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Benchmarking computational doublet-detection methods for 
single-cell RNA sequencing data 

 
Nan Miles Xi 1 and Jingyi Jessica Li 1,2,3,4 

 
 
Abstract 
 
In single-cell RNA sequencing (scRNA-seq), doublets form when two cells are encapsulated into one 
reaction volume by chance. The existence of doublets, which appear to be—but are not—real cells, 
is a key confounder in scRNA-seq data analysis. Computational methods have been developed to 
detect doublets in scRNA-seq data; however, the scRNA-seq field lacks a comprehensive 
benchmarking of these methods, making it difficult for researchers to choose an appropriate method 
for their specific analysis needs. Here, we conducted the first, systematic benchmark study of nine 
cutting-edge computational doublet-detection methods. In total, our study included 16 real datasets, 
which contain experimentally annotated doublets, and 112 realistic synthetic datasets. We compared 
doublet-detection methods in terms of their detection accuracy under various experimental settings, 
impacts on downstream analyses, and computational efficiency. Our results show that existing 
methods exhibited diverse performance and distinct advantages in different aspects. Overall, the 
DoubletFinder method has the best detection accuracy, and the cxds method has the highest 
computational efficiency.  
 
 
Keywords: scRNA-seq; doublet detection; cell clustering; trajectory inference; differential gene 
expression; parallel computing; software implementation; reproducibility 
 
 
Introduction 
 
Single-cell RNA sequencing (scRNA-seq) is a family of emerging sequencing technologies that have 
revolutionized biomedical sciences by revealing genome-wide gene expression levels within each of 
thousands to millions of individual cells 1–3. Since its invention, scRNA-seq has become an essential 
experimental approach to investigate cell-to-cell heterogeneity, distinguish cell types and subtypes, 
identify cell-type-specific genes, and reveal cellular dynamic processes 4,5. Among various scRNA-
seq experimental protocols, two major types—droplet microfluidics and well-based protocols—have 
gained popularity because of their high throughput, low cost per cell, and ability to detect unique 
mRNA transcripts via unique molecular identifiers (UMIs) 6,7. Both types of protocols distribute a cell 
suspension into reaction volumes (droplets or wells) to hopefully encapsulate one cell per volume (i.e., 
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a singlet), and then mRNA molecules in each volume are labeled by a unique droplet barcode. For 
simplicity, we will refer to a reaction volume as a droplet in the following text. During the distribution 
step, however, one droplet may encapsulate more than one cell, creating a so-called doublet that is 
disguised as a single cell 5. The doublet rate (i.e., the proportion of doublets) in a scRNA-seq 
experiment depends on the throughput and protocol, and doublets may constitute as many as 40% of 
droplets 8. There are two major classes of doublets: homotypic doublets, which are formed by 
transcriptionally similar cells, and heterotypic doublets, which are formed by cells of distinct types, 
lineages, or states 9,10. Compared with homotypic doublets, heterotypic doublets are generally easier 
to detect due to their distinct gene expression profiles unlike those of singlets 10.  
 
The existence of doublets, especially heterotypic doublets, in scRNA-seq datasets may confound 
downstream analysis; for example, doublets can form spurious cell clusters, interfere with differentially 
expressed (DE) gene analysis, and obscure the inference of cell developmental trajectories 5,9. 
Several experimental techniques have been developed to detect doublets in scRNA-seq using droplet 
barcodes. Example techniques include cell hashing (doublets are the droplets whose barcodes are 
associated with more than one oligo-tagged antibody) 11, species mixture (doublets are the droplets 
whose barcodes are associated with more than one species) 9, demuxlet (doublets are the droplets 
whose barcodes are associated with mutually exclusive sets of SNPs) 12, and MULTI-seq (doublets 
are the droplets whose barcodes are associated with more than one lipid-tagged index) 13. However, 
these techniques require special experimental preparation, extra costs, and time, and they are not 
guaranteed to remove all doublets, e.g., demuxlet cannot detect the doublets formed by cells from the 
same individual. Moreover, they cannot remove doublets from existing scRNA-seq data. 
 
Realizing the limitations of experimental strategies, researchers have attempted to tackle this doublet 
challenge from an alternative perspective: developing computational methods to detect doublets from 
already-generated scRNA-seq data 5. So far, nine doublet-detection methods have been developed 
(with software packages and full-text manuscripts) based on distinct algorithmic designs 8–10,14–17 
(Table 1). Here is a brief summary of these methods except hybrid, which is a combination of two 
methods: bcds and cxds. Seven out of the eight methods (with cxds as the only exception) first 
generate artificial doublets by combining gene expression profiles of two randomly selected droplets. 
Except DoubletDecon, the other six methods subsequently define a doublet score for each original 
droplet as the level of similarity the droplet has to those artificial doublets; next, with a pre-defined or 
user-specified threshold, they detect doublets as the original droplets whose doublet scores exceed 
the threshold. The key difference of the seven artificial-doublet-based methods is how they distinguish 
original droplets from artificial doublets: five of them use classification algorithms (Scrublet, 
doubletCells, and DoubletFinder use k-nearest neighbors (kNN); bcds uses gradient boosting; Solo 
uses neural networks), DoubletDetection uses the hypergeometric test, and DoubletDecon decides 
whether an original droplet resembles an artificial doublets based on its deconvolution algorithm 
(unlike the other methods, DoubletDecon identifies doublets without providing doublet scores). As the 
only method that does not generate artificial doublets, cxds defines doublet scores based on gene co-
expression, and similar to the other six doublet-score-based methods, it subsequently thresholds 
doublet scores to identify doublets. While each method was shown to perform well under certain 
metrics by its developers, currently there is no systematic, third-party benchmarking of these methods’ 
doublet detection accuracy, effects on downstream analysis, or computation efficiency. As a result, 
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users lack guidelines to choose an appropriate doublet-detection method for their analysis task. Hence, 
a detailed assessment of existing doublet-detection methods is in great demand. In addition to 
assisting users, it will provide useful guidance for computationalists to improve existing methods or 
develop new methods. 
 
Here, we conducted the first comprehensive benchmark study of computational methods for doublet 
detection. We evaluated nine cutting-edge methods—doubletCells 17, Scrublet 9, cxds 14, bcds 14, 
hybrid 14, Solo 8, DoubletDetection 16, DoubletFinder 10, and DoubletDecon 15—in three aspects. First, 
we compared their overall doublet detection accuracy using two criteria: the area under the precision-
recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC), on a 
collection of 16 real scRNA-seq datasets containing experimentally annotated doublets. To further 
evaluate the performance of these methods under various experimental settings, we simulated 80 
realistic scRNA-seq datasets and evaluated the AUPRC and AUROC of each method under a wide 
range of doublet rates, sequencing depths, numbers of cell types, and cell-type heterogeneity levels. 
Second, considering that the ultimate goal of doublet detection is to improve the accuracy of 
downstream scRNA-seq data analyses, we compared these nine doublet-detection methods in terms 
of their impacts on four downstream analyses: DE gene analysis, highly variable gene identification, 
cell clustering, and cell trajectory inference. We simulated seven doublet-containing scRNA-seq 
datasets with pre-defined cell types, DE genes, and cell trajectories. Then we evaluated the accuracy 
of the four downstream analyses by their state-of-the-art computational methods before and after 
doublets were removed by each doublet-detection method. The rationale is that a good doublet-
detection method should improve the accuracy of downstream analyses after its use. Third, we 
compared the computational efficiency of doublet-detection methods in aspects including distributed 
computing, speed, scalability, stability, and usability. 
 
In summary, the nine doublet-detection methods exhibited a large variation in their performance under 
each evaluation criterion. First, the benchmarking result of detection accuracy shows that there is still 
room for improvement: the best method DoubletFinder achieved a mean AUPRC value of 0.537 on 
16 real datasets (Table S1). On simulated datasets, most methods performed better on datasets with 
higher doublet rates, larger sequencing depths, more cell types, or greater heterogeneity between cell 
types. Second, we observed that doublet removal by most methods indeed improved the identification 
of DE genes and highly variable genes, the elimination of spurious cell clusters, and the inference of 
cell trajectories, yet the degree of improvement varied from method to method. Third, most methods 
except cxds had deteriorated performance under distributed computing because global data 
information was lost in each distributed data batch. The cxds method also performed the best in terms 
of speed and scalability. Overall, DoubletFinder is highlighted as the best computational doublet-
detection method for its highest detection accuracy and largest improvement on downstream analyses, 
while cxds is found as the most computationally efficient method in our benchmark. 
 
 
Results 
 
Doublet detection accuracy on real scRNA-seq datasets. To evaluate the overall doublet detection 
accuracy of the nine methods, we collected 16 public scRNA-seq datasets with doublets annotated 



This is the Accepted Manuscript. Please cite Xi & Li, 2021, Cell Systems 12, 1–19. 
by experimental techniques 9,11–13 (Methods). Our collection covers a variety of cell types, droplet and 
gene numbers, doublet rates, and sequencing depths, thus representing varying levels of difficulty in 
detecting doublets from scRNA-seq data (Table 2). To the best of our knowledge, our collection is by 
far the most comprehensive set of scRNA-seq data that contains experimentally validated doublets, 
and it can serve as a benchmark standard for future method development.  
 
To benchmark the nine methods, we included two baseline methods, which simply use the library size 
(lsize) and the number of expressed genes (ngene) of each droplet as their respective doublet 
detection criterion 5,9. Except for DoubletDecon, all the methods output a doublet score for each 
droplet (Table 1; the two baseline methods have lsize and ngene as their doublet scores; a droplet 
with a larger score is more likely a doublet), and we define their detection accuracy as their AUPRC 
and AUROC values (Methods). We found that all the methods successfully output their identified 
doublets from all the 16 datasets except DoubletDetection, which could not run on the pdx-MULTI 
dataset. Across the 16 datasets, each method exhibited a large variance in its detection accuracy, 
and no method consistently achieved the top performance (Figure 1a–b; Supplementary Tables S1-
S2). Compared with the two baseline methods, doubletCells is the only method that did not outperform 
them on a majority of datasets, while Solo and hybrid are the only two methods that consistently 
outperformed them on all datasets (Supplementary Table S3). Overall, DoubletFinder and Solo 
achieved the highest mean AUPRC and AUROC values across datasets, respectively (Supplementary 
Tables S1–S2). DoubletFinder was also the top-performing method on the most datasets in terms of 
both AUPRC and AUROC (Supplementary Table S3). We note that all the methods had AUPRC 
values much lower than their AUROC values on every dataset, an expected phenomenon given the 
imbalance between the number of singlets and doublets. Since AUROC is an overly optimistic 
measure of accuracy under such imbalanced scenarios 18, we will focus on AUPRC in the following 
discussion. 
 
The highest AUPRC value on each dataset ranges from 0.239 to 1.000, with a mean of 0.570 across 
the 16 datasets (Supplementary Table S1). This large discrepancy between datasets is further 
exemplified by the fact that several methods achieved almost perfect AUPRC values on two datasets: 
hm-12k and hm-6k, while all the methods performed poorly on another two datasets: pbmc-1B-dm 
and J293t-dm (with AUPRC values under 0.335). A likely reason for this discrepancy is how doublets 
are annotated in these real datasets. In hm-12k and hm-6k, doublets are annotated as the droplets 
that contain cells of two species, so all annotated doublets are heterotypic and easy to identify 8–10,14. 
In contrast, doublets annotated in the other datasets may include homotypic doublets that are difficult 
to identify, posing a challenge to doublet-detection methods; or they may miss certain heterotypic 
doublets (e.g., if doublets are defined as the droplets that contain cells from two individuals, then 
heterotypic doublets formed by cells of different types within an individual would be missed), creating 
a downward bias in the calculation of detection accuracy (see further discussion in the Supplementary). 
In addition, varied data quality and cell heterogeneity pose different levels of difficulty to doublet 
detection. The highest mean AUPRC value, which was achieved by DoubletFinder, is only 0.537. 
These results demonstrate the general difficulty in detecting doublets from scRNA-seq data and 
suggest possible room for improvement by future method development.  
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Motivated by the fact that doublets are identified based on a single threshold in practice, we further 
examined the detection accuracy of doublet-detection methods under a specific identification rate, i.e., 
the percentage of droplets identified as doublets. For each method, the top 10%, 20%, and 40% 
droplets with the highest doublet scores were identified as doublets, and the corresponding precision, 
recall, and true negative rates (TNRs) were calculated (Figure 1c; Supplementary Table S4). As 
expected, higher identification rates led to higher recall and lower TNR values. Interestingly, the 
precision decreased as the identification rate increased, a phenomenon suggesting that all doublet-
detection methods tend to assign higher doublet scores to annotated doublets and are thus desirable 
(Figure 1c). The comparison of doublet-detection methods gave a result consistent with that based on 
the overall detection accuracy measures AUPRC and AUROC. DoubletFinder and Solo were still the 
top two methods in terms of the mean precision, recall, and TNR, where the mean was calculated 
across the 16 datasets (Supplementary Table S4).   
 
Since DoubletDecon cannot output doublet scores, we could not calculate its AUPRC or AUROC on 
a dataset and thus excluded it from the previous comparison. To fairly compare DoubletDecon with 
other methods, we ran DoubletDecon on every dataset and recorded its number of identified doublets 
if successful; then we thresholded the doublet scores of other methods so that they identified the same 
number of doublets as DoubletDecon did. Based on the resulting doublets identified by each method 
from every dataset, we calculated the precision, recall, and TNR (Methods). By these three criteria, 
DoubletDecon and doubletCells did not outperform the baseline methods lsize and ngene. Among the 
other seven methods, Solo and DoubletFinder achieved the highest precision and TNRs, while Solo 
and hybrid obtained the highest recall rates (Supplementary Figure S1a and Tables S5–S7). Moreover, 
we observed that DoubletDecon failed to run on four datasets (hm-12k, pbmc-2ctrl-dm, J293t-dm, and 
nuc-MULTI) and tended to overestimate the number of doublets (Supplementary Table S8). Our 
results suggest that DoubletDecon needs improvement in its accuracy and robustness. Adding the 
functionality that outputs doublet scores will also enhance the usability of DoubletDecon, because 
users can then have the flexibility to decide the number of doublets to be detected and removed based 
on their preference and knowledge 19. 
 
Doublet detection accuracy on synthetic scRNA-seq data under various experimental settings 
and biological conditions. To thoroughly evaluate the performance of doublet-detection methods 
under a wide range of experimental settings and biological conditions, we utilized scDesign 20, a 
statistical simulator that generates realistic scRNA-seq datasets well mimicking real data generated 
by a variety of scRNA-seq experimental protocols. It is advantageous to use synthetic data to 
benchmark doublet-detection methods, because we would have the access to ground-truth doublets 
and the flexibility to vary experimental settings and biological conditions in a comprehensive way. 
Specifically, we generated 80 scRNA-seq datasets with varying doublet rates (i.e., percentages of 
doublets), sequencing depths, cell types, and between-cell-type heterogeneity levels (Methods). 
Except for DoubletDecon, we applied every doublet-detection method to all these synthetic datasets 
and calculated its AUPRC values to measure its accuracy. Figure 2a shows how the performance of 
every method changed as we varied the doublet rate, the sequencing depth, the number of cell types, 
or the between-cell-type heterogeneity level. First, all the eight methods had improved accuracy as 
the doublet rate increased. This result is not surprising, as these methods all formulated the doublet 
detection problem, explicitly or implicitly, as a binary classification problem where the two classes are 
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singlets and doublets. The more balanced the two classes are in size, the easier the binary 
classification is, in general. Given the fact that, under both droplet microfluidics and well-based 
scRNA-seq protocols, doublets are more likely to form as the number of cells increases 5,9,21, our result 
suggests that doublet-detection methods would work more effectively on scRNA-seq datasets with 
more cells (or droplets). This finding agrees with our previous result that all the methods performed 
the worst on the J293t-dm dataset, which contains only 500 droplets, the fewest among all the 16 
datasets. Second, we found that the performance of these methods consistently benefited from a 
larger sequencing depth. This is in line with the expectation that deeper sequencing creates a higher 
data resolution, making doublet-detection methods more capable of differentiating doublets from 
singlets. Third, we evaluated the impact of the number of cell types on the accuracy of doublet-
detection methods. It is expected that a cell mixture with more cell types would result in more 
heterotypic doublets, which are formed by cells of different types. Thanks to their distinct gene 
expression profiles that do not resemble those of any cell types, heterotypic doublets are, in general, 
easier to detect than homotypic doublets, which are formed by cells of the same type 9. As expected, 
most methods exhibited improved accuracy as the number of cell types increased, with cxds, bcds, 
and hybrid (a combination of cxds and bcds) as the only three exceptions. Fourth, we investigated 
how the between-cell-type heterogeneity level—the extent to which gene expression profiles differ 
between cell types—would affect the accuracy of doublet detection. In theory, the greater the 
heterogeneity, the more distinct heterotypic doublets are from singlets. Again, all the methods fit this 
theory except cxds, bcds, and hybrid. Hence, we saw consistent results about the effects of the 
number of cell types and the between-cell-type heterogeneity level on doublet detection. 
 
We also compared the AUROC values of the eight doublet-detection methods on the same synthetic 
scRNA-seq datasets as above (Supplementary Figure S1b). Consistent with our AUPRC results, most 
methods performed better on the datasets with a higher doublet rate, a larger sequencing depth, more 
cell types, or a greater level of between-cell-type heterogeneity, though the improvement in AUROC 
was less significant than in AUPRC. This is expected as AUPRC is a better accuracy measure than 
AUROC for imbalanced binary classification 22. Combining our AUPRC and AUROC results, we found 
DoubletFinder as the top-performing method across all the experimental settings and biological 
conditions we studied. DoubletDetection and Scrublet also demonstrated strong performance 
compared with the rest of methods. We excluded DoubletDecon from this comparison and the 
following DE gene identification, highly variable gene identification, cell clustering, and cell trajectory 
inference analyses because it failed to run on most of our synthetic datasets, likely due to its software 
implementation issue 23. 
 
Effects of doublet detection on DE gene analysis. The existence of doublets in scRNA-seq 
datasets is expected to confound the downstream DE gene analysis by violating the necessary 
“identical distribution” assumption (i.e., cells of the same type follow the same distribution of gene 
expression levels) in statistical tests 5. As a result, if a doublet-detection method is effective, its doublet 
removal should improve the accuracy of DE gene analysis. To evaluate the eight doublet-detection 
methods from this perspective, we used scDesign to generate a synthetic scRNA-seq dataset with 
two cell types and 1126 between-cell-type DE genes (6% of a total of 18760 genes; Methods). We 
referred to this dataset as the “clean data.” We then mixed each cell type with randomly forming 
doublets by targeting a 40% doublet rate, and the resulting dataset was referred to as the 
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“contaminated data.” Next, we applied each doublet-detection method to the dataset and removed 40% 
droplets (with the highest doublet scores assigned by each method) from the contaminated data. 
Finally, we conducted DE gene analysis using three methods—DESeq2 24, MAST 25, and Wilcoxon 
rank-sum test 26—on the clean data, the contaminated data, and the dataset after each doublet-
detection method was applied. The DE gene analysis result was summarized in three accuracy 
measures: precision, recall, and TNR, all of which were calculated under the Bonferroni-corrected p-
value threshold of 0.05, the default threshold used by DESeq2 and MAST 27. We benchmarked the 
accuracy resulted from each doublet-detection method against the negative control (the accuracy 
based on the contaminated data) and the positive control (the accuracy based on the clean data). 
Figure 2b shows that all the three DE methods achieved extremely high precision (> 98%) and TNRs 
(> 97%) even on the contaminated data, an expected result because these DE methods all utilize 
statistical tests and are inherently conservative in their identification of DE genes. Such 
conservativeness makes these DE methods only identify the genes that are highly likely DE, leading 
to high precision (the percentage of true DE genes among the identified genes) and TNR (the 
percentage of non-identified genes among the true non-DE genes). Although the TNR result seems 
counterintuitive as the TNR values after doublet detection and removal even exceeded the TNR values 
of the clean data by around 0.005, this difference was merely due to the statistical uncertainty of these 
TNR values and thus not conclusive. On the other hand, recall (the percentage of identified genes 
among the true DE genes) is an informative measure that reflects the negative influence of doublets: 
for all the three DE methods, their recall dropped from ~70% on the clean data to ~63% on the 
contaminated data. Pleasantly, all the eight doublet-detection methods were effective in improving the 
recall (Figure 2c). In particular, DoubletFinder, doubletCells, bcds, and hybrid consistently had top 
performance regardless of the choice of DE methods. This result confirms that removing doublets is 
indeed beneficial for DE gene analysis. 
 
Effects of doublet detection on highly variable gene identification. The identification of highly 
variable genes (HVGs) is an essential step that precedes cell dimension reduction, cell clustering, and 
cell trajectory inference in scRNA-seq data analysis 28.  The goal of this step is to identify HVGs, i.e., 
the informative genes that exhibit strong cell-to-cell variations and thus can distinguish cells, so that 
the dimensions of each cell can be reduced from tens of thousands of genes to thousands, or even 
hundreds of genes, to facilitate those downstream analyses. Considering the importance of HVG 
identification, we evaluated the extent to which the identification would be negatively affected by 
doublets 29 and how much the eight doublet-detection methods could alleviate such negative impacts. 
For this purpose, we simulated a clean scRNA-seq dataset without doublets by scDesign, and then 
we added randomly formed doublets to generate three contaminated datasets with 10%, 20%, and 
40% doublet rates. For each contaminated dataset, we applied the eight doublet-detection methods 
to remove a percentage of droplets that received the highest doublet scores, and the percentage was 
set as the dataset’s doublet rate. As a result, each contaminated dataset corresponds to eight post-
doublet-detection datasets. Then we used Seurat 30,31 to identify HVGs from the clean dataset, the 
three contaminated datasets, and the 24 post-doublet-detection datasets. We refer to the identification 
results as a set of clean HVGs, three sets of contaminated HVGs, and 24 sets of post-doublet-
detection HVGs. An effective doublet-detection method is expected to result in post-doublet-detection 
HVGs that agree better with the clean HVGs than the corresponding contaminated HVGs do. To 
measure the agreement between two sets of HVGs, we used the Jaccard index, which is the ratio of 



This is the Accepted Manuscript. Please cite Xi & Li, 2021, Cell Systems 12, 1–19. 
the size of the intersection to the size of the union of the two sets. The larger the Jaccard index, the 
better agreement the two sets have. In our evaluation, for each doublet rate, the Jaccard index 
between the contaminated HVGs and the clean HVGs served as the negative control. Figure 2d shows 
that the negative control Jaccard index decreased from 0.772 to 0.447 as the doublet rate increased 
from 10% to 40%, matching our expectation. Among the eight doublet-detection methods, 
DoubletFinder and Scrublet were the only two methods whose post-doublet-detection HVGs 
consistently led to better Jaccard indices than the negative controls under all three doublet rates. 
Notably, the benefit of doublet detection on HVG identification was most obvious at the 40% doublet 
rate, under which all the doublet-detection methods outperformed the negative control. 
 
Effects of doublet detection on cell clustering. Another major motivation to remove doublets from 
scRNA-seq data is to avoid the misinterpretation of spurious cell clusters (i.e., droplet clusters) formed 
by heterotypic doublets as novel cell types 5,9. To evaluate the capacity of doublet-detection methods 
for removing spurious cell clusters, we used scDesign to simulate realistic scRNA-seq datasets 
composed of four, six, or eight cell types and mixed with 20% randomly forming doublets (i.e., the true 
doublet rate is 20%). We performed cell clustering on each of these datasets after applying every 
doublet-detection method and removing a certain percent of droplets that received the highest doublet 
scores from that method (Methods). Considering that the true doublet rate is unknown and difficult to 
estimate in practice, we varied this removal percentage from 0% to 25%, with a step size of 1%. For 
the subsequent cell clustering, we followed the most popular Seurat method to apply the Louvain 
clustering algorithm 32, which automatically determines the number of cell clusters in a data-driven 
way. Then for each dataset, every doublet-detection method, and each removal percentage, we 
compared the number of cell clusters with the number of cell types.  Figure 2e shows that, under the 
ideal scenario that the removal percentage was set to the true doublet rate 20%, four methods 
(Scrublet, Solo, DoubletDetection, and DoubletFinder) consistently removed spurious cell clusters and 
led to the correct numbers of cell types. Among the eight methods, DoubletDetection and 
DoubletFinder exhibited the most robust performance, as they successfully led to the correct numbers 
of cell types under the widest range of removal percentages. Scrublet and Solo also exhibited good 
performance in removing spurious cell clusters. In contrast, doubletCells, cxds, bcds, and hybrid all 
had unstable performance, and they did not always remove spurious cell clusters even under the ideal 
scenario (when the removal percentage was set to 20%). Overall, this result supports the use of 
DoubletDetection and DoubletFinder to remove doublets before the application of cell clustering to 
identify novel cell types.  
 
Unlike heterotypic doublets, homotypic doublets do not form spurious clusters because of their similar 
gene expression profiles to those of singlets of the same cell type 9. In other words, homotypic doublets 
tend to cluster together with singlets. Even though the existence of homotypic doublets does not much 
affect cell clustering, it may potentially bias the identification of cell-type-specific genes by DE gene 
analysis because homotypic doublets are not real cells. To evaluate the capacity of doublet-detection 
methods in eliminating homotypic doublets, we calculated the proportion of singlets in each identified 
cell cluster when the number of cell clusters matched the number of cell types in Figure 2e (Methods). 
Figure 2f shows that Scrublet led to cell clusters with the highest proportions of singlets. 
DoubletDetection and DoubletFinder also had excellent performance, and these three methods all 
clearly outperformed the rest of the methods.  Combining the results in Figure 2e–f, we conclude that 
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Scrublet, DoubletDetection, and DoubletFinder demonstrated the best capacity in removing 
heterotypic and homotypic doublets. 
 
To examine how robust the above results are to the choice of clustering algorithms, we repeated the 
above analyses using a second clustering algorithm: the density-based spatial clustering of 
applications with noise (DBSCAN) 33. Compared with the Louvain clustering algorithm, the DBSCAN 
algorithm led to the correct numbers of cell clusters under fewer and more sporadic removal 
percentages for all the doublet-detection methods (Supplementary Figure S2a). This result suggests 
that the DBSCAN algorithm works less effectively than the Louvain algorithm for clustering cells in 
scRNA-seq data 34,35. Nevertheless, with the DBSCAN algorithm, Scrublet, DoubletDetection, and 
DoubletFinder still achieved the top performance in removing spurious cell clusters and homotypic 
doublets (Supplementary Figure S2a–b). In summary, based on the results of two clustering 
algorithms, we would recommend DoubletDetection and DoubletFinder as the top two choices for 
removing spurious cell clusters in cell clustering analysis, and we identified Scrublet and 
DoubletFinder as the best-performing algorithms for removing homotypic doublets before the 
identification of cell-type-specific genes. 
 
Effects of doublet detection on cell trajectory inference. Another important scRNA-seq data 
analysis is to infer a cell trajectory, which corresponds to a cellular process such as cell differentiation, 
immune responses, and carcinogenesis, based on the similarity of cells in terms of gene expression 
profiles 36. An inferred cell trajectory is called pseudotime, an ordering of cells in a path or a tree 37. 
The accuracy of cell trajectory inference depends on both the inference methods and the scRNA-seq 
data quality. Similar to cell clustering, cell trajectory inference is also biased by the existence of 
doublets 38. In particular, heterotypic doublets may result in spurious branches in an inferred trajectory. 
We expect that doublet-detection methods, if effective, should increase the accuracy of cell trajectory 
inference. To evaluate the eight doublet-detection methods from this perspective, we used Splatter 39 
to generate two scRNA-seq datasets: one including a bifurcating trajectory and the other containing a 
conjunction of three sequential trajectories (Methods). We referred to them as the “clean data.” Then 
we mixed the two datasets with randomly forming doublets by targeting a 20% doublet rate, and the 
resulting datasets were referred to as the “contaminated data.” Similar to our DE gene analysis, we 
used each doublet-detection method to remove 20% droplets (with the highest doublet scores 
assigned by that method) from each contaminated dataset. As a result, we obtained two suites of 
datasets corresponding to a bifurcating trajectory and a conjunction of three sequential trajectories, 
with each suite containing the clean data, the contaminated data, and the data cleaned by each 
doublet-detection method. For cell trajectory inference, we applied Slingshot 40 to the first suite of 
datasets (Figure 3a) and minimum spanning tree (MST) 41 to the second suite of datasets (Figure 3b). 
We chose Slingshot and MST because they were the top-performing methods in previous benchmark 
studies 36,38. We considered the cell trajectories inferred from the clean data and the contaminated 
data as the positive and negative controls, respectively. Figure 3a–b shows that the doublets in the 
contaminated data indeed led to spurious branches that did not exist in the inferred trajectories from 
the clean data. Except for doubletCells, all the doublet-detection methods effectively removed 
doublets such that spurious branches no longer existed in the inferred cell trajectories. In particular, 
in the second task of inferring a conjunction of three sequential trajectories (Figure 3b), Scrublet, 
DoubletDetection, and DoubletFinder led to inferred trajectories that most resembled the trajectory 
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inferred from the clean data. Figure 3a–b also shows that DoubletDetection and DoubletFinder are 
the best two methods for removing the “outlier” doublets whose gene expression profiles do not 
resemble those of any singlets. 
 
Following cell trajectory inference, a typical next step is to explore gene expression dynamics along 
the inferred trajectory and to identify temporally DE genes 5,36. Hence, the accuracy of cell trajectory 
inference largely determines the accuracy of temporally DE gene identification. Beyond checking the 
inferred cell trajectories after doublet removal as in Figure 3a–b, we evaluated the effects of doublet 
removal on the identification of temporally DE genes. We used Splatter to simulate a scRNA-seq 
dataset with a single lineage and 250 temporally DE genes out of a total of 750 genes (Methods). We 
referred to this dataset as the “clean data.” We then mixed the data with randomly forming doublets 
by targeting a 20% doublet rate, and the resulting dataset was referred to as the “contaminated data.” 
Next, we used eight doublet-detection methods to remove 20% droplets (with the highest doublet 
scores assigned by each method) from the contaminated data. Finally, we employed a general 
additive model (GAM) 42 to regress each gene’s expression levels on the corresponding cell/droplet 
pseudotime inferred by Slingshot or TSCAN 43 on the clean data, the contaminated data, and the 
dataset after each doublet-detection method was applied. Note that we replaced MST by TSCAN 
because MST does not output pseudotime values for droplets and TSCAN is built upon the MST 
algorithm. The temporally DE gene analysis result was summarized in three accuracy measures: 
precision, recall, and TNR, all of which were calculated under the Bonferroni-corrected p-value 
threshold of 0.05. Again, we used the accuracy obtained from the clean data and the contaminated 
data as the positive and negative controls, respectively. Doublet removal made a more significant 
improvement on the identification of temporally DE genes when Slingshot was used for trajectory 
inference (Figure 3c–d). With Slingshot, all the eight doublet-detection methods except doubletCells 
successfully restored the precision, recall, and TNR from low values on the contaminated data to 
values as high as those on the clean data. With TSCAN, however, the restoration effects were only 
obvious in precision and TNR by Solo and cxds. In summary, doublet removal is beneficial for cell 
trajectory inference and the subsequent identification of temporally DE genes, and we observed strong 
beneficial effects when Slingshot was used for trajectory inference. 
 
Performance of doublet-detection methods under distributed computing. A grand challenge in 
single-cell data sciences is the skyrocketing demand for computational and storage resources due to 
the rapidly increasing data sizes 44. For example, a scRNA-seq dataset may contain up to millions of 
droplets, each of which has expression levels of tens of thousands of genes 45. Analyzing such huge 
datasets is often beyond the capacity of a single computer but requires distributed computing, which 
analyzes data subsets in parallel. Specific to the doublet-detection task, distributed computing means 
that droplets are divided into batches, one batch per computer node, due to massive data sizes or 
limited computational capacity; then a doublet-detection method would be applied separately to 
assigning doublet scores to droplets in each batch. After this parallelization step, doublet scores would 
be pooled from multiple batches, and a threshold would be set on the pooled doublet scores to detect 
doublets. Compared with the centralized computing that uses all the droplets together, distributed 
computing may have deteriorated doublet-detection accuracy due to the limited data information within 
each droplet batch. Hence, how a doublet-detection method performs under distributed computing is 
an important evaluation criterion for the scalability and flexibility of the method.  
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To investigate the performance of doublet-detection methods under distributed computing, we 
randomly divided two large real scRNA-seq datasets—pbmc-ch and pbmc-2ctrl-dm—into a varying 
number of batches with equal numbers of droplets, and we evaluated how the doublet-detection 
accuracy of each method changed with the number of batches. It is expected that the more batches, 
the worse the accuracy, and our results confirmed this. Figure 4a–b shows the AUPRC and AUROC 
values of each method under each number of batches, which varied from 1 to 10. The AUPRC and 
AUROC values were calculated based on the pooled doublet scores as described above. We excluded 
DoubletDecon from this comparison because it failed to run for most numbers of batches, again 
suggesting its software implementation issue 23. With only one batch, distributed computing is reduced 
to centralized computing, and the corresponding accuracy is supposedly the performance ceiling of 
every method. As expected, most doublet-detection methods had decreasing accuracy, which is more 
clear in AUPRC (Figure 4a) than AUROC (Figure 4b), as the number of batches increased. Among 
the eight methods, doubletCells is an underperforming outlier with the lowest overall accuracy. 
DoubletDetection and Solo are among the top-performing methods under centralized computing; 
however, they exhibited the largest accuracy decrease under distributed computing. In contrast, 
DoubletFinder is consistently a top performer, demonstrating its superior accuracy again and its 
robustness under distributed computing. 
 
Computational efficiency, scalability, stability, and software implementation of doublet-
detection methods. In addition to the above evaluation that focused on the effects of  doublet removal 
on various scRNA-seq data analyses, we also compared doublet-detection methods in four 
computational aspects: efficiency, scalability, stability, and software implementation. First, we 
summarized the running time of the nine doublet-detection methods (including their required data 
preprocessing steps; Methods) on the 16 real scRNA-seq datasets in Table 2. Figure 4c shows that 
cxds is the fastest method, while Solo, DoubletDecon, DoubletDetection, and DoubletFinder are 
significantly slower than the other methods. Figure 4d shows that there was no straightforward 
relationship between the mean AUPRC and the mean running time of eight doublet-detection methods 
(with the mean calculated across the 16 real datasets). Nevertheless, the three most computationally 
intensive methods—Solo, DoubletDetection, and DoubletFinder—had better accuracy than the other 
methods except hybrid did. Interestingly, the hybrid method, an ensemble of cxds and bcds, largely 
improved on both base methods without much running time increase.  Among all methods, 
DoubletFinder achieved the highest mean AUPRC while not being the most computationally intensive 
method. Normalizing the mean running time by the mean AUPRC value for every method, we found 
cxds as the most resource-efficient method (Supplementary Table S9).  
 
Second, we examined the scalability of doublet-detection methods by how fast their running time 
increases as the number of droplets grows. We used scDesign to generate 25 synthetic scRNA-seq 
datasets with the number of droplets ranging from 400 to 10,000 (Methods). Then we applied each 
doublet-detection method to these datasets and recorded its running time. (DoubletDecon was 
excluded because it failed to run on most synthetic data.) As shown in Figure 4e, all methods except 
Solo had running time scaled linearly with the number of droplets. The reason that Solo exhibited an 
erratic relationship between its running time and the number of droplets is probably due to its neural-
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network design. Among the other seven methods, cxds and DoubletDetection demonstrated the best 
and worst scalability, respectively.  
 
Third, we evaluated doublet-detection methods in terms of the statistical stability, i.e., how much their 
AUPRC and AUROC values vary across subsets of droplets and genes. The smaller the variation, the 
larger the statistical stability. We randomly downsampled two large real scRNA-seq datasets—pbmc-
ch and pbmc-2ctrl-dm—into 20 data subsets with 90% droplets and 90% genes. Then we applied 
each doublet-detection method to these data subsets and recorded the resulting AUPRC and AUROC 
values. (DoubletDecon was excluded because we were unable to calculate its AUPRC and AUROC 
values, as explained before.) Figures 4f and S2c show the distributions of AUPRC and AUROC values 
of each method when applied to the subsets generated from each original dataset. Interestingly, we 
observed a roughly inverse relationship between the overall doublet-detection accuracy and the 
statistical stability. For example, DoubletFinder has the best overall accuracy in terms of both AUPRC 
and AUROC, yet its variation across data subsets is much greater than that of Scrublet, which has a 
much lower overall accuracy. Despite its suboptimal stability, we still found DoubletFinder as a top 
performer if we compare the lower-quartile accuracy (i.e., the 25-th percentile of AUPRC and AUROC 
values) of these methods. To summarize, even though statistical stability is an important criterion, in 
practice, it is often overruled by the overall accuracy reflected by the mean, median, or lower-quartile 
accuracy value. In terms of the overall accuracy, we found DoubletFinder, Solo, and hybrid as the top 
three methods.  
 
Fourth, we evaluated the software implementation of doublet-detection methods, because user-
friendliness, software quality, and active maintenance are crucial to the success of bioinformatics tools 
46. We scored each method in four aspects: software quality, execution convenience, publication, and 
documentation & support (Methods). Table 3 lists our score reasoning and the overall usability score 
of each method. In particular, DoubletDetection and DoubletDecon did not successfully run on one or 
more datasets. Regarding user support, Solo, DoubletDetection, DoubletFinder, and DoubletDecon 
have active Q&As on their software webpages for collecting users’ feedback and answering users’ 
questions. Among the nine methods, DoubletFinder achieved the highest usability score thanks to its 
excellent implementation. 
 
 
Discussion 
 
With the rapid development of scRNA-seq technologies, a skyrocketing number of computational 
methods have been developed for various scRNA-seq data analyses 47. For example, since 2018, 
more than 45 imputation methods have already been developed to recover missing gene expression 
(commonly referred to as “dropouts”) in scRNA-seq data 44,48–51. Such richness of computational 
methods is a double-sided blade. On the one hand, scRNA-seq researchers have more blocks to build 
analysis pipelines that accommodate their scientific investigation needs; on the other hand, it becomes 
increasingly difficult for researchers to choose the method, from dozens of methods developed for the 
same purpose, that best fits each step of their pipeline. Unlike in experimental sciences where new 
technologies often replace old ones, there are usually no clear-cut or universal choices of 
computational methods. An appropriate choice of computational method is case by case, depending 
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on data characteristics and scientific questions at hand. Inappropriate method choices would, to 
varying extents, bias data analysis (such as by introducing artificial, non-biological signals) and 
ultimately lead to false discoveries 52,53. To avoid this issue, the scRNA-seq field and the broad 
biomedical science community yearn for comprehensive benchmark studies that independently and 
fairly evaluate computational methods 44. A well-designed benchmark study should offer users 
objective, accurate, and informative guidance on selecting the appropriate method(s) for a specific 
analysis task. 
 
To provide the first, comprehensive benchmark of computational doublet-detection methods, in this 
study, we evaluated nine existing methods using 16 real and 112 synthetic scRNA-seq datasets from 
three perspectives: overall detection accuracy, impacts on downstream analyses, and computational 
efficiency. We further categorized our benchmark results in nine aspects, including four related to 
doublet-detection accuracy and five associated with software implementation (Figure 5, which does 
not include DoubletDecon because it failed to run in most evaluations). In summary, DoubletFinder is 
the best method in terms of accuracy, yet its computational efficiency and stability are not among the 
best. The cxds method is the opposite: it has the best computational efficiency, excellent stability, but 
medium accuracy. Our summary is consistent with the aforementioned principle of computational 
methods that no method is universally the best, so a fair comparison of computational methods should 
be multifaceted.  
 
Although our benchmark study has collected all the available scRNA-seq datasets to date that contain 
doublet annotations, we note that none of the annotations is utterly accurate due to experimental 
limitations. For example, the two species-mixture datasets, hm12k and hm6k, only labeled the 
heterotypic doublets formed by a human cell and a mouse cell; the six demuxlet datasets only labeled 
the doublets formed by cells of two individuals; many homotypic doublets were unlabeled in all these 
datasets. As a result, the incompleteness of doublet annotations would have inflated the false negative 
rates and reduced the precision of computational doublet-detection methods in our benchmark. To 
overcome this limitation, we designed extensive simulations to benchmark computational doublet-
detection methods in a fair and comprehensive manner. Yet, how to generate accurate doublet 
annotations by experimental techniques remains an open question to experimental scientists.  
 
Regarding the future development and benchmark of computational doublet-detection methods, here 
we list five open questions we deem important for computational scientists. 

1. How to estimate the unknown doublet rate in a scRNA-seq dataset? Some methods provide 
heuristic guidance to estimate the doublet rates or select the threshold on doublet scores. For 
example, DoubletFinder suggests using the rates of heterotypic doublets and Poisson doublet 
formation as the respective lower and upper bounds of the expected doublet rate 10,19; Scrublet 
recommends setting the doublet-score threshold in the middle of the two modes, which it 
expects to appear, in the doublet-score distribution 9; Solo sets the doublet-score threshold to 
0.5 by default 8. However, there lacks consensus or direct estimation of the doublet rate from 
scRNA-seq data. To address this issue, we suggest estimating the null distribution of doublet 
scores (of singlets) as a preceding step; with a reliable null distribution estimate, estimating 
the doublet rate would then become feasible 54. 



This is the Accepted Manuscript. Please cite Xi & Li, 2021, Cell Systems 12, 1–19. 
2. How to distinguish homotypic doublets from singlets? Existing computational doublet-detection 

methods cannot well identify the homotypic doublets that have similar transcriptome profiles 
to those of singlets, likely due to the ways they generate artificial doublets 8–10,14–17. A possible 
direction is to extract and incorporate features that can distinguish homotypic doublets from 
singlets, such as the droplet library size.       

3. How to distinguish doublets from droplets contaminated by ambient mRNA? Ambient mRNA 
molecules are released from lysed cells into the cell suspension; they may enter droplets and 
contaminate the measured transcriptome profiles of those droplets. Similar to doublets, 
contaminated droplets by ambient mRNA also confound scRNA-seq data analysis 5. Existing 
computational doublet-detection methods do not distinguish these two types of non-singlet 
droplets; instead, computational methods have been developed separately to detect 
contaminated droplets 55,56. Ideally, the single-cell field desires a computational method that 
can simultaneously remove all non-singlet droplets, including doublets, contaminated droplets, 
and  empty droplets, from scRNA-seq data. 

4. How to improve doublet-detection algorithms regarding the use of artificial doublets? The 
majority of existing computational methods tackle the doublet detection task as a binary 
classification problem (Table 1). To train a classification algorithm, they use original droplets 
in data and artificial doublets they simulate to represent “singlets” and “doublets,” respectively. 
However, not all original droplets are singlets, because otherwise we would not need doublet 
detection. By neglecting differences between original droplets and singlets, existing methods 
do not supply their classification algorithms with quality training data, and a likely consequence 
is that their post-training classifiers would be biased 57 and thus miss a substantial number of 
doublets among original droplets. A possible remedy for this drawback is to filter out the likely 
doublets from the original droplets, e.g., by applying outlier detection methods 58, before 
simulating artificial doublets and subsequently training a classification algorithm. An alternative 
remedy is to keep the training data but train a classification algorithm under the “learning with 
noise labels” machine-learning framework 57,59.  Moreover, there are possible improvements 
to be made in the generation of artificial doublets. Instead of simply adding or averaging the 
gene expression profiles of two random droplets as done in existing methods, finer 
adjustments can be made to the mixing of two droplets so as to generate more realistic artificial 
doublets. 

5. How to ensemble doublet-detection methods? As a multi-faceted problem, doublet detection  
can hardly be solved by one single computational method. This is due to the diversity of 
scRNA-seq datasets. The success of the method hybrid, an ensemble of two methods bcds 
and cxds, motivated us to think that ensembling reasonable and complementary methods, a 
technique widely used in machine learning 60,61, may boost the accuracy of doublet detection. 
Supplementary Tables S11 and S12 show the pairwise similarities of doublet-detection 
methods in terms of their doublet scores and identified doublets in the 16 real datasets. Seeing 
that the top-performing methods exhibited noticeable differences, we expect that there is room 
for using the ensemble technique to develop a more accurate doublet-detection method (see 
further discussion in the Supplementary). 

 
By dissecting existing doublet-detection methods, we found method performance highly dependent 
on the values of hyperparameters (also known as tuning parameters), if any. For example, 
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DoubletFinder, Scrublet, and doubletCells all use the k-nearest neighbor (kNN) algorithm to 
distinguish doublets from singlets; however, surprisingly, DoubletFinder outperformed the other two 
methods in most of our comparisons. A probable reason is that DoubletFinder optimizes several key 
hyperparameters of the kNN algorithm in a reasonable and data-driven way. For example, 
DoubletFinder selects the number of nearest neighbors k by maximizing the bimodality of the doublet 
score distribution. This advantage makes DoubletFinder adaptable to scRNA-seq datasets with 
distinct characteristics 9,10,17. In contrast, Scrublet and doubletCells each assign a fixed default value 
to k, restricting their flexibility and generalizability 9,10,17 (see further discussion in the Supplementary). 
The choice of hyperparameter values is especially important for methods built upon complex 
algorithms. For example, bcds uses the gradient boosting algorithm 14, a leading classification 
algorithm that has more hyperparameters than the simple kNN algorithm does 62; however, the 
additional complexity did not make bcds outperform DoubletFinder, probably due to the lack of 
hyperparameter optimization. This phenomenon emphasizes the importance for bioinformatics tools 
to optimize hyperparameter values in a scientific, data-driven way 63,64. 
 
Ideally, doublet removal requires both experimental techniques and computational methods. If 
permitted, researchers may use an experimental technique and a computational method sequentially. 
That is, they first use an experimental technique such as multiplexing to filter out obvious doublets 
(e.g., the doublets formed by cells of different samples) and then apply a computational method to 
further screening for the remaining droplets that are likely doublets. Or they may combine the doublet 
scores assigned to each droplet by an experimental technique and a computational method, as 
proposed by the method Solo. This second approach requires the experimental technique to have a 
doublet scoring system 8. 
 
In summary, computational doublet detection is critical for the quality control of scRNA-seq data 
analysis 5. Our study is the first comprehensive benchmark of currently available doublet-detection 
methods under a wide variety of biological and technical settings. Our study provides much-needed 
guidance to researchers in choosing appropriate doublet-detection methods for scRNA-seq data 
analysis. Our results also point out directions for further methodological development and 
improvement in computational doublet detection, an active area of bioinformatics research 65. 
 
 
Methods 
 
Real data preprocessing. Whenever preprocessed datasets were available, they were directly used 
in this study. Otherwise, datasets were preprocessed in the same way as in the original studies in 
which they were generated. In every dataset, genes and droplets were removed if they had no reads 
in any droplets and any genes, respectively. Below is the preprocessing detail for every dataset. 
 
pbmc-ch 11: human peripheral blood mononuclear cells (PBMCs) from eight donors. Doublets were 
annotated by cell hashing with CD45 as the hashing antibody. This dataset is available at  
https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0  
in files pbmc_hto_mtx.rds and pbmc_umi_mtx.rds. Its preprocessing pipeline is available at  
https://satijalab.org/seurat/v3.1/hashing_vignette.html,  
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including an instruction about how to extract the doublet annotation.  
 
cline-ch 11: four human cell lines HEK, K562, KG1, and THP1. Doublets were annotated by cell 
hashing with CD29 and CD45 as the hashing antibodies. The access URL and preprocessing pipeline 
of this dataset are the same as those of the pbmc-ch dataset. The dataset is in files hto12_hto_mtx.rds 
and hto12_umi_mtx.rds. 
 
Mkidney-ch 8: dissociated mouse kidney cells. Doublets were annotated by cell hashing with 
cholesterol modified oligos (CMOs) as the hashing antibodies. The raw count matrix and doublet 
annotations were downloaded from the Gene Expression Omnibus (GEO) 66 with the accession 
GSE140262.  
 
hm-12k and hm-6k 21: two mixtures of human HEK293T and mouse NIH3T3 cells with 12,000 and 
6000 droplets respectively. The raw count matrices were downloaded from 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k and 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k.  
A droplet was annotated as a doublet if its barcode was associated with both human and mouse. 
Mouse genes were mapped into their human orthologs using R package biomaRt 67 (v 2.44.1). Then 
each pair of human and mouse count matrices was concatenated into each of the two datasets.  
 
pbmc-1A-dm, pbmc-1B-dm, and pbmc-1C-dm 12: three samples of PBMCs from systemic lupus 
erythematosus (SLE) patients. Droplets were sequenced immediately after thawing. Doublets were 
annotated by demuxlet 12. The raw count matrix and doublet annotations were downloaded from the 
GEO with the accession GSE96583. 
 
pbmc-2ctrl-dm and pbmc-2stiml-dm 12: two samples of PBMCs from SLE patients. Droplets were 
sequenced after being cultured for six hours following thawing, with (pbmc-2stiml-dm) or without 
(pbmc-2ctrl-dm) IFN-beta stimulation. Doublets were annotated by demuxlet. The raw count matrix 
and doublet annotations were downloaded from the GEO with the accession GSE96583. 
 
J293t-dm 12: a mixture of human Jurkat and HEK293T cell lines. Doublets were annotated by 
demuxlet. The raw count matrix was downloaded from  
https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845. 
Doublet annotations were obtained from  
https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609. 
 
pdx-MULTI 13: a mixture of human breast cancer cells and mouse immune cells from a patient-derived 
xenograft (PDX) mouse model. Doublets were annotated by MULTI-seq 13. The dataset was 
downloaded from the GEO with the accession GSE129578. Doublet were annotated by following the 
data processing pipeline available at  
https://github.com/chris-mcginnis-ucsf/MULTI-seq. 
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HMEC-orig-MULTI and HMEC-rep-MULTI 13: human primary mammary epithelial cells (HMECs) with 
HMEC-orig-MULTI as the original sample and HMEC-rep-MULTI as a technical replica. The GEO 
accession and preprocessing pipeline of this dataset are the same as those of the pdx-MULTI dataset. 
 
HEK-HMEC-MULTI 13: a mixture of human HEK293Ts and HMECs. The GEO accession and 
preprocessing pipeline of this dataset are the same as those of the pdx-MULTI dataset. 
 
nuc-MULTI 13: a mixture of purified nuclei from human HEK293Ts, Jurkats, and mouse embryonic 
fibroblasts (MEFs). The GEO accession and preprocessing pipeline of this dataset are the same as 
those of the pdx-MULTI dataset. Mouse genes were mapped into their human orthologs using R 
package biomaRt (v 2.44.1).   
 
Benchmark environment and parameter settings. All doublet-detection methods were executed on 
a server with two Intel(R) Xeon(R) E5-2687W v4 CPUs, 256GB memory, and Ubuntu 18.04 system. 
An Nvidia(R) Geforce(R) RTX 2080 Ti GPU was used to accelerate the execution of the Solo method 
as suggested 8. The parameters of doublet-detection methods were set to their recommended values 
or default values if no recommendation was available. The latest version of each method (by 
September 2020; Table 1) was used. Random seeds were fixed and saved in our code to ensure 
reproducibility. The detailed configuration for each method is summarized below. 
 
doubletCells: The method was executed by following the instruction at  
https://bioconductor.statistik.tu-
dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html.   
Doublet scores were obtained from the dblCells function in R package scran (v 1.16.0) with 
parameters set to default. 
 
Scrublet: R package reticulate (v 1.16) was used to execute the python module scrublet (v 0.2.1). 
The parameters were set by following the instruction at  
https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb. 
Doublet scores were obtained from the function Scrublet.scrub_doublets. 
 
cxds, bcds and hybrid: These three methods were executed by following the instructions at  
https://github.com/kostkalab/scds. 
Doublet scores were obtained from the functions cxds, bcds and cxds_bcds_hybrid in R package scds 
(v 1.2.0) with parameters set to default. 
 
DoubletDetection: R package reticulate (v 1.16) was used to execute the python module 
doubletdetection. The parameters were set by following the instruction at 
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PB
MC_8k_vignette.ipynb. 
The parameter n_iters was set to 5, as larger values were found to increase the running time 
significantly, but with little improvement in performance. Doublet scores were obtained from the 
function doubletdetection.BoostClassifier.fit. 
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DoubletFinder: The method was executed by following the instruction at   
https://github.com/chris-mcginnis-ucsf/DoubletFinder. 
Doublet scores were obtained from the function doubletFinder_v3 in R package DoubletFinder (2.0.3) 
with parameters set to default. 
 
DoubletDecon: The method was executed by following the instruction at  
https://github.com/EDePasquale/DoubletDecon.  
Doublet predictions were obtained from the function Main_Doublet_Decon in R package 
DoubletDecon (v 1.1.5) with parameters set to default. 
 
Solo: The method was executed by following the instruction at the GitHub repository 
https://github.com/calico/Solo. 
Every scRNA-seq count matrix was transformed into the loom format as required by the method. The 
parameters were set the same as those in the file Solo_params_example.json, which was downloaded 
from the GitHub repository. Doublet scores were obtained from the file softmax_scores.npy. 
 
Measures of doublet-detection accuracy. Methodologically, computational doublet-detection 
methods employ binary classification algorithms to distinguish between two classes: singlets and 
doublets. AUPRC and AUROC, two measures of the overall accuracy of a binary classification 
algorithm, were used to evaluate the overall doublet-detection accuracy of each method. These two 
measures were calculated using the functions pr.curve and roc.curve in R package PRROC (v 1.3.1). 
Both functions input two vectors: the predicted doublet scores of true singlets and those of true 
doublets, and they output AUPRC and AUROC, one value each. 
 
Simulation of scRNA-seq datasets containing doublets. All synthetic scRNA-seq datasets used 
in this study were generated in two steps. In Step 1, singlets in each dataset were generated by 
scDesign 20, which estimated a generative model of gene expression profiles from a real scRNA-seq 
dataset (cell type: HEK293t; protocol: 10x Genomics; gene number: 18760). The detailed 
experimental settings are described in the next subsection. In Step 2, given the number of singlets 
and a pre-specified doublet rate (i.e., the proportion of doublets among all droplets), the corresponding 
number of doublets were generated by random pairing of singlets. In detail, two randomly sampled 
singlets had their gene expression profiles (in UMI counts) averaged by gene, and that averaged 
profile is called a prototype doublet. For each of the 16 real scRNA-seq datasets, a doublet-to-singlet 
size ratio, defined as (average doublet library size)/(average singlet library size), was calculated. Then 
the library size of each prototype doublet was multiplied by a factor sampled from a normal distribution, 
whose mean and standard division were set to the mean and standard deviation of the 16 doublet-to-
singlet size ratios. This scaling step turned prototype doublets into doublets, so that the doublet-to-
singlet size ratios in the synthetic data were similar to those in the real data. Finally, the singlets used 
to generate doublets were removed. In mathematical terms, if X singlets were generated in Step 1 
and the doublet rate was Y (a value between 0 and 1), then after Step 2 the numbers of doublets and 
singlets would be XY/(1+Y) and X(1-Y)/(1+Y), respectively, both rounded to the nearest integers. For 
example, if 1000 singlets were generated in Step 1 and the doublet rate was 20%, the numbers of 
doublets and singlets in the final dataset would be 167 and 667, respectively, making a total number 
of 834 droplets. 
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Experimental settings used in benchmarking simulations. 80 scRNA-seq datasets were 
generated by scDesign to benchmark doublet-detection methods in four aspects: varying doublet rates, 
sequencing depths (i.e., per-cell library sizes), cell types, and between-cell-type heterogeneity levels.  

● 20 synthetic datasets were generated with doublet rates increasing from 2% to 40% by a step 
size of 2%. The per-cell library size was set to 2000 UMI counts. All datasets contained two 
cell types. Based on the data generation scheme described in the last subsection, 500 singlets 
were generated for each cell type in Step 1. In Step 2, doublets were introduced based on each 
doublet rate, and the singlets used to generate doublets were removed. 

● 20 synthetic datasets were generated with per-cell library sizes increasing from 500 to 10,000 
UMI counts by a step size of 500 counts. All datasets contained two cell types. Based on the 
data generation scheme described in the last subsection, 500 singlets were generated for each 
cell type in Step 1. In Step 2, doublets were introduced based on a 20% doublet rate, and the 
singlets used to generate doublets were removed. 

● 19 synthetic datasets were generated with numbers of cell types increasing from 2 to 20 by a 
step size of 1. The per-cell library size was set to 2000 UMI counts. Based on the data 
generation scheme described in the last subsection, 500 singlets were generated for each cell 
type in Step 1. In Step 2, doublets were introduced based on a 20% doublet rate, and the 
singlets used to generate doublets were removed. 

● 21 synthetic datasets were generated with varying heterogeneity levels between two cell types. 
The heterogeneity level was controlled by four parameters (pUp, pDown, fU, and fL) in 
scDesign. Specifically, pUp and pDown denote the proportions of up- and down-regulated 
genes, and fU and fL define the upper and lower bounds of fold changes in the expression 
levels of DE genes. The following parameter combinations were used to generate 21 
heterogeneity levels: 

Level 1:  pUp = 0.010, pDown = 0.010, fU = 1.0, and fL = 0.5; 
Level 2:  pUp = 0.012, pDown = 0.012, fU = 1.2, and fL = 0.6; 
… 
Level 21:  pUp = 0.050, pDown = 0.050, fU = 5.0, and fL = 2.5. 

At all heterogeneity levels, the per-cell library size was set to 2000 UMI counts. Based on the 
data generation scheme described in the last subsection, 500 singlets were generated for each 
cell type in Step 1. In Step 2, doublets were introduced based on a 20% doublet rate, and the 
singlets used to generate doublets were removed. 

 
DE gene analysis. One synthetic scRNA-seq dataset was generated by scDesign to have two cell 
types. The per-cell library size was 10,000 UMI counts. The pUp and pDown parameters in scDesign 
were both set to 0.03, suggesting that a total of 6% of genes were DE between the two cell types (3% 
up-expressed and 3% down-expressed). The fU and fL parameters in scDesign (i.e., the upper and 
lower bound of fold changes for DE genes) were set to 3 and 1.5, respectively. Based on the data 
generation scheme described in the Subsection “Simulation of scRNA-seq datasets containing 
doublets,” 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were introduced 
based on the 40% doublet rate, and the singlets used to generate doublets were removed. Three DE 
methods—DESeq2 24, MAST 25, and the Wilcoxon rank-sum test 26 implemented in the R package 
Seurat (v 3.1.5) 30,31—were applied to this dataset (“contaminated dataset” containing both singlets 
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and doublets), its clean version without doublets (“clean dataset” only containing singlets), and its 
post-doublet-detection version after each doublet-detection method was applied (the top 40% droplets 
that received the highest doublet scores were removed). After each DE method was applied to every 
dataset, genes whose Bonferroni-corrected p-values did not exceed 0.05 were identified as DE. Three 
accuracy measures—precision, recall, and TNR—were calculated for every set of identified DE genes. 
For each DE method, its accuracy on the contaminated dataset and the clean dataset were used as 
the negative and positive controls, respectively, for benchmarking its accuracy on the post-doublet-
detection datasets (Figure 2b–2c). 
 
Identification of highly variable genes. Three synthetic datasets were generated with 10%, 20%, 
and 40% doublet rates, respectively. The per-cell library size was set to 2000 UMI counts. All datasets 
contained two cell types. Based on the data generation scheme described in the Subsection 
“Simulation of scRNA-seq datasets containing doublets,” 500 singlets were generated for each cell 
type in Step 1. In Step 2, doublets were introduced based on each doublet rate, and the singlets used 
to generate doublets were removed. To identify the highly variable genes (HVGs), we applied the 
function FindVariableFeatures in R package Seurat (v 3.1.5) with default parameters to the three 
datasets (“contaminated datasets” containing both singlets and doublets; one dataset per doublet rate), 
their clean versions without doublets (“clean datasets” only containing singlets), and their post-
doublet-detection version after each doublet-detection method was applied (the top 10%, 20%, or 40% 
droplets that received the highest doublet scores were removed, and the removal percentage was set 
to the doublet rate). We refer to the identified HVGs as contaminated HVGs, clean HVGs, and post-
doublet-detection HVGs, respectively. The Jaccard index between two sets of HVGs was calculated 
by the function simi in R package proxy (v 0.4-24) (Figure 2d). 
 
Cell clustering analysis. Three synthetic scRNA-seq datasets were generated by scDesign to have 
four, six, and eight cell types. The per-cell library size was 2000 UMI counts. Based on the data 
generation scheme described in the Subsection “Simulation of scRNA-seq datasets containing 
doublets,” 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were introduced 
based on a 20% doublet rate, and the singlets used to generate doublets were removed. The 
heterogeneity between cell types was determined by the default pUp, pDown, fU, and fL parameters 
in scDesign. After each doublet-detection method was applied to each dataset, the top x% of droplets, 
which received the highest doublet scores (with the removal percentage x% ranging from 0% to 25% 
by a step size of 1%), were removed; then two clustering algorithms—Louvain clustering implemented 
in R package Seurat (v 3.1.5) and DBSCAN 33 implemented in R package dbscan (v 1.1-5)—were 
used to identify cell clusters. Finally, the numbers of cell clusters were compared with the numbers of 
cell types to evaluate the effectiveness of doublet removal (Figure 2e; Supplementary Figure S2a). 
Whenever the number of cell clusters matched the number of cell types, the proportion of singlets 
among the remaining droplets was used to measure each doublet-detection method’s capacity for 
removing homotypic doublets (Figure 2f; Supplementary Figure S2b). In the example of four cell types, 
if a doublet-detection method (given a clustering algorithm) correctly led to four cell clusters under six 
removal percentages, then a proportion of singlets was calculated for each of the 24 clusters (four 
clusters times six removal percentages), resulting in 24 proportions. 
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Cell trajectory inference. Two scRNA-seq datasets were generated by Splatter 39 to have cell 
trajectories. Both datasets contained 1000 genes. In Step 1 of the data generation scheme described 
in the Subsection “Simulation of scRNA-seq datasets containing doublets,” the first dataset had 500 
singlets following a bifurcating trajectory, whose two branches had 250 singlets each, and the second 
dataset had 1000 singlets from a conjunction of three sequential trajectories, two of which had 333 
singlets and the other had 334 singlets. In Step 2 for both datasets, doublets were introduced based 
on a 20% doublet rate, and the singlets used to generate doublets were removed. Parameters in 
Splatter were set to default except for de.prob and de.facLoc, which were set to 0.5 and 0.2, 
respectively. Each dataset was expanded into a suite, including its original version (“contaminated 
dataset”), clean version without doublets (“clean dataset”), and its post-doublet-detection version after 
each doublet-detection method was applied (the top 20% droplets that received the highest doublet 
scores were removed). For the first suite of datasets, cell trajectories were constructed by Slingshot 
40 based on the pipeline available at  
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd.  
For the second suite of datasets, the minimum spanning tree (MST) algorithm implemented in R 
package slingshot (v 1.6.1) was used to construct cell trajectories. The trajectories constructed from 
the contaminated dataset and the clean dataset were used as the negative and positive controls, 
respectively, for benchmarking the trajectories inferred from the post-doublet-detection datasets 
(Figure 3a–2b).  
 
In the temporally DE genes analysis, a scRNA-seq dataset with a single trajectory was generated by 
following the Slingshot pipeline available at  
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd.  
This dataset contained 750 genes, whose temporal expression dynamics were categorized into four 
types: 500 stable genes with unchanged mean expression levels, 100 activated genes with increasing 
mean expression levels, 100 deactivated genes with decreasing mean expression levels, and 50 
transient genes with mean expression levels first increasing and then decreasing, along the trajectory. 
The genes of the latter three types were defined as temporally DE genes. The mean expression levels 
of all 750 genes were specified by following the Slingshot pipeline. The per-cell library sizes were 
sampled from a negative binomial distribution with mean 1875 and dispersion 4. In the generation of 
a singlet, the 750 gene expression levels were sampled from a multinomial distribution with the 
number of trials as the (randomly sampled) per-cell library size and the probability of success as the 
750 genes’ normalized mean expression levels (summing up to 1). Following this, 300 singlets were 
generated in Step 1 of the data generation scheme described in the Subsection “Simulation of scRNA-
seq datasets containing doublets.” In Step 2, doublets were introduced based on a 20% doublet rate, 
and the singlets used to generate doublets were removed. After data generation, the pseudotime of 
each droplet was inferred by Slingshot and TSCAN on this dataset (“contaminated data”), its clean 
version without doublets (“clean data”), and  its post-doublet-detection version after each doublet-
detection method was applied (the top 20% droplets that received the highest doublet scores were 
removed). Then for each dataset, we regressed each gene’s expression levels in all droplets on the 
inferred pseudotime of the same droplets by the general additive model (GAM), which was 
implemented in the R function gam, and obtained a p-value. As a result, the genes with Bonferroni-
corrected p-values under 0.05 were identified as temporally DE genes. Three accuracy measures—
precision, recall, and TNR—were calculated for every set of identified temporally DE genes. The 
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accuracy on the contaminated data and the clean data were used as the negative and positive controls, 
respectively, for benchmarking the accuracy on the post-doublet-detection data obtained by each 
doublet-detection method (Figure 3c–2d).  
 

Distributed computing. We used two real scRNA-seq datasets pbmc-ch and pbmc-2ctrl-dm to 
compare the performance of doublet-detection methods under distributed computing. These two 
datasets are relatively large in our real data collection, containing 15,272 and 13,913 droplets (Table 
1). For each doublet-detection method, its accuracy (AUPRC and AUROC) on the original datasets 
were used as the baselines. Next, the original dataset was randomly split into two, four, six, eight, and 
ten equally-sized batches for distributed computing. For every number of batches, each doublet-
detection method was executed on each batch separately, the resulting doublet scores were 
concatenated across batches, and AUPRC and AUROC were calculated for the concatenated doublet 
scores and compared with the baselines (Figure 4a–b).  
 
Scalability, stability, and usability. 25 synthetic scRNA-seq datasets with varying numbers of 
droplets were generated by scDesign to examine the scalability of doublet-detection methods. 
Specifically, the number of genes was fixed to 5000, and the number of droplets increased from 400 
to 10,000, with a step size of 400. Each doublet-detection method was executed on the 25 datasets, 
and the relationship between its running time and the number of droplets was plotted in Figure 4e. 
 
Two real datasets, pbmc-ch and pbmc-2ctrl-dm, were used to evaluate the stability of doublet-
detection methods. From each dataset, 20 subsets were generated by randomly subsampling 90% of 
droplets and 90% of genes. Each doublet-detection method was executed on all these subsets, and 
its stability was shown by the distributions of the resulting AUPRC and AUROC across subsets (Figure 
4f). 
 
Four criteria were defined for doublet-detection methods’ usability: software quality, execution 
convenience, publication, and documentation & support. The software quality criterion indicates 
whether a doublet-detection method can be executed on all real and synthetic datasets used in this 
study. The execution convenience criterion is related to the popularity of the computational platform 
required to run a method. Methods written in R and Python packages are preferred because of the 
popularity of these two languages. The publication criterion is regarding whether a doublet-detection 
method has been published in a peer-reviewed journal. The documentation & support criterion 
evaluates a method’s user-support resources, such as open-source code, tutorials, and active Q&As.  
Each criterion has three levels: excellent, good, and fair, corresponding to a score of 2, 1, and 0, 
respectively. The final usability score of a method was defined as the sum of the method’s scores in 
these four criteria. 
Data and Code Availability 
 
The datasets and source code used in this study are available at GitHub repository 
https://github.com/xnnba1984/Doublet-Detection-Benchmark. 
The datasets can also be found at Zenodo repository 
https://zenodo.org/record/4062232#.X3YR9Hn0kuU%E3%80%82. 
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Figure 1. Evaluation of the eight doublet-detection methods (except DoubletDecon) using 16 
benchmark scRNA-seq datasets.  
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a-b, Performance (AUPRC and AUROC values) of each method applied to benchmark datasets, with 
(a) showing the distributions and (b) showing the values per dataset (white squares indicating failed 
runs); two baseline methods (lsize and ngene) are included in the comparison.  
c, Precision, recall, and true negative rate (TNR) of each method under the 10%, 20%, or 40% 
identification rate, which is the percentage of droplets that received the highest doublet scores and 
were identified as doublets. 
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Figure 2. Evaluation of the eight doublet-detection methods (except DoubletDecon) using four 
simulation studies, and the effects of doublet detection on DE analysis, highly variable genes 
(HVG) identification, and cell clustering.  
a, Performance (AUPRC values) of each method in four simulation settings: varying doublet rates 
(from 2% to 40% with a step size of 2%), varying sequencing depths (from 500 to 10,000 UMI counts 
per cell, with a step size of 500 counts), varying numbers of cell types (from 2 to 20 with a step size 
of 1), and 20 heterogeneity levels, which specify the extent to which genes are differentiated between 
two cell types (Methods). 
b, Precision, recall, and TNR by each of three differential expression (DE) methods: DESeq2, MAST, 
and the Wilcoxon rank-sum test (Wilcox), after each of the eight doublet-detection methods was 
applied to a simulated dataset; for negative and positive controls, we included the DE accuracies on 
the contaminated data with 40% doublets and the clean data without doublets.  
c, We re-illustrate the results in b) by showing the improved DE accuracy in each metric (precision, 
recall, and TNR) after removing detected doublets from the contaminated data; the results on the 
clean data without doublets are shown as a positive control. 
d, Left panel: the Jaccard index between the post-doublet-detection HVGs of each doublet-detection 
method and the clean HVGs under the 10%, 20%, or 40% doublet rate. The Jaccard index between 
the contaminated HVGs and the clean HVGs was used as negative control for each doublet rate. Right 
panel: illustration of the left panel; the improved Jaccard indices upon the negative controls (i.e., 
Jaccard index differences) after the detected doublets by each method were removed from the 
contaminated data. 
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e, Cell clustering result by the Louvain algorithm after each of the eight doublet-detection method was 
applied to remove a varying percentage of droplets as the identified doublets (y-axis, from 0% to 25% 
with step size of 1%); the true numbers of cell clusters are four, six, and eight under three simulation 
settings, each containing 20% true doublets; the yellow color indicates that the correct number of 
clusters was identified, while the red color indicates otherwise. The true percentage of doublets, 20%, 
is highlighted in blue. For each method, its average correctness (i.e., the percent of yellow colors 
across all the removal percentages) is also highlighted in blue.  
f, Under the same three simulation settings as in a), the distributions of the singlet proportions are 
shown after doublet removal by each method, if the remaining droplets led to the correct number of 
cell clusters in a); doubletCells is not shown for the four-cluster setting because it did not lead to the 
correct number of cell clusters in a).   
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Figure 3. Effects of doublet detection on cell trajectory inference.  
a, Trajectories constructed by Slingshot after each of the eight doublet-detection methods was applied 
to remove the identified doublets, whose percentage among all the droplets was set to 20%, the 
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percentage of true doublets in the simulated dataset. The true cell topology is bifurcating. For negative 
and positive controls, we included the trajectories constructed on the original dataset with 20% 
doublets and its cleaned version without doublets.  
b, Trajectories constructed by minimum spanning tree (MST) after each of the eight doublet-detection 
methods was applied to remove the identified doublets, whose percentage among all the droplets was 
set to 20%, the percentage of true doublets in the simulated dataset. The true cell topology is a 
conjunction of three trajectories. For negative and positive controls, we included the trajectories 
constructed on the original dataset with 20% doublets and its cleaned version without doublets.  
c, Precision, recall, and TNR of temporally differentially expressed genes identified by the general 
additive model (GAM) applied to trajectories constructed by Slingshot and TSCAN, after each of the 
eight doublet-detection method was applied to remove the identified doublets, whose percentage 
among all the droplets was set to 20%, the percentage of true doublets in the simulated dataset. The 
true cell topology is a single lineage. For negative and positive controls, we included the accuracy of 
temporally differentially expressed genes identified from the contaminated data with 20% doublets 
and the clean data without doublets.  
d, We re-illustrate the results in c) by showing the improved accuracy in each metric (precision, recall, 
and TNR) after removing detected doublets from the contaminated data; the results on the clean data 
without doublets are shown as a positive control. 
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Figure 4. Comparison of doublet-detection methods in terms of distributed computing, running 
time, scalability, and stability.  
a-b, Distributed computing performance of each method on two real datasets pbmc-ch and pmc-2ctrl-
dm. We first divided the original datasets into varying numbers of batches with equal sizes; then we 
applied each method to individual batches separately to identify and remove doublets; finally we 
pooled batches together to assess the detection accuracy (AUPRC and AUROC values) of each 
method. The legend on the right applies to both panels a and b. 
c, Distribution of running time in (natural log) seconds of each method across 16 real datasets.  
d, Mean AUPRC vs. mean running time (across 16 real datasets) of eight doublet-detection methods. 
e, Scalability of each method. We calculated the relationship between running time and droplet 
number for each method on simulated datasets with varying droplet numbers.  
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f, Stability of each method. We generated 20 datasets by randomly subsampling 90% droplets and 
90% genes from the real datasets pbmc-ch and pbmc-2ctrl-dm, and we applied each method to all 
the subsampled datasets. For each real dataset, the distribution of AUPRC values of each method 
across subsampling is shown, with 25% quantiles connected. We use the variance of the distribution 
to measure the stability of each method.  
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Figure 5. A graphical summary of benchmark results. The four aspects related to doublet detection 
accuracy are marked in blue, while the other five aspects related to software implementation are 
marked in black. 
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Table 1. An overview of nine computational doublet-detection methods evaluated in this study. 
 

Method Programming 
language Version Artificial 

doublets 
Dimension 
reduction 

Guidance on 
threshold 
selection  

Algorithm description 

Scrublet 9 Python 0.2.1 Yes 
Principal 

component 
analysis (PCA) 

Yes 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles. The doublet score of each droplet 
is defined as the proportion of artificial doublets among its k-nearest 
neighboring droplets in the principal component (PC) space, whose 
number of dimensions is specified by users. 

doubletCells 17 R 1.16.0 Yes PCA No 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles. For each droplet, it calculates the 
proportion of artificial doublets, 𝑝", in a neighborhood in the PC space, 
whose number of dimensions is specified by users. The radius of the 
neighborhood is set to be the median distance from the droplet to its 
50th nearest neighbor. The doublet score of each droplet is defined as 
𝑝"/(1 − 𝑝")(. 

cxds 14 R 1.2.0 No Highly variable 
genes No 

It calculates a p-value for each pair of genes under the null hypothesis 
that the number of droplets where exactly one of the two genes is 
expressed follows a binomial distribution. The doublet score of each 
droplet is defined as the sum of negative (natural) log p-values of co-
expressed gene pairs, where two genes in each pair both have non-
zero expression levels in this droplet. 

bcds 14 R 1.2.0 Yes Highly variable 
genes No 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles and pools these artificial doublets 
with the original droplets. Then it trains a gradient boosting classifier to 
classify the pooled droplets into original droplets and artificial doublets. 
The doublet score of each droplet is defined as the predicted 
probability of being an artificial doublet. 

hybrid 14 R 1.2.0 - - No 
It normalizes the doublet scores of cxds and bcds to values between 0 
and 1. The doublet score of each droplet is defined as the sum of the 
two normalized doublet scores.  

DoubletDetection 16 Python 2.5.2 Yes PCA No 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles and pools these artificial doublets 
with the original droplets. Then it conducts Louvain clustering on the 
pooled droplets. For each droplet cluster, it performs a hypergeometric 
test and computes p-value = 1 - hypergeom.cdf(N, K, n, k), where N is 
the number of droplets, K is the number of artificial doublets, n is the 
number of droplets in this cluster, and k is the number of artificial 
doublets in this cluster. All droplets in this cluster will have the same p-
value. It repeats the above steps (starting from artificial doublet 
generation) for a user-specified number of runs. The doublet score of 
each droplet is defined as its average p-value across all runs. 

DoubletFinder 10 R 2.0.3 Yes PCA Yes 

It generates artificial doublets by averaging two randomly selected 
droplets’ gene expression profiles. The doublet score of each droplet 
is defined as the proportion of artificial doublets among its k-nearest 
neighboring droplets in the principal component (PC) space, whose 
number of dimensions is specified by users. The number of neighbors, 
k, is selected by maximizing the mean-variance normalized bimodality 
coefficient 68 of the distribution of doublet scores. 

Solo 8 Linux 
command 0.5 Yes Variational 

autoencoder 0.5 by default  

For a randomly selected droplet pair, it estimates a multinomial 
distribution whose number of trials equals the sum of total counts in 
these two droplets and whose event probabilities equal the gene 
proportions calculated from the mean gene expression profile of these 
two droplets. Then it generates artificial doublets by randomly sampling 
a gene expression profile from this multinomial distribution. That is, the 
number of artificial doublets equals the number of randomly selected 
droplet pairs. These artificial doublets are pooled with the original 
droplets. Then it trains a neural network to classify the pooled droplets 
into original droplets and artificial doublets. The doublet score of each 
droplet is defined as the predicted probability of being an artificial 
doublet. 
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DoubletDecon 15 R 1.1.5 Yes Deconvolution 

Doublet 
detection 
without 

doublet scores 

It generates artificial doublets by taking a weighted average of two 
randomly selected droplets’ gene expression profiles (the default 
weights are 0.7 and 0.3). Putative doublets are defined as those 
droplets whose gene expression profiles after deconvolution 69 are 
concentrated on the centroids of artificial doublet clusters. Finally, it 
defines doublets as those putative doublets whose gene expression 
profiles are dissimilar to those of original droplet clusters.  
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Table 2. 16 real scRNA-seq datasets with experimentally annotated doublets used in this study. 
 

Dataset 
Doublet 

annotation 
technique 

Cell types Droplet # Gene # Doublet # Doublet 
rate 

Median UMI 
count 

Median # of 
expressed 

genes 
Source Reference 

pbmc-ch Cell hashing  pbmc 15272 21639 2545 16.66% 556 323 

GSE108313 11 

cline-ch Cell hashing  
HEK293T, 

K562, KG1, 
THP1 

7954 25221 1465 18.42% 4824 2149 

mkidney-ch Cell hashing  Mouse kidney 21179 18940 7901 37.31% 3929 1687 GSE140262 8 

hm-12k Species 
mixture 

HEK293T, 
NIH3T3 12820 15106 730 5.69% 12424 3147 

10x Genomics 
(Methods) 

21 

hm-6k Species 
mixture 

HEK293T, 
NIH3T3 6806 15080 171 2.51% 21301 4032 

pbmc-1A-dm demuxlet pbmc 3298 15170 120 3.64% 973 384 

GSE96583 

12 

pbmc-1B-dm demuxlet pbmc 3790 15143 130 3.43% 862 361 

pbmc-1C-dm demuxlet pbmc 5270 15865 316 6.00% 829 352 

pbmc-2ctrl-dm demuxlet pbmc 13913 17584 1598 11.49% 1276 526 

pbmc-2stim-dm demuxlet pbmc 13916 17315 1631 11.72% 1360 550 

J293t-dm demuxlet Jurkat, 
HEK293T 500 16374 42 8.40% 14134 3461 

https://ucsf.ap
p.box.com/s/v
g1bycvsjgyg63
gkqsputprq5rx

zjl6k 

pdx-MULTI MULTI-seq 
Human breast 
cancer, mouse 

immune 
10296 14025 1317 12.79% 2242 1029 

GSE129578 13 

HMEC-orig-MULTI MULTI-seq HMEC 26426 24199 3568 13.50% 23502 4598 

HMEC-rep-MULTI MULTI-seq HMEC 10580 17473 3282 31.02% 1188 601 

HEK-HMEC-MULTI MULTI-seq HEK293T, 
HMEC 10641 23982 489 4.60% 17424 3795 

nuc-MULTI MULTI-seq 
nuclei 

(HEK293T, 
MEF, Jurkat) 

5578 21490 475 8.52% 1021 786 

 
  



This is the Accepted Manuscript. Please cite Xi & Li, 2021, Cell Systems 12, 1–19. 
Table 3. Usability of the nine doublet-detection methods. We measured the usability of each method 
in four aspects: software quality, execution convenience, publication, and documentation & support. 
Each aspect has three levels: excellent, good, and fair, which correspond to scores 2, 1, and 0, 
respectively. The usability score of a method is the sum of its four scores under the four aspects. 
 

 Software quality Execution 
convenience Publication Documentation & support Usability score 

doubletCells 

Excellent 
(success on all 

datasets) 

Excellent 
(R package) 

Good  
(published as a part of 

a research paper in 
peer-reviewed journal) 

Good 
(documentation, custom 
webpage, but no Q&A)   

6 

Scrublet Excellent 
(Python module) 

Excellent 
(published as an 

independent research 
paper in a peer-

reviewed journal) 

Good 
(documentation, GitHub 
webpage, but no Q&A) 

7 

cxds 

Excellent 
(R package) 

7 

bcds 7 

hybrid 7 

Solo 

Good 
(Linux command-line 

with a stringent 
requirement on input 

data format: loom/hd5) 

Excellent 
(published as an 

independent research 
paper in a peer-

reviewed journal) 

Excellent 
(documentation, GitHub 

webpage, and active Q&A) 

7 

DoubletDetection 
Good 

(failure on one real 
dataset) 

Excellent 
(Python module) 

Fair 
 (GitHub webpage, 

manuscript with 
algorithm description) 

5 

DoubletFinder 
Excellent 

(success on all 
datasets) 

Excellent 
(R package) 

Excellent 
(published as an 

independent research 
paper in a peer-

reviewed journal) 

8 

DoubletDecon 

Fair 
(failure on four real 
datasets and the 

majority of synthetic 
datasets) 

Excellent 
(R package) 

Excellent 
(published as an 

independent research 
paper in a peer-

reviewed journal) 

Excellent 
(documentation, GitHub 

webpage, and active Q&A) 
6 
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Supplementary materials 

 
Accuracy of computational doublet detection in relation to experimental techniques for 
doublet labeling. Four experimental techniques were used to label doublets in the 16 real datasets 
used in this study: cell hashing 11, species mixture 9, demuxlet 12, and MULTI-seq 13. To examine the 
relationship between the accuracy of computational doublet-detection methods and the use of 
experimental techniques for doublet labeling, we calculated the mean AUPRC of each computational 
method across the datasets labeled by each experimental technique (Supplementary Figure S2d; 
Supplementary Table S10). Overall, all computational doublet-detection methods achieved the 
highest accuracy on the species-mixture datasets, followed by the cell-hashing, MULTI-seq, and 
demuxlet datasets. This is an expected result since doublet-detection methods are more capable of 
identifying heterotypic doublets than homotypic doublets by design 8–10,14–17, and all the labeled 
doublets in the species-mixture datasets are heterotypic (i.e., formed by cells of two species); 
meanwhile, the cell-hashing, MULTI-seq, and demuxlet datasets contain labeled doublets that are 
both heterotypic and homotypic (e.g., formed by cells of the same type from two samples or 
individuals), and they miss certain heterotypic doublets (e.g., formed by cells of different types from 
the same sample or individual). Among the eight doublet-detection methods (excluding DoubletDecon 
which cannot generate doublet scores), DoubletFinder, cxds, and Solo achieved the highest detection 
accuracy on the species-mixture datasets, demonstrating their strength of identifying heterotypic 
doublets. DoubletFinder was also the top performer on the MULTI-seq and demuxlet datasets in terms 
of mean AUPRC, while Solo excelled on the cell-hashing datasets. Interestingly, cxds exhibited the 
largest performance discrepancy between the species-mixture datasets and the other three types of 
datasets, highlighting its stronger priority towards identifying heterotypic doublets than other methods’. 
 
Pairwise similarities of computational doublet-detection methods. First, we calculated the 
Pearson correlation coefficient between every two doublet-detection methods (except hybrid, which is 
an ensemble of bcds and cxds, and DoubletDecon, which cannot generate doublet scores) in terms 
of their doublet scores in each of the 16 benchmark datasets; for every pair of methods, we averaged 
their 16 Pearson correlation coefficients (Supplementary Table S11). Among the  21 pairs of methods, 
DoubletFinder-DoubletDetection, Solo-bcds, and DoubletFinder-bcds have the largest mean 
correlations. Second, we calculated the Jaccard index between every two doublet-detection methods 
(except hybrid and DoubletDecon) in terms of their identified doublets, whose numbers are set equal 
to the number of labeled doublets, in each of the 16 benchmark datasets; for every pair of methods, 
we averaged their 16 Jaccard indices (Supplementary Table S12). Among the 21 pairs of methods, 
DoubletFinder-DoubletDetection, DoubletDetection-Solo, and DoubletFinder-Solo have the largest 
mean Jaccard indices, which reflect the large overlaps of their identified doublets. These two similarity 
analyses indicate the possibility of developing an ensemble method to combine the top-performing 
methods that are not too similar 61. Given the high accuracy of DoubletFinder and the distinctive 
algorithm design of cxds (the only method without artificial doublets), these two methods may serve 
as good candidates to be combined into an ensemble method. 
 
 
Comparison of hyperparameter selection in knn-base methods. The algorithm designs of 
Scrublet and DoubletFinder are similar because they both define each droplet’s doublet score as the 
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proportion of artificial doublets among the k-nearest neighbors of this droplet in the principal 
component (PC) space. The major difference between Scrublet and DoubletFinder is how they select 
hyperparameters, including the number of artificial doublets to generate, the number of genes used 
to perform the principal component analysis, the number of PCs to define nearest neighbors, and the 
number of nearest neighbors k. Supplementary Table S13 summarizes the default hyperparameter 
settings of Scrublet and DoubletFinder. In particular, DoubletFinder automatically selects k by 
maximizing the mean-variance normalized bimodality coefficient 68 of the distribution of doublet scores. 
To examine the effect of hyperparameter selection on the method performance, we selected four real 
datasets on which DoubletFinder outperformed Scrublet, and replaced the hyperparameters of 
Scrublet by those of DoubletFinder, including the ks selected by DoubletFinder for those datasets. 
Supplementary Figure S2e summarizes the AUPRC values of three methods—DoubletFinder, 
Scrublet with default hyperparameters, and Scrublet with the same hyperparameters as 
DoubletFinder—on each of the four datasets. With the hyperparameters of DoubletFinder, Scrublet 
improved its detection accuracy on two datasets, nuc-MULTI and pbmc-1C-dm, but it still 
underperformed DoubletFinder. On the other two datasets, cline-ch and pbmc-1A-dim, Scrublet 
performed similarly or even worse, respectively, with the hyperparameters of DoubletFinder. This 
result suggests that hyperparameter selection is an important but not the only factor that determines 
the performance of doublet-detection methods. Other aspects of algorithm design, including the 
generation of artificial doublets and algorithm implementation, also play critical rules. 
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Supplementary Figure S1. a, Comparison between DoubletDecon (grey) and other methods in terms 
of precision, recall, and true negative rates (TNRs) on 16 benchmark scRNA-seq datasets. The 
number of doublets is determined by the prediction result of DoubletDecon. Two baseline detection 
methods (lsize and ngenes) are included in the comparison. b, Performance (AUROC values) of each 
method in four simulation settings: varying doublet rates (from 2% to 40% with a step size of 2%), 
varying sequencing depth (from 500 to 10,000 UMI counts per cell, with a step size of 500 counts), 
varying numbers of cell types (from 2 to 20 with a step size of 1), and 20 heterogeneity levels, which 
specify the extent to which genes are differentiated between two cell types (see Methods). 
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Supplementary Figure S2. a, Cell clustering result by the DBSCAN algorithm after each of the eight 
doublet-detection method was applied to remove a varying percentage of droplets as the identified 
doublets (y-axis, from 0% to 25% with step size of 1%); the true numbers of cell clusters are four, six, 
and eight under three simulation settings, each containing 20% true doublets; the yellow color 
indicates that the correct number of clusters was identified, while the red color indicates otherwise. 
The true percentage of doublets, 20%, is highlighted in blue. For each method, its average correctness 
(i.e., the percent of yellow colors across all the removal percentages) is also highlighted in blue. b, 
Under the same three simulation settings as in a), the distributions of the singlet proportions are shown 
after doublet removal by each method, if the remaining droplets led to the correct number of cell 
clusters in a); doubletCells, cxds, bcds, and hybrid are not shown for the four-cluster setting because 
it did not lead to the correct number of cell clusters in a). c, Stability of each method. We generated 
20 datasets by randomly subsampling 90% cells and 90% genes from the real datasets pbmc-ch and 
pbmc-2ctrl-dm, and we applied each method to all the subsampled datasets. For each real dataset, 
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the distribution of AUPRC values of each method across subsampling is shown, with 25% quantiles 
connected. We use the variance of the distribution to measure the stability of each method. d, Mean 
AUPRC of each doublet-detection method across the real datasets with doublets labeled by each of 
four experimental techniques (cell hashing, species mixture, demuxlet, and MULTI-seq). Due to the 
low mean AUPRC values of doubletCells, we excluded it to show a more clear comparison of the 
other methods. The mean AUPRC of doubletCells can be found in Supplementary Table S10. e, 
AUPRCs of DoubletFinder, Scrublet with default hyperparameters, and Scrublet with same 
hyperparameters as DoubletFinder on four real datasets (nuc-MULTI, pbmc-1C-dm, cline-ch, and 
pbmc-1A-dm). 
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Supplementary Table S1. AUPRC values of ten doublet-detection methods, including two 
baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-performing 
method on each dataset is boldfaced and underlined. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

pbmc-ch 0.438 0.449 0.150 0.526 0.556 0.583 0.609 0.641 0.624 0.584 

cline-ch 0.231 0.246 0.311 0.378 0.332 0.396 0.391 0.372 0.389 0.402 

mkidney-ch 0.476 0.483 0.565 0.546 0.549 0.618 0.607 0.651 0.529 0.454 

hm-12k 0.274 0.326 0.382 0.932 0.998 0.594 0.952 0.995 0.810 0.994 

hm-6k 0.142 0.200 0.615 0.965 1.000 0.743 0.991 0.972 0.995 0.997 

pbmc-1A-dm 0.134 0.115 0.088 0.252 0.273 0.458 0.381 0.239 0.333 0.460 

pbmc-1B-dm 0.109 0.092 0.057 0.201 0.156 0.299 0.233 0.123 0.232 0.335 

pbmc-1C-dm 0.201 0.176 0.069 0.307 0.306 0.470 0.413 0.353 0.477 0.529 

pbmc-2ctrl-dm 0.311 0.381 0.241 0.573 0.503 0.627 0.594 0.675 0.603 0.665 

pbmc-2stim-dm 0.300 0.394 0.296 0.547 0.459 0.634 0.596 0.674 0.609 0.648 

J293t-dm 0.067 0.067 0.181 0.239 0.189 0.103 0.158 0.175 0.192 0.230 

pdx-MULTI 0.263 0.274 0.186 0.251 0.255 0.402 0.371 0.452 - 0.384 

HMEC-orig-MULTI 0.359 0.420 0.306 0.401 0.363 0.380 0.428 0.473 0.496 0.383 

HMEC-rep-MULTI 0.501 0.522 0.327 0.487 0.549 0.576 0.588 0.589 0.550 0.610 

HEK-HMEC-MULTI 0.185 0.249 0.381 0.459 0.514 0.318 0.455 0.357 0.361 0.475 

nuc-MULTI 0.217 0.260 0.107 0.356 0.367 0.355 0.383 0.294 0.422 0.441 

mean 0.263 0.291 0.266 0.464 0.461 0.472 0.509 0.502 0.508 0.537 
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Supplementary Table S2. AUROC values of ten doublet-detection methods, including two 
baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-performing 
method on each dataset is boldfaced and underlined. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

pbmc-ch 0.774 0.791 0.478 0.776 0.786 0.810 0.822 0.848 0.815 0.837 

cline-ch 0.544 0.547 0.587 0.603 0.595 0.626 0.625 0.607 0.590 0.603 

mkidney-ch 0.603 0.598 0.667 0.656 0.642 0.711 0.692 0.754 0.622 0.563 

hm-12k 0.881 0.902 0.905 0.992 1.000 0.968 0.995 1.000 0.979 0.999 

hm-6k 0.888 0.921 0.971 0.995 1.000 0.991 0.999 0.999 0.999 1.000 

pbmc-1A-dm 0.781 0.787 0.532 0.726 0.807 0.828 0.834 0.808 0.787 0.842 

pbmc-1B-dm 0.689 0.684 0.504 0.747 0.725 0.709 0.736 0.711 0.721 0.780 

pbmc-1C-dm 0.771 0.769 0.518 0.755 0.783 0.824 0.821 0.804 0.808 0.837 

pbmc-2ctrl-dm 0.800 0.836 0.714 0.874 0.874 0.900 0.905 0.926 0.906 0.917 

pbmc-2stim-dm 0.797 0.846 0.732 0.865 0.856 0.898 0.898 0.931 0.902 0.912 

J293t-dm 0.420 0.413 0.557 0.557 0.483 0.550 0.491 0.496 0.506 0.613 

pdx-MULTI 0.640 0.644 0.593 0.643 0.657 0.741 0.725 0.756 - 0.701 

HMEC-orig-MULTI 0.701 0.734 0.691 0.730 0.704 0.724 0.741 0.755 0.770 0.727 

HMEC-rep-MULTI 0.644 0.663 0.512 0.646 0.693 0.698 0.710 0.717 0.689 0.718 

HEK-HMEC-MULTI 0.767 0.784 0.732 0.759 0.835 0.798 0.831 0.796 0.773 0.775 

nuc-MULTI 0.720 0.739 0.560 0.732 0.764 0.763 0.772 0.751 0.770 0.794 

mean 0.714 0.729 0.641 0.753 0.763 0.784 0.787 0.791 0.776 0.789 
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Supplementary Table S3. The number of outperforming baselines and the number of top-performing 
for each method on 16 benchmark scRNA-seq datasets. The largest number is boldfaced and 
underlined. 
 

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

# of outperforming 
baselines (AUPRC) 6 13 14 15 16 16 15 14 

# of top-performing 
(AUPRC)  0 1 3 0 0 5 1 6 

# of outperforming 
baselines (AUROC) 5 8 14 15 16 16 14 13 

# of top-performing  
(AUROC) 0 0 3 1 0 6 1 7 
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Supplementary Table S4. Mean precision, recall, and true negative rates (TNRs) of ten doublet-
detection methods, including the two baseline methods lsize and ngene, under three identification 
rates (10%, 20%, and 40%) across 16 benchmark scRNA-seq datasets. The top-performing method 
of each metric is boldfaced and underlined. 
 

Identification 
rate Mean lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

10% 

Precision 0.314 0.337 0.257 0.423 0.404 0.457 0.468 0.476 0.453 0.464 

Recall 0.330 0.349 0.272 0.435 0.445 0.488 0.505 0.498 0.481 0.505 

TNR 0.923 0.926 0.923 0.940 0.933 0.940 0.941 0.942 0.940 0.941 

20% 

Precision 0.254 0.275 0.208 0.289 0.290 0.324 0.326 0.338 0.313 0.324 

Recall 0.503 0.543 0.403 0.551 0.575 0.624 0.631 0.636 0.615 0.624 

TNR 0.831 0.836 0.824 0.844 0.840 0.849 0.849 0.852 0.847 0.854 

40% 

Precision 0.191 0.196 0.165 0.200 0.201 0.211 0.211 0.216 0.202 0.219 

Recall 0.694 0.707 0.582 0.701 0.727 0.746 0.752 0.756 0.738 0.734 

TNR 0.633 0.636 0.621 0.647 0.638 0.644 0.644 0.647 0.642 0.680 
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Supplementary Table S5. Precision of doublets detection on 12 benchmark scRNA-seq datasets. 
We executed DoubletDecon on each dataset to calculate its precision. For other methods, we 
calculated precision by setting up appropriate cutoffs based on the number of doublets determined by 
DoubletDecon. The top-performing method on each dataset is boldfaced and underlined. We excluded 
four datasets that DoubletDecon failed to run through. 
       

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.262 0.274 0.160 0.261 0.260 0.269 0.271 0.279 0.263 0.279 0.173 

cline-ch 0.214 0.214 0.245 0.250 0.241 0.259 0.261 0.249 0.240 0.254 0.184 

mkidney-ch 0.465 0.469 0.536 0.514 0.499 0.567 0.552 0.613 0.472 0.446 0.373 

hm-6k 0.059 0.059 0.060 0.062 0.061 0.061 0.061 0.061 0.061 0.062 0.035 

pbmc-1A-dm 0.076 0.080 0.037 0.074 0.078 0.078 0.079 0.079 0.075 0.104 0.038 

pbmc-1B-dm 0.058 0.059 0.038 0.062 0.064 0.060 0.064 0.061 0.060 0.068 0.031 

pbmc-1C-dm 0.126 0.128 0.065 0.115 0.122 0.127 0.127 0.126 0.125 0.159 0.061 

pbmc-2stim-dm 0.289 0.331 0.252 0.331 0.330 0.351 0.350 0.368 0.356 0.361 0.117 

pdx-MULTI 0.197 0.197 0.171 0.202 0.201 0.247 0.237 0.254 -- 0.229 0.131 

HMEC-orig-MULTI 0.163 0.166 0.165 0.171 0.167 0.169 0.170 0.171 0.172 0.170 0.134 

HMEC-rep-MULTI 0.333 0.337 0.319 0.336 0.345 0.345 0.348 0.348 0.338 0.413 0.315 

HEK-HMEC-MULTI 0.110 0.112 0.102 0.104 0.118 0.115 0.119 0.114 0.110 0.103 0.046 

mean 0.196 0.202 0.179 0.207 0.207 0.221 0.220 0.227 0.207 0.221 0.137 
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Supplementary Table S6. Recall of doublets detection on 12 benchmark scRNA-seq datasets. We 
executed DoubletDecon on each dataset to calculate its recall. For other methods, we calculated recall 
by setting up appropriate cutoffs based on the number of doublets determined by DoubletDecon. The 
top-performing method on each dataset is boldfaced and underlined. We excluded four datasets that 
DoubletDecon failed to run through. 
        

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.810 0.842 0.495 0.796 0.803 0.833 0.837 0.864 0.815 0.861 0.536 

cline-ch 0.412 0.412 0.472 0.461 0.463 0.498 0.502 0.480 0.461 0.453 0.355 

mkidney-ch 0.495 0.499 0.570 0.545 0.532 0.604 0.588 0.653 0.503 0.475 0.397 

hm-6k 0.965 0.971 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.573 

pbmc-1A-dm 0.767 0.808 0.375 0.700 0.792 0.792 0.808 0.800 0.767 0.783 0.383 

pbmc-1B-dm 0.669 0.677 0.431 0.677 0.731 0.685 0.731 0.700 0.692 0.731 0.354 

pbmc-1C-dm 0.778 0.788 0.405 0.690 0.756 0.788 0.788 0.782 0.775 0.772 0.380 

pbmc-2stim-dm 0.722 0.825 0.629 0.804 0.825 0.877 0.874 0.920 0.879 0.898 0.292 

pdx-MULTI 0.519 0.519 0.451 0.527 0.532 0.651 0.626 0.672 -- 0.569 0.347 

HMEC-orig-MULTI 0.824 0.838 0.835 0.860 0.841 0.854 0.857 0.862 0.851 0.856 0.677 

HMEC-rep-MULTI 0.856 0.866 0.822 0.861 0.887 0.887 0.896 0.895 0.869 0.736 0.810 

HEK-HMEC-MULTI 0.701 0.718 0.652 0.663 0.755 0.734 0.759 0.730 0.699 0.652 0.292 

mean 0.710 0.730 0.593 0.715 0.743 0.767 0.772 0.780 0.756 0.732 0.450 
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Supplementary Table S7. True negative rate (TNR) of doublets detection on 12 benchmark scRNA-
seq datasets. We executed DoubletDecon on each dataset to calculate its TNR. For other methods, 
we calculated TNR by setting up appropriate cutoffs based on the number of doublets determined by 
DoubletDecon. The top-performing method on each dataset is boldfaced and underlined. We excluded 
four datasets that DoubletDecon failed to run through. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.544 0.553 0.481 0.549 0.542 0.548 0.549 0.554 0.544 0.556 0.489 

cline-ch 0.658 0.658 0.672 0.688 0.670 0.678 0.679 0.674 0.671 0.699 0.645 

mkidney-ch 0.661 0.664 0.706 0.693 0.683 0.725 0.716 0.755 0.665 0.649 0.602 

hm-6k 0.601 0.601 0.602 0.607 0.602 0.602 0.602 0.602 0.603 0.607 0.591 

pbmc-1A-dm 0.646 0.648 0.632 0.669 0.645 0.645 0.646 0.646 0.644 0.744 0.630 

pbmc-1B-dm 0.616 0.619 0.608 0.635 0.618 0.617 0.618 0.617 0.617 0.647 0.605 

pbmc-1C-dm 0.654 0.657 0.630 0.660 0.653 0.655 0.655 0.654 0.654 0.739 0.628 

pbmc-2stim-dm 0.764 0.779 0.752 0.784 0.778 0.785 0.784 0.790 0.789 0.789 0.707 

pdx-MULTI 0.689 0.689 0.679 0.696 0.691 0.708 0.705 0.711 -- 0.719 0.663 

HMEC-orig-MULTI 0.341 0.343 0.343 0.349 0.344 0.346 0.346 0.347 0.362 0.347 0.318 

HMEC-rep-MULTI 0.228 0.233 0.212 0.236 0.241 0.241 0.245 0.245 0.233 0.529 0.207 

HEK-HMEC-MULTI 0.726 0.727 0.724 0.726 0.729 0.728 0.729 0.728 0.726 0.725 0.706 

mean 0.594 0.598 0.587 0.608 0.600 0.607 0.606 0.610 0.592 0.646 0.566 
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Supplementary Table S8. The number of identified doublets by DoubletDecon compared with the 
true number of doublets on 12 benchmark datasets. We excluded four datasets that DoubletDecon 
failed to run through. 
 

 pbmc-ch cline-ch mkidney-ch hm-6k pbmc-1A-dm pbmc-1B-dm pbmc-1C-dm pbmc-
2stim-dm pdx-MULTI HMEC-orig-

MULTI 
HMEC-rep-

MULTI 
HEK-HMEC-

MULTI 

# of predicted 
doublets 7872 2822 8417 2813 1223 1493 1961 4077 3479 18007 8448 3124 

# of true 
doublets 2545 1465 7901 171 120 130 316 1631 1317 3568 3282 489 
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Supplementary Table S9. Mean running time of nine doublet-detection methods and their AUPRCs 
on 16 benchmark scRNA-seq datasets. The last row is the running time normalized by AUPRC. The 
top-performing method of each metric is boldfaced and underlined. The mean running time of 
DoubletDecon was calculated on 12 datasets that it ran through successfully. 
 

 doubletCells Scrublet cxds bcds hybrid DoubletDetection DoubletFinder Solo DoubletDecon 

Mean time (s) 37 64 5 46 47 380 243 618 903 

Mean AUPRC 0.266 0.464 0.461 0.472 0.509 0.508 0.537 0.502 - 

Time/AUPRC 137 130 11 97 92 749 452 1232 - 
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Supplementary Table S10. Mean AUPRC values of eight doublet-detection methods on benchmark 
scRNA-seq datasets, categorized by four experimental techniques that were used to label doublets. 
The mean was calculated across the datasets labeled by each technique. The top-performing method 
for each technique is boldfaced and underlined. 
 

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

Cell hashing 0.342 0.483 0.479 0.532 0.536 0.555 0.514 0.480 

Species mixture 0.499 0.949 0.999 0.669 0.972 0.984 0.903 0.996 

Demuxlet 0.155 0.353 0.314 0.432 0.396 0.373 0.408 0.478 

MULTI-seq 0.261 0.391 0.410 0.406 0.445 0.433 0.457 0.459 
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Supplementary Table S11. Mean Pearson correlation coefficient between every pair of doublet-
detection methods in terms of their doublet scores across the 16 benchmark datasets; that is, a 
Pearson correlation coefficient was calculated for every pair of methods on each dataset, and the 16 
coefficients were averaged into the mean coefficient for that pair. 
 
doubletCells 1.000       

Scrublet 0.249 1.000      

cxds 0.142 0.478 1.000     

bcds 0.109 0.455 0.642 1.000    

Solo 0.126 0.484 0.603 0.682 1.000   

DoubletDetection 0.200 0.604 0.598 0.637 0.615 1.000  

DoubletFinder 0.155 0.559 0.639 0.664 0.628 0.700 1.000 

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder 
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Supplementary Table S12. Mean Jaccard index between every pair of doublet-detection methods in 
terms of their identified doublets, whose numbers equal to the numbers of labeled doublets, across 
the 16 benchmark datasets; that is, a Jaccard index was calculated for every pair of methods on each 
dataset, and the 16 indices were averaged into the mean index for that pair. 
 
doubletCells 1.000       

Scrublet 0.188 1.000      

cxds 0.169 0.316 1.000     

bcds 0.152 0.290 0.397 1.000    

Solo 0.176 0.352 0.442 0.452 1.000   

DoubletDetection 0.169 0.370 0.430 0.438 0.483 1.000  

DoubletFinder 0.174 0.359 0.424 0.433 0.481 0.525 1.000 

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder 
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Supplementary Table S13. The default hyperparameter settings of Scrublet and DoubletFinder. 

 

Method Generation of artificial doublets # of artificial doublet  
# of genes to perform 
principal component 

analysis 

# of principle 
component k, # of nearest neighbors 

Scrublet Adding two randomly selected droplets’ 
gene expression profiles 

One-third of the # of 
original droplets 

Top 85% highly 
variable genes 30 𝑟𝑜𝑢𝑛𝑑	(0.5 ∗ 3#	𝑜𝑓	𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠	) 

DoubletFinder Averaging two randomly selected 
droplets’ gene expression profiles 

Twice of the # of 
original droplets 

Top 2000 highly 
variable genes 10 

Selected by maximizing the 
mean-variance normalized 
bimodality coefficient of the 

distribution of doublet scores 

 




