

observations, f;, which is obtained from sensor readings. Then, the posterior distribution

obs ‘h:xleak ’

IhoXiear [ (F, X536, 1) is computed with the Bayes formula,

fhob<|h~xleakfh7xleak
fhvxleak|hobs = fh ’ fhobs = /fhobs|h7xleakfhaxleak dH (37)
obs
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where fj, . is a normalizing constant. Finally, the posterior PDF f,_, (X) is computed as the

marginal of fj, v . ... 1.€., by computing the integral fy_ 5. = [ i xeuhon 4 - This new PDF

obs obs

can then be used as a prior for the next time step until the simulation horizon T is reached. The
resulting PDF f, 14 (X) is expected to be much more narrow than the initial uninformed (i.e.,
uniform) prior PDF. It allows one to predict the leak location with a given/required degree of
certainty.

This strategy can be augmented as follows. If the leak location is known but its strength is
uncertain, then f,_, is replaced with fc, 4, . If both leak location and its strength are unknown, then
Sriea 18 TEplaced with fc, 4, ., Which, under the reasonable assumption of statistical independence

between the leaks location and strength, becomes fc,a; x = JCrAL friea-

3.5 Simulation Results

In the simulations reported below, we consider a pipe of length L = 3000 m and diameter
D = 0.5 m. The Darcy-Weisbach friction factor is set to f = 0.03. A transient wave with speed
a = 1403 m/s is initiated by instantaneous closure of the valve at the downstream of the pipe
(x =L). The pipe inlet (x = 0) has a constant pressure head of Hj, = 150 m. A sensor is located
at x* = L/3 = 1000 m to measure the response of the pressure head. The time required for the
contact discontinuity to travel from the valve back to the inlet is T = L/a = 2.14 s, and the time
required for it to reach the sensor point is T = (L —x*) /a = 1.43 s (see Fig. 3.1). The simulation
time is set to 7 = 27 in order to cover two contact discontinuities passing through the sensor. If
the leak is located at point x = Xje4k, then the time needed for the contact discontinuity to reach it
is Tieak = (L — Xieak)/a-

Synthetic data hops(f) are generated as follows. For a given leak location and strength, and
for a known initial velocity chosen randomly from its distribution, the WHE (3.1) and (3.2) are

solved to obtain the “exact” solutions u(x,¢) and h(x,t). The pressure time series 1*(¢) = h(x*,t)
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is assumed to be available only at the sensor location x*. Finally, the data hops () are generated
with (3.3) in which the variance of the zero-mean white noise &(z) is set to Gé =1 to account
for measurement errors and ambient noise. This gives a Gaussian observation model with mean
hops(t) and variance 1.

We consider three scenarios. In the first, the leak location is unknown while its strength
is certain; in the second, the leak location is certain while its strength is unknown; and in the
third, both the leak location and strength are unknown. In all cases, the pipe is sub-divided into
N = 120 equal segments. The uncertain initial velocity up is modeled as a lognormal random
variable such that uy = 2.0+ 0.1exp(z), where z is a Gaussian random variable with mean g, = 0

and standard deviation 6; = 0.4. In all cases, the prior PDF f},, . is computed by solving (3.4)

and (3.5).
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Figure 3.2: Scenario 1: Unknown leak location xje.x and known leak strength CrA;, = 1074 m?.
The top row exhibits the sensor’s pressure head readings, hobs(f), for a leak located either
upstream of the sensor, at xjeax = 475 m (left column), or downstream, at xjeax = 1975 m (right
column). The bottom row depicts the posterior PDFs f, ... (X) for these two cases.

Scenario I: The leak strength is known, CLAp = 10~* m?2, and the unknown leak loca-
tion xjeq is uniformly distributed in (0,L). More specifically, since the simulation domain is

discretized with 120 segments (121 nodes), the leak can be in any of 117 internal nodes (i.e.,
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excluding two nodes from each edge) with equal probability P = 1/117. Figure 3.2 (top row)
exhibits the sensor’s pressure head readings, hgps(?), for a leak located either upstream of the
sensor, at Xjeax = 475 m (left column) with ug = 2.066 m/s, or downstream, at Xje,;x = 1975 m
(right column) with ug = 2.152 m/s. The two time series are virtually indistinguishable, with the
leak discharge of about 1% of the initial flow rate in steady-state conditions. Yet our Bayesian
updating procedure is capable of identifying the leak location from these data (Fig. 3.2, bottom
row). During the update, the uninformative prior PDF f,, , has been replaced with sharply

peaked posterior PDFs f, ., . In the case of xjeax = 475 m, the posterior PDF has the mean

obs *
Xieak = 467.2 m and, with the 95% confidence, places the leak between 402 m and 525 m. In
the case of xjeax = 1975 m, the posterior PDF has the mean Xje;x = 1961.7 m and, with the 95%
confidence, places the leak between 1886.4 m and 2000 m. Although not shown here, we found

the width of the posterior PDF f, . i4,.. 1.e., uncertainty in the estimation of the leak location,

obs”
to increase as the leak strength becomes smaller and/or the measurement noise increases. This
intuitive finding serves as a consistency check for the proposed approach.

Scenario 2: The leak location is known, xje,x = 2475 m, and the unknown leak strength
Cr Ay is uniformly distributed between 10> m? and 10~> m?. The pressure head response at the
sensor, ops (¢), for the (unknown) leak strength CA; = 5- 107> m? with ug = 2.104 m/s is shown
in Figure 3.3, together with the posterior PDF fc, 4, g (A4) used to estimate the leak strength
from pressure measurement. This PDF has the mean C;A; =4.1-107° m? and, with the 95%
confidence, predicts the leak strength C; A to lie between 2.7 - 107> m? and 6 - 10~> m?.Although
not shown here, we found the performance of our method in this scenario to be sensitive to the
degree of uncertainty in the initial velocity ug. If a guessed value of ug is far from the mean i,
then the posterior PDF of the leak strength is centered around an erroneous value of C1A;.

Scenario 3: Both leak location xje,x and its strength CyA; are unknown. The prior PDF

frear (X) 1s uniform on the 117 internal nodes; the prior PDF f¢, 4, (A4) is uniform on the interval

[10’5 mz, 1073 mz]. The pressure head response at the sensor, /gps(2), for the (unknown) leak
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Figure 3.3: Scenario 2: Known leak location xjepx = 2475 m and unknown leak strength
CAL. The top figure exhibits the sensor’s pressure head readings, hqps(?), for the leak strength
CiA; =5-107> m?. The bottom figure exhibits the posterior PDFs JCLAL g, ().
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location xjeax = 1975 m and the (unknown) leak strength C1A; = 10~* m? with up = 2.091 m/s
is shown in Figure 3.4, together with the posterior PDFs f, . ... (X) and f¢, 4, |n,. () used to
estimate, respectively, the leak location and strength from pressure measurement. Even in the
presence of two sources of uncertainty, Bayesian updating is capable of accurate leak identification.
The posterior PDF f, .5, has the mean Xjeax = 1995.5 m and, with the 95% confidence, places
the leak between 1950 m and 2045 m. The posterior PDF fc, 4, |p,,, has the mean CiAL =10"*m?
and, with the 95% confidence, predicts the leak strength C;A; to lie between 9- 10> m? and
1.2-10~* m2. In other words, the means of these distributions provide accurate estimates of both
the location and strength of the leak, but predictive uncertainty associated with these estimators
increases relative to Scenarios 1 and 2.

The results reported above show that Bayesian data assimilation, combined with the
method of distributions, is powerful tool for detection of small leaks in the presence of uncertain
conditions and ambient noise. Bayesian updating produces a posterior PDFs for non-Gaussian
nonlinear models. The results are accurate even for small leaks with uncertain initial velocity and

errors in sensor reading.

3.6 Conclusions

We introduces an approach, which combines Bayesian data assimilation with the method
of distributions, for leak detection in water pipes instrumented with pressure sensors. The method
of distributions provides a deterministic linear equation for the PDF of pressure head, whose
dynamics is described by (highly nonlinear) water hammer equations; this significantly reduces
the computational cost relative to Monte Carlo simulations of the water hammer equations. A
solution of this PDF equation serves as a prior distribution in the Bayes formula. We conducted a
series of numerical experiments to demonstrate the applicability of our approach to pipe flows

with uncertain initial velocity and ambient noise.
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location, fy . i, (X), and leak strength, fc, 4, |y, (A)-
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Unlike various flavors of Kalman filter, Bayesian updating does not require a system to
be linear or Gaussian; that is particular pertinent for highly nonlinear water hammer equations
whose solutions exhibit multiple discontinuities. Our numerical experiments demonstrated how
uninformed priors, which reflect the lack of knowledge about a leak’s location and strength,
transform themselves into sharp posterior distributions centered around the actual values of the
leak’s location and strength. This was done for fairly small leaks, which are characteristic of
initial stages of pipe bursts.

The width of the posterior PDFs, i.e., uncertainty in the estimation of the leak location,
to increase as the leak strength becomes smaller and/or the measurement noise increases. This

intuitive finding serves as a consistency check for the proposed approach.
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4 Leak Detection in Networks via
Bayesian Update of the Method of

Distributions
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4.1 Introduction

Pipe networks provide a safe and economical way to deliver a fluid from its source to a
desired location. They consist of many pipes connected to each other with fittings. As networks
age, their pipes and fittings develop undesired abnormalities, such as leakage and contamination
build up, due to increased susceptibility to erosion and corrosion. These abnormalities increase
the economic and environmental costs of operating a fluid distribution network. For example,
American Society of Civil Engineers estimates that around 240,000 water mains break in the
United States each year (ASCE 2015); and close to 1500 major buried gas pipeline incidents have
been detected in the last forty years in Europe (Guo et al. 2018).

Since visual inspection is not an option for underground fluid distribution networks, one
has to rely on indirect measurements of hydraulic characteristics (e.g., pressure sensors) to identify
leak locations. (A practical approach based on the mass balance between the amounts of fluid
put in at the source and extracted at the end points works only when leaks are sufficiently large
and does not pinpoint their locations.) Leak detection tests induce pressure transients (e.g., by
shutting off a valve in one of the pipes), which carry information about a leak to the sensor in
a pipe network. These so-called transient test-based techniques (TTBTs) can be grouped into
the frequency domain approach (Mpesha et al. 2001, Lee et al. 2005, Covas et al. 2005), direct
transient approach (Brunone 1999, Brunone & Ferrante 2001, Wang et al. 2002), and inverse
transient analysis (ITA) approach (Liggett & Chen 1994, Vitkovsky et al. 2000, 2007, Covas
& Ramos 2010, Soares et al. 2011). An extensive review of these approaches can be found in
Colombo et al. (2009). Most of these approaches give accurate results for a single pipe, but have
hard time dealing with networks due to the associated uncertainty and flow complexity. With
some caveats, the ITA is capable of locating leaks in controlled pipe networks; yet its performance
in real pipe networks is less reliable (Covas & Ramos 2010, Meniconi et al. 2015) .

Accounting for uncertainty in input parameters and operating conditions, i.e., treating
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the underlying transient flow equations as stochastic, has a potential to overcome the limitations
of the approaches mentioned above (Zhang et al. 2011, Duan 2015, Massari et al. 2014, Sattar
& El-Beltagy 2016, Ye & Fenner 2010). Solutions of such stochastic equations are given in
terms of the probability density function (PDF) f, of pressure head /4. This strategy provides a
natural venue for assimilating pressure head measurements by means of either (various flavors
of) Kalman filter or the Bayesian update [ibid]. The latter strategy does not assume that the
PDF of pressure head is Gaussian, which is a poor assumption when fluid flow obeys the water
hammer equations (WHE) (Alawadhi et al. 2018). A major downside of Bayesian updating
(Wikle & Berliner 2007) is its computational cost, because computation (e.g., with Monte Carlo
simulations) of a full PDF used in Bayesian data assimilation is typically orders of magnitude
more expensive than computation of the corresponding mean and (co)variance needed by Kalman
filter.

To alleviate the computational burden of Monte Carlo computation of the PDF of pressure
head, whose dynamics is described by the WHE with uncertain (random) coefficients, Alawadhi
et al. (2018) used the method of distributions (Tartakovsky & Gremaud 2015) to derive a single
deterministic partial differential equation (PDE) for f;,. Using the solution of this PDE as a
prior distribution, and using Bayesian update to assimilate hydraulic head measurements, i.e., to
compute a posterior distribution, Alawadhi & Tartakovsky (2019) identified both the location and
strength of a leak in a single pipe.

In this paper, we build upon these results to develop a computationally efficient methodol-
ogy for identification of leaks in a network of pipes. Section 4.2 provides a problem formulation of
fluid flow in a network, which involves the WHE with random initial velocity. In section 4.3, we
present equations used to obtain the PDF of the pressure head, f;,, via the method of distributions.
This PDF is then used in section 4.4 as a prior for Bayesian assimilation of pressure sensor mea-
surements. In section 4.5, we present results of our numerical experiments, which demonstrate

our method’s ability to localize leaks in pipe networks. This section also provides a comparison
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of our method’s performance with that of the commonly used “best fitness function” method of
inverse transient analysis. Finally, major conclusions drawn from this study are summarized in

Section 4.6.

4.2 Problem Formulation

A transient leak detection test is conducted by shutting off a valve in a pipe and taking
pressure measurements from a sensor located upstream from the valve. Fluid flow induced by

this procedure is described by the WHE (Chaudhry 2013, Wylie et al. 1993),

a/’l a2 au . Qleak

o gox A
ou oh f

e —k k= _—-1_
5 783, |uu,

5()6 _xleak) (4.13)

(4.1b)

where h(x,t) and u(x,t) are the cross-sectionally averaged pressure head and flow velocity,
respectively; g is the gravitational acceleration constant; a is the wave speed; f is Darcy-Weisbach
friction factor; A = nD? /4 is the cross-sectional area of the pipe; xjeqk is the location of a possible
leak; Qjeak is the intensity of the leak; and J(-) is the Dirac delta function which represents the
leak as a point source/sink. These equations are obtained by averaging Naiver-Stokes equation in
a pipe over the pipe’s cross-section.

The WHE (4.1) are subject to initial and boundary conditions, which reflect a pipe
network’s topology. We consider scenarios in which the pressure head at the inlet of the pipe
containing a pressure sensor is known, %(0,¢) = Hj,, while flow velocity at the outlet is u = 0 after
the valve’s shut off (# > 0). The initial conditions are obtained from the steady-state flow before the
valve’s shut off. This gives a constant initial velocity ug along the length of the instrumented pipe.
The corresponding initial pressure varies spatially, ho(x;ug) = (k/g)|uo|uox + Hip, in accordance

with the steady-state WHE.
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The intersecting pipes are assumed to have the same pressure head at junction nodes,

while the velocities are related to each other by continuity equation

N()llt

Ml’l
ZQini - Z Qouti (4'2)

where Q;, and Qg are the flow rates entering the junction node and exiting the junction node,
respectively. The same reasoning applied to the leak location x = xje,x suggests the equality of
the pressure head immediately upstream and downstream of the leak, h(xp,,?) = h(x},,.1) =

h(xieak,t). The velocities at this point are related by mass conservation (Brunone 1999),

0 = 0" + Oleak; Oteak () = CLAL/ 28h(x = Xieak, 1), (4.3)

where O~ and Q" are the upstream flow rate and the downstream flow rate, respectively; Cy is
the discharge coefficient; and Ay is the leak area. The product C; Ay is referred to as the strength
of the leak.

The location (xjeqx) and strength (CrAr) of the leak and the initial flow velocity (ug) are
all unknown. They are treated as random variables with prescribed PDFs. The initial velocity is
assigned a PDF f, . The PDF of the leak location, f,,, and the PDF of the strength of the leak,
fc,4, » are a priori assigned uniform distributions on the intervals [Xin, Xnax] and [Amin, Anax),
respectively. Within the Bayesian framework, such PDFs are referred to as uninformative priors
and reflect no prior knowledge of the leak.

Measurements are collected by a pressure sensor located in one of the pipes at a point
x = x*. Measurement errors are accounted for by adding zero-mean Gaussian white noise, &(t),

to obtain the model for pressure sensor readings, Aops(?),

hobs(t) = h(X*vt) +{;(t)' 4.4)
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This formulation implicitly assumes that the WHE provides an accurate representation of reality,
i.e., that the model’s prediction A (x*,7) differs from the measurements at the same point, Agps(?),
only by measurement error.

The prior PDF of the pressure head, fj,(H;x,t), can be computed with high-resolution
Monte Carlo simulations of the WHE (4.1), which is computationally expensive and often
prohibitively so. Instead, we compute it by solving the PDF equation introduce in the following

section.

4.3 Method of Distributions

Applying the method of distributions (Tartakovsky & Gremaud 2015) to the WHE (4.1),
one obtains a deterministic equation for the PDF, f;,(H;x,1), of the pressure head & (x,¢) (Alawadhi

et al. 2018):

dfn , IV fi - o a* dit Oleak
o Tam % Ve T A

S(X — Xleak) — 0 (H — }_l) (4.53.)

This linear equation, which is valid at space-time intervals between the pressure discontinuities
(see below), implies that the PDF fj, is advected in the two-dimensional space (x,H) by the
velocity field V (h,H,t) that is aligned with the H coordinate. The velocity field depends on the
ensemble mean velocity, ii(x,?), and ensemble mean pressure head, 4(x,?). It also depends on the

variance of the pressure head, G% (x,1), through the closure variable o, which is given by

Ar\/220 (x — 19dInc?
o — _ CLALV288(x —Xew) | 101G, (4.5b)

24V 2 ot

The PDF equation (4.5) is subject to initial and boundary conditions that reflects the
information about the initial and boundary conditions of the physical system. This is done by

numerically relating the pressure head after the ith discontinuity, 4; (i = 1,2,--+), to the initial
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velocity, ug. The relation h; = h;(ug) is obtained by solving the WHE (4.1) with the method of
characteristics N times, each with a different realization of ug, to obtain the pressure head after

(03N which is then fitted

the ith discontinuity, ;. This procedure results in a data array {u(()k) W
with a second-order polynomial, ug = ocihl.2 + Bih; +;. The coefficients a;, B;, and y; are obtained
through minimization of mean root square error between the data and this polynomial. Finally,

the PDF of the pressure head after each discontinuity is computed as

dug

fh,’: d_]’ll

Suo- (4.6)

The PDF equation (4.5) is solved multiple times for each leak candidate (location/strength)
to obtain a conditional PDF for the pressure head, fy,...c4; (H;x*,t), which is used for data
assimilation. It only needs to be solved for the sensor node x = x*, since the physical space
coordinate x is a parameter in the equation. This prior PDF is updated with the pressure head

measurements using the Bayesian procedure described below.

4.4 Data Assimilation

Once the conditional PDF fj, . ¢, (H;x*,t) is computed, and the leak-related priors

v (X) and fe, 4, (A) are assigned, the prior joint PDF f, . . ¢4, (H,X,A;x*,t) is evaluated as
fleak( LAL g p J »Xleak ,;“LAL

fh,xleabCLAL (H’XaA;X*a t) = fh|xleakaCLAL (H;X*’ t)fxleak (X)fCLAL (A) . 4.7)

We use Bayesian updating (Wikle & Berliner 2007) to assimilate the measurement /g at a given

time 7 into this probabilistic prediction. For the measurement error model in (4.4), fi . 5 xeac.CLAL*
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the PDF of hqps conditioned on the WHE’s prediction i(x,7), is Gaussian,

1 H — hgp )?
fhobs|h7xleak7CLAL = ) CXp [_ %] (48)
27tc5é 3

Then, Bayes’ theorem gives the posterior joint PDF,

_ fhobs‘hvxleakaCLAth>xleak7CLAL 4 9
fh7xleak7CLAL‘h0bS - ? ( . a)

f hobs

where fj, is the normalizing constant,

e = | o Cote i OH. (4.9b)

The posterior PDFs for leak location, fi,., (X), and leak strength, fc, 4, (A), are marginals of the

posterior PDF fj, . c 4, h

obs?

fxleak|hobs - / /fhvxleakchAL|hobs deA (4 10)

and

fCLALlhObS = //fh7xleakaCLAL|hobs deX (4 1 1)

These posterior PDFs for leak location and leak strength at time ¢ are used as prior PDFs for the
next time step. This procedure is repeated until all pressure sensor readings are assimilated. The
result is the posterior PDFs f ., and fc, a, i, that are narrow and centered around the actual
location and strength of the leak. Numerical implementation of our method follows the algorithm

in Figure 4.1.
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Start the program by defining leak
location/ leak strength candidates

A 4

Pick a candidate and solve |_
1000 MCS with random ug | A

A4
Solve for steady state case to obtain initial conditions (this
requires solving steady state version of WHE for each pipe with
the relations in the junction nodes and leak nodes) (Eq.1-3)
A 4
Solve WHE equations to obtain h(x, t) and u(x, t) (Eq.1-3) |
A 4

Obtain the gradients for mean and variance
to use them in closure approximation
A4

| Use method of distributions to obtain f4x,,...c;4, (EQ.5,6) |

No

Done with all
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Obtain hyps(t) (Eq.4), and Yes Assume initial fy,, and f¢, 4, to
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[s it the last No
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Report fxleaklhohs and fCLAL\hobs

Figure 4.1: Numerical implementation of Bayesian update of the method of distribution used to
locate a leak in a fluid distribution network.
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4.5 Numerical Experiments

To demonstrate the ability of our method to identify leaks, we consider two pipe systems,

a branching pipe and a pipe network consisting of 13 pipes.

4.5.1 Branching Pipe

As a first test, we consider a long pipe that splits into two “daughter” pipes (Fig. 4.2).
The “mother” pipe is connected to a water tank in which constant and known pressure head,
H;, = 150 m, is maintained; the pipe is equipped with a pressure sensor located at x = x* = 1000 m.
The mother and daughter pipes have respective lengths L; = 3000 m and L, = L3z = 2000 m, and
diameter D1 = D, = D3 = 0.5 m. One of the daughter pipes has a dead end, while the other
daughter pipe is connected to a downstream shutoff valve that is used to create transient effects
by sudden closure at time ¢ = 0. (The remainder of a possible pipe network downstream of the
valve is immaterial for this test.) The pressure signal induced by the valve closure is captured by
the sensor and used to identify leak location (xje4x) and intensity (Qjeax)- A leak can be in any of

the three pipes.

Valve

I

Sensor

Figure 4.2: A branched pipe system used in Test I with a mother pipe connected to a tank, a
daughter with a dead end, and the other daughter connected to a valve.

The flow before the valve shutoff is steady. All the pipes have the Darcy-Weisbach friction

factor f = 0.03. The valve shutoff creates a wave traveling upstream with the wave speed whose
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value is set to a = 1403 m/s. In numerical simulations, the pipes are discretized into equally
spaced nodes with the mesh size dx = 100 m. Absent any information, the leak can be in any
of the internal nodes of the three pipes, and leak strength can be between C;A; = 107> m? and
20.0- 107> m?. This lack of information about the leak’s location and strength is treated by
assigning the uniform (uninformative) prior PDFs to both.

In this test and the one described in the following section, as well as for all scenarios
considered, we treat the uncertain initial velocity up as a lognormal random variable, uy =
2.0+ 0.1exp(z), where z is a Gaussian random variable with mean u, = 0 and standard deviation
6, = 0.4. Data hops(t) are generated by solving the WHE (4.1) for a given leak location and
strength, with a known initial velocity chosen randomly from the distribution f,,, and then
adding a zero-mean white noise to the result at sensor location x*. The variance of the noise is
set to G% = 1 to account for ambient noise and measurement errors, which translates into the
measurement errors that are up to 2.5% of the original signal in some realizations. This choice of
€ gives a Gaussian distribution for the observation model with mean Ay (¢) and variance 1.
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Figure 4.3: Scenario 1: Branched pipe case with a leak in pipe 1 at xjeax = 1900 m with a
strength of CtA; = 10.0- 1073 m?, where both leak location xjey and its strength CLAy are
assumed unknown. The top figure depicts the posterior PDF f . s, (X). The bottom figure
exhibits the posterior PDF fc, 4, ny,. (A)-
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Figure 4.4: Scenario 2: Branched pipe case with a leak in pipe 2 at xjeox = 1100 m with a
strength of C;A; = 10.0- 107> m?, where both leak location xjeax and its strength Cr Ay are
assumed unknown. The top figure depicts the posterior PDF f s, (X). The bottom figure
exhibits the posterior PDF fc, 4, s, ().

We investigate our method’s ability to identify a leak located in pipe 1 (scenario 1), pipe 2
(scenario 2), or pipe 3 (scenario 3). Figures 4.3—4.5 show the posterior PDF of the leak location,
Stealhops @0d the posterior PDF of the strength of the leak, fc, 4,4, for these three scenarios.
Our method is capable of correctly identifying a leaky pipe in the network by transforming the
uniform priors into sharper PDFs centered around the actual values for leak location and strength.
The mean and the 95% confidence level computed with the posterior PDFs in Figures 4.3-4.5 are

reported in Table 4.2.

4.5.2 Network of Pipes

The second test involves a network of 13 pipes, whose intersections form 7 junction
nodes (Fig. 4.6). The lengths and diameters of these pipes are listed in Table 4.1. This network
configuration has been used by Liggett & Chen (1994), Vitkovsky et al. (2000), Kapelan et al.

(2003) to study their transient test-based techniques (TTBTs). The Darcy-Weisbach friction factor

47



-3 -3 -3
§ 2 X120 410 2 X120
b1
3
%‘ 3 3 3
“a 2 2 2
9
[a)
(2" | 1 1
-
o)
k=l
2o [} 0
L o0 1000 2000 3000 0 1000 2000 0 1000 2000
A Pipe 1 Pipe 2 Pipe 3
Possible leak location, X [m]
4
x10
'go 35 T T T T T T
=
o 3F -
=]
@
M 25 -
]
g Ll ]
]
15 B
S
— 1F 4
2
% 05 .
o 0 1 1 1 1 1 1 1
A~
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Possible leak strength, A [m?] x10*

Figure 4.5: Scenario 3: Branched pipe case with a leak in pipe 3 at xjeox = 800 m with a strength
of C;A; = 8.0- 1073 m?2, where both leak location Xieak and its strength C;A; are assumed
unknown. The top figure depicts the posterior PDF f, . ., (X). The bottom figure exhibits the
posterior PDF fc, 4, |y, (A)-
for all pipes is f = 0.02. The inlet of the network is connected to a water tank with a known
pressure head, Hy, = 150 m. A pressure sensor is installed on the inlet pipe at x = x*. The outlet
pipe is connected to a shutoff valve that is used for water-hammer test.

The experiment starts with steady flow before the valve shutoff. Three scenarios are dis-
cussed for this test, each with its own pipe discretization and sensor location. For scenario 4, pipe
1 is equipped with a pressure sensor at x* = 1750 m and is discretized with a uniform mesh of size
dx =250 m. All the pipes in the network (or, more precisely, their internal nodes) are treated as
leak candidates, and the prior PDF for leak strength Cy Ay is a uniform distribution on the interval
from 5.0- 107> m? to 20.0- 10> m?. The actual leak, used to generate data, is located in pipe 7
at X1k = 1000 m (which is the 61st node) and has the intensity of CLA; = 10.0- 107> m?; the
initial flow velocity is up = 2.110 m/s. The posterior PDF after Bayesian updating, f,, .| (X),

is shown in Figure 4.7. It identifies the leak in pipe 7 with 90% confidence, and has the mean of

obs

Xleak = 1960 m. The 95% confidence predicted the leak strength to lie between 6.8 - 107 m? and
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Figure 4.6: Pipe network system used in Test II with a tank connected to the inlet and a valve
connected to the outlet.
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15.0- 107> m?2, with the mean of C;A; = 10.5- 107> m?.

Table 4.1: Lengths and diameters of pipes in the pipe network system used in the last three
scenarios.

Length (m) Diameter (m)

Pipe 1 3000 0.5
Pipe 2 4000 0.4
Pipe 3 3000 0.4
Pipe 4 3000 0.5
Pipe 5 3000 0.4
Pipe 6 3000 0.3
Pipe 7 3000 0.25
Pipe 8 2500 0.25
Pipe 9 2500 0.4
Pipe 10 2500 0.3
Pipe 11 2500 0.4
Pipe 12 3000 0.3
Pipe 13 4000 0.4

We used the previous scenario to demonstrate the method’s ability to locate the leaky
pipe; in doing so, a coarse numerical mesh was used to speed up the computations. The next
two scenarios refine the computational mesh to pinpoint the leak location within the leaky pipe
(identified, e.g., by using the coarse mesh of scenario 4). This strategy reduces the computation
time by searching for the leak candidates on the refined mesh only in a leaky pipe. In scenario 5
the sensor is placed in pipe 1 at x* = 2000 m, and this pipe is discretized with a finer mesh of
size dx = 100 m. In this scenario, pipe 9 is known to be leaking, but the exact leak location is
unknown and treated as a random variable uniformly distributed between 200 m and 2300 m. The
leak strength is also unknown and treated as a uniform random variable on the interval between
2.0-1079 m? and 14.0- 107> m?2. The actual leak used in this test is at xjeax = 1400 m and has the
strength C;A; = 10.0- 10~ m?; the initial flow velocity is up = 2.102 m/s. Our method predicts

the mean for leak location at Xjepx = 1426 m; with 95% confidence it places the leak between
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600 m and 1991 m. The predicted mean for the leak strength is CzA; = 9.0- 107> m?; with 95%

confidence the leak strength is between 6.0- 10~ m? and 11.7 - 10~ m? (Fig. 4.8).

800 1000 1200 1400 1600 1800 2000
Possible leak location, X [m]

Posterior PDF of leak location
[ X=] — N w - 3] » ~
L]
L

=]
o

Figure 4.9: Scenario 6: posterior PDF f, 4, (X) for pipe network case with a leak in pipe 10
at Xjeak = 1450 m with a strength of C;A; = 10.0- 107> m?, where leak location xjeax is assumed
unknown and leak strength CA; is known.

The last scenario has a sensor in pipe 1 at x* = 1000 m, which is discretized with a very
fine mesh of size dx = 50 m. The leak is known to be in pipe 10 with unknown exact location,
a situation modeled by treating xje,x as a uniformly distributed random variable on the interval
between 600 m and 1900 m. The leak size is assumed to be known, C;A; = 10.0- 10~> m?2. The
actual leak used to generate data is at xje,x = 1450 m, and the initial flow velocity is ug = 2.091 m/s.
Our method places the mean of leak location at Xjeox = 1363 m; with 95% confidence, the leak is

located between 1149 m and 1500 m (Fig. 4.9).

4.5.3 Comparison with an Alternative Method

We compare the performance of our Bayesian method with that of the commonly used
inverse transient analysis method based on a “best fitness function”. The fitness function is

defined as the discrepancy between the observed and predicted pressure heads,

Tmax

,{]'—(MOaxleakaCLAL) = Z |hobs(t) _h(X*yt;xleakacLAL)L = 07 172' e Tmax/dt

t=i-dt
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and the “best” refers to a solution of the minimization problem

{freak,CLAL} = argmin  F (4o, Xieak, CLAL).

o Xieak,CLAL

In its standard formulation, all the quantities in the best fitness function are deterministic, i.e.,

uncertainty in the input parameters and measurement errors are ignored.

Table 4.2: A comparison between the actual values, values obtained with Bayesian updating,
and values obtained using best fitness function for the branched pipe case results.

Actual Bayesian updating Best fitness
Uy  Xeak CIAL Xleak CIAL Xleak ClAL
(m/s) (m) (107°m?) (m) (107°m?) (m) (10°m?)
(95% CL) (95% CL)
Scenariol 2.082 1900 10.0 1895 12.1 1900 14.0
(1725-2100) (9.2-14.0)
Scenario2 2.120 1100 10.0 1167 6.5 1100 8.0
(933-1400)  (4.2-9.0)
Scenario3 2.109 800 8.0 948 59 900 6.0

(600-1560)  (3.0-8.1)

The result using the best fitness function is reported in Table 4.2 for the branched pipe
case. For scenario 4, the method was able to locate the leak in the correct pipe with xjeqx =
1750 m and C;A; = 15.0- 107> m?. It predicted the leak at Xjcqx = 600 m with a strength of
CrAr = 8.0-1073 m?2 for scenario 5, and predicted the leak at xje,x = 1300 m for scenario 6. Both
the best fitness function and our method correctly pick a leaky pipe in the networks, and their
respective accuracy in terms of the leak’s location and strength vary from one scenario to the next.
It is important to emphasize though that our method yields predictions under uncertainty that
come with corresponding confidence intervals, while the best fitness function method disregards

all sources of uncertainty yielding a single (deterministic) prediction.
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4.6 Conclusions

We developed a leak identification method that combines the method of distributions
for the water hammer equations and Bayesian updating. The former component facilitates the
efficient and accurate computation of a prior probability density function (PDF) of pressure head,
while the latter allows one to update this PDF with pressure measurements collected by a sensor in
one pipe of a fluid distribution network. The method of distributions transfers the nonlinear WHE
with uncertain inputs into a deterministic linear equation for the PDF of pressure head. Bayesian
updating was chosen for data assimilation because it allows one to handle highly non-Gaussian
PDFs typical of solutions to the WHE and to make inference from noisy data in the presence of
ambient noise.

Our method was applied in multiple scenarios for a bifurcating pipe and a pipe network.
The results of our numerical experiments demonstrates our method’s ability to correctly identify
a leaky pipe for all levels of uncertainty and noise considered. It also predicted the leak’s location
and strength, together with the corresponding confidence intervals. The actual location and

strength fell within these intervals in all experiments.
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5 Conclusions
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A key accomplishment of this work is the derivation of a deterministic linear partial
differential equation for the probability density function for fluid pressure head using the method
of distributions. This equation is derived from the stochastic nonlinear water-hammer equations
with uncertain initial conditions. The new approach has the ability to estimate the probability
density function for pressure head and velocity in less computational cost than Monte Carlo
simulations.

The obtained PDF is used as a prior distribution to locate leaks and their strength by
combining it with a statistical model for pressure sensor observations using Bayesian data
assimilation. We demonstrated the method’s ability to obtain leak location and leak strength
distributions around the actual values with acceptable accuracy. The obtained results give full
distribution for the probability, which can be used to obtain higher moments and get detailed
statistics about the leak. The accuracy of the results can be improved by collecting data from
more than one sensor.

The method can be combined with inverse transient analysis to further improve leak
identification and reduce false alarms. It can also be used to identify best locations for placement
of pressure sensors and their optimal number.

The method is promising but it still needs to be tested in real complex networks. It also
needs to include other types of uncertainties, such as uncertainty in parameters (friction, diameter,
wave speed) and uncertainty in boundary conditions. This is possible through different closure
approximations, which will lead to new sets of PDF equations.

The method can be applied to non-Newtonian fluids to cover other chemicals.
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A Water Hammer Equations
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A.1 Derivation of Water-Hammer Equations

A.1.1 Continuity Equation

10 1o, L a

assuming unidirectional, axisymmetric flow:

op 0 B
> + gC(pu) =0 (A.2)

Integrating the equation over the area and using Leibnitz rule:

the first term will be:

D/2 D)2
/ a—pZTErdr = 3 / 2nprdr — 2nprﬂ
0 0

ot ot dt|,_ps
PA
_ A o (A3)
ot dt|,_p
D/2
Where the average density, p = f 2nrpdr
the second term will be:
D/2 D/2
/ Ipu —2nrdr = / 2npurdr — 2npurﬂ
0 ox a r=D/2
_ A rour® (A4)
ox dx|,_p
Where pit = + [P/? 2nrpudr
Substitue in (2):
A A
WA IPUA o ror (] 4 ﬂ —0 (A.5)
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assume pu ~ pit and assume no leak:

OpA  IpiA
o T T

op _0A dit 0A op

PA— + pii— + A= =0

Agp TP, TRAS Tpag AT

_(0A 0A op _9p _ o
p(gﬁ— P )+A<a + a)—FpAa—

divide by pA

1dA+1dp+au
Adt pdt ox

1 dpA
dpA | 9i _,
PA dr ' ox
1dpA 1 2_ _k/p
bu ut =5 g =5z dz P where a T
1 dP di
pa’ dt  ox
oP _dP , 0l
2L 529 _
o Tax TP

Using Dimensionless Analysis:

Leti = i/Up, £ =x/L, P=P/P\ = oo i =1/T = 4

poa*lUy 0P p,aU? AaP _ LU, i

oL o o lar P a0
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(A.7)

(A.8)

(A9)

(A.10)

(A.11)
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divide by 22U U‘ andlet M = 71 < 1

OaP U oP
p +P s

p2of ' pla “ox
po 0P p, OP

on
%
on

=0

+EMis =2 =0

P2 o ' pg of
Po 0P di
pl2of  of
going back to dimensional form:
oP _ ,di
ot +ha ox =0
Use Piezometric Head:
P=pg(h-2)
o _ o
ot 8
pg 3 p 3
oh f i
or g ox

A.1.2 Navier-Stokes Equation

ouy

or

10P x+u/3 90

ou,  ug Oty ouy
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(A.18)
(A.19)
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assuming unidirectional, axisymmetric flow:

ou  du 1 0P K+4,u/33(8u) e ( au> L

B ax) Tror\"or

a7 TR T o T T p

Integrating the equation over the area and using Leibnitz rule:

the first term will be:

D/2 D/2
/ a—MZerr = 2 / u2mrdr — 2nruﬂ
0o ot ot Jo t—pp

a(ﬂA) — 2nruﬂ

ot dt

r=D/2

Where the average velocity it = % fOD 2 2mrudr

the second term will be:

D/2 D/2 1 92
/ u%andr:/ —aLZTtrdr
0 0

ox 2 ox
D/2 1 1
= i/ —u*2mrdr — —u22nrﬂ
oxJo 2 2 dx|,_p P
19(Bi*A) 1
= _a(Bu ) — u22nrﬂ
2 ox 2 dx|,_p/

Where § = ﬁZLAf(?/z u?2mrdr
Let f(p) = 5. f(P) = —5./"(P) = &

p
using taylor approximation: f(p) ~ % -5+

61

(A.23)

(A.24)

(A.25)



the third term will be:

D/2
J,

1 0P
pox

the fourth term will be:

<ax) 2nrdr

/D/2 K+4u/3 0
0 P ax

oP [D/2 2wy
Trdr = ——/ —dr
dx Jo p
D/2 D/2 ! D/2 2
= B_P{/ 2lﬁa'r—/ Zj?;p dr+/ 271:_11) dr]
ox | Jo p 0 p 0 p
9P |A Ap' Ap?|  OPA dPAp?
o |p pE PP | oxp ox p? (A.26)

D/21 9 (ou D/2p" 9 (du D/2p2 9 (du
=Kx+4u/3 _/0 5ax (ax) andr—/o o <ax> 27trdr—|—/0 57 o (8_) 2Ttrdr]
(9 [D/219u 10u__ dr 2u\ A/ 0%
=Kk+4u/3 a/o pax27trdr ﬁaxz ro ~ D/z—p—<p 2 >+§—<p $>
92 D)2 2nr ou . dr A/ ,0%u A/ ,0%u
=K+4u/3 ﬁ/ EMZTCrdr—?(M—Fa e r:D/z_?<p g>+5<P @>
182(uA) 2nr du. dr A/ ,0%u A | ,0U
BN PR T R T r:D/z‘?<p W) e ()| e
the fifth term will be:
D)2 D/2
/ VO (9 oy — / v (12 ar = npv 2™ (A.28)
0o ror "or 0 or \ or or =D)2
the sixth term will be:
D/2
fomrdr = Af, (A.29)
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Substitue in (21) and assume no leak:

d(iiA) N 19(Ba?A)  OPA 0P Ap”

o 2 ox  oxp ox pd

10%(qd) 1 ,0%u 1 1 0%u
) [0 - o (o) + o (0752

+ ana—
or

LAf, (A.30)
r=D/2

Let f = —pgsin(0) ,T= —,u%

r=D/2
Using Dimensionless Analysis:

Letii = ii/Uy, £ =x/L,P=P/P = P=1/T={} %= 8t

P
poal;”’ PofU?

al, 0(iA)  1U}O(Bi*A)  Ap,aUi 9P  Ap”? p,al; oP

L o 2L ot  p CL o pP CL ox
102(4A) 0%i 1 0%
e (555 (o5 ) <5 ()
Ao fULRD
SpA Apgsin(0) (A.31)

63



4 _LUip

multiplying the equation by e and assuming M < 1 where M = and Ry = ¢ a3
d(i1A) L1 U A(BA*A)  Ap, 0P Ap,p”*oP
of '2a 0%  p ok PP ox
¢ [10%(aA) ,0%0 1 0%
4 Lotmd) 1y A
+ (k+ /vl/?’) P of2 p2 P ox2 + p3 P 02
TpofUﬂT,DLg CL Apgsm( ) (A.32)

2pnD3a aU
(BﬁZA) Ap{, oP Ap,,p’2 oP
p of P> ox

aiA)
s

T R e
(A.33)
a(gtfx) _ _Ago 3_1; B ApﬁoSpQ g_i - %p(;zJ;I;)CM - a%l Apgsin(6) (A34)

going back to dimensional form and assuming constant Area:
S e S
? + é% (1 + ';—2> + piH pgsin(8) =0 (A.36)

Use Piezometric Head and substitute in (23):

P=pg(h—2) (A.37)
% = ﬁg% - ﬁgg—f = ﬁg% — pgsin(6) (A.38)
%*%% <1+§> +p—§r—pgsm( ) + Pgsin(6) =0 (A.39)
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di  oh p2 D

o T <1+§> a0 (A40)
di  oh P2\ fula
g“f—ga <1+?> + D =0 (A41)

assuming W < 1 leads to

=0 (A42)

A.2 Method of Characteristics

Starting with water-hammer equations

o
or g ox
Ju oh f

§+g$: k|u|u, k:_@

-0 (A.43)

(A.44)

multiplying (A.43) by a multiplier, A and adding it to (A.44) results in

ou . a*du oh goh
dA—— | A=+ | =k A .45
[at gax]+ [aﬁxax e (A45)
This is the total derivative for %— + Z)t‘ ?)Z and dh %— + %g—h where ¢ dz = ‘;72 and % = %—z
To find A let
2

y Qe (A.46)

g A

This will result in A = i%. Substituting this (A.45) will result in the following equations along
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the characteristic lines

du gdh dx
o + i k|ulu, along i +a (A47)
du gdh dx
T ad k|ulu, along o= (A.48)
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B Method of Distributions
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B.1 Derivation of PDF Equations

The derivation of a PDF equation starts by defining a “raw” PDF function (Tartakovsky &
Gremaud 2015),
II(U —u,H — h) = 8[U — u(x,1)|d[H — h(x,1)], (B.1)

where J(+) is the Dirac delta function. Its ensemble mean, over the realization of random variables

u and h at the space-time point (x,7), is the joint PDF f,;,(U,H;x,1):
E[T] = / / S(U — WS(H — H) fur(U, Hx, 1) dHAU = fun(U. Hixt).  (B2)

Recalling the sifting property of the Dirac delta function, r(u#)d(U — u) = r(U)d(U — u); noting

that
oIl Olloh  JIldu ol1oh  JIldu
=5 sty = o5 o (B.3)
ot Ohdt du ot oH dt dU ot

multiplying (2.1a) by —dIl/dH and (2.1b) by —dII/dU; and adding the resulting equations

together leads to

2
a_n _ a_Ha_% _ a_H oh - —i[r(U)H] _ ls(x_xleak) aneak(H)H‘

% 9Hgax Sk U A oH B4

Because of Reynolds’ decompositions of the variables involved, including IT = f,;, +IT', the

ensemble mean of this equation is

afuh 0 a® i Qleak(H ) 0 oh -
8t +ﬁ Ql_gafuli_i_TS(x_xleak)fuh +% Q2_gafuh+k|U|Ufuh =0
(B.5)
where
2 / /
0= |% amd 0= ok |1y (B.6)
g ox ox
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As a closure approximation, we postulate that

01 =o (x,t)[H — /jl(x,l‘ﬂfuh and O = Otz(x,l‘)[U — I/_t(x,t)]fuh. (B.7)

The coefficients a (x,7) and o (x,7) are obtained by ensuring that the PDF f,;, in (B.5) has the
same means, i and &, and variances, (55 and G%, as those resulted from the moment differential
equations (B.18), (B.19), (B.22) and (B.23). To derive an expression for o (x,), we recall that

fu(H;x,t) = [ fundU so that the integration of (B.5) with (B.7) over U yields an equation for

fu(H;x,1),

i = a? dii Oeak (H )

J
In 0 (1= ) = % 5+ 83— ) | =0 (B.8)

o oH A

which relies on the boundary condition f;,(4e0, H;x,t) = 0. We rely on a truncated Taylor

expansion around the mean value to approximate

~ h— G% an ~ h h 3—6%
E[VA] ~ Vh e d E[\/Eh]whx/hg\/z.

Moreover, since [~ f,dH =1 and [~ H f,dH = h, and since f,(#oo;x,t) = 0 such that the
limit limg_, o0 [H fj,(H;x,t)] = 0, multiplying the above equation by H and integrating it over H
leads to (B.18). This means that the closure for Q; preserves the mean, regardless of the choice
of o (x,t). To compute the variance of fj, i.e., 67 = [~ (H — h)*f,dH, we multiply (B.8) by

(H — h)? and integrate over H. This gives an equation for the variance,

J62 o2
R

o 5()6 —xleak). (B.9)

For this equation to be consistent with (B.22), the coefficient a1 in the closure approximation (B.7)
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has to be

1
o = ——=Ps. B.10
1 2(5}21[31 ( )

Combining this with the expression for 3 derived in Appendix B.2 leads to (2.3¢).
Determination of o (x,7) follows a similar procedure. An equation for the marginal PDF
fu(Usx,t) = [ fundH is derived by integrating (B.5) with (B.7) over H, while accounting for the

boundary conditions f,,(U,+eo;x,t) =0,

Af, 0 _ oh _
ot s 02U = - g5 AUV o ®B.11)

Multiplying this equation with U, integrating the result over U, and accounting for the boundary

condition f,(£eo;x,t) = 0, yields

dit

oh [
Sres - [ MulUfaU =0, (B.12)

Expanding E[|u|u] into the truncated Taylor series (B.16), we obtain E[|u|u] ~ |i|i + sgn(it)c2,
so that (B.12) reduces to (B.19) for any choice of o (x,¢). Multiplying (B.11) by (U — i1)*> and

integrating over U results in

2
oG,

= — 200,62 = 2kE[|u|u?] — 2kaR[|u|u]. (B.13)

The second-order Taylor expansions E[|u|u] ~ |i|ii + (|it| /it)o? and E[|u|u?] ~ |i|id® 4 3k|i|c2

reduce (B.13) to

) 2
;” 20,62 = 4k|i|G?. (B.14)

u

This the variance equation is consistent with (B.23) if

1
= ——0. B.1
0 22 B> (B.15)
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Combining this with the expression for 3, derived in Appendix B.2 leads to (2.3c).

B.2 Derivation of Moments Equations

We use the Reynolds decomposition to represent random quantities (e.g., #) as the sums of
their ensemble means (e.g., it) and zero-mean random fluctuations (e.g., u’). Next, we decompose
the nonlinear terms Qleak = Yieak V4 and r(u) = k|u|u in (2.1b) into a Taylor series about / and 7,

respectively, such that

dh 2 dn?
7 Vieak , / Vieak N2 /3
— Yioa VI Dy ek 2o (B.16)
- NARETVAGEE
r(u) =r(a)+ g(ﬂ)u/ + l&(ﬁ)(u/)z + O(u'3) = k|ﬂ|ﬁ—|—2kﬁ—2u' +k£(u/)2 + O(u'3)
du 2 du? || || '
(B.17)
Taking the ensemble mean of the resulting version of (2.1) yields
oh a*9i 'Yleak\/z G%'Yleak
— 4 — S(x — B.18
ot g o ( A i) e (B9
dit ~ oh il
— +g= = kla|i+ k=L B.19
3 T 8ax KAk O (519

Subtracting these from the expanded version of (2.1) leads an equation for perturbations,

ey (Yleakh/ Yleak(h/)2 Yleakc}zz )

M a0 (heah Vi) | Ve ) g (B.20)
o g ox 24vh  8AWVh  8AWVH (%= Teak)

ou’ on’ i u

o M it k(0 — ko2 B.21
5 T 8ax 2Kl ke () ko B20
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Multiplying (B.20) by #'(x,¢) and (B.21) by u/(x,t), and taking the ensemble average of the

resulting equations leads to

aG%l . ’YleakG% o 2612 ,all/
s +B1 = Wi O (x — Xteak), B = ?E [h g] (B.22)
2 /
%, +Ba = 4k|it|oz, B2 =2gE {u’a—h} : (B.23)
ot ox

B.3 Initial Conditions for PDF Equation

The lognormal PDF f,,,(U) of the initial velocity up = 2.0+ 0.1exp(z) with Gaussian z is

given by

dz
du()

L[ 00w 2) P
"= Vo —2)e. T

Juy(U) = U>2.  (B24)

This distribution is used as the initial condition for the PDF equation before the first contact
discontinuity reaches the point of interest x*, i.e., during the time interval 0 < < t*. Given the

deterministic relation between hg and ug in (2.2b), the conditional PDF Tholuo 18
kx
fho‘uo(H;U;x) :8(H—Hin—§|U\U). (B.25)

The initial condition for the joint PDF equation (2.3), defined on the time interval 0 <t < 1%, is

fuoho (U,H,X) = fh0|uofuo-

An equation for characteristics of the WHE (2.1),

dx
— =+ B.26
o T (B.26)

defines two families of characteristics, x(¢) = ar + & and x(¢t) = —ar + _, where the constants

of integration &4 = x(0) label individual characteristics within each family. Specifically, the
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characteristic that carries backward the first contact discontinuity originating at the moment of
the valve closure, x(0) = L, is labeled with & = L (Fig. 2.1). The wave traveling along this
characteristic, x(t) = —at + L, reaches the observation point x* = L/2 attime t =1t = L/(2a). A
characteristic from the family of characteristics x(¢) = ar + &, which intersects the characteristic
x(t) = —at + L at the space-point point (x*,t*) is labeled by &+ =0, i.e., has the equation x(#) = at
(Fig. 2.1).

Along all characteristics defined by (B.26), including those specified by equations x(¢) =

at and x(t) = —at + L, the state variables u(x(¢),t) and h(x(t),t) satisfy

du(x(t),t) ou | du dh(x(t),t) oh _ oh

Hence, the WHE (2.1) transform into

du | gdh

8 Oleak
cu = klulu+ 8 ek s
& Taa ~ Kulu A

5 (x - xleak): (B28)

such that the equations with the plus and minus signs are defined along the characteristics x(¢) = at

and x(t) = —at + L, respectively.

B.3.1 PDFs of u and / at the first contact discontinuity

Integrating (B.28) for the characteristic x(z) = ar from 0 to t*, while accounting for the

initial conditions u[x(0) = 0,7 = 0] = up and h[x(0) = 0,7 = 0] = Hj,, yields
g ¢ g [*
uy —ug+ =(hy —Hp) = k/ lu|udt + = / OleakO(at — xjeax )dt, (B.29)
a 0 aA Jo

where u; = u(x*,t*) and h; = h(x*,7*). In the absence of a leak (Qjeax = 0), the one-dimensional

velocity u along the characteristic x = at remains constant, u = ug > 0, for t < t*. Hence, (B.29)
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reduces to
" —u0+§(h1 — Hyp) = kTul. (B.30)

Integrating (B.28) on the characteristic x(¢) = —ar + L from 0 to T*, while accounting for the initial
conditions u[x(0) = L,t = 0] = 0 and h[x(0) = L,t = 0] = Hi, + (kL/g)u} + (a/g)uo obtained
from (2.2b), yields

g kL , v g (v
Uy +ug— ;(h1 —H, — ?uo) = k/() |u| udt — CE/O QleakS(—at—f—L—xleak)dl‘. (B.31)

For Qjeak = 0, the first integral on the right-hand side is approximately O since u(L,0) = 0, which

yields

kL
Uy + g — g(hl — Hyp — ?tg) = 0. (B.32)

(The impact of this approximation on the accuracy of our PDF method is investigated via

comparison with MCS.) Recalling that L/a = 27*, it follows from (B.30) and (B.32) that

kt* 2
u1:—7]u5 or uoz,/—ﬁul. (B.33)

Substituting this expression into (B.30) gives the corresponding value of Ay,

3kt
hy = H,, +§ <u0+ > u3> . (B.34)
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Since the function Uy = Up(U;) in (B.33) is monotonic, the PDF of uy, f,, (U), is obtained as

fu, (U) = |dUo /AU (U)| fue(Uo(U)) resulting in

1
Ju(U) = \/wauo(Uo(U)), U >0. (B.35)

Given the deterministic relations between 4 and u; in (B.34) and between 1y and u; in (B.33),

the conditional PDF fj, |, (H;U) is the Dirac delta function,

a 2U  3a
fh1u1:8<H—Hin—§\/—ﬁ+gU)- (B.36)

Finally, the joint PDF for u; and &; is obtained as fi,n; = fp, |u, Ju,-

B.3.2 PDFs of u and / at the second contact discontinuity

The second contact discontinuity originates at (and is reflected from) the inlet boundary
x(t) = 0 at time ¢ = T; it travels along the characteristic line x(t) = ar + &4 with &, = —L, and
reaches the point x* = L/2 at time ¢t = 2T — t* (Fig. 2.1). At the space-time point (x* = L/2,t =
21 — t*), this characteristic line intersects with the characteristic line x(t) = —ar +&_ labeled by
E_=2L.

The two PDEs in (B.28), to be solved along the characteristics x(¢) = at — L and x(¢) =
—at + 2L, need boundary conditions at the space-time points {x(t) = 0,7} and {x(t) = L,t},
respectively. The value of &[x(¢),7] at the point {0,t} is h[x(t) = 0,1] = Hj,, while the correspond-
ing boundary value for u[x(z),t] is obtained by integrating in time, from O to t, the PDE (B.28)

along the characteristic x(¢#) = —ar + L. This equation is subject to the auxiliary conditions
kL
ulx(0) =L,0] =0,  h[x(0) =L,0] = Hip + —u?+ “up.
8 8

Since in the absence of the leak (Qjeax = 0), u ~ 0 for ¢ < T along the characteristics x(t) = —at +L,
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and accounting for these boundary conditions, the time integration of the respective PDE (B.28)

yields the required value of u[x(¢),?] at the point {0, 7},
ulx(t) = 0,1 = —up — —ug. (B.37)

Likewise, the value of u[x(r),] at the point {x(t) = L,t} is u[x(t) = L,t] = 0. The
corresponding boundary value for h[x(t),7] is obtained by integrating in time, from O to T, the

PDE (B.28) along the characteristic x(¢) = ar. This equation is subject to the auxiliary conditions
u[x(0) = 0,0] = up, h[x(0) = 0,0] = Hiy,.

A solution of this boundary-value problem is
_uo—}—g(h[x('c) = L,7] — Hin) :k/ot|u]ud'c'. (B.38)

According to the fundamental theorem of integral calculus, [ g(t')dt’ = g(&)t with 0 < & < T; as
an approximation, we choose g(&) = [g(0) + g(t)]/2. Since u(L,t) = 0, this leads to the required
value of h[x(t),t] at the point {L, 1},
a kt 2
hix(t) = L,T] :Hin+§ uo+ —uy | - (B.39)

2

With these boundary conditions, and in the absence of leaks, the initial-value prob-

lem (B.28) along the characteristic x = at — L is
— 42— =k|u|u, h(x(t) = 0,1] = Hip, ulx(t) = 0,1] = —up — ktud.

Integrating this problem from T to 2T — t* yields the values of u and & at the second contact
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discontinuity (Fig. 2.1), uy = u(x*,2t—1*) and hp = h(x*,27 — %),
s + g + ktud + g(hz —Hip) = —k(t — ) (uo + ktud)?. (B.40)

This equation is derived by assuming that u ~ u[x(t) = 0,1] = —ug — ktuj for T < t < 2T —1*.

Likewise the initial-value problem (B.28) along the characteristic x = —ar + 2L is

k
WSSt =L =t (w+5). b =7 =0

Integrating this problem from T to 2t — t*, while accounting for the fact that u ~ 0 for T <t <
2t —1*, yields
kt 5

uz—g(hz—Hin) - (uo—guo) =0. (B.41)

A solution of (B.40) and (B.41) for u; is a fourth-degree polynomial in uy,

k3 _ K 2
yy — — %ug (T ) — kv — g, (B.42)

This polynomial has four roots. We approximate the root, ug, on the interval of interest, 1y =

2.0+ 0.1exp(z) with z ~ A((0,0.4%), as
U = o3 + Puy + . (B.43)

The constants o, 3, and 1y are obtained by fitting (via minimization of the mean root square errors)
the parabola in (B.43) to the array of {uo,, uzi}ﬁi | obtained from (B.42). (The second-degree
polynomial (B.43) turned out to provide a better fit than the first-degree polynomial.) Figure B.1
shows the agreement between the graphs of uy = ug(uy) obtained, alternatively, from (B.42)
and (B.43) on the domain of interest. The figure also demonstrates the agreement between these

relations and the solution uy = uy(ug) computed with multiple solves of the original WHE (2.1)
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for different values of ug. It serves to validate the approximations we have made to derive the

analytical expressions for u; and h; with i = 1,2.

25 — T T T T T

T
— = = Eq. (C.20)
T — = WHE solves
24 . Eq. (C.19) 1
- .
23 S i
- o,
22} — ]
- .“..Llhll
21} .. -
"4..,(..
e,
.
2 1 1 1 1 1 1 1 ~
-2.15 -2.1 -2.05 -2 -1.95 -1.9 -1.85 -1.8 -1.75
U2

Figure B.1: The relationship between ug and u, computed, alternatively, with (B.42), (B.43),
and multiple solves of the WHE (2.1) for different values of ug. This relationship is monotonic
in the region of interest.

Substituting (B.43) into (B.41) gives an expression for sy

kat*
© 0w + Bua +v| (s + Bz ). (B.44)

a a
hy = Hin + —u + — (0w + Buz +7) +
8 8 8

Since the function up = ug(u7) is monotonic in the region of interest (Fig. B.1), the corresponding

PDFs are

dug
dus

fuzz

Fuo = 20U + B ox (—[ln(10(0°U2+BU +7-2)) —H]2>

(U2 +BU +v-2)0V21 262

(B.45)
k *
Froluy = (H—Hm— gU—g(ocU2+[3U +Y)—a?r|ocU2+BU +v|(0cU2+BU+Y)>
(B.46)

Jushy = Jhalus Jur - (B.47)

The same procedure can be repeated after each contact discontinuity, until ¢ = #ax.
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