
UC San Diego
Technical Reports

Title
Querying Data Sources That Export Infinite Sets of Views

Permalink
https://escholarship.org/uc/item/6gs6z92r

Authors
Cautis, Bogdan
Deutsch, Alin
Onose, Nicola

Publication Date
2007-03-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gs6z92r
https://escholarship.org
http://www.cdlib.org/

Querying Data Sources That Export Infinite Sets of Views

Bogdan Cautis
INRIA-Futurs

bogdan.cautis@inria.fr

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Nicola Onose
UC San Diego

nicola@cs.ucsd.edu

ABSTRACT

We study the problem of querying data sources that accept only

a limited set of queries, such as sources accessible by Web ser-

vices which can implement very large (potentially infinite) families

of queries. We revisit a classical setting in which the application

queries are conjunctive queries and the source accepts families of

(possibly parameterized) conjunctive queries specified as the ex-

pansions of a (potentially recursive) Datalog program with param-

eters. We say that query Q is expressible by the program P if it is

equivalent to some expansion of P . Q is supported by P if it has

an equivalent rewriting using some finite set of P’s expansions. We

present the first study of expressibility and support for sources that

satisfy integrity constraints, which is generally the case in practice.

We start by closing a problem left open by prior work even while

ignoring constraints, namely the precise relationship between ex-

pressibility and support: surprisingly, we show them to be inter-

reducible in PTIME in both the absence and the presence of con-

straints. This enables us to employ the same algorithm for solving

both problems.

We identify practically relevant restrictions on the program spec-

ifying the views that ensure decidability under a mix of key and

weakly acyclic foreign key constraints, and beyond. We show that

these restrictions are as permissive as possible, since their slightest

relaxation leads to undecidability. We present an algorithm that is

guaranteed to be sound when applied to unrestricted input and in

addition complete under the restrictions.

As a side-effect of our investigation, we improve the previously

best known upper bound for deciding support in the constraint-free

case.

1. INTRODUCTION
The recent proliferation of data sources accessible via Web ser-

vices has renewed interest in the problem of querying sources with

restricted querying capabilities [20, 15, 25, 26]. One reason is that,

due to commercial, load-control or privacy considerations, Web

sources do not typically accept arbitrary application queries against

their schema. Instead, they allow only a (potentially infinite) fam-

ily of (potentially parameterized) queries implemented by the Web

services. For instance, the Amazon site provides a service which

takes an author name as parameter and returns the corresponding

books, but will not allow queries which list all the available books.

We refer to the queries accepted by a source as views.

In this setting, the application queries issued against the source

schema can experience two levels of service. A query can be fully

answerable at the source, thus requiring no post-processing at the

client. This is the case when the query is equivalent to some view

exported by the source (provided the right view can be identified).

In many cases, the set of answerable application queries is extended

by a source wrapper [20], which intercepts them and answers them

by automatically identifying a series of relevant views, issuing the

corresponding Web service calls and post-processing their results

locally.

In this paper, we revisit a classical setting [15, 26] in which the

application queries are conjunctive queries and the source accepts

families of possibly parameterized conjunctive queries specified as

the expansions of a (potentially recursive) Datalog program. The

program is said to generate these views. As argued in [15, 26]

and illustrated below, the choice of Datalog as the view specifica-

tion formalism enables concise yet expressive descriptions of large

sets of views over a given schema. In particular, recursive Datalog

programs describe infinitely many views. An additional advantage

of Datalog programs besides expressivity is their close relationship

to context-free grammars, another natural and universally accepted

formalism.

We say that query Q is expressible by the program P if it is

equivalent to some view generated by P . Expressible queries can

therefore be evaluated at the source, requiring no post-processing

at the wrapper. Q is supported by P if it has an equivalent rewrit-

ing R using some finite set V of views generated by P . Note that

finding such R and V witnessing support enables the following ex-

ecution plan at the wrapper: call the Web services implementing

the queries in V , materialize their results locally and run query R

over the materialized database.

The challenge in deciding expressibility and support lies in the

fact that the family of views can be very large or even infinite. This

renders infeasible any systematic enumeration of views. Remark-

ably, the two problems were previously shown to be decidable [15,

26], however only when ignoring any knowledge of constraints sat-

isfied by the source. In this work, we investigate the effect of source

constraints.

The following examples show that source constraints generate

new opportunities for detecting support, calling for algorithms which

exploit them. (Example 1.1 illustrates a capability-based scenario

and will be our running example in this paper. A security scenario

is described in Example 1.2.)

EXAMPLE 1.1. Consider a travel information source conform-

ing to the following schema:

flight(origin, destination) shuttle(origin, destination)
train(origin, destination) bus(origin, destination).

The source admits only views concerning itineraries by plane, of

arbitrary length, such that Paris is reachable by train or bus from

the destination airport. This family of views is described as the set

of all expansions of the distinguished IDB predicate ans in program

P below:

ans(A, B) :− f(A, C), ind(C, B)

ind(C, B) :− f(C, C′), ind(C′, B)

ind(C, B) :− f(C, B), b(B, “Paris”)

ind(C, B) :− f(C, B), t(B, “Paris”)

Consider an application query that asks for itineraries of length 2

ending in an airport from which Paris is reachable by train, bus

and shuttle.

Q : q(A, B) :− f(A, C), f(C, B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”)

Clearly, Q is neither expressible nor supported by P because

the views generated by P do not even mention shuttle information.

However, suppose we knew the following constraint to hold on the

source (stating that any city pair connected by train and bus is also

connected by shuttle):

∀A, S t(A, S) ∧ b(A, S) −→ s(A, S). (1)

Then we would like the wrapper to find the rewriting

(R) r(A, B) :− V b
1 (A, B), V t

1 (A, B)

where {V b
i }i≥1 (resp. {V t

i }i≥1) are families of views generated

by P , returning endpoints of itineraries of i flight legs where the

destination has a bus link (resp. a train link) to Paris. Indeed, it

can be checked thatR is equivalent toQ on all databases satisfying

(1). Therefore Q is supported by P when (1) holds.

The following example illustrates an additional motivation for

the problem of checking support. For security reasons, sources

may allow user access only through authorized views which are

specified starting from user credentials and access policies of the

source [17, 23]. Authorized views may be parameterized. For

example, a security policy may require that a physician access a

patient record only after providing the corresponding record identi-

fier (see Example 1.2). In the so-called non-Truman access control

model [23], a user query is considered legal only if it has an equiv-

alent rewriting based on authorized views, i.e. if it is supported.

Illegal queries are rejected by the source.

EXAMPLE 1.2. Consider a source for medical data, which grants

access to patient records only under some conditions. The source

conforms to the following schema (where the recordNumber at-

tribute refers to patient visit record number):

mrecord(patientId, recordNumber)
visit(symptoms, diagnosis, recordNumber)

nextVisit(vID, vID’)

and assume that recordNumber is a primary key for the visit rela-

tion.

A physician may have access to a limited amount of information

concerning patients whose medical records belong to other col-

leagues, as described by the policy:

“A physician can access the diagnosis for patients only as fol-

lows. (1) He can obtain the diagnosis provided he knows the patient

identifier and the visit record number. (2) He can also access the

diagnosis of visits for patients with symptoms similar to those of a

patient whose id and visit record number he knows, as well as of

any other follow-up visits. (3) However, the physician can access

neither the patient id, nor the visit number for the visits from (2).”
Parts (1) and (2) of the policy could be implemented by separate

services, whose authorized views are represented by expansions of

distinguished IDB predicate ans1 and ans2 respectively in program
P ′ below (the ? annotation denotes parameters):

ans1(S, D) :− mrecord(?N, ?R), visit(S, D, ?R),

ans2(D) :− mrecord(?N, ?R), visit(S, D′, ?R),

ind1(S, D, R′)

ind1(S, D, R) :− visit(S, D′, R), ind2(D, R)

ind1(S, D, R) :− visit(S, D, R)

ind2(D, R) :− nextV isit(R, R′), ind2(D, R′)

ind2(D, R) :− visit(S, D, R)

The physician wants to find the symptoms for the visit with record
number r1 of a patient identified by pid1, together with the diagno-
sis D1 for any visit with similar symptoms, and the diagnosis D2

for a subsequent visit. A conjunctive query that is supported by P ′

and provides the information needed is q′ below. The primary key
constraint is needed to validate the authorization because other-
wise there would be no correlation between the information about
symptoms used by the views witnessing support.

q′(S, D1, D2) :− mrecord(pid1, r1), visit(S, D0, r1),

visit(S, D1, R1), visit(S, D′
1, R′

1),

nextVisit(R′
1, R2), visit(S2, D2, R2)

Note that the system would reject any query trying to retrieve pa-

tient ids or visit record numbers, conforming to part (3) of the pol-

icy.

Our contributions. In this paper, we carry out the (to the best

of our knowledge) first study of the problems of expressibility and

support under source constraints. In particular, our list of contribu-

tions includes:

Settling an open problem from the constraint-free prior work.

We start by closing a problem left open by prior work even while

ignoring constraints, namely the precise relationship between ex-

pressibility and support: we show them to be inter-reducible in

PTIME in both the absence and the presence of constraints. This

enables us to employ the same algorithm for solving both prob-

lems. The result came as a pleasant surprise, given that in previous

work the reported complexity upper bounds for deciding expressiv-

ity and support in the constraint-free case were different, suggesting

(in line also with intuition) that finding a rewriting of the query us-

ing some expansions of the program is harder than finding a single

equivalent expansion.

Most permissive restrictions for decidability. We identify practi-

cally relevant restrictions on the program which ensure decidability

under a mix of key and weakly acyclic foreign key constraints and

beyond. These restrictions are particularly useful due to enabling

decidability via a reduction to the constraint-free case, which al-

lows one to modularly “plug in” any existing algorithm to this end

(such as those in [15, 25, 26] or the one we propose below), using

it as a black box. We show that these restrictions are as permissive

as possible, since their slightest relaxation leads to undecidability.

A widely-applicable sound test. It is unsatisfactory in practice to

refuse to test support and expressibility in the absence of the restric-

tions implying decidability. A more useful approach consists in de-

vising an algorithm which functions as a decision procedure under

these restrictions, yielding only a best-effort “approximation” oth-

erwise. One pragmatic articulation of what “approximation” could

mean in this context is the following: the algorithm should be sound

(i.e. yield no false positives) yet it may return false negatives (i.e. is

is not complete) for inputs which do not conform to the decidability

restrictions. Ruling out false positives is more important than false

negatives, as the former lead to returning the wrong answer to the

application query, while the latter amount to sometimes rejecting

queries even if the source supports them. In this paper we present

such an algorithm for both expressibility and support, applicable to

arbitrary programs under weakly acyclic sets of embedded depen-

dencies [1], which are sufficiently expressive to capture key and

foreign key constraints and beyond. The algorithm runs in deter-

ministic exponential time in the size of the query, the size of the

program and the maximum size of a constraint, which is as good

as the best deterministic decision algorithm for the case of finitely

many views listed individually.

Improved, practically tight upper bounds for the constraint-free

problems. As a side-effect of our investigation, we improve the

previously best known upper bound for deciding support in the

constraint-free case (doubly-exponential time in [15] and non-de-

terministic EXPTIME in [26] in combined query and program size).

The improvement is achieved using the sound algorithm mentioned

above, which becomes a decision procedure in the absence of con-

straints. We show the algorithm to be optimal w.r.t. the program

size (we give an EXPTIME lower bound for fixed query) and op-

timal for practical purposes w.r.t. the query size (we give an NP

lower bound for fixed program). The question of the tightness of

the NP lower bound in the query size remains open.

Paper outline. After introducing preliminary concepts, results

and notation in Section 2, in Section 3 we establish the PTIME

inter-reducibility of expressibility and support. We then present in

Section 4 restrictions under which we can reduce expressibility and

support to the constraint-free case. Section 5 contains a sound al-

gorithm and the improved complexity characterization it enables

for the constraint-free problem flavors (Section 5.1). For presen-

tation simplicity, throughout these sections we ignore the presence

of parameters in the views generated by the program. We explain

parameter handling in Section 6. We give our undecidability re-

sults in Section 7. Finally, we discuss related work in Section 8 and

conclude in Section 9. Proofs can be found in Appendix A.

2. PRELIMINARIES
We denote with CQ the language of conjunctive queries.

Constraints. We consider constraints ξ of the form

∀ū φ(ū, w̄) −→ ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of relational or equality atoms.

Such constraints are known as embedded dependencies and are suf-

ficiently expressive to specify all usual integrity constraints, such

as keys, foreign keys, inclusion, join, multivalued dependencies,

etc. [1]. We call φ the premise and ψ the conclusion. If v̄ is

empty, then ξ is a full dependency. If ψ consists only of equal-

ity atoms, then ξ is an equality-generating dependency (EGD). If

ψ consists only of relational atoms, then ξ is a tuple-generating

dependency (TGD). If the premise and conclusion of a TGD con-

tain one atom each, we call it an inclusion dependency (IND). An

IND in which the variables ū appear precisely in the key attributes

of the relation mentioned in the conclusion is a foreign key con-

straint. A key constraint on relationR can be expressed by the EGD

∀ū, v̄1, v̄2 R(ū, v̄1) ∧ R(ū, v̄2) −→ v̄1 = v̄2. We write A |= C if

the instance A satisfies all the constraints in C. For brevity, we will

refer in the following to embedded dependencies as simply “depen-

dencies”.

Containment and Equivalence. QueryQ1 is contained in query

Q2 under the set C of constraints (denotedQ1 ⊑C Q2) iffQ1(D) ⊆
Q2(D) for every database D |= C, where Q(D) denotes the result

of Q on D. Q1 is equivalent to Q2 under C (denoted Q1 ≡C Q2)

iff Q1 ⊑C Q2 and Q2 ⊑C Q1.

Mappings. A partial mapping from CQ query Q1 to CQ query

Q2 is a function h from the variables and constants of Q1 to the

variables and constants of Q2 such that (i) h is the identity map-

ping on all constants, and (ii) for every relational atom (also called

subgoal) R(X̄) of Q1, if h is defined for all variables in (X̄), then

R(h(X̄)) is a subgoal of Q2. A homomorphism from a set of sub-

goalsC1 to a set of subgoals C2 is a partial mapping from the query

Q1() :− C1 to the query Q2() :− C2 which is defined on all vari-

ables ofQ1. A containment mapping from CQ queryQ1 with tuple

of head variables X̄1 to CQ query Q2 with tuple of head variables

X̄2 is a homomorphism h from Q1 to Q2 such that h(X̄1) = X̄2.

We represent mappings as sets of pairs associating variables with

either variables or constants, and use the notation X : Y for the

pair (X,Y). The union of two mappings is simply the union of

their sets of pairs. A mapping is consistent if it does not map the

same variable to two distinct values. A set of mappings is compat-

ible if their union is consistent. Composition of mappings is the

standard function composition, denoted with the operator ◦.

Expansion using views. Given a CQ query R formulated in

terms of a set of view names V , the expansion of query R w.r.t.

the views in V (denoted expandV(R)) is the query E obtained as

follows: every subgoal V (X̄) in R is replaced by a copy of the

body of V , in which the head variables of V are renamed to X̄ and

all other variables are replaced by variables occurring in no other

view bodies introduced during the expansion. It is easy to see that

this variable renaming defines a homomorphism h from V into the

expansion E, which we refer to as the expansion homomorphism.

Rewriting using views. We say that CQ query R formulated in

terms of view names V is a rewriting of CQ query Q using V under

set C of dependencies iff Q ≡C expandV(R).

The chase. We will use the classical chase procedure for rewrit-

ing conjunctive queries using a set of embedded dependencies [1].

For arbitrary sets C of dependencies, the chase is not guaranteed to

terminate. The least restrictive condition on C known to date which

is sufficient to ensure termination of the chase with C regardless of

the query Q is called weak acyclicity [9, 10]. Weak acyclicity of

C implies termination of the chase of Q with C in time polynomial

in the size of Q and exponential in the size of C. The definition

of weak acyclicity and the associated result are repeated for the

reader’s convenience in Appendix C.

Assuming termination of the chase, we denote with chaseC(Q)
the query obtained by chasing conjunctive queryQwith C to termi-

nation (this query is unique up to equivalence). Besides introducing

new variables (for instance due to chasing with TGDs), the chase

may equate the original variables ofQ to constants or to each other

(for instance due to chasing with key constraints) [1]. Denoting this

variable renaming with r, it is a well-known fact that r is a homo-

morphic mapping from Q into chaseC(Q), also called the chase

homomorphism [1].

Datalog expansions. A finite expansion (in short “expansion”)

of an IDB predicate p of a Datalog program P is a CQ query with

head p(X̄) and body obtained as follows: initialize the body to

body := p(X̄), then apply the following expansion step a finite

number of times until no more IDBs are left in the body: for every

IDB goal gi in the body, pick a rule ri in P defining gi and collect

all picked rules in a list V . Treating V as views, replace body with

expandV(body), where each gi is expanded using ri. The set of

expansions of P is infinite if P is recursive.

Convention. In the remainder of this paper, unless explicitly

stated otherwise, all queries and views are conjunctive queries, all

programs are Datalog programs, and all dependencies are embed-

ded dependencies.

3. EXPRESSIBILITY VERSUS SUPPORT
We say that a view V is generated by program P if V is one of

the CQ expansions of P .

DEFINITION 3.1. Given a Datalog program P , a conjunctive

query Q and a set of embedded dependencies C, we say that

1. Q is supported by P under C (denoted SUPP
C
P(Q)), iff there

is a finite set of views V generated by P and a conjunctive

query rewriting of Q using V under C.

2. Q is expressible by P under C (denoted EXPR
C
P(Q)), iffQ is

equivalent under C to some view V generated by P .

In previous work, the problems of expressibility and support

were introduced separately (in [15], respectively [26]). They were

shown to be decidable, yet their reported complexity upper bounds

were different even in the absence of constraints: doubly-exponential

deterministic time in [15], improved in [26] to non-deterministic

exponential time for support, and EXPTIME for expressibility [26].

These results seemed to suggest that finding a rewriting of the query

using some expansions of the program is harder than finding a sin-

gle equivalent expansion.

In the following, we establish a counter-intuitive relationship be-

tween the two problems showing them to be inter-reducible in poly-

nomial time even in the presence of dependencies.

THEOREM 3.1. Let C be a weakly acyclic set of embedded de-

pendencies. Then there is a reduction from the problem of support

of a query Q by a program P under C to that of expressivity under

C, which is in PTIME in the size of Q and P and in EXPTIME in

the size of C.

PROOF. See Appendix A.

COROLLARY 3.1. If the schema (with dependencies) is fixed,

then there is a PTIME reduction from support to expressibility pro-

vided the set of embedded dependencies is weakly acyclic.

COROLLARY 3.2. In the absence of dependencies, there is a

PTIME reduction from support to expressibility.

The next result shows the existence of a polynomial-time reduc-

tion in the other direction, requiring no restrictions on the embed-

ded dependencies.

THEOREM 3.2. There is a PTIME reduction from expressibility

to support.

PROOF. See Appendix A.

4. REDUCING DEPENDENCIES AWAY
In this section, we investigate the conditions under which the

problems of expressibility and support can be reduced from the

presence of dependencies to the absence thereof. Such reduction

immediately yields decidability, as the dependency-free flavors of

the problems are known to be decidable [15, 26]. In Section 5, we

present a more generally applicable decision procedure which does

not rely on reduction to the dependency-free case.

We show in Section 7 that the two problems are in general un-

decidable, hence it is clear that the targeted reduction does not al-

ways exist. Therefore we present a sufficient condition which en-

ables it. This condition turns out to be sufficiently permissive to

include practically relevant scenarios: unrestricted programs under

weakly acyclic sets of inclusion dependencies (Corollary 4.1), and

restricted programs under mixes of key and acyclic sets of inclusion

dependencies, in particular keys and foreign keys (Corollary 4.2).

Furthermore, as shown in Section 7, the restriction on the program

is maximally permissive, in that its relaxation leads to undecidabil-

ity.

Our reduction relies on the chase procedure. This was a natural

choice, as the chase tool has been traditionally employed success-

fully to reduce classical decision problems from the presence of

dependencies to their absence1.

DEFINITION 4.1 (C-INDEPENDENT VIEW SET). Let C be a

weakly acyclic set of dependencies. We say that a set of views V =
{V1, . . . , Vn} is C-independent iff for every query R formulated in

terms of the views,

chaseC(expand{V1,...,Vn}(R))

is equivalent even in the absence of dependencies to

expand {chaseC(V1),...,chaseC(Vn)}(R).

Given a Datalog program P , we denote with chaseC(P) the pro-

gram obtained by chasing each rule of P with C.

DEFINITION 4.2 (C-LOCAL PROGRAM). Let C be a weakly

acyclic set of dependencies. We say that a Datalog program P
is C-local iff for every view V generated by P there is a view

W generated by chaseC(P), and for every view W generated by

chaseC(P) there is a view V generated by P , such that chaseC(V)
is equivalent to W even in the absence of dependencies.

THEOREM 4.1. LetQ be a conjunctive query, C a weakly acyclic

set of dependencies, and P a C-local Datalog program. Then

(a) EXPR
C
P(Q) iff EXPR

∅
chaseC(P)(chaseC(Q)).

(b) If the views generated by P are C-independent, then

SUPP
C
P(Q) iff SUPP

∅
chaseC(P)(chaseC(Q)).

We next provide various syntactic restrictions on the dependen-

cies in C and on P to guarantee C-independence and C-locality.

THEOREM 4.2. Let C be a weakly acyclic set of inclusion de-

pendencies. Then any Datalog program P is C-local and the views

it expresses are C-independent.

Theorems 4.1 and 4.2 immediately imply that for weakly acyclic

sets of inclusion dependencies, expressibility and support reduce to

the dependency-free versions:

COROLLARY 4.1. If C is a weakly acyclic set of inclusion de-

pendencies, then for any program P and query Q,

EXPR
C
P(Q) iff EXPR

∅
chaseC(P)(chaseC(Q)) and

SUPP
C
P(Q) iff SUPP

∅
chaseC(P)(chaseC(Q)).

We next extend our decidability result to include key constraints.

To this end, we require the notion of a program being “key-safe”.

Key safety. LetR be a relation with an n-attribute composite key.

We say that a rule of P outputs the key ofR into positions i1, . . . , in
if the sequence of variables X̄ located at positions i1, . . . , in in the

rule’s head appears in the rule body

1Notable examples include equivalence of queries under dependen-
cies, which reduces (provided that the chase terminates) to equiv-
alence of the chased queries in the absence of dependencies [1];
implication of a dependency c by a set C of dependencies reduces
to validity of a dependency obtained by chasing c with C, again
assuming chase termination [1].

• either in the key attribute sequence of some R-subgoal, or

• in the positions j1, . . . , jn of some p-subgoal, where p is an

IDB predicate with at least one rule that in turn outputs the

key of R into the positions j1, . . . , jn.

We say that a subgoal g outputs the key of R into the sequence of

variables X̄ if

• g uses EDB predicate R and X̄ appears in the key attributes

of g, or

• g uses IDB predicate p and X̄ appears in g in the positions

into which some rule defining p outputs the key of R.

A rule is safe for the key constraint onR if whenever one of its IDB

subgoals outputs the key of R into some sequence of variables X̄,

no other subgoal does the same. A program P is key-safe for a set

of key constraints K if each rule is safe for all key constraints in K.

Also notice that key-safety can be checked in PTIME in the size of

P and K. If I is a set of weakly acyclic INDs, P is key-safe for

C = K ∪ I if chaseI(P) is key-safe for K.

THEOREM 4.3. Let C consist of key constraints and an acyclic

set of inclusion dependencies. Any Datalog program P that is

key-safe for C is also C-local and all views generated by it are C-

independent.

COROLLARY 4.2. If C consists of key constraints and an acyclic

set of inclusion dependencies and P is key-safe for C then for any

query Q,

EXPR
C
P(Q) iff EXPR

∅
chaseC(P)(chaseC(Q)) and

SUPP
C
P(Q) iff SUPP

∅
chaseC(P)(chaseC(Q)).

EXAMPLE 4.1. Consider a source for travel information con-

forming to the following schema:

• train(origin, destination, operator)

• bus(origin, destination,operator)

where each origin-destination pair is connected by a non-stop leg.

The source accepts queries for train itineraries with arbitrary many

legs, returning the origin, the destination and one intermediary

stop. This family of queries is described by program P:

(P) ans(A, B, C) :− ind(A, B), ind(B, C)

ind(B, C) :− t(B, B′, O), ind(B′, C)

ind(B, C) :− t(B, C, O)

Let Q be an application query searching for a round-trip with in-

termediary stop in Paris both on the departure and the return trips,

such that between consecutive stops one can always choose be-

tween train or bus without changing the travel operator.

(Q) q(A, B) :− t(A, C, O1), b(A, C, O1),

t(C, B, O2), b(C, B, O2),

t(B, C, O3), b(B, C, O3),

t(C, A, O4), b(C, A, O4),

C = “Paris”

Notice thatQ is not supported by P in the absence of constraints

(the source does not even allow views mentioning the bus predi-

cate): SUPP
∅
P(Q) does not hold.

In contrast, assume next that the source is known to satisfy C,

comprised of the inclusion dependency (2) below, which states that

every operator will also cover by bus any leg important enough to

be covered by train.

∀X, Y, O t(X, Y, O) −→ b(X, Y, O) (2)

Since C is (trivially) a weakly acyclic set of INDs, by Corol-

lary 4.1 SUPP
C
P(Q) holds iff SUPP

∅
chaseC(P)(chaseC(Q)) does.

To check the latter, we first note that no chase step with C applies

on Q, so Q = chaseC(Q). However, chase steps do apply on the

extensional parts of the second and third rules of P , yielding the

new rules (we underline the newly added tuples):

ind(B, C) :− t(B, B′, O), b(B, B′, O), ind(B′, C)

ind(B, C) :− t(B, C, O), b(B, C, O)

The new program chaseC(P) generates the family of views Vij

denoting the expansion with i legs from the origin to the intermedi-

ary point and j legs from the intermediary point to the destination.

This includes the view V11:

(V11) v(A, B, C) :− t(A, B, O1), b(A, B, O1),

t(B, C, O2), b(B, C, O2)

Observe that SUPP
∅
chaseC(P)(chaseC(Q)) holds, as witnessed by

the equivalent rewriting R of Q using V11:

(R) q(A, B) :− V11(A, “Paris”, B), V11(B, “Paris”, A).

We conclude that SUPP
C
P(Q) holds as well.

5. A WIDELY APPLICABLE TEST
We next present a sound algorithm for testing support, which can

be applied to any program and any set of weakly acyclic dependen-

cies. The algorithm is a decision procedure (no false negatives)

in all cases when the problem reduces to the dependency-free case

(see Section 4), as well as strictly more cases.

Our solution is based on the following overall strategy. Since

a systematic enumeration of all (potentially infinitely many) views

generated by a program P is infeasible, we instead “describe the

behavior” (in a sense formalized shortly) of any view generated by

P w.r.t. a decision procedure for the existence of a rewriting under

C using finitely many views. This description will abstract away

from the view body, focusing on how the view behaves in essential

tests performed by the decision procedure. As it will turn out, un-

der our decidability restrictions, there are only finitely many distinct

behaviors, each exhibited by a possibly infinite set of views. It suf-

fices therefore to find one representative view from each set, thus

reducing the problem of checking support by P to checking the ex-

istence of a rewriting using the finitely many representatives. This

problem is known to be decidable even in the presence of weakly

acyclic dependencies (Lemma 5.1 below). We start by describing

the associated decision procedure.

Canonical Rewriting Candidate. Given a finite set of views

V , an acyclic set of constraints C, and a query Q, call the canonical

rewriting candidate ofQ using V under C, denoted CRCC
V(Q), the

query obtained as follows:

(i) it has the same head variables as Q;

(ii) its body is constructed by evaluating each view V ∈ V
over the body of chaseC(Q) (viewed as a symbolic database, also

known as the canonical instance [1]) and adding the subgoal V (t)
for every tuple t in the result of the evaluation.

The following reformulates a result in [9] (see also [8]):

LEMMA 5.1 (COROLLARY OF [9]). Q has a rewriting using

V under C iff CRCC
V(Q) is itself one. Moreover, by construction

this in turn holds iff

(a) CRC C
V(Q) is a safe query (its head variables appear in its

body), and

(b) there is a containment mapping from Q into the result of

chasing with C the expansion of CRC C
V(Q):

chaseC(expandV(CRCC
V(Q))) ⊑ Q.

EXAMPLE 5.1. Revisiting Example 1.1, consider the following

set of views V = {V1, V2}, generated (among others) by P:

(V1) ans1(Z1, Z2) : − f(Z1, X), f(X, Z2),

t(Z2, “Paris”)

(V2) ans2(Z1, Z2) : − f(Z1, Y), f(Y, Z2),

b(Z2, “Paris”)

By evaluating them on the body of Q we obtain CRCC
V(Q):

R(A,B) : − ans1(A,B), ans2(A,B), which is equivalent to Q

under dependency (1), as can be verified by first constructing the

expansion E = expandV(CRCC
V(Q)) as:

E(A, B) : − f(A, X′), f(X′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”)

which chases with (1) to query (cE):

cE(A,B) : − f(A, X′), f(X′, B), t(B, “Paris”),

f(A, Y ′), f(Y ′, B), b(B, “Paris”),

s(B, “Paris”)

into which there is a containment mapping from Q, cm = {A :
A,B : B,C : X ′} (there is another one mapping C into Y ′).

According to Lemma 5.1, in order for a view to contribute es-

sentially to the rewritability of Q, it (i) must generate a subgoal g

of the canonical rewriting candidate; (ii) g’s expansion may par-

ticipate in the chase with C of the expansion E of the canonical

rewriting candidate; and (iii) since Q maps into the chase of E, the

expansion of g must include (after the chase) the image of a partial

map from Q. We shall therefore describe a view V with respect to

its behavior for (i), (ii) and (iii), using the notion of descriptor.

Normalized program. For uniformity of treatment, we will as-

sume from now on w.l.o.g. that the program P is normalized as

follows. For every k-ary IDB predicate p, every rule for p has the

head variables Z̄ = Z1, . . . , Zk, in that order. Furthermore, for

every EDB predicate e, introduce a new IDB e′, replace each oc-

currence of e in P with e′, and add the rule e′(Z̄) :− e(Z̄). The

normalized program has only two kinds of rules: those whose bod-

ies consist of a single EDB subgoal (called EDB rules), or solely

of IDB subgoals (called IDB rules). For technical reasons, we ad-

ditionally compute (as in [15]), the closure of the program, which

consists in adding for every rule r in P all rules obtained from r by

systematically equating in all possible ways the head variables of r

with each other and with the constants in Q.

DEFINITION 5.1 (DESCRIPTORS). Given an IDB predicate p

and a conjunctive query body E over EDBs from P , E(p(t),fr) is a

descriptor iff P generates as expansion of p a query of head vari-

ables Z̄, p(Z̄) :− body, such that

• there is a homomorphism to : body → chaseC(Q) s.t. to(Z̄) =
t; and

• fr is a partial variable mapping from Q into

chaseC(body) such that the image of Q under fr is E.

We call E the expansion fragment described by the descriptor, and

(p(t), fr) the adornment of E. We call variables {Z1, . . . , Zk}
(where k is the arity of p) the distinguished variables of the de-

scriptor, while all other variables in the range of fr are hidden.

EXAMPLE 5.2. In the setting of Example 5.1, d1 = E
(p1(t1),fr

1
)

1

and d2 = E
(p2(t2),fr

2
)

2 below are descriptors for the views V1 and

V2, respectively:

E1 = [f(Z1, X), f(X, Z2), t(Z2, “Paris”)]

p1(t1) = ans(A, B)

fr1 = {A : Z1, C : X, B : Z2}

E2 = [b(Z2, “Paris”)]

p2(t2) = ans(A, B)

fr2 = {B : Z2}

Note that, though the two views contribute the same ans(A,B)
goal to the canonical rewriting candidate, the two descriptors dis-

tinguish among them by the images of Q into the view bodies (E1

includes the image of Q’s t and two f goals, E2 only that of the b

goal).

Before explaining in detail how descriptors are found, we show

how they can be used to soundly infer support.

Intuitively, a descriptor represents the fragment of a (chased)

view generated by P , which serves as the image of the partial map-

ping fromQ. Our goal is to put together such fragments in a consis-

tent way to create (if it exists) the image of Q under a containment

mapping.

Partial rewriting candidate. More formally, consider a finite

set of descriptors w.r.t. to queryQ, program P and dependencies C:

D = {E
(pi(ti),fri)
i }1≤i≤n, where all pi are (not necessarily distinct)

distinguished IDBs of P . Introduce for each predicate pi a fresh

predicate pi
i (using the rank i of the predicate in an arbitrary order-

ing of the descriptor set) such that pi
i 6= p

j
j for all 1 ≤ i, j ≤ n.

Assuming w.l.o.g. that Q’s tuple of head variables is X̄, we call

the query R(X̄) :− p1
1(t1), . . . , p

n
n(tn) the partial rewriting can-

didate described by D. The set V := {VFi : pi
i(Z̄) :− Ei}1≤i≤n

is called the view fragments described by D. The view fragments

VFi are not necessarily safe queries, if not all the head variables

serve as image of the partial mapping fri.

EXAMPLE 5.3. For the set of descriptors D = {d1, d2} from

Example 5.2, the fresh view goals are ans1, ans2 respectively. The

partial rewriting candidate described by D is

R(A,B) :− ans1(A,B), ans2(A,B) (it happens to coincide with

the canonical rewriting candidate shown in Example 5.1). The view

fragments are

(VF1) ans1(Z1, Z2) :− f(Z1, X), f(X, Z2), t(Z2, “Paris”)

(VF2) ans2(Z1, Z2) :− b(Z2, “Paris”).

Notice how VF1,VF2’s bodies are isomorphic to fragments of the

bodies of views V1, respectively V2 from Example 5.1. Also notice

that VF2 is not a safe query as variable Z1 does not appear in the

body.

The following result allows us to test support, as in Lemma 5.1,

but using descriptors instead of explicit views. The key idea is to

use the partial rewriting candidate instead of the canonical rewriting

candidate (CRC C
V(Q)).

COROLLARY 5.1 (OF LEMMA 5.1). Let D be a finite set of

descriptors w.r.t. query Q, program P and dependencies C:

D = {E
(pi(ti),fri)
i }1≤i≤n. Denote with

• R the partial rewriting candidate described by D;

• V the view fragments described by D;

• E the expansion expandV(R)

If

(a) R is safe and

(b) there exists a containment mapping cfr fromQ into chaseC(E),

then Q is supported by P under C.

We say that any set D as in Corollary 5.1 witnesses support. Notice

that conditions (a) and (b) in Corollary 5.1 reformulate the corre-

sponding conditions from Lemma 5.1 in terms of descriptors.

EXAMPLE 5.4. The set of descriptors D in Example 5.3 wit-

nesses support for the query, program and dependency in our run-

ning Example 1.1. Indeed, if we apply the test of Corollary 5.1 to

the partial rewriting candidate R and the view fragments VF1 and

VF2 described by D(shown in Example 5.3), we obtain

• the expansion

EF(A, B) :− f(A, X′), f(X′, B), t(B, “Paris”),

b(B, “Paris”)

• the result (cEF) of chasing EF with dependency (1),

cEF(A, B) :− f(A, X′), f(X′, B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”);

Notice that EF and cEF are fragments of E, respectively cE from

Example 5.1. Let cfr be the mapping cfr = {A : A,B : B,C :
X ′}. We observe that (a) R is safe; and (b) cfr is a containment

mapping from Q into cEF, thus satisfying the conditions of Corol-

lary 5.1.

Clearly, the number of descriptors is infinite due to the unbounded

set of hidden variables, but there are only finitely many isomor-

phism types of descriptors modulo renaming of the hidden vari-

ables, in the following sense:

DEFINITION 5.2 (SIMILARITY). Two descriptorsE
(p1(t1),fr

1
)

1

and E
(p2(t2),fr

2
)

2 are similar iff p1 = p2 (and hence the distin-

guished variables of the descriptors are the same), t1 = t2, and

there is an isomorphism i between the ranges of fr1 and fr2 which

is the identity on the distinguished variables, and i witnesses the

isomorphism of E1 and E2.

Intuitively, the condition on fr1 and fr2 enforced by similarity

ensures that the partial containment mapping of Corollary 5.1, re-

stricted to the view fragment, is the same for both descriptors.

It is easy to see that similarity is an equivalence relation, and that

there are only finitely many equivalence classes of descriptors un-

der similarity. Indeed inE(p(t),fr), p is a predicate from P ; t a tuple

of variables and constants from chaseC(Q), thus the number of dis-

tinct values it can take is polynomial in the size of chaseC(Q) and

exponential in the arity of p; the number of distinct (up to isomor-

phism) partial mappings fr is exponential in the number of variables

in Q.

Similarity plays a key role in our support test. Indeed we can

show that any representative of a similarity equivalence class is as

good as any member of the class for the purpose of witnessing sup-

port, in the following sense:

(†)
if descriptor d1 is similar to d2, then for any set D of

descriptors, D ∪ {d1} is a support witness if and only if

D ∪ {d2} is.

Algorithm findDescriptors. We next present a bottom-up al-

gorithm for computing representatives of descriptor equivalence

classes under similarity. The algorithm findDescriptors consists

in initializing a set of descriptors D to the empty set, then repeat-

edly carrying out the rule steps described below until D reaches a

fixpoint (under similarity), finally returning D.

EDB rule step. Consider an EDB rule

e
′(Z1, . . . , Zk) :− e(Z1, . . . , Zk).

For every variable mapping to from Z1, . . . , Zk into Q’s variables

and constants, such that the goal e(to(Z1), . . . , to(Zk)) appears

in chaseC(Q); and every partial variable mapping fr from the vari-

ables ofQ to {Z1, . . . , Zk} (including the empty-domain one), add

to D the descriptor E(e(to(Z̄)),fr), where E = e(Z̄). Note that de-

scriptors with empty-domain mappings capture the situation when

none of the query goals maps into the described e goal2.

IDB rule step. Consider an IDB rule

p(X̄) :− p1(X̄1), . . . , pn(X̄n).

If there exists a homomorphism h from the rule body into

chaseC(Q), and a set of descriptors

E
(p1(h(X̄1)),fr

1
)

1 , . . . , E
(pn(h(X̄n)),frn)
n

in D, then:

Construct the views Vi : pi(Z̄i) : − Ei. Denote with E the

expansion of the rule body using these views, and with xhi the cor-

responding expansion homomorphism xhi : Ei → E (i.e. the

variable renaming performed on each Vi during expansion). Chase

E with C and denote with ch the corresponding chase homomor-

phism ch : E → chaseC(E). If the set {ch ◦ xhi ◦ fri}1≤i≤n of

partial mappings from Q into chaseC(E) is compatible, construct

the combined mapping cfr :=
Sn

i=1 ch ◦ xhi ◦ fri, otherwise exit

the rule step.

For every partial mapping fr from Q into chaseC(E) which ex-

tends cfr (including the trivial extension fr = cfr) by mapping ad-

ditional variables of Q into fresh variables added during the chase,

compute descriptor d = F (p(h(X̄)),fr), where F is the image under

fr of all goals in Q s.t. fr is defined on all their variables. If d is not

similar to any descriptor in D, add it to D.

EXAMPLE 5.5. We next illustrate the rule steps of algorithm

findDescriptors for Example 1.1 showing how descriptors d1 and

d2 from Example 5.2 are derived. First, observe that no chase step

applies on Q, so Q = chaseC(Q).

For brevity, we work on the unnormalized program P . Appli-

cations of EDB rule steps produce (among others) the following

descriptors:

(d3) [f(Z1, Z2)]
(f(A,C),{A:Z1,C:Z2})

(d4) [f(Z1, Z2)]
(f(A,C),{})

(d5) [f(Z1, Z2)]
(f(C,B),{C:Z1,B:Z2})

(d6) [f(Z1, Z2)]
(f(C,B),{})

(d7) [t(Z1, “Paris”)](t(B,“Paris”),{B:Z1})

(d8) [b(Z1, “Paris”)](b(B,“Paris”),{B:Z1})

Notice that for the same match of EDB goal f(Z1, Z2) into goal

f(A,B) of chaseC(Q), several partial mappings from the query

2Technically, descriptors for EDB rule IDBs using empty-domain
partial mappings do not fully conform to Definition 5.1 as the ex-
pansion fragment contains a goal that is not the image under the
partial mapping. As seen in the IDB rule step, the definition holds
for all other IDBs, which are the pre-normalization IDBs.

are considered. We show only two here (in descriptors d3 and d4,

where the latter uses the empty mapping, meaning that no query

variable is mapped into its fragment).

An IDB rule step for the fourth P rule combines descriptors d5 and

d7 yielding a new one:

(d9) [f(Z1, Z2), t(Z2, “Paris”)](ind(C,B),{C:Z1,B:Z2})

which combines with d3 using the first rule of P , yielding d1.

Descriptors d6 and d8 combine via an IDB rule step with the

third rule in P to

(d10) [b(Z2, “Paris”)](ind(C,B),{B:Z2})

which combines with d4 using the first rule of P , yielding d2.

The following result guarantees that the inflationary process for

descriptor discovery implemented by algorithm findDescriptors

terminates for weakly acyclic sets of constraints.

LEMMA 5.2. If C is weakly acyclic, then algorithm findDe-

scriptors is guaranteed to

(a) terminate in time exponential in the sizes of P , C, and Q.

(b) output only (pairwise dissimilar) descriptors.

PROOF. See Appendix A.

Algorithm testSupport. Our algorithm for testing support amounts

to deciding if the descriptors computed by algorithm findDescrip-

tors give a support witness (in the sense of Corollary 5.1). Accord-

ing to Corollary 5.1, the existence of such a witness is sufficient for

support, but, due to our undecidability results, when the program is

unrestricted (see Section 7), it is not always a necessary condition.

That is why algorithm testSupport is in general only sound.

algorithm testSupport
input: query Q, program P , set of dependencies C;

begin
D := findDescriptors(Q,P, C);
D′ := all descriptors from D pertaining to distinguished predicates of P ;
if D′ witnesses support (tested as in in Corollary 5.1)

then return true;
else return false;

end

Algorithm testSupport enjoys the following properties.

THEOREM 5.1. If C is weakly acyclic, the following hold:

1. Algorithm testSupport is sound for testing support.

2. Algorithm testSupport runs in time exponential in the size

of P , C, and Q.

PROOF. (1.) follows from Lemma 5.2(b) and Corollary 5.1.

(2.) follows from Lemma 5.2(a) and Corollary 5.1, noticing that

the containment mapping cfr can be computed in EXPTIME in the

size of Q and in PTIME in the size of the result of chasing the

partial rewriting candidate. In turn, the size of the chase result is

exponential in the maximum arity of a constraint in C and poly-

nomial in that of the partial rewriting candidate [9]. The size of

the partial rewriting candidate is given by the maximum number

of distinct descriptors that can be built, which by Lemma 5.2(a) is

worst-case exponential in the size of Q, C, and P .

Algorithm testSupport produces strictly less false negatives than

the approach of reducing away dependencies described in Section 4.

First, it is a decision procedure whenever the reduction succeeds:

THEOREM 5.2. If C is weakly acyclic and P is a C-local pro-

gram generating C-independent views, then algorithm testSupport

is a decision procedure for support.

COROLLARY 5.2. If C is a weakly acyclic set of key and for-

eign key constraints, and chaseC(P) is safe for the keys in C, then

testSupport is a decision procedure for support.

Second, the setting of Example 1.1 exhibits a case in which the

restrictions required in Section 4 for reduction to the dependency-

free case do not apply (they involve keys and foreign keys, while

dependency (1) is neither). Indeed, it is easy to check that the

chased program does not support the chased query in the absence

of dependencies. We therefore need a qualitatively better approach,

which is provided by algorithm testSupport: Example 5.5 shows

that the call to findDescriptors yields (among others) the descrip-

tors d1, d2, which, according to Example 5.4, witness support.

Algorithm testExpressibility. While we could use the reduction

from expressibility to support provided in Theorem 3.2, the follow-

ing minor variation on algorithm testSupport constitutes a direct

test: call algorithm findDescriptors, keep only the descriptors for

distinguished IDB predicates, and perform the test of Corollary 5.1

only on singleton sets of descriptors.

Finding the actual views. So far, we have only provided algo-

rithms for deciding support and expressibility. To turn them into

algorithms exhibiting the actual views generated by P as well as

the rewriting using it requires extra bookkeeping. All we need to

do is to carry along with a descriptor d the actual expansion built

during its derivation, noticing that the derivation tree of d coincides

with the expansion tree of the expansion described by d.

Finding minimized witnesses for support. Let us note that

while the partial rewriting candidate described by D′ in algorithm

testSupport may contain redundant atoms, in security applications

we only need to check if a query is supported by authorized views

[23], which amounts to checking the existence of a rewriting with-

out ever using it. Instead, the original query is executed once it

is authorized. For non-security applications in which the wrapper

needs to find and execute the rewriting in order to service a user

application, one can plug in any technique for minimization un-

der constraints already studied in the literature. For instance, the

backchase minimization [8] which starts from the rewriting candi-

date (corresponding toR from Corollary 5.1) and considers subsets

of view atoms at a time. This technique is amenable to further op-

timization by reusing the information from the partial mappings

stored in the descriptors: find subsets of descriptors whose partial

mappings are compatible and yield a total mapping from the query

into the partial rewriting candidate. The presentation of such an

optimization algorithm combining the discovered descriptors more

efficiently goes beyond the scope of this paper.

5.1 Revisiting the Dependency­free Case
Based on algorithm testSupport, we now improve the previ-

ously best-known upper bound for checking support in the dependency-

free setting. [15] reported a deterministic doubly-exponential upper

bound in the size of the query and program, while [26] improved it

to non-deterministic exponential time.

First, we observe that Theorem 5.2 and Theorem 5.1 imply the

following upper bound:

COROLLARY 5.3. In the absence of dependencies, algorithm

testSupport

(a) is a decision procedure for support of a query by an arbitrary

program, and

(b) runs in deterministic exponential time in the sizes of the pro-

gram and query.

We next show that this upper bound is tight in the program size,

and tight for practical purposes in the query size.

THEOREM 5.3. SUPP
∅
P(Q) is NP-hard in the size of Q and

EXPTIME-complete in the size of P .

PROOF. See Appendix A.

6. PARAMETERS
In this section, we show how our approach on expressibility and

support can be extended to the case when sources implement pa-

rameterized queries, expecting applications to provide the parame-

ter values. In other words, a parameter will denote an input vari-

able, that has to be bound to a value before the view can be evalu-

ated. Head variables will be called output variables.

Notation. For parameters we adopt the ?X notation of [14, 15],

enabling the generation of parameterized views. We stress that

by this notation, an input variable ?X will be considered different

from some other variable X appearing in the same program rule.

EXAMPLE 6.1. Consider the following program which gener-

ates views outputting destination airports with bus and train con-

nection to Paris, provided that the source and intermediary airports

are specified by the application:

ans(B) :− f(?A, C), ind(C, B)

ind(?C, B) :− f(?C, C), ind(C, B)

ind(?C, B) :− f(?C, B), b(B, “Paris”)

ind(?C, B) :− f(?C, B), t(B, “Paris”)

Notice that while the number of output variables is fixed (it is

the arity of the distinguished predicates), the program imposes no

bound on the number of input variables of generated views. In

practice, this corresponds to describing service calls with a vari-

able number of arguments.

There are two kinds of query evaluation plans one may adopt in

the presence of parameters. The straightforward execution consists

in the wrapper issuing in a first stage a series of service calls to

the source without inspecting any intermediate results to determine

how to instantiate parameters for the other calls. Once all call re-

sults come in, during the second stage the rewriting query is run

over them and the result passed to the application query. This is

the approach taken in [14, 15]. We shall call this approach the two-

stage evaluation. The drawback of this approach is that it does not

explore plans in which output values of one view goal become the

input to another view goal in the rewriting. A more sophisticated

evaluation strategy is based on this idea, of interleaving query ex-

ecution at the wrapper with service calls to the source. The eval-

uation of a subquery of the rewriting can thus provide parameter

values for the subsequent calls needed by the non-evaluated part of

the rewriting. This approach is used in [25] and, for finite sets of

parameterized views, in [11], where it is known as the dependent-

join evaluation. Section 6.1 discusses two-stage evaluation briefly

and Section 6.2 details expressibility and support under the more

advanced evaluation strategy.

6.1 Two­stage evaluation
If only two-stage evaluation is considered, there is an immediate

reduction to the problem of non-parameterized views, based on the

following observation:

LEMMA 6.1. In two-stage evaluation, for the views to be rel-

evant to the problem of support or expressibility, their parameters

must be filled in with constants appearing in the query or the source

dependencies.

This result follows immediately from Lemma 5.1 and generalizes

a similar observation from [14] to the presence of dependencies.

It implies that it suffices to generate a new program in which the

parameters are replaced in all possible ways by the (bounded) set

of constants in Q and C, and test support and expressibility for

the new program. In practice, an efficient implementation would

extend the rewriting algorithm as suggested in [14], by mapping

parameters into constants from the query.

6.2 Dependent­join evaluation
We next discuss the second, more flexible approach, which uses

dependent-join evaluation plans. We start by introducing some aux-

iliary notions.

Access patterns. An access pattern for a view V (X1, . . . ,Xk)
is an expression α in {o, i}k. We say that the Xj is an output

(resp. input) variable if α(j) = o (resp. α(j) = i). A view with

access pattern α is denoted V α(X1, . . . ,Xk). Views generated

by a Datalog program with parameters will be presented using this

notation, by introducing an input head variable for each parameter.

Executable query. Following [19, 7], we say that a query R

formulated in terms of view names with binding patterns V is exe-

cutable if the access patterns ofR are such that every input variable

appears first in an output position of some previous goal.

Expressibility / Support. We are now ready to extend the defini-

tions of expressibility and support in the presence of parameterized

views. We say that a query Q is expressible by a program P iff

the query is equivalent to a query obtained from an expansion of

P by replacing all input variables by constants. Note that this is

the natural choice, since expressibility captures the cases in which

a query can be fully answered by just one “service call”, without

any post-processing. We say that Q is supported by P iff there ex-

ists an executable rewritingR using some finite set V of views with

access patterns generated by P .

Before going into the specific details, we first give a brief outline

on how the solutions of the previous section can be extended to deal

with parameterized programs. As before, we aim at reducing these

problems to query answering using only a finite family of the spec-

ified views, defined by descriptors. First, since by the dependent-

join mechanism input variables play an important role in how view

goals interact in a rewriting, we need to keep track in descriptors of

their query-view and view-query mappings. While this leads to de-

scriptors of unbounded size (since the number of input variables is

not bounded) we show that only a finite set of descriptors needs to

be considered. Then, we extend algorithm testSupport to find an

executable ordering of a rewriting in terms of descriptors. For this

phase, we show that an expensive ordering search can be avoided,

by relying on a canonical executable rewriting candidate. In con-

clusion, similar to the case without parameters, we obtain a sound,

exponential-time, algorithm for expressibility and support, which

becomes complete in the absence of constraints or under restric-

tions on the interaction between program and constraints.

Modifying Example 1.1, the running example in this section is

the following:

EXAMPLE 6.2. Consider the schema from Example 1.1 extended

with a relation airport(name) and the set of views specified by the pa-

rameterized Datalog program P ′′, with 2 distinguished idb predi-

cates (ans1 and ans2):

ans1(A) :− a(A)

ans2(A, B) :− f(A, C), ind(C, B)

ind(C, B) :− f(C, C′), ind(C′, B)

ind(C, ?B) :− f(C, ?B), b(?B, “Paris”)

ind(C, ?B) :− f(C, ?B), t(?B, “Paris”)

Note that the program differs from the one of Example 1.1 in two

aspects: (a) the source admits direct access to the airport relation

(by ans1) and (b) the destination of views concerning itineraries

(by ans2) is an input variable.

Besides dependency (1)

∀A, S t(A, S) ∧ b(A, S) −→ s(A, S)

we assume the source verifies also the dependency

∀A, b(A, “Paris”), t(A, “Paris”) −→ a(A) (3)

which guarantees that any airport with a bus and train connec-

tion to Paris can be found in the airport relation.

Consider that the user asks the same query as in Example 1.1,

i.e., itineraries of length 2 ending in an airport from which Paris is

reachable by all the three transportation means

Q : q(A, B) :− f(A, C), f(C, B), t(B, “Paris”),

b(B, “Paris”), s(B, “Paris”).

We recall that this query was supported in the setting of Exam-

ple 5.1, as witnessed by the rewriting

(R) r(A, B) :− V1(A, B), V2(A, B).

However, under the given access patterns, R is no longer a wit-

ness for support since, when considering access patterns, the con-

junction of V oi
1 (A,B) and V oi

2 (A,B) is not executable. But by

adding to this rewriting Uo(B) as a first subgoal, where U is the

one view generated by predicate ans1, the query becomes exe-

cutable:

(R′) r(A, B) :− Uo(B), V oi
1 (A, B), V oi

2 (A, B),

and moreover equivalent to Q. Indeed, the values for B are now

passed by the dependent-join, and it can be easily checked that R′

is equivalent to Q under the two dependencies, since the airport

goal of the rewriting maps in the result of chasing Q with (3).

We next discuss the decision procedure for view-based query an-

swering using a finite set of parameterized views, under dependen-

cies. This procedure will be then adapted to a finite set of view

descriptors.

Answerable part. Given a query R formulated in terms of view

names with access patterns V , we call the answerable part of R

(denoted ans(R)) the executable query with the same head as R

and the body built one goal at a time from body(R) as follows:

• start with an empty set of bounded variables, B, then repeat-

edly

• find the first view goal gα(X̄) in R not added to ans(R)
such that all the input variables of g are in B; add this goal to

ans(R) and add its head variables X̄ to B.

Clearly, ans(R) is an executable query and this procedure runs in

quadratic time.

Executable Canonical Rewriting Candidate. Given a finite set

of views with access patterns V , an acyclic set of constraints C, and

a query Q, we call the executable canonical rewriting candidate of

Q using V under C, denoted ECRC C
V(Q), the query obtained as

follows:

(i) compute CRC C
V(Q) (as described in Section 5),

(ii) find its answerable part, ans(CRC C
V(Q)).

Similar to Lemma 5.1, results from [7] guarantee that Q has a

rewriting using V under C iff ECRC C
V(Q) is itself one. We omit

further details and only illustrate the main idea by an example.

EXAMPLE 6.3. Revisiting Example 6.2, we know that the views

V1, V2, U , generated (among others) by P ′′, give an executable

rewriting for Q, under C = {(1), (3)}.

Assume that an additional distinguished predicate is present in

P ′′, defined by the rule:

ans3(A, B) :− f(A, ?C), ind(?C, B)

This rule generates, among others, two views that have the same

subgoals as V1 and V2, but in which the intermediary stop is an

input variable, too. Hence these views, denoted W1 and W2, will

have one output and two inputs, their access pattern being (o, i, i).

Consider the set of views V = {V1, V2, U,W1,W2}, which can

all be mapped into chaseC(Q). By evaluating them on the body of

chaseC(Q), we obtain the intermediary CRC C
V(Q):

R(A, B) :− V oi
1 (A, B), V oi

2 (A, B), Uo(B),

W oii
1 (A, C, B), W oii

2 (A, C, B)

which is not executable since no value can be assigned to the C

input variable. However, by computing ans(CRCC
V(Q)), we elim-

inate the last two goals and reorder the rewriting, obtaining the

ECRC C
V(Q):

R(A, B) :− Uo(B), V oi
1 (A, B), V oi

2 (A, B)

which we know is indeed an executable rewriting of Q.

Testing expressibility and support. Similarly to the case with-

out access patterns, we capture the usefulness of a view in the ex-

ecutable rewriting candidate by a descriptor, which takes also into

account parameters and the access patterns they impose. Once the

set of descriptors is obtained, checking expressibility amounts to

checking if one of them denotes a view which becomes equivalent

to Q after replacing input variables by constants. For testing sup-

port, we first construct the partial rewriting candidate, as described

in Section 5. Since this candidate may not be executable, we need

to compute its answerable part, which we call the executable partial

rewriting candidate. Finally, we check as in Corollary 5.1 whether

this candidate is equivalent to Q under the dependencies, starting

from the corresponding view fragments.

Finding descriptors Since now we need to describe also the role

of view goals in the answerable part of the rewriting candidate, we

enrich the descriptor definition by taking into account input vari-

ables. More precisely, (a) input variables are treated as head vari-

ables, and (b) we add the corresponding access patterns to each

descriptor, thus discriminating among views which are similar ac-

cording to Definition 5.2 if they have distinct access patterns. For

space reasons, we omit the formal definition and illustrate these

changes on the setting of Example 6.3:

EXAMPLE 6.4. The descriptor for the view V oi
1 has besides the

components given in Example 5.2 the access pattern α1 = (o, i).

Similarly, the descriptor for the view W oii
1 has the components

E1 = [f(Z1, Z2), f(Z2, Z3), t(Z3, “Paris”)]

p1(t1) = ans(A, C, B)

fr1 = {A : Z1, C : Z2, B : Z3}

α2 = (o, i, i)

One difficulty in extending descriptors in this way comes from

the fact that there may be no bound on the number of input variables

of generated views, leading to an unbounded number of descriptors

and excluding any rewriting approach based on descriptors. How-

ever, we know from [21] that, in the absence of constraints, if a

rewriting using views with binding patterns exists, then one with

at most n (the number of variables of Q) distinct variables exists.

This can in fact be extended to the case with constraints, showing

that if a rewriting with a finite set of views exists, then there is also

one in which the view atoms have at most n input variables, n be-

ing the number of variables of chaseC(Q). The intuition for this is

that if a view with more than n parameters appears in a rewriting,

then for sure some of those parameters will be bound to the same

value. Hence it is sufficient to consider only descriptors with at

most n inputs. Moreover, it was shown in previous work [9], that

if the constraints C are weakly acyclic, n is upper-bounded by a

polynomial in the size of Q whose largest exponent depends only

on C.

Therefore, the procedure findDescriptors can easily be extended

to take parameters into account. The bottom-up step will infer de-

scriptors in which the binding pattern component may contain up

to n distinct input variables.

The following theorem summarizes the results of this section:

THEOREM 6.1. If C is weakly acyclic, the following hold:

• Procedure findDescriptors extended with parameters outputs

all pairwise dissimilar descriptors and is guaranteed to ter-

minate in time exponential in the sizes of P , C and Q.

• Procedure testSupport extended with parameters is a sound

algorithm for checking support and runs in time exponen-

tial in the sizes of P , C and Q. It becomes a complete de-

cision procedure if P is a C-local program generating C-

independent views.

7. BOUNDARIES OF DECIDABILITY
In this section we explore the boundaries of decidability for the

problems of expressibility and support. To calibrate our results, we

start with the following: allowing unrestricted sets of constraints

immediately leads to undecidability even if the program expresses

a single view. This result is unsurprising given that unrestricted

sets of embedded dependencies notoriously lead to undecidability

of many fundamental database decision problems, such as equiva-

lence of queries and implication of dependencies [1]:

THEOREM 7.1. If C contains arbitrary embedded dependen-

cies, EXPR
C
P(Q) and SUPP

C
P(Q) are undecidable even if P ex-

presses a single view.

PROOF. See Appendix A.

Theorem 7.1 shows that decidability requires restrictions on the

set of constraints, namely at least the restrictions leading to decid-

ability for the single-view case. The least restrictive known condi-

tion for this purpose requires C to be a weakly acyclic set of embed-

ded dependencies [9, 10]. As we show below, weak acyclicity turns

out to be too generous for sets of views described by unrestricted

programs, which justifies our key-safety restriction, showing that

its relaxation leads to undecidability.

Indeed, it turns out that, when the program is not key-safe, the

interaction of recursion in the program and the presence of depen-

dencies leads to undecidability even under strong restrictions on the

dependencies and on the program which are known to lead to decid-

ability in many classical decision problems as long as recursion and

dependencies are mutually exclusive. For instance, query rewrit-

ability using finitely many views (listed explicitly, not described by

a program) is known to be decidable under weakly acyclic depen-

dencies [9], in particular under only functional dependencies, or

only full TGDs. In the absence of dependencies, expressibility and

support for arbitrary (i.e. not necessarily key-safe) recursive pro-

grams is decidable [15, 26]. Moreover, many classical undecidable

Datalog-related problems, such as containment and boundedness

(undecidable by [12]) are known to become decidable for recursive

monadic programs [6].

However when considering recursion and dependencies together,

if we allow key-unsafe programs, we obtain surprisingly strong un-

decidability results, even for particular cases of weakly acyclic sets

of constraints, such as a single key constraint (Theorem 7.2), and

only full TGDs (Theorem 7.3).

THEOREM 7.2. If P is recursive, then EXPR
C
P(Q) is undecid-

able even if C consists of a single key constraint, and P is a linear

monadic program.

PROOF. See Appendix A.

Theorems 7.2 and 3.2 immediately yield the undecidability of

support under key constraints:

COROLLARY 7.1. If P is recursive and not key-safe, then

SUPP
C
P(Q) is undecidable even if C consists of a single key con-

straint and P is a linear monadic program.

THEOREM 7.3. If P is recursive and not key-safe, then

EXPR
C
P(Q) is undecidable even if C contains only full TGDs and

P is a monadic program.

PROOF. See Appendix A.

Theorems 7.3 and 3.2 yield undecidability of support under full

TGDs:

COROLLARY 7.2. If P is recursive and not key-safe, then

SUPP
C
P(Q) is undecidable even if C contains only full TGDs and P

is a monadic program.

Given that inclusion dependencies (INDs) are a particular case of

TGDs, it is interesting to contrast Theorem 7.3 and Corollary 4.2.

Notice that there is no contradiction here, as weakly acyclic sets of

INDs and sets of full TGDs have incomparable expressive power.

On one hand, weakly acyclic sets of INDs may include non-full

TGDs. On the other, TGDs allow several subgoals in the premise

whereas INDs allow only one.

8. RELATED WORK
The necessity of describing infinite families of views supported

at the source was first argued in [20] and the problem of deciding

support first solved (in the absence of dependencies) in [14, 15],

which pioneers the idea of reducing the problem of support to that

of rewriting a query using finitely many views. [15] compares the

views generated by the program for interchangeability, meaning

that V1 and V2 are interchangeable if in every rewriting R of Q,

by replacing the V1 goals with V2 goals we still obtain a rewriting.

[15] shows that interchangeability is an equivalence relation which

induces finitely many equivalence classes and gives an algorithm

which finds one representative of each class. We can show how-

ever that interchangeability under dependencies yields infinitely

many equivalence classes, thus precluding the reduction from [15]

(see Example B.1 in Appendix B). Even in the absence of depen-

dencies, we observe that interchangeability is unnecessarily strong

and the descriptor similarity condition (†) from Section 5 suffices.

This allows us to manipulate mapping/partial mapping pairs (rather

than sets thereof as done in [15]), which yields the improved upper

bound.

[26] addresses both expressivity and support in the constraint-

less case. We improve on its upper bound for support. [26] claims

for expressibility an EXPTIME lower bound even in the query size,

which would make our EXPTIME upper bound tight. Unfortu-

nately, the result is based on a reduction from containment of a

CQ query in a Datalog program, claimed to be EXPTIME-hard in

both query and program size, but which is actually in PTIME in the

query size and thus does not transfer the EXPTIME lower bound to

the query. The best lower bound we have remains NP.

The problem of support strictly extends that of rewriting que-

ries using finitely many views. The latter was treated in depth in

the literature, considering various extensions pertaining to the lan-

guage of queries and views [13, 3, 2, 5], to adding limited access

patterns for the views [11, 18], to adding constraints (see the ref-

erences in [8]), and to mixing such extensions [7]. Prior work on

information integration [16] studied answering queries using a fi-

nite set of views with limited access patterns with a different goal,

that of finding maximally contained answers.

9. CONCLUSION
In this paper, we revisit the problem of deciding support and ex-

pressibility of a conjunctive query by views generated as the ex-

pansions of a Datalog program, investigating for the first time the

effect of source constraints.

We identify practically relevant restrictions on the program which

lead to decidability for weakly acyclic sets of key and foreign key

constraints, which are the most prevalent constraints in practice.

We present an algorithm which is applicable to unrestricted pro-

grams and any weakly acyclic set of embedded dependencies (which

go beyond keys and foreign keys), yielding a decision procedure in

all known decidable cases, and a sound test in general. Moreover,

we show that our restrictions are maximally permissive, in the sense

that their slightest relaxation leads to undecidability.

We also settle two problems left open by work on the constraint-

free case, namely the exact complexity of deciding support and ex-

pressibility and the relationship between them.

First, we show that in the absence of constraints our algorithm is

a decision procedure which improves the previously known upper

bounds for support (from doubly-exponential time in [14] and non-

deterministic exponential time in [26] to deterministic exponential

in the size of both query and program). This algorithm has optimal

running time w.r.t. the program size (we provide a matching EXP-

TIME lower bound for fixed query) and practically optimal running

time w.r.t. the query size (we provide an NP lower bound for fixed

program).

Second, we show that expressibility and support are inter-reducible

in PTIME (even under constraints), which allows us to use essen-

tially the same algorithm for solving them.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] F. N. Afrati, R. Chirkova, M. Gergatsoulis, and V. Pavlaki. Finding
equivalent rewritings in the presence of arithmetic comparisons. In
EDBT, pages 942–960, 2006.

[3] F. N. Afrati, C. Li, and P. Mitra. Answering queries using views with
arithmetic comparisons. In PODS, 2002.

[4] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In ACM Symposium on

Theory of Computing (STOC), pages 77–90, 1977.

[5] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary
aggregation functions using views. ACM Trans. Database Syst.
(TODS), 31(2):672–715, 2006.

[6] S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable
optimization problems for database logic programs. In STOC, pages
477–490, New York, NY, USA, 1988. ACM Press.

[7] A. Deutsch, B. Ludaescher, and A. Nash. Rewriting queries using
views with access patterns under integrity constraints. In ICDT, 2005.

[8] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with
constraints. SIGMOD Record, 35(1):65–73, 2006.

[9] A. Deutsch and V. Tannen. Reformulation of XML queries and
constraints. In ICDT, 2003.

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
Semantics and query answering. In ICDT, 2003.

[11] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query
optimization in the presence of limited access patterns. In SIGMOD,
pages 311–322, 1999.

[12] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable
optimization problems for database logic programs. Journal of the

ACM (JACM), 40(3):683—713, 1993.

[13] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, pages 95–104, 1995.

[14] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries
using limited external processors. In PODS, pages 227–237, 1996.

[15] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries
using limited external query processors. J. Comput. Syst. Sci.,
58(1):69–82, 1999.

[16] C. Li and E. Y. Chang. Query planning with limited source
capabilities. In ICDE, pages 401–412, 2000.

[17] A. Motro. An access authorization model for relational databases
based on algebraic manipulation of view definitions. In ICDE, pages
339–347. IEEE Computer Society, 1989.

[18] A. Nash and B. Ludäscher. Processing first-order queries under
limited access patterns. In PODS, 2004.

[19] A. Nash and B. Ludäscher. Processing unions of conjunctive queries
with negation under limited access patterns. In EDBT, 2004.

[20] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman.
A query translation scheme for rapid implementation of wrappers. In
DOOD, pages 161–186, 1995.

[21] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using
templates with binding patterns. In PODS, pages 105–112. ACM
Press, 1995.

[22] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Proof-tree
transformation theorems and their applications. In PODS, pages
172–181, 1989.

[23] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
SIGMOD, pages 551–562, 2004.

[24] J. D. Ullman and J. E. Hopcroft. Introduction to automata theory,

languages and computation. Addison-Wesley, 1979.

[25] V. Vassalos and Y. Papakonstantinou. Describing and using query
capabilities of heterogeneous sources. In VLDB, pages 256–265,
1997.

[26] V. Vassalos and Y. Papakonstantinou. Expressive capabilities
description languages and query rewriting algorithms. J. Log.

Program., 43(1):75–122, 2000.

APPENDIX

A. PROOFS

PROOF. (Theorem 3.1) We show that a conjunctive query Q is

supported by a Datalog program P iff Q is expressible by a new

program P ′ constructed from P w.r.t. Q.

The reduction starts from the following result, which generalizes

a result of [13] to the presence of dependencies:

LEMMA A.1. Let C be a weakly acyclic set of embedded de-

pendencies. Then SUPP
C
P(Q) holds iff there is a rewriting R of Q

under C using views generated by P , where R has no more vari-

ables than chaseC(Q).

It was shown in prior work [7] that, if C is weakly acyclic, then

chaseC(Q) contains v variables, where v is upper-bounded by a

polynomial in the number of goals in Q and exponential in the

maximum arity of a relation appearing in the conclusion of a de-

pendency in C.

From this, we will build in PTIME in the size of chaseC(Q)
and P a new program P ′ that basically enumerates all possible

conjunctions of expansions of P .

For this proof, it helps to consider Q and conjunctions of expan-

sions as rectified. More precisely, no constants are allowed in pred-

icate subgoals, and no variable appears twice in subgoals. Instead,

joins are made explicit by subgoals equals(X,Y), and selections

with a constant c by subgoals equals(X, c). Note that we can pass

from any conjunctive query to its rectified version and vice-versa

in linear time.

Given Q, denote with aQ the arity of Q (the number of its dis-

tinguished variables). Assume w.l.o.g. that the distinguished pred-

icate of P is ans, of arity aP . We add a new IDB predicate ans′,

as well as a new unary EDB predicate D.

We build the following program, of distinguished predicate ans′:

ans
′(V1, . . . , VaQ

) :− pick(V1,X1, . . . , Xv),

pick(V2,X1, . . . , Xv), . . .

pick(VaQ
,X1, . . . ,Xv),

temp(X1, . . . ,Xv)

temp(X1, . . . ,Xv) :− D(X1), . . . ,D(Xv)

temp(X1, . . . ,Xv) :− ans(Y1, Y2, . . . , YaP
),

pick(Y1,X1, . . . ,Xv),

pick(Y2,X1, . . . ,Xv), . . .

pick(YaP
,X1, . . . ,Xv),

temp(X1, . . . ,Xv)

pick(V,X1, . . . ,Xv) :− equals(V,X1),

D(V),D(X1), . . . ,D(Xv)

pick(V,X1, . . . ,Xv) :− equals(V,X2),

D(V),D(X1), . . . ,D(Xv)

...

pick(V,X1, . . . ,Xv) :− equals(V,Xv),

D(V),D(X1), . . . ,D(Xv)

+

rules of P

The rules added in addition to those of P have the task of express-

ing all possible conjunctive queries with aQ head variables and at

most v variables in total, formulated against the distinguished goal

of P , ans. The ans subgoals are then expanded into views gener-

ated by P , due to the inclusion of the rules of P into P’.

Note that the temp subgoal lists the pool of v variables the ex-

pansions of P ′ will use. Each temp subgoal expands into arbitrarily

many ans subgoals which will build the body of the rewriting. The

variables appearing in the head ans’ and in the various ans subgoals

in the body are each associated with pick subgoals. The pick sub-

goal has v possible expansions, each having the role of picking one

of the v variables in the pool to equate with the variable in its first

argument. In this way, every assignment of variables from the pool

to variables of the head and body of the conjunctive query over ans

subgoals is realizable by some expansion of the pick subgoals.

The D predicate is introduced for technical purposes, to avoid

generating unsafe Datalog rules for the pick goal. Its effect is that

each view generated by P’ has a D subgoal for each of its vari-

ables. This does not influence expressibility as long as we add such

subgoals for all variables appearing in the query and in the depen-

dencies. Indeed, if Q has the form

Q(Z1, . . . , ZaQ
) :− body(Z1, . . . , ZvQ

)

with body a conjunction of subgoals, we build a new boolean query

Q
′(Z1, . . . , ZaQ

) :− body(Z1, . . . , ZvQ
),

D(Z1), . . . ,D(ZvQ
)

Finally, we construct a new set of dependencies C’ by adding in

each dependency σ from C the predicate D(X) for every variable

X appearing in σ.

Notice that C′ and Q′ are obtained in linear time from C and Q,

respectively. P ′ is obtained in PTIME from P and v, where the lat-

ter is polynomial in the size of Q but exponential in the maximum

arity of a relation appearing in the conclusion of some dependency

from C.

It is easy to show that SUPP
C
P(Q) holds if and only if

EXPR
C′

P′(Q′) does.

PROOF. (Theorem 3.2) GivenQ,P and C, we construct a boolean

query Q′′, boolean program P ′′ and set of dependencies C′′, such

thatQ is expressible by P under C iffQ′′ is supported by P ′′ under

C′′.

For presentation simplicity, we first show a first-cut solution which

works only if the query graph is connected, then we explain how

the reduction can be adapted to arbitrary queries.

Denote with aQ the arity of Q and assume w.l.o.g. that Q has

the form

Q(Z1, . . . , ZaQ
) :− body(Z1, . . . , ZvQ

)

with body a conjunction of subgoals and vQ ≥ aQ the total number

of variables appearing in Q. We build the boolean query

Q
′() :− head(Z1, . . . , ZaQ

), body(Z1, . . . , ZvQ
)

using a fresh EDB relation head of arity aQ.

Assume w.l.o.g. that the distinguished IDB of P is ans. Notice

that, for Q to be expressible by P , ans must have the same arity as

Q. P’ is constructed by adding to the rules of P a new rule defining

a fresh, boolean IDB predicate ans’:

ans
′() :− ans(X1, . . . ,XaQ

), head(X1, . . . ,XaQ
).

The distinguished IDB predicate of P’ is ans’.

Note that the views generated by P’ are in one-to-one corre-

spondence to those generated by P : any view V ′ generated by P’

simply extends the body of some view V generated by P with a

head subgoal containing the head variables of V . Q is equivalent

to V if and only if Q′ is equivalent to the corresponding view V ′:

the head subgoals appearing in both Q′ and V ′ ensure the desired

correspondence between the distinguished variables ofQ and those

of V . We have thus proven

Claim 1. EXPR
C
P′(Q′) iff EXPR

C
P(Q).

Also note that, since each view generated by P’ is boolean, any

rewriting using such views is really a Cartesian product thereof. We

therefore make the following claim:

Claim 2. Consider a boolean query Q′′ and the set of embedded

dependencies C′′. If

(a) Q′′ performs no Cartesian products (i.e. if its hypergraph [1]

is connected), and

(b) all constraints in C′′ have premises with connected hyper-

graph,

then Q′′ is equivalent under C′′ to some boolean conjunctive query

R iff it is equivalent under C′′ to a connected subquery of R. ⋄
Proof of Claim 2. The “if” direction is immediate, we prove the

“only if” direction next.

Let Q′′ be connected, and R() :− V1(), V2(), where the hyper-

graphs of V1 and V2 are disjoint.

Assume toward a contradiction that V1 6⊑C′′ V2 and V2 6⊑C′′

V1. Then there must exist two databases, DB1, DB2, with disjoint

active domains, such that both DB1,DB2 satisfy C′′, and such

that V1(DB1) = true, V2(DB1) = false, V1(DB2) = false

and V2(DB2) = true. Since Q′′ is equivalent to R under C′′, we

obtain that Q(DB1) = Q(DB2) = false.

Let DB3 be the database obtained by unioning the two:

DB3 := DB1 ∪DB2.

We claim thatDB3 satisfies C′′ as well: the componentsDB1,DB2

do so by hypothesis, and their disjoint union cannot violate any con-

straint in C′′ because all constraint premises are connected and thus

cannot match across the databases.

Note that Q′′(DB3) = false, as Q′′ has no match into any

of DB1,DB2, and no match across them because it is connected.

Also note thatR(DB3) = true, as V1 and V2 have a match against

the sub-databases DB1 and DB2, respectively.

We have thus exhibited a databaseDB3 |= C′′ such thatR(DB3) =
true, but Q′′(DB3) = false, contradicting the equivalence of Q

to R under C′′. Therefore, either of V1, V2 must be contained in

the other under C′′, so R can be minimized under C′′ to just one

component. The reasoning extends to arbitrarily many components

by induction.

End of proof of Claim 2.

By Claim 2, we have that, under restrictions (a) and (b), all

rewritings of Q′ under C using views generated by P’ contain a

single view goal or can be minimized to a single view goal. This

implies that EXPR
C
P′(Q′) holds if and only if SUPP

C
P′(Q′) does.

Considering also Claim 1, we obtain SUPP
C
P′(Q′) iff EXPR

C
P′(Q′)

iff EXPR
C
P(Q).

We now refine the reduction, lifting restrictions (a) and (b). To

this end, we obtain from Q′,P ′ and C, Q′′,P ′′ and C” such that

EXPR
C
P(Q) holds iff EXPR

C′′

P′′(Q′′) does, and such that Q′′ and the

premises of all constraints in C′′ are connected. Then Claim 2 will

apply to Q′′ and C′′, completing the proof.

The head ofQ′′ is the same as that ofQ′. The distinguished IDB

of P ′′ is the same as that of P’. Every remaining goal and subgoal

ofQ′ and P ′, sayG(X̄) of arity a, is extended to an a+1-ary goal

G(X̄, U), where U is a fresh variable shared across all goals.

We replace in the same way all subgoals appearing in dependen-

cies in C: for every σ ∈ C of form

∀X̄ premise(X̄) → ∃Ȳ conclusion(X̄, Ȳ),

we construct σ′′ of form

∀X̄∀U premise
′′(X̄, U) → ∃Ȳ conclusion

′′(X̄, Ȳ , U),

where premise” and conclusion” are obtained from premise and

conclusion, respectively, by extending the goals with the new vari-

able U , as done above for Q′ and P ′.

Claim 3. EXPR
C
P′(Q′) holds iff EXPR

C′′

P′′(Q′′) does.

The theorem follows from Claims 1, 3 and 2.

PROOF. (Theorem 7.1) The undecidability of support follows

from the undecidability of expressibility and the reduction of The-

orem 3.2. As for the undecidability of expressibility, it follows

from a reduction from query containment under embedded depen-

dencies (known to be undecidable [1]) to support of a query by a

non-recursive Datalog program which expresses a single view.

PROOF. (Theorem 7.2) The proof is by reduction from the Post

Correspondence Problem (PCP), known to be undecidable [24, 1].

Let {vi}1≤i≤n, {wi}1≤i≤n be the PCP instance, where vi, wi are

words over alphabet {a, b}. This is a “yes” instance iff there exists

a natural number l and a sequence of integers σ ∈ {1, . . . , n}l such

that

vσ(1) ◦ vσ(2) ◦ . . . ◦ vσ(l) = wσ(1) ◦ wσ(2) ◦ . . . ◦ wσ(l)

where σ(i) denotes the ith integer in the sequence, and ◦ is the

word concatenation operator. Any such σ is called a solution of the

PCP problem. Any sequence σ (regardless of whether it is a solu-

tion) determines a word obtained by concatenating the correspond-

ing w-words, and one obtained by concatenating the corresponding

v-words.

We construct a monadic, linear (recursive) Datalog program P ,

the singleton set C comprising a key constraint, and a query Q such

that the PCP problem has a solution iff EXPR
C
P(Q).

We use only one EDB relation e(X, l, Y), intended to denote a

directed edge with source X, target Y and label l. The (boolean)

queryQ is the following, where all lower-case letters (e.g. l, r, a, b, c, d)

are constants, and upper-case letters are variables:

Q() :− e(A, l, B), e(A, r,C), e(D, c,A),

e(D, a,D), e(D, b,D), e(D, d,D).

The program P is constructed as follows (again, lower-case let-

ters are constants and upper-case letters are variables). P consists

of

• the rule V () :− C(X);

• the rule

Cr(X) :− e(X, d, Y),

e(X, c,X ′), e(X ′
, l, Z),

e(Y, c, Y ′), e(Y ′
, r, T),

e(U, a,U), e(U, b, U), e(U, d, U),

e(U, c,X ′);

• for every 1 ≤ i ≤ n, assuming w.l.o.g. that

vi = αi
1 . . . α

i
ki

and wi = βi
1 . . . β

i
li

, the rules

C(X) :− e(X,αi
1,X1), . . . , e(Xki−1, α

i
ki
,Xki

),

e(X,βi
1, Y1), . . . , e(Yli−1, β

i
li
, Yli),

e(Xki
, d, Yli), Cr(Xki

);

Cr(X) :− e(X, d, Y),

e(X,αi
1,X1), . . . , e(Xki−1, α

i
ki
,Xki

),

e(Y, βi
1, Y1), . . . , e(Yli−1, β

i
li
, Yli),

e(Xki
, d, Yli), Cr(Xki

);

C comprises just one key constraint, stating that the source and

label of an edge determine its target:

∀X,L, Y, Y ′
e(X,L, Y) ∧ e(X,L, Y ′) → Y = Y

′
.

P is designed to generate, for every sequence σ of integers from

{1, . . . , n}, an expansion which encodes the two concatenations of

v-words and w-words determined by σ. A word is encoded by a

chain of edges, each edge label encoding a character in the word.

The expansion thus contains two chains of words (one for the vi’s,

one for the wi’s), each of them ended by a c-labeled edge fol-

lowed by an l-edge, respectively an r-edge. The chains start from

the same node (according to the C rule), and continue in parallel,

chaining together pairs of subchains which correspond to pairs of

words (vi, wi) for some i (this is the role of the repeated expansions

of IDB Cr according to the rule for i). The expansion is ended by a

subgraph given by the expansion of the first rule of Cr , whose role

will be explained shortly.

To enable mappings from the arbitrarily long chains of the ex-

pansions into the query, Q contains cycles into which every pair of

chains can map. Indeed, it is easy to see that any expansion of P
has a containment mapping into Q. Since the cycles in Q cannot

map into the straight chains in the expansions of P , the v-chain is

ended by the cycles generated by the first rule of Cr .

We therefore have that EXPR
C
P(Q) holds iff P expresses some

view V such that V ⊑C Q (since the opposite containment holds

for every expansion, even in the absence of constraints). Because

C contains only a key constraint, the chase with it is guaranteed to

terminate, and V ⊑C Q holds iff chaseC(V) ⊑ Q [1].

Observe that successive expansions of theCr IDB chain only the

v-words together; the vi-words in the expansion of each rule start

from variable X which is also the end of the previous vj -word in

the concatenation, but the wi-words start from the fresh variable

Y which is not connected to the end Ykj
of the previous wj-word.

Connecting the successive w-words explicitly would require IDB

Cr to be binary, carrying both ends of v and w-words. To use only

monadic rules, we rely instead on the key constraint: the variable

beginning anyw-word and the variable ending the previousw-word

in the chain are both targets of d-edges emanating from the junc-

tion of the previous and current v-word. The chase with the key

constraint will “glue” the two chain segments corresponding to the

w-words.

The intuition behind the construction is that, if we log for each

one-step expansion of IDB Cr the i corresponding to the rule used,

the obtained sequence of integers is the candidate for the solution

of the PCP problem. All possible sequences of one-step expansions

thus generate all possible solution candidates.

The theorem follows from the following claim, stating that a can-

didate solution is verified as a true solution only by finding a con-

tainment mapping fromQ into the chase result of the corresponding

expansion:

Claim. There is some view V generated by P such that

chaseC(V) ⊑ Q

iff V encodes a solution of the PCP problem. ⋄
Proof. Notice that the chase of any expansion E with the key

constraint can only start at the common origin of the v- and w-

chains, and can only continue as long as the labels in the chains

situated at the same distance from the origin coincide. The chains

are determined by a solution to the PCP problem if and only if

they match on their entire length, which is equivalent to the chase

proceeding to collapse the chains all the way to their ends. This

is detected by the fact that the l- and the r-edges eventually share

the same source, which in turn is the only way in which the query

pattern can map into the chase result of E.

End of proof of claim.

PROOF. (Theorem 7.3) We use a reduction from PCP, adapting

the construction from the proof of Theorem 7.2. The main diffi-

culty here is to control that the two chains of v- and w-words are

determined by the same sequence of integers, and that the chains

match each other in length and labels. This was achieved in the

proof of Theorem 7.2 by chasing with the key constraint.

We introduce fresh edge labels, i1, . . . , in, for n being the num-

ber of PCP words. We also use the labels sync, end, up, down.

We construct a monadic, (recursive) Datalog program P , the set

C comprising three families of TGDs, and a query Q such that the

PCP problem has a solution iff EXPR
C
P(Q).

The Datalog program P contains:

• a rule for the distinguished IDB predicate ans: ans() :− C(X);

• for every 1 ≤ i ≤ n, assuming w.l.o.g. that

vi = αi
1 . . . α

i
ki

and wi = βi
1 . . . β

i
li

, the rules

C(X) :− e(X,sync,X),

e(X,αi
1,X1), . . . , e(Xki−1, α

i
ki
,Xki

),

e(X,βi
1, Y1), . . . , e(Yli−1, β

i
li
, Yli),

e(X, i,Xki
), e(X, i, Yli),

Cv(Xki
), Cw(Yli);

Cv(X) :− e(X,αi
1,X1), . . . , e(Xki−1, α

i
ki
,Xki

),

e(X, i,Xki
), Cv(Xki

);

Cw(X) :− e(X,βi
1, Y1), . . . , e(Y

′
li−1, β

i
li
, Yli),

e(X, i, Yli), Cw(Yli);

• the rules

Cv(X) : − e(X, end, Y), e(Y, up, Z)

Cw(X) : − e(X, end, Y), e(Y, down, Z)

e(X, a,X), e(X, b,X),

e(X, i1,X), . . . , e(X, in,X),

e(X, sync,X)

The program expands into chains that are not necessarily syn-

chronized. We control synchronization by constraints. More pre-

cisely, we use TGDs to control that the two chains are determined

by the same sequence of integers, and to control that the two chains

match. C comprises:

• for each 1 ≤ i ≤ n, the full TGD

∀X,Y,Z, T (4)

e(X,sync, Y) ∧ e(X, i, Z) ∧ (Y, i, T) → e(Z, sync, T)

• for each l, l′ ∈ {a, b}, the full TGD

∀X,Y,Z, T (5)

e(X, l, Y), e(X, l, Z), e(Y, l′, T) → e(Z, l′, T)

• for each l ∈ {a, b}, the full TGD

∀X,Y,Z, T, U, V,W (6)

e(X, l, Y), e(X, l, Z), e(Z, end, T),

e(Y, end, V), e(T, up, U), e(V, down,W),

e(Y, sync, Z) → e(V, up, U)

Intuitively, an expansion has an end-edge to signal the end of

each chain, then an up-edge to signal the end of the chain of v-

words, and a down-edge to signal the end of the chain of w-words.

The sync edges are added by the chase of the expansion with the

family of TGDs (4), to mark the pairs of nodes on the two chains

which represent chain prefixes determined by the same sequence of

integers from {1, . . . , n}.

Since the two chains of the expansion have a common origin (due

to the expansion of IDB C), the chase with the family of TGDs (5)

can only start at the origin, and continues down the chains only as

far as the labels of the chain prefixes match. The two chains match

entirely if and only if the chase with (5) stops at the chain ends

(marked by end-edges).

If the chase with both families of TGDs (4) and (5) goes all the

way to the end of the two chains, then both the sequence of integers

and the sequence of labels coincide, hence the chains encode a PCP

solution. This is detected by the family of TGDs (6), which apply

only in that case, recording this fact by copying the up-edge from

the end of the v-chain to the end of the w-chain, thus creating a

node with both up and down edges emanating from it.

This is precisely what the query checks for:

Q : q() :− e(T, a, T), e(T, b, T)

e(T, i1, T), . . . , e(T, in, T),

e(T, sync, T),

e(T, end,X), e(X,up, Y), e(X, down, Z)

Similar to proof of Theorem 7.2, in order to enable mappings

from the arbitrarily long chains of the expansions into the query, Q

contains cycles into which every pair of chains can map. Indeed, it

is easy to see that any expansion of P has a containment mapping

into Q. Since the cycles in Q cannot map into the straight chains in

the expansions of P , the w-chain is ended by the cycles generated

by the second rule of Cw.

It is easy to verify that Q can be mapped into the result of chas-

ing some expansion of P with C iff the expansion encodes a PCP

solution.

PROOF. (Lemma 5.2) (a) Notice that the initialization stage and

each individual rule step terminate, since the chase terminates when

C is weakly acyclic. The set D must saturate, as there are only

finitely many dissimilar descriptors. Their number is upper bounded

by an exponential in the maximum arity of a predicate in P and the

size of Q, which bounds the number of rule step applications. At

every rule step, finding that the rule applies involves matching it

against the set of descriptors, which is exponential in the rule size.

By Theorem C.1, the ensuing chase terminates in time exponential

in the size of C and polynomial in the size of the descriptor.

(b) An easy proof by induction on the structure of the derivation

tree of each descriptor.

PROOF. (Theorem 5.3) The NP lower bound follows from a

reduction from the problem of checking conjunctive query equiva-

lence (NP-complete by [4]), via the problem of checking express-

ibility. Given conjunctive queries Q1, Q2, we have that Q1 ≡ Q2

iff Q1 is expressible by the single-rule Datalog program Q2. The

latter reduces in PTIME to the problem of support by Theorem 3.2.

The EXPTIME lower bound is obtained by a reduction from the

problem of checking containment of a query Q in a Datalog pro-

gram P , known to be PTIME in the size of Q and EXPTIME-

complete in the size of P [22]. First, we carry out a reduction to

the problem of checking expressibility, then compose it with the

PTIME reduction from expressibility to support given by Theo-

rem 3.2:

Given query Q(X̄) : − body(X̄, Ȳ) and program P of distin-

guished predicate ans (necessarily of same arity as the query), we

construct program P ′ which includes all rules of P , the additional

rule ans′(Z̄) :− ans(Z̄), body(Z̄, Ȳ) and pick ans′ as the new

distinguished predicate of P ′. Notice that P ′ generates all inter-

sections of Q with views generated by P , whence we have that Q

is contained in P iff EXPR
∅
P′(Q) holds.

B. INTERCHANGEABILITY DOES NOT HELP
The following example shows that under dependencies, there are

infinitely many equivalence classes of views with respect to in-

terchangeability. This precludes the reduction described in [15]

from the problem of support to that of rewriting using finitely many

views, as it involves focusing on representatives of the equivalence

classes.

EXAMPLE B.1. We have a program P that produces unary views

as follows:

V (X) : − e(X, a, Y), Cr(Y)

Cr(X) : − e(X, a, Y), Cr(Y)

Cr(X) : − e(X, b, Y), e(Y ′
, b, Y), e(Y ′

, a, Y
′),

e(Y, up, Z)

Cr(X) : − e(X, b, Y), e(Y ′
, b, Y), e(Y ′

, a, Y
′),

e(Y, down,Z)

Expansions are chains of a-labeled edges ending with a b-labeled

edge and one of up or down.

Consider the query Q:

Q() : − e(D, a,D), e(D, b,A),

e(A,up,B), e(A,down,C)

The source obeys also one key constraint for each l ∈ {a, b}:

∀X,Y ′
, Y

′′
e(X, l, Y ′), e(X, l, Y ′′) −→ Y

′ = Y
′′
.

We write Vn for the expansion with n a-labeled edges and ending

with up. We write Un for the expansion with n a-labeled edges and

ending with down.

We can see that, for any n, the rewriting Rn defined as Rn() :
−Vn(X), Un(X) is an equivalent rewriting of Q.

However, replacing in Rn the Vn goal with any other view (Vi

or Ui) would not yield another equivalent rewriting. So each Vn

(and each Un) is in its own equivalence class w.r.t. interchange-

ability in rewritings for Q. There are therefore infinitely many such

equivalence classes.

C. WEAK ACYCLICITY
We repeat for the reader’s convenience the definition of weakly

acyclic set of dependencies, and the associated result.

DEFINITION C.1. (Weakly Acyclic)[9, 10] A position is a pair

(R, i) (which we write Ri) where R is a relation symbol of arity

r and i satisfies 1 ≤ i ≤ r. The dependency graph of a set Σ of

TGDs is a directed graph where the vertices are the positions of the

relation symbols in Σ and, for every TGD ξ of the form

∀ū, w̄ φ(ū, w̄) −→ ∃v̄ ψ(ū, v̄)

there is an edge between Ri and Sj whenever (1) some u ∈ {ū}
occurs in Ri in φ and in Sj in ψ or (2) some u ∈ {ū} appears in

Ri in φ and some v ∈ {v̄} occurs in Sj in ψ. Furthermore, these

latter edges are labeled with ∃ and we call them existential edges.

A set Σ of TGDs and EGDs is weakly acyclic if the dependency

graph of its TGD set has no cycles through an existential edge.

THEOREM C.1. For every weakly acyclic set C of embedded

dependencies, there are b and c such that, for any set of subgoals

A, regardless of the order of the chase, chaseC(A) is guaranteed to

terminate inO(|A|b) steps and in timeO(|A|c), where |A| denotes

the size of A.

