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Consistency is the Hobgoblin of Human Minds:

People Care but Concept Learning Models do Not

Dorrit Billman

School of Psychology
Georgia Institute of Technology
Atlanta, GA 30332
(404)894-2349
dorrit.billman@psych.gatech.edu

Abstract

People may be biased to learn categories which not only
capture structure in the environment but organize this
knowledge in a manner easy to use in reasoning. Concepts
organized to contrast consistently on the same attributes
as sister categories within a hierarchy may be particularly
useful in guiding induction. We assess whether systems of
novel categories organized in this manner were also easier
to learn. Supervised concept learning was dramatically
easier in the consistent over inconsistent contrast
condition. We tested whether several models of concept
learning would show sensitivity to consistent contrast, as
people did, including assessment of a model designed to
use information about consistent contrast, TWILIX. None
of the models tested (ALCOVE, rational analysis, and
TWILIX) showed much sensitivity to the
Consistent/Inconsistent contrast. People may flexibly
adjust their learning strategy to capitalize on simple
regularities when available, in a manner not incorporated
in these concept learning models.

Multiple influences conspire to produce our systems of
categories and to produce new learning at the edges of
existing knowledge. The structure of the environment is a
key influence, as we use categories to refer to types of actual
entities and to guide us through the world. Second, a
person's activities and goals prioritize those aspects of the
environment that support important activities over other
information whose value is less clear. In addition, the
business of mental life and economies of mental activity are
important influences. Concepts are used in reasoning,
remembering, and imagining. These mental activities and
human mental limitations influence category construction as
well.

The present work investigates learning biases, or
constraints, that make reasoning tasks more straightforward:
hierarchy and consistent contrast. A bias to organize
information into set inclusion hierarchies, at least local
ones, aids many forms of default and deductive reasoning. A
bias for consistent contrast aids inductive reasoning. The
experiment reported here investigates consistent contrast.
Consistent contrast is a relation within a set of categories
which are daughters of the same superordinate category. For
categories with consistent contrast, the attributes relevant to
one category are also relevant to the others in the set.
Consistent contrast is the principle motivating variability
bias in the machine learning model TWILIX (Martin,
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1992;Martin&Billman, 1991) and is closely related to
Goodman's (1983) notion of projectability (also Shipley,
1993; Russell, 1986; Billman, 1992). If individual, known
types of animals are homogeneous with respect to diet, one
should be able to generalize that the diet observed for one
individual of an unfamiliar kind will be generally true for the
kind as a whole (Shipley, 1993). The idea of consistent
contrast is linked to hierarchy because it is the hierarchy that
provides the set of contrasting categories. Type of diet will
not be consistent within, or even applicable to, categories
such groups of people or kinds of machines.

Evidence for a consistent contrast has come from
induction studies that assessed the generalizations which
subjects were willing to make from a single instance of a
new category. Macario, Shipley, and Billman (1990) found
that children's generalizations from a single instance
respected consistent contrast. Learning studies could also
assess whether a whole set of novel categories are better
learned when they contrast consistently. The present study
investigates learning. We compared learning sets of three
categories in a Consistent Contrast Condition with learning
sets of categories in an Inconsistent Contrast Condition. In
the Consistent Contrast Condition the same attributes were
important across the set. In the Inconsistent Contrast
Condition the same individual categories were regrouped
such that different attributes mattered for each of the
categories in the contrast set. We predicted that the identical
categories would be learned more easily when part of a
Consistent than Inconsistent Contrast set.

Experimental Method

Subjects. Fifty students from the Georgia Institute of
Technology, 26 in the Consistent and 24 in the Inconsistent
Condition participated for extra credit. All had normal color
vision

Materials. Stimuli were animated events showing alien
animals, moving and vocalizing against a background scene.
During the learning phase each trial presented one event and
the learner was asked to click the appropriate name for the
creature from a set of three labels (yodlar,ralfaz, and
muntog). Subjects were given feedback and the correct label
was displayed. There were 45 learning trials, 15 from each
category. Events were composed from six, three-valued
attributes: Sound, Movement, Habitat, Color, Head,
Body/Legs.



Table 1: Set 1 Stimuli Schema Used for Human Participants

Consistent Contrast

Category 1 11 xx xx xx 11 xx xx xx 11

Category 2 22 xx xx xx 22 xx xx xx 22

Category 3 33 xx xx xx 33 xx xx xx 33
Inconsistent Contrast

Category 1 11 xx xx xx 11 xx xx xx 11

Category 2 xx 22 xx XX xx 22 22 xx xx

Category 3 xx xx 33 33 xx xx xx 33 xx

Stimuli for the three categories for each of six subject groups are shown schematically.
Numbers indicate the value of an attribute that was consistently assigned to members of a
given category. X's indicate random attribute values for members of the category. Each
column indicates an attribute, ordered as sound, movement, habitat, color, head-type, and

body/leg.

Each category was defined by a combination of two of the
six attributes as shown in Table 1. In the Consistent
Contrast Condition, the same two attributes determined
category membership for all three categories. For example,
in Configuration 1 all yodlars croaked and flew, ralfazes
bleated and walked, while muntogs roared and jumped.
Three different pairs of attributes were used in three different
configurations to counterbalance the effects of attribute
salience. In the Inconsistent Contrast Condition, however,
each category used a different pair of attributes to mark
category membership, for example, Category 1 used sound
and movement, Category 2 used habitat and color, while
Category 3 used head and body.

The influence of individual attributes and individual
attribute values was counterbalanced to equate the impact of
these factors in Consistent and Inconsistent Conditions. As
shown in Table 1 nine categories were used across the three
configurations. These nine individual categories were
identical between the Consistent and Inconsistent
Conditions, but they were grouped into different category
sets. Finally, the identical set of instances are used in a
given category (i.e. the xx xx 22 category, 33 xx xx
category, etc.) when it occurs in the Consistent or in the
Inconsistent Condition; e.g., the identical set of xx 33 xx
items are used in Consistent Condition Configuration 2 and
in the Inconsistent Condition Configuration 3. A single
order of instances was used for all subjects in a given
condition and configuration.

The test phase consisted of 30 trials. Half of the test
items were normal examples of the three categories seen
during learning and half were incorrect events. An incorrect
test item scrambled up the assignments of the defining
attribute pair (e.g., 12 xx xx rather than the correct 11 xx
xx). No labels were provided.

Procedure. Participants worked in sound-isolated cubicles.
Subjects were instructed that they would be touring the
Saturn zoo and observing different animals. For each, three
names would appear and they should click on the name they

thought was the correct label for the display. After the
subject's judgment, the name the zookeepers use would be
displayed. Subjects were told they would be tested later.
During the learning phase, subjects saw an animated scene,
clicked on one of three category labels, and got feedback
indicating the correct category choice.

At the beginning of the test phase, subjects were told they
would see more events, some of which would be like what
they had seen and some of which would be new. They were
told to click a 'yes' button if the event was "like something
you had seen before” and 'no’ otherwise. Correct, familiar
displays were consistent with the schema for the three
categories used during learning. Incorrect or discrepant
displays disrupted the pairings between diagnostic attribute
values which had held during learning. No feedback was
provided. Finally, participants filled out a questionnaire
about what they noticed.

Design. The independent variables were Condition and
Configuration, nested within Condition. The dependent
measures were the number of correct classifications over the
learning trials and the number correct on the test.

Experimental Results

Average number correct over learning was 86.9% in the
Consistent and 49.5% in the Inconsistent Condition.
Subjects in the Consistent Condition jumped to high,
asymptotic classification in the first 10 trials. The effect of
Condition, F(1,44)=269, p<.001, but not Configuration,
F(4,44) =2.27, was highly significant. Subjects in the
Consistent Contrast Condition also performed dramatically
better, mean of 75.1% correct, than those in the Inconsistent
Contrast Condition, mean of 55.3%, on test events
(Condition F(1,44)=14.03, p=.001; Configuration
F(4,44)=.87).
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Figure 1: Leamning curve for Consistent and Inconsistent Conditions

Methods for Comparative Simulations

We believe these results pose difficulties for many
computational accounts of concept learning, including recent
modeling that motivated these experiments. We ran
simulations on RA (Anderson, 1991), ALCOVE (Kruschke,
1990, 1992), and TWILIX (Martin,1992;
Martin&Billman,1991), to compare performance in the
consistent to inconsistent condition.

Dependent Variables. All models estimate the probability
of each alternative category label and then pick the value
with the highest probability to generate their classification
response. We use the probability estimates rather than the
coarser measure of percent COrect responses.

Set 1 Stimuli. We used stimuli from the same schematic
specification as shown in Table 1. For the simulations, we
also controlled the between category similarity and hence
confusibility between categories, as well as within category
similarity. In particular, we constructed stimuli (Table 2)

such that any advantage of the Consistent Condition could
not be due either to greater within-category or lower
between-category similarity. Values of the four unpredictive
attributes were assigned to make the between-category
similarity in the Consistent Condition HIGHER, and hence
the categories more confusible, than in the Inconsistent
Condition. A model dominated by similarity would leam
faster in the Inconsistent than the Consistent Condition.
Our purpose was simply to ensure that any advantage for the
consistent condition could not be due to simple differences
in similarity relations. For all models we averaged ten runs
with different stimuli orderings.

Set 2 Stimuli. We used the identical stimuli seen by
subjects in the experiment (represented as numbers, not
body-parts, of course). The six ordered sets of instances, for
the two conditions by three configurations, produced six
Tuns.

Table 2: Set 1 Exact Items Used in Simulations

Category 1 Category 2 Category 3
111111 222211 331312
111312 223121 333322
11 31 21 222223 332223
113322 223233 333233

190

Category1 Category 2 Category 3
111111 222211 221133
111312 232212 231333
1131 21 322221 323133
113322 332222 333333
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Figure 2: RA's Performance on Set 2 Stimuli

Results from Comparative Simulations

RA. The rational analysis model is a nonhierarchical
unsupervised clustering algorithm that approximately
optimizes the predictive utility of the clusters it creates. It
can be applied to supervised learning by exclusively looking
at the model's predictions of the atiribute specifying the
category labell. We anticipated that RA would be
insensitive to the difference between the consistent and
inconsistent conditions, as RA is indifferent to the basis for
predictive success and hence to whether instances in
contrasting categories are similar in the same or in differing
respects. RA was implementation from Anderson (1991)
and run with ¢ set to .3. For the similarity-controlled
stimuli of Set 1, RA showed a slight (.04) consistent
advantage for the /nconsistent Condition over the Consistent
throughout the learning curve, Afier three presentations of
the 12 learning items probability estimates of the correct
category label were .82 for the Consistent and .86 for the
Inconsistent condition. Figure 2 shows RA's probability
estimates for Stimulus Set 2, the exact stimuli seen by our
subjects. Each of the two curves comes from three runs of
RA. Here RA does show a modest but fairly consistent

1 RA can also be adjusted for supervised learning by changing
the system's prior belief that there will be a unique value of the
label attribute for each cluster that RA creates. Auxillary runs of
RA with this label sensitivity were similar. Runs with the
coupling parameter set to .2 produced similar results to those
reported here, as well,
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advantage for the Consistent Condition run, though nothing
like the strong, early contrast shown by people.

Qualitative-Autribute-ALCOVE. ALCOVE is an
instance-based supervised concept learning algorithm with
attentional learning. As well as storing instances and
generalizing based on the similarity of a novel instance to
known instances, it also "stretches” or "shrinks” dimensions
of the representation space to leamn to weight more heavily
those attributes which discriminate between categories.
ALCOVE is designed for continuously valued attributes, but
can easily be applied to binary categorical attributes by
using only 1 and 0. However, application to multi-valued
categorical attributes (red/blue/yellow), required code
modification. Instead, we linked together sets of attribute
values to a single attentional weight representing the
attribute as a whole. Each such weight was increased or
decreased in accord with the success or failure of each
classification. We used code provided by Kruschke modified
only as described here.

Since the similarity relations worked to make the
Inconsistent Condition categories more discriminable from
each other, this should push QA-ALCOVE toward better
learning in the Set 1 Inconsistent Condition. However,
attentional learning could benefit the Consistent but not the
Inconsistent Condition. ALCOVE has a large parameter
space. As a result it is strong at fitting a variety of data, but
deniving predictions from ALCOVE is difficult. Specifically,
it is very difficult to provide any proof of ALCOVE's
insufficiency without demonstrating an exhaustive search of
its parameter space. This we did not undertake. We did
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Figure 3: TWILIX's Performance on Set 2 Stimuli

think it informative to see if ALCOVE naturally produced
the strong human advantage for the Consistent Condition.
We used parameter values from Kruschke (1990, Figs 2.3-
2.10) selected to demonstrate the power of ALCOVE's
attentional learning, for task and stimuli of broadly similar
complexity. All these runs can show is whether for one
sensible parameter choice ALCOVE shows any hint of the
strong human bias for the consistent categories. We ran
ALCOVE on four blocks of Set 1 Stimuli. For
performance on the third block, mean probability estimate
for the correct label was .360 in the Inconsistent and .361 in
the Consistent Condition; number correct on this block
averaged 7.8 of 12 for Inconsistent and 7.4 for Consistent.
While the conditions were indistinguishable in means, the
Inconsistent Condition had slightly greater variability. We
did not run ALCOVE on Stimuli Set 2.

TWILIX is a recursive hierarchical clustering algorithm,
that includes variability bias. Variability bias alters
probability estimates of the consistency of one attribute
value within one category using information about the
consistency of (other values of) that attribute in contrasting
categories. If color is highly consistent within each of
several familiar types of jewels, the system is biased to
expect that a new type of jewel will also have a
characteristic color. TWILIX with its variability bias has
been run on an induction task for which human data is
available (Nisbett, Kranz, Jepson,&Kunda, 1983), and its
pattern of performance (Martin & Billman, 1992) was quite
similar to that of people. We anticipated TWILIX would
learn faster in the consistent than in the inconsistent
condition. Like attentional learning, variability bias is a
method of biasing the learner to treat some attributes as
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more important than others. Unlike attentional leaming,
variability bias is not a global filter, peripherally screening
out information about a given attribute for any purpose in
any input. Rather, variability bias is local to a particular
context of contrasting categories: while color may be
important for types of jewels but not types of cars, it will
still be noticed for both types of stimuli. Either way of
learning attribute importance could aid leaming in the
consistent condition, where the same attributes are important
across all three categories. In tests on Set 1 Stimuli,
TWILIX learns quickly and identically in Consistent and
Inconsistent Conditions. At the end of the first block of 12
instances, performance averaged .94 in the Consistent and
97 in the Inconsistent Conditions. From trial to trial the
condition advantage switchs, but the average across runs and
across trials 1-12 is .77 for the Consistent and .80 for the
Inconsistent.

For Stimulus Set 2 in Figure 3, TWILIX also looks
decidedly inhuman. Difference between conditions is very
small, late, and again favors the /nconsistent Condition.
TWILIX too is basically indifferent to the contrast between
Consistent and Inconsistent Conditions.

Understanding this absence of benefit prompts a closer
look at how TWILIX uses variability bias. The largest
influence of variability bias will be on the first use of a
category. In particular, it will guide the system in when to
set up a new category. Criteria for category formation will
be more important in unsupervised than supervised learning
tasks. In addition, effect of the prior probabilities provided
by contrast categories will be quickly tempered as evidence
about the category is collected. Thus most of the influence
of variability bias will be seen in first setting up a category



(e.g. induction from a single instance) and in estimates of
the proportion of category members which have the most
frequent attribute value, rather than on ongoing accuracy in
predicting the correct value.

Both TWILIX and ALCOVE provide a way of prioritizing
some attributes over others, but this sensitivily is 100
modest to produce the dramatic difference in conditions
which people exhibit. In a supervised leaming task, when
attributes that are reliably informative about all categories
are available, people's use of this information apparently
swamps sensitivity to other aspects of the problem. This
extreme focus or selectivity apparently true for people does
not characterize the more "optimal" models presented here.
The internal feedback model (Billman & Heit, 1988) is a
fourth concept learning model applicable to this task which
we did not test on these stimuli. It might leamn differently
between conditions because it has both strong attentional
learning and strong attention limits.

Conclusions

We have found a dramatic difference in the difficulty people
have in leaning a set of three novel categories which
consistently contrast on the same attributes versus a contrast
set in which different attributes matter for different
categories. Empirically we need to determine to what extent
this advantage is due a general shift in periferal attentional
versus more strategic knowledge about relevance of certain
attributes to certain types of categories. Experiments are in
progress that assess consistent contrast in hierarchically
organized categories.

Theoretically, our finding poses a challenge to most
computational models of concept learning. Most models do
not capitalize on noticing and using simple regularities
where they exist, and do not predict dramatically easier
learning when extensive detail about multiple attributes need
not be preserved. To accommodate instance and attribute
driven learning may require models that adjust their
strategies (Kruschke & Erickson, 1994) or representation in
response 1o the task.

If there is an 'easy' classification rule, people will discover
and use it. But what makes a rule easy or hard? One source
of ease or difficulty stems from how simple components can
be organized into a system of categories useful for deductive
and inductive reasoning, as well as capturing accurate,
relevant information about the world.
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