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A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM
USING CLOSE QUASAR PAIRS

Alberto Rorai1,2, Joseph F. Hennawi1 , Martin White3

ABSTRACT

Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on Mpc
scales, on smaller scales ∼ 100 kpc, fluctuations are suppressed because the finite temperature gas is
pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering
scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological impli-
cations. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic
reionization events, and thus constrains the thermal and reionization history of the Universe. Second,
the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reion-
ization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence
plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the
Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because
the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with
Jeans smoothing. In this work we show that the Jeans filtering scale can be directly measured by
characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations
small enough ∼ 100 kpc to resolve it. We present a novel technique for this purpose, based on the
probability distribution function (PDF) of phase angle differences of homologous longitudinal Fourier
modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF,
and MCMC techniques are used to characterize the precision of a hypothetical Jeans scale measure-
ment, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical
model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter
only simulation. Our full parameter study indicates that a realistic sample of only 20 close quasar
pair spectra can pinpoint the Jeans scale to ≃ 5% precision, independent of the amplitude T0 and
slope γ of the temperature-density relation of the IGM T = T0(ρ/ρ̄)

γ−1. This exquisite sensitivity
arises because even long-wavelength 1D Fourier modes ∼ 10Mpc, i.e. two orders of magnitude larger
than the Jeans scale, are nevertheless dominated by projected small-scale 3D power. Hence phase
angle differences between all modes of quasar pair spectra actually probe the shape of the 3D power
spectrum on scales comparable to the pair separation. We show that this new method for measuring
the Jeans scale is unbiased and is insensitive to a battery of systematics that typically plague Lyα
forest measurements, such as continuum fitting errors, imprecise knowledge of the noise level and/or
spectral resolution, and metal-line absorption.
Subject headings: cosmology: large-scale structure - quasars: absorption lines - intergalactic medium

- reionization

1. INTRODUCTION

The imprint of redshifted Lyman-α (Lyα) forest ab-
sorption on the spectra of distant quasars provides an
exquisitely sensitive probe of the distribution of baryons
in the intergalactic medium (IGM) at large cosmolog-
ical lookback times. Among the remarkable achieve-
ments of modern cosmology is the ability of cosmolog-
ical hydrodynamical simulations to explain the origin
of this absorption pattern, and reproduce its statisti-
cal properties to percent level accuracy (e.g. Cen et al.
1994; Miralda-Escudé et al. 1996; Rauch 1998). But the
wealth of information which can be gathered from the
Lyα forest is far from being exhausted. The thermal
state of the baryons in the IGM reflects the integrated
energy balance of heating — due to the collapse of cos-
mic structures, radiation, and possibly other exotic heat
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sources — and cooling due to the expansion of the Uni-
verse (e.g. Miralda-Escudé & Rees 1994; Hui & Gnedin
1997; Hui & Haiman 2003; Meiksin 2009). Cosmologists
still do not understand how the interplay of these physi-
cal processes sets the thermal state of the IGM, nor has
this thermal state been precisely measured.
There is ample observational evidence that ultravi-

olet radiation emitted by the first star-forming galax-
ies ended the ‘cosmic dark ages’ ionizing hydrogen and
singly ionizing helium at z ∼ 10 (e.g. Barkana & Loeb
2001; Ciardi & Ferrara 2005; Fan et al. 2006; Zaroubi
2013). A second and analogous reionization episode
is believed to have occurred at later times z ∼
3 − 4 (Madau & Meiksin 1994; Jakobsen et al. 1994;
Reimers et al. 1997; Croft et al. 1997), when quasars
were sufficiently abundant to supply the hard photons
necessary to doubly ionized helium. The most re-
cent observations from HST/COS provide tentative ev-
idence for an extended He II reionization from z ∼
2.7 − 4 (Shull et al. 2010; Furlanetto & Dixon 2010;
Worseck et al. 2011, Worseck et al. 2013, in prepara-
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tion), with a duration of ∼ 1Gyr, longer than naively ex-
pected. Cosmic reionization events are watersheds in the
thermal history of the Universe, photoheating the IGM
to tens of thousands of degrees. Because cooling times
in the rarefied IGM gas are long, memory of this heating
is retained (Miralda-Escudé & Rees 1994; Hui & Gnedin
1997; Haehnelt & Steinmetz 1998; Hui & Haiman 2003;
Theuns et al. 2002a,b). Thus an empirical characteriza-
tion of the IGMs thermal history constrains the nature
and timing of reionization.
From a theoretical perspective, the impact of reion-

ization events on the thermal state of the IGM is
poorly understood. Radiative transfer simulations of
both hydrogen (Bolton et al. 2004; Iliev et al. 2006;
Tittley & Meiksin 2007a) and helium (Abel & Haehnelt
1999; McQuinn et al. 2009; Meiksin & Tittley 2012) re-
veal that the heat injection and the resulting temper-
ature evolution of the IGM depends on the details of
how and when reionization occurred. There is evi-
dence that the thermal vestiges of H I reionization
heating may persist until as late as z ∼ 4 − 5, and
thus be observable in the Lyα forest (Hui & Haiman
2003; Furlanetto & Oh 2009; Cen et al. 2009), whereas
for HeII reionization at z ∼ 3, the Lyα forest is ob-
servable over the full duration of the phase transition.
Finally, other processes could inject heat into the IGM
and impact its thermal state, such as the large-scale
structure shocks which eventually produce the Warm
Hot Intergalactic Medium (WHIM;e.g. Cen & Ostriker
1999; Davé et al. 1999, 2001), heating from galac-
tic outflows (Kollmeier et al. 2006; Cen & Ostriker
2006), photoelectric heating of dust grains (Nath et al.
1999; Inoue & Kamaya 2003), cosmic-ray heating
(Nath & Biermann 1993), Compton-heating from the
hard X-ray background (Madau & Efstathiou 1999), X-
ray preheating (Ricotti et al. 2005; Tanaka et al. 2012a),
or blazar heating (Broderick et al. 2012; Chang et al.
2012; Pfrommer et al. 2012; Puchwein et al. 2012). Pre-
cise constraints on the thermal state of the IGM would
help determine the relative importance of photoheating
from reionization and these more exotic mechanisms.
Despite all the successes of our current model of the

IGM, precise constraints on its thermal state and con-
comitant constraints on reionization (and other exotic
heat sources) remain elusive. Attempts to character-
ize the IGM thermal state from Lyα forest measure-
ments have a long history. In the simplest picture,
the gas in the IGM obeys a power law temperature-
density relation T = T0(ρ/ρ̄)

γ−1, which arises from
the balance between photoionization heating, and cool-
ing due to adiabatic expansion (Hui & Gnedin 1997).
The standard approach has been to compare mea-
surements of various statistics of the Lyα forest to
cosmological hydrodynamical simulations. Leveraging
the dependence of these statistics on the underlying
temperature-density relation, its slope and amplitude
(T0, γ) parameters can be constrained. To this end a
wide variety of statistics have been employed, such as
the power spectrum (Zaldarriaga et al. 2001; Viel et al.
2009) or analogous statistics quantifying the small-scale
power like wavelets (Theuns et al. 2002b; Lidz et al.
2009; Garzilli et al. 2012) or the curvature (Becker et al.
2011). The flux PDF (McDonald et al. 2000;
Kim et al. 2007; Bolton et al. 2008; Calura et al. 2012;

Garzilli et al. 2012) and the shape of the b-parameter
distribution (Haehnelt & Steinmetz 1998; Theuns et al.
2000; Ricotti et al. 2000; Bryan & Machacek 2000;
Schaye et al. 2000; McDonald et al. 2001; Theuns et al.
2002a; Rudie et al. 2012) have also been considered.
Multiple statistics have also been combined such as the
PDF and wavelets (Garzilli et al. 2012), or PDF and
power spectrum (Viel et al. 2009). Overall, the re-
sults of such comparisons are rather puzzling. First,
the IGM appears to be generally too hot, both at low
(z ∼ 2) and high (z ∼ 4) redshift (Hui & Haiman
2003). In particular, the high inferred temperatures at
z ∼ 4 (e.g. Schaye et al. 2000; Zaldarriaga et al. 2001;
McDonald et al. 2001; Theuns et al. 2002b; Lidz et al.
2009) suggest that HeII was reionized at still higher
redshift z > 4 (Hui & Haiman 2003), possibly con-
flicting with the late z ∼ 2.7 reionization of HeII ob-
served in HST/COS spectra (Furlanetto & Dixon 2010;
Shull et al. 2010; Worseck et al. 2011; Syphers et al.
2012, Worseck et al. 2013, in preparation). Sec-
ond, Bolton et al. (2008) considered the PDF of high-
resolution quasar spectra and concluded that, at z ≃ 3
the slope of the temperature-density relation γ is either
close to isothermal (γ = 1) or even inverted (γ < 1),
suggesting “that the voids in the IGM may be signifi-
cantly hotter and the thermal state of the low-density
IGM may be substantially more complex than is usually
assumed.” Although this result is corroborated by addi-
tional work employing different statistics/methodologies
(Viel et al. 2009; Calura et al. 2012; Garzilli et al. 2012,
but see Lee et al. 2012), radiative transfer simulations
of HeII reionization cannot produce an isothermal or
inverted slope, unless a population other than quasars
reionized HeII (Bolton et al. 2004; McQuinn et al. 2009;
Meiksin & Tittley 2012) , which would fly in the face of
conventional wisdom. To summarize, despite nearly a
decade of theoretical and observational work, published
measurements of the thermal state of the IGM are still
highly confusing, and concomitant constraints on reion-
ization scenarios are thus hardly compelling.
Fortunately, there is another important record of the

thermal history of the Universe: the Jeans pressure
smoothing scale. Although baryons in the IGM trace
dark matter fluctuations on large Mpc scales, on smaller
scales . 100 kpc, gas is pressure supported against
gravitational collapse by its finite temperature. Anal-
ogous to the classic Jeans argument, baryonic fluctu-
ations are suppressed relative to the pressureless dark
matter (which can collapse), and thus small-scale power
is ‘filtered’ from the IGM (Gnedin & Hui 1998), which
explains why it is sometimes referred to as the filtering
scale. Classically the comoving Jeans scale is defined
as λ0

J =
√

πc2s/Gρ(1 + z), but in reality the amount of
Jeans filtering is sensitive to both the instantaneous pres-
sure and hence temperature of the IGM, as well as the
temperature of the IGM in the past. This arises because
fluctuations at earlier times expanded or failed to col-
lapse depending on the IGM temperature at that epoch.
Thus the Jeans scale reflects the competition between
gravity and pressure integrated over the Universe’s his-
tory, and cannot be expressed as a mere deterministic
function of the instantaneous thermal state. Heuristi-
cally, this can be understood because reionization heat-
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ing is expected to occur on the reionization timescales
of several hundreds of Myr, whereas the baryons re-
spond to this heating on the sound-crossing timescale

λ0
J/[cs(1+z)] ∼ (Gρ)−1/2, which at mean density is com-

parable to the Hubble time tH .
Gnedin & Hui (1998) considered the behavior of the

Jeans smoothing in linear theory, and derived an analyt-
ical expression for the filtering scale λJ as a function of
thermal history

λ2
J(t) =

1

D+(t)

∫ t

0

dt′a2(t′)(λ0
J (t

′))2×

(D̈+(t
′) + 2H(t′)Ḋ+(t

′))

∫ t

t′

dt′′

a2(t′′)
,

(1)

where D+(t) is the linear growth function at time t,
a(t) is the scale factor, and H(t) the Hubble expansion
rate. Although this simple linear approximation pro-
vides intuition about the Jeans scale and its evolution,
Fourier modes with wavelength comparable to the Jeans
scale are already highly nonlinear at z ∼ 3, and hence
this simple linear pictures breaks down due to nonlinear
mode-mode coupling effects. Thus given that we do not
know the thermal history of the Universe, that we ex-
pect significant heat injection from HeII reionization at
z ∼ 3− 4 concurrent with the epoch at which we observe
the IGM, and that IGM modes comparable to the Jeans
scale actually respond non-linearly to this unknown heat-
ing, the true relationship between the Jeans scale and the
temperature-density relation at a given epoch should be
regarded as highly uncertain.
Besides providing a thermal record of the IGM, the

small-scale structure of baryons, as quantified by the
Jeans scale, is a fundamental ingredient in models of
reionization and galaxy formation. A critical quantity
in models of cosmic reionization is the clumping fac-
tor of the IGM C = 〈n2

H〉/n̄2
H (e.g. Madau et al.

1999; Miralda-Escudé et al. 2000; Pawlik et al.
2009; Haardt & Madau 2012; Emberson et al. 2013;
McQuinn et al. 2011), because it determines the average
number of recombinations per atom, or equivalently the
total number of UV photons needed to keep the IGM
ionized. The clumping and the Jeans scale are directly
related. Specifically,

C = 1 + σ2
IGM ≡ 1 +

∫

d ln k
k3PIGM(k)

2π2
, (2)

where σ2
IGM is the variance of the IGM density, and

PIGM(k) is the 3D power spectrum of the baryons
in the IGM. Given the shape of PIGM(k), the inte-
gral above is dominated by contributions from small-
scales (high-k), and most important is the Jeans cut-
off λJ , which determines the maximum k-mode kJ ∼
1/λJ contributing. The small-scale structure of the
IGM strongly influences the propagation of cosmological
ionization fronts during reionization (Iliev et al. 2005).
Furthermore, several numerical studies have revealed
that the hydrodynamic response of the baryons in the
IGM to impulsive reionization heating is significant (e.g.
Gnedin 2000a; Haiman et al. 2001; Kuhlen & Madau
2005; Ciardi & Salvaterra 2007; Pawlik et al. 2009), in-
dicating that a full treatment of the interplay between
IGM small-scale structure and reionization history prob-

ably requires coupled radiative transfer hydrodynamical
simulations.
Reionization heating also evaporates the baryons from

low-mass halos or prevents gas from collapsing in them
altogether (e.g. Barkana & Loeb 1999; Dijkstra et al.
2004), an effect typically modeled via a critical mass,
below which galaxies cannot form (Gnedin 2000b;
Bullock et al. 2000; Benson et al. 2002b,a; Somerville
2002; Kulkarni & Choudhury 2011). Gnedin (2000b)
used hydrodynamical simulations to show that this scale
is well approximated by the filtering mass, which is the
mass-scale corresponding to the Jeans filtering length,
i.e. MF (z) = 4πρ̄λ3

J/3 (see also Hoeft et al. 2006;
Okamoto et al. 2008). Finally, because the Jeans scale
has memory of the thermal events in the IGM (see
eqn. 1), its value at later times can potentially con-
strain models of early IGM preheating. In this scenario,
heat is globally injected into the IGM at high-redshift
z ∼ 5 − 15 from blast-waves produced by outflows from
proto-galaxies or miniquasars (Voit 1996; Madau 2000;
Madau et al. 2001; Cen & Bryan 2001; Theuns et al.
2001; Benson & Madau 2003; Scannapieco et al. 2002;
Scannapieco & Oh 2004) X-ray radiation from early
miniquasars (Tanaka et al. 2012b; Parsons et al. 2013),
which sets an entropy floor in the IGM and the raises fil-
tering mass scale inhibiting the formation of early galax-
ies.
A rough estimate of the filtering scale at z = 3

can be obtained from eqn. (1) and the following sim-
plified assumptions: the temperature at z = 3 is
T (z = 3) ≈ 15000K as suggested by measurements (e.g.
Schaye et al. 2000; Ricotti et al. 2000; Zaldarriaga et al.
2001; Lidz et al. 2009), temperature evolves as T ∝ 1+z,
the typical overdensity probed by the z = 3 Lyα for-
est is δ ∼ 2 (Becker et al. 2011). One then obtains
λJ(z = 3) ≈ 340 kpc (comoving), smaller than the clas-
sical or instantaneous Jeans scale λ0

J by a factor of ∼ 3.
This distance maps to a velocity interval vJ = HaλJ ≈
26 km s−1 along the line of sight due to Hubble expan-
sion. Thermal Doppler broadening gives rise to a cutoff
in the longitudinal power spectrum, which occurs at a
comparable velocity vth ≈ 11.3 km s−1, for gas heated to
the same temperature. The similarity of the character-
istic scale of 3D Jeans pressure smoothing and the 1D
thermal Doppler smoothing suggests that disentangling
the two effects will be challenging given purely longi-
tudinal observations of the Lyα forest, as confirmed by
Peeples et al. (2009a), who considered the relative im-
pact of thermal broadening and pressure smoothing on
various statistics applied to longitudinal Lyα forest spec-
tra. Previous work that has aimed to measure thermal
parameters such as T0 and γ from Lyα forest spectra,
have largely ignored the degeneracy of the Jeans scale
with these thermal parameters. The standard approach
has been to assume values of the Jeans scale from a hy-
drodynamical simulation (e.g. Lidz et al. 2009; Viel et al.
2009; Becker et al. 2011), which as per the discussion
above, is equivalent to assuming perfect knowledge of the
IGM thermal history. Because of the degeneracy with the
Jeans scale, it is thus likely that previous measurements
of the thermal parameters T0 and γ are significantly bi-
ased, and their error bars significantly underestimated,
if indeed Jeans scale takes on values different from those
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assumed (but see Zaldarriaga et al. 2001 who marginal-
ized over the Jeans scale, and Becker et al. 2011 who
also considered its impact). We will investigate such de-
generacies in detail in this paper with respect to power-
spectra, and we consider degeneracies for a broader range
of IGM statistics in a future work (A.Rorai et al. 2013,
in preparation).
The Jeans filtering scale can be directly measured using

close quasar pair sightlines which have comparable trans-
verse separations r⊥ . 300 kpc (comoving; ∆θ . 40′′

at z = 3). The observable signature of Jeans smooth-
ing is increasingly coherent absorption between spec-
tra at progressively smaller pair separations resolving
it (Peeples et al. 2009b). The idea of using pairs to
constrain the small scale structure of the IGM is not
new. However, all previous measurements have either
focused on lensed quasars, which probe extremely small
transverse distances r⊥ ∼ 1 kpc ≪ λJ (e.g. Young et al.
1981; McGill 1990; Petry et al. 1998; Smette et al. 1995;
Rauch et al. 2001) such that the Lyα forest is essen-
tially perfectly coherent, or real physical quasar pairs
with r⊥ ∼ 1 Mpc ≫ λJ (D’Odorico et al. 2006) far too
large to place useful constraints on the Jeans scale. Ob-
servationally, the breakthrough enabling a measurement
of the Jeans scale is the discovery of a large number of
close quasar pairs (Hennawi 2004; Hennawi et al. 2006b;
Myers et al. 2008; Hennawi et al. 2009) with ∼ 100 kpc
separations. By applying machine learning techniques
(Richards et al. 2004; Bovy et al. 2011, 2012) to the
Sloan Digital Sky Survey (SDSS; York et al. 2000) imag-
ing, a sample of ∼ 300 close r⊥ < 700 kpc quasar pairs
at 1.6 < z . 4.34 has been uncovered (Hennawi 2004;
Hennawi et al. 2006b, 2009).
In this paper we introduce a new method which will

enable the first determination of the Jeans scale, and we
estimate the precision with which it can be measured
from this close quasar pair dataset. We explicitly con-
sider degeneracies between the canonical thermal param-
eters T0 and γ, and the Jeans scale λJ , which have been
heretofore largely ignored. To this end, we use an ap-
proximate model of the Lyα forest based on dark mat-
ter only simulations, allowing us to independently vary
all thermal parameters and simulate a large parameter
space. The structure of this paper is as follows: we de-
scribe how we compute the Lyα forest flux transmission
from dark matter simulations, and our parametrization
of the thermal state of the IGM in section § 2. In § 3
we consider thermal parameter degeneracies which re-
sult when only longitudinal observations are available,
and we show how the additional transverse information
provided by quasar pairs can break them. In § 4 we intro-
duce our new method to quantify absorption coherence
using the difference in phase between homologous longi-
tudinal Fourier modes of each member of a quasar pair.
We focus on the probability distribution function (PDF)
of these phase differences, and find that the shape of this
phase PDF is very sensitive to the Jeans smoothing. A
Bayesian likelihood formalism that uses the phase angle
PDF to determine the Jeans scale is presented in § 5.
Our Bayesian method allows us to combine the Jeans
scale information with other Lyα forest statistics such

4 The lower redshift limit is corresponds to Lyα forest absorption
being above the atmospheric cutoff.

as the longitudinal power spectrum, and we conduct a
Markov Chain Monte Carlo (MCMC) analysis in this sec-
tion to determine the resulting precision on T0, γ, and
λJ expected for realistic datasets, explore parameter de-
generacies, and study the impact of noise and systematic
errors. We conclude and summarize in § 7.
Throughout this paper we use the ΛCDM cosmological

model with the parameters Ωm = 0.28,ΩΛ = 0.72, h =
0.70, n = 0.96, σ8 = 0.82. All distances quoted are in
comoving kpc.

2. SIMULATION METHOD

2.1. Dark Matter Simulation

Our model of the Lyα forest is based on a single snap-
shot of a dark matter only simulation at z = 3. In
this scheme, the dark matter simulation provides the
dark matter density and velocity field (Croft et al. 1998;
Meiksin & White 2001), and the gas density and temper-
ature are computed using simple scaling relations moti-
vated by the results of full hydrodynamical simulations
(Hui & Gnedin 1997; Gnedin & Hui 1998; Gnedin et al.
2003). Our objective is then to explore the sensitiv-
ity with which close quasar pairs can be used to con-
strain the thermal parameters defining these scaling re-
lations, and in particular the Jeans scale. To this end,
we require a dense sampling of the thermal parameter
space, which is computationally feasible with our semi-
analytical method applied to a dark matter simulation
snapshot, whereas it would be extremely challenging to
simulate such a dense grid with full hydrodynamical sim-
ulations. We do not model the redshift evolution of the
IGM, nor do we consider the effect of uncertainties on
the cosmological parameters, as they are constrained by
various large-scale structure and CMB measurements to
much higher precision than the thermal parameters gov-
erning the IGM.
We used an updated version version of the TreePM

code described in White (2002) to evolve 15003 equal
mass (3 × 106 h−1M⊙) particles in a periodic cube of
side length Lbox = 50 h−1Mpc with a Plummer equiv-
alent smoothing of 1.2 h−1kpc. The initial conditions
were generated by displacing particles from a regular
grid using second order Lagrangian perturbation theory
at z = 150. This TreePM code has been compared to
a number of other codes and has been shown to per-
form well for such simulations (Heitmann et al. 2008).
Recently the code has been modified to use a hybrid
MPI+OpenMP approach which is particularly efficient
for modern clusters.

2.2. Description of the Intergalactic Medium

The baryon density field is obtained by smoothing the
dark matter distribution; this smoothing mimics the ef-
fect of the Jeans pressure smoothing. For any given ther-
mal model, we adopt a constant filtering scale λJ , rather
than computing it as a function of the temperature, and
this value is allowed to vary as a free parameter (see
discussion below). The dark matter distribution is con-
volved with a window function WIGM, which, in Fourier
space, has the effect of quenching high-k modes

δIGM(~k) = WIGM(~k, λJ)δDM(~k) (3)
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For example a Gaussian kernel with σ = λJ , WIGM(k) =
exp(−k2λ2

J/2), would truncates the 3D power spectrum
at k ∼ 1/λJ .
Because we smooth the dark matter particle distribu-

tion in real-space, it is more convenient to adopt a func-
tion with a finite-support

δIGM(x) ∝
∑

i

miK(|x− xi|, RJ) (4)

where mi and xi are the mass and position of the particle
i, K(r) is the kernel, and RJ the smoothing parameter
which sets the Jeans scale. We adopt the followoing cubic
spline kernel

K(r, RJ) =
8

πR3
J
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(5)
In the central regions the shape of K(r) very closely re-
sembles a Gaussian with σ ∼ RJ/3.25, and we will hence-
forth take this RJ/3.25 to be our definition of λJ , which
we will alternatively refer to as the ‘Jeans scale’ or the
‘filtering scale’. The analogous smoothing procedure is
also applied to the particle velocities; however, note that
the velocity field has very little small-scale power, and so
the velocity distribution is essentially unaffected by this
pressure smoothing operation. As we discuss further in
Appendix A, the mean inter-particle separation of our

simulation cube δl = Lbox/N
1/3
p sets the minimum Jean

smoothing that we can resolve with our dark matter sim-
ulation, hence we can safely model values of λJ > 50 kpc.
At the densities typically probed by the Lyα forest, the

IGM is governed by relatively simple physics. Most of
the gas has never been shock heated, is optically thin to
ionizing radiation, and can be considered to be in ioniza-
tion equilibrium with a uniform UV background. Under
these conditions, the competition between photoioniza-
tion heating and adiabatic expansion cooling gives rise to
a tight relation between temperature and density which is
well approximated by a power law (Hui & Gnedin 1997),

T (δ) = T0(1 + δ)γ−1 (6)

where T0, the temperature at the mean density, and γ,
the slope of the temperature-density relation, both de-
pend on the thermal history of the gas. We thus fol-
low the standard approach, and parametrize the thermal
state of the IGM in this way. Typical values for T0 are on
the order of 104 K, while γ is expected to be around unity,
and asymptotically approach the value of γ∞ = 1.6, if
there is no other heat injection besides (optically thin)
photoionzation heating. Recent work suggests that an
inverted temperature-density relation γ < 1 provides a
better match to the flux probability distribution of the
Lyα forest (Bolton et al. 2008), but the robustness of this
measurement has been debated (Lee 2012).
The optical depth for Lyα absorption is proportional

to the density of neutral hydrogen nHI , which, if the gas
is highly ionized (xHI ≪ 1) and in photoionization equi-
librium, can be calculated as (Gunn & Peterson 1965)

nHI = α(T )n2
H/Γ (7)

where Γ is the photoionization rate due to a uniform
metagalactic ultraviolet background (UVB), and α(T ) is
the recombination coefficient which scales as T−0.7 at
typical IGM temperatures. These approximations re-
sult in a power law relation between Lyα optical depth
and overdensity often referred as the fluctuating Gunn-
Petersonn approximation (FGPA) τ ∝ (1 + δ)2−0.7(γ−1),
which does not include the effect of peculiar motions and
thermal broadening. We compute the observed optical
depth in redshift-space via the following convolution of
the real-space optical depth

τ(v) =

∫ ∞

−∞

τ(x)Φ(Hax + vp,‖(x)− v, b(x))dx, (8)

where Hax is the real-space position in velocity units,
vp,‖(x) is the longitudinal component of the peculiar ve-
locity of the IGM at location x, and Φ is the normalized
Voigt profile (which we approximate with a Gaussian)

characterized by the thermal width b =
√

2KBT/mc2,
where we compute the temperature from the baryon den-
sity via the temperature-density relation (see eqn. 6).
The observed flux transmission is then given by F (v) =
e−τ(v).
We apply the aforementioned recipe to 2×1002 lines-of-

sight (skewers) running parallel to the box axes, to gen-
erate the spectra of 1002 quasar pairs, and we repeat this
procedure for 500 different choices of the parameter set
(T0, γ, λJ). Half of the spectra (the first member of each
pair) are positioned on a regular grid in the y−z plane, in
order to distribute them evenly in space. Subsequently,
a companion is assigned to each of them, and our choice
for the distribution of radial distances warrants further
discussion. Our goal is to statistically characterize the
coherence of pairs of spectra as a function of impact pa-
rameter, and near the Jeans scale this coherence varies
rapidly with pair separation. Hence computing statistics
in bins of transverse separation is undesirable, because
it can lead to subtle biases in our parameter determi-
nations if the bins are too broad. To circumvent these
difficulties, we focus our entire analysis on 30 linearly-
spaced discrete pair separations between 0 and 714 kpc.
For each of the 1002 lines-of-sight on the regular grid,
a companion sightline is chosen at one of these discrete
radial separations, where the azimuthal angle is drawn
from a uniform distribution.
We follow the standard approach, and treat the meta-

galactic photoionization rate Γ as a free parameter,
whose value is fixed a posteriori by requiring the mean
flux of our Lyα skewers 〈exp(−τ)〉 to match the mea-
sured values from Faucher-Giguere et al. (2007). This
amounts to a simple constant re-scaling of the optical
depth. The value of the mean flux at z = 3 is taken
to be fixed, and thus assumed to be known with infi-
nite precision. This is justified, because in practice, the
relative measurement errors on the mean flux are very
small in comparison to uncertainties of the thermal pa-
rameters we wish to study. In a future work, we conduct
a full parameter study using other Lyα forest statistics,
and explore the effect of uncertainties of the mean flux
(A.Rorai et al. 2013, in preparation). Examples of our
spectra are shown in Figure 1.
To summarize, our models of the Lyα forest are
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Fig. 1.— An example of three simulated spectra. The left and the right panels represent the same spectra in the simulation calculated
for two models with different Jeans smoothing length λJ . The middle and the lower panel represent two spectra respectively at separation
0.5 Mpc and 1 Mpc from the top one. The coloured sine curves track homologous Fourier modes in each spectrum, with rescaled mean
and amplitude to fit the range [0, 1]. The wave shifts provide a graphical visualization of phase differences, which we will use to quantify
spectral coherence and probe the Jeans scale. The right panels suggest that a larger λJ results in greater spectral coherence and generally
smaller phase differences between neighboring sightlines.

uniquely described by the three parameters (T0, γ, λJ ),
and we reiterate that these three parameters are consid-
ered to be independent. In particular the Jeans scale is
not related to the instantaneous temperature at mean
density T0. Although this may at first appear unphys-
ical, it is motivated by the fact that λJ depends non-
linearly on the entire thermal history of the IGM (see
eqn. 1), and both this dependence and the thermal his-
tory are not well understood, as discussed in the in-
troduction. Allowing λJ to vary independently is the
most straightforward parametrization of our ignorance.
However, improvements in our theoretical understand-
ing of the relationship between λJ and the thermal his-
tory of the IGM (T0,γ) could inform more intelligent
parametrizations. Furthermore, inter-dependencies be-
tween thermal parameters can also be trivially included
into our Bayesian methodology for estimating the Jeans
scale as conditional priors, e.g. P (λJ , T0), in the param-
eter space.

3. POWER SPECTRA AND THEIR DEGENERACIES

Although many different statistics have been em-
ployed to isolate and constrain the thermal informa-
tion contained in Lyα forest spectra, the flux prob-
ability density function (PDF; 1-point function) and
the flux power spectrum or auto-correlation function
(2-point function), are among the most common(e.g.
McDonald et al. 2000; Zaldarriaga et al. 2001; Kim et al.
2007; Viel et al. 2009). But because the Lyα transmis-
sion F is significantly non-Gaussian, significant infor-
mation is also contained in higher-order statistics. For
example wavelet decompositions, which contains a hy-
brid of real-space and Fourier-space information, have
been advocated for measuring spatial temperature fluctu-
ations (Lidz et al. 2009; Zaldarriaga 2002; Garzilli et al.
2012). Several studies have focused on the on the b-

parameter distribution to obtain constraints on ther-
mal parameters (Ricotti et al. 2000; Schaye et al. 2000;
McDonald et al. 2001; Rudie et al. 2012), and recently
Becker et al. (2011) introduced a ‘curvature’ statistic as
an alternative measure of spectral smoothness to the
power spectrum.
As gas pressure acts to smooth the baryon density field

in 3D, it is natural explore power spectra as a means to
constrain the Jeans filtering scale. A major motivation
for working in Fourier space, as opposed to the real-space
auto-correlation function, is that it is much easier to deal
with limited spectral resolution in Fourier space. The
vast majority of close quasar pairs are too faint to be
observed at echelle resolution FWHM ≃ 5 km s−1 where
the Lyα forest is completely resolved. Instead, spectral
resolution has to be explicitly taken into account. But to
a very good approximation the smoothing caused by lim-
ited spectral resolution simply low-pass filters the flux,
and thus the shape of the flux power spectrum is un-
changed for k-modes less than the spectral resolution
cutoff kres. Thus by working in k-space, one can sim-
ply ignore modes k & kres and thus obviate the need
to precisely model the spectral resolution, which can be
challenging for slit-spectra. Finally, another advantage
to k-space is that, because fluctuations in the IGM are
only mildly non-linear, some of the desirable features of
Gaussian random fields, such as the statistical indepen-
dence of Fourier modes, are approximately retained, sim-
plifying error analysis. In what follows we consider the
impact of Jeans smoothing on longitudinal power spec-
trum, as well as the simplest 2-point function that can be
computed from quasar pairs, the cross-power spectrum.

3.1. The Longitudinal Power Spectrum

It is well known that the shape of the longitudi-
nal power spectrum, and the high-k thermal cutoff
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Fig. 2.— Left panel: The 1D dimensionless power spectrum of the Lyα forest at z = 3. In our large grid of thermal models, we can identify
two very different parameter combinations, represented by the solid (blue) and dashed (green) curves, which provide an equally good fit to
the longitudinal power spectrum measurements from McDonald et al. (2000) (red squares) and Croft et al. (2002) (cyan circles), illustrating
the strong degeneracies between these parameters (T0,γ,λJ ). In light of these degeneracies, it is clear that it would be extremely challenging
to constrain these parameters with the longitudinal power alone. Right panel: The dimensionless cross power spectrum π(k; r⊥)k/π (solid
line) at k ≈ 0.05 s/km from our simulated skewers, as a function of r⊥ for the same two thermal models shown at left, with error bars
estimated from a sample of 20 pairs. The degeneracy afflicting the 1D power is broken using the new information provided by close quasar
pairs, because the different Jeans scales result in differing amounts of transverse spectral coherence, providing much better prospects for
measuring λJ . We also show the cross modulus 〈ρ1(k)ρ2(k)〉k/π (dashed lines) for the same two models, which show flat variation with
r⊥, and a very weak dependence on the Jeans scale. Most of the information about the 3D Jeans smoothing resides not in the moduli, but
rather in the phase differences between homologous modes (see discussion in § 4.3).

in particular, can be used constrain the T0 and γ
(Zaldarriaga et al. 2001; Viel et al. 2009). This cutoff
arises because thermal broadening smooths τ in redshift-
space (e.g. eqn. 8). In contrast to this 1D smoothing, the
Jeans filtering smooths the IGM in 3D, and it is exactly
this confluence between 1D and 3D smoothing that we
want to understand (see also Peeples et al. 2009a,b). We
consider the quantity δF (v) = (F−F̄ )/F̄ , where F̄ is the
mean transmitted flux, and compute the power spectrum
according to

P (k) = 〈|δF̃ (k)|2〉, (9)

where δF̃ (k) denotes the Fourier transform of δF for lon-
gitudinal wavenumber k, and angular brackets denote an
suitable ensemble average (i.e. over our full sample of
spectra).
In Figure 2 we compare two thermal models in our

thermal parameter grid to measurements of the longi-
tudinal power spectrum of the Lyα forest at z ≃ 3
(McDonald et al. 2000; Croft et al. 2002). The blue
(solid) curve has a large Jeans scale λJ = 214 kpc, a
cooler IGM T0 = 13, 000K, and a nearly isothermal
temperature-density relation γ = 0.9, which is mildly
inverted such that voids are hotter than overdensities.
Such isothermal or even inverted equations of state
could arise at z ∼ 3 from He II reionization heating
(McQuinn et al. 2009; Tittley & Meiksin 2007b), and re-
cent analyses of the flux PDF (Bolton et al. 2008) as well
joint analysis of PDF and power-spectrum (Viel et al.
2009; Calura et al. 2012; Garzilli et al. 2012) have argued
for inverted or nearly isothermal values of γ. The green
(dashed) curves have a smaller Jeans scale λJ = 100 kpc,
a hotter IGM T0 = 18, 000K, and a steep γ = 1.6
temperature-density relation consistent with the asymp-

totic value if the IGM has not undergone significant re-
cent heating events (Hui & Gnedin 1997; Hui & Haiman
2003). Thus with regards to the longitudinal power spec-
trum, the Jeans scale is clearly degenerate with the am-
plitude and slope (T0, γ) of the temperature-density re-
lation. One would clearly come to erroneous conclusions
about the equation of state parameters (T0,γ) from lon-
gitudinal power spectrum measurements, if the lack of
knowledge of the Jeans scale is not marginalized out
(see e.g. Zaldarriaga et al. 2001, for an example of this
marginalization).
This degeneracy in the longitudinal power arises be-

cause the Jeans filtering smooths the power in 3D on a
scale which project to a longitudinal velocity

vJ =
H(z = 3)

1 + 3
λJ ≈ 26

(

λJ

340 kpc

)

km s−1, (10)

resulting in a cutoff of the power at kJ ≈ 0.04 s km−1

(for the typical values assumed in the introduction5).
The thermal Doppler broadening of Lyα absorption lines
smooths the power in 1D, on a scale governed by the b-
parameter

b =

√

2kBT

µmp
≈ 15.7

(

T

1.5× 104 K

)1/2

km s−1, (11)

which results in an analogous cutoff at kth =
√
2/

b ≈ 0.09 s km−1 for a temperature of 15000 K. Above
kB is the Boltzmann constant, mp the proton mass, and

5 We caution that this estimate assumes a thermal history where
T ∝ 1 + z, without considering the effect of HeII reionization.
In that case the deduced value for the filtering scale λJ would
probably be smaller.
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µ ≈ 0.59 is the mean molecular weight for a primordial,
fully ionized gas. The fact that the two cutoff scales are
comparable results in a strong degeneracy which is very
challenging to disentangle with longitudinal observations
alone. Similar degeneracies between the Jeans scale and
(T0,γ) exist if one considers wavelets, the curvature, the
b-parameter distribution, and the flux PDF, which we ex-
plore in an upcoming study (Rorai et al. 2013, in prep).
In the next section we show that this degeneracy between
3D and 1D smoothing can be broken by exploiting addi-
tional information in the transverse dimension provided
by close quasar pairs.

3.2. Cross Power Spectrum

The foregoing discussion illustrates that the 3D (Jeans)
and 1D (thermal broadening) smoothing are mixed in
the longitudinal power spectrum, and ideally one would
measure the full 3D power spectrum to break this de-
generacy. For an isotropic random field the 1D power
spectrum P (k) and the 3D power P3D(k) are related ac-
cording to

P3D =
1

2π

1

k

dP (k)

dk
. (12)

However, in the Lyα forest redshift-space distortions and
thermal broadening result in an anisotropies that render
this expression invalid.
With close quasar pairs, transverse correlations mea-

sured across the beam contain information about the 3D
power, and can thus thus disentangle the 3D and 1D
smoothing. Consider for example the cross-power spec-
trum π(k, r⊥) of two spectra δF1(v) and δF2(v) separated
by a transverse distance r⊥

π(k; r⊥) = ℜ[δF̃ ∗
1 (k)δF̃2(k)]. (13)

When r⊥ → 0 then δF2 → δF1 and the cross-power
tends to the longitudinal power P (k). The cross-power
can be thought of as effectively a power spectrum in the
longitudinal direction, and a correlation function in the
transverse direction (see also Viel et al. 2002). Alter-
natively stated, the cross power provides a transverse
distance dependent correction to the longitudinal power
P (k), reducing it from its maximal value at ‘zero lag’
r⊥ = 0. This further implies that measuring the cross
power of closely separated and thus highly coherent spec-
tra amounts to, at some level, a somewhat redundant
measurement of the longitudinal power which could be
simply deduced from isolated spectra. In the next sec-
tion, we will explain how to isolate the genuine 3D infor-
mation provided by close quasar pairs using a statistic
that is more optimal than the cross-power. Nevertheless,
Figure 2 shows the cross-power spectrum for the two de-
generate models discussed in the previous section, clearly
illustrating that even the sub-optimal cross-power spec-
trum can break the strong degeneracies between thermal
parameters that are present if one considers the longitu-
dinal power alone.

4. PHASE ANGLES AND THE JEANS SCALE

Although the cross-power has the ability to break the
degeneracy between 3D and 1D smoothing present in the
longitudinal power, we demonstrate here that the cross-
power (or equivalently the cross-correlation function) is

however not optimal, and indeed the genuine 3D infor-
mation is encapsulated in the phase differences between
homologous Fourier modes.

4.1. Drawbacks of the Cross Power Spectrum

Let us write the 1D Fourier transform of the field δF
as

δF̃ (k) = ρ(k)eiθ(k) (14)

where the complex Fourier coefficient is described by a
modulus ρ and phase angle θ, both of which depend on
k. Note that for any ensemble of spectra P (k) = 〈ρ2(k)〉,
hence the modulus ρ(k) is a random draw from a distri-
bution whose variance is given by the power spectrum.
From eqn. (13), the cross-power of the two spectra δF1(v)
and δF2(v) is then

π12(k) = ρ1(k)ρ2(k) cos(θ12(k)), (15)

where θ12(k) = θ1(k) − θ2(k) is the phase difference be-
tween the homologous k−modes. The distribution of the
moduli ρ1 and ρ2 are also governed by P (k), but at small
impact parameter they are not statistically independent
because of spatial correlations. Nevertheless, the mod-
uli contain primarily information already encapsulated
in the longitudinal power, and are thus affected by the
same thermal parameter degeneracies that we described
in the previous section. For the purpose of constrain-
ing the Jeans scale, we thus opt to ignore the moduli
ρ1 and ρ2 altogether, in an attempt to isolate the gen-
uine 3D information, increasing sensitivity to the Jeans
scale, while minimizing the impact of thermal broaden-
ing, removing degeneracies with the temperature-density
relation parameters (T0,γ).
The foregoing points are clearly illustrated by the

dashed curves in the right panel of Figure 2, which com-
pares the quantity 〈ρ1(k)ρ2(k)〉 as a function of impact
parameter r⊥ for the same pair of thermal models dis-
cussed in § 3.1, which are degenerate with respect to the
longitudinal power. The similarity of these two curves re-
flects the degeneracy of the longitudinal power for these
two models, and one observes a flat trend with r⊥ and
a very weak dependence on the Jeans scale λJ , substan-
tiating our argument that the moduli contain primarily
1D information.
As the moduli contain minimal information about the

3D power, we are thus motivated to explore how the
phase difference θ12(k) can constrain the Jeans scale. In
terms of Fourier coefficients, θ12(k) can be written

θ12(k) = arccos





ℜ[δF̃ ∗
1 (k)δF̃2(k)]

√

|δF̃1(k)|2|δF̃2(k)|2



 . (16)

Note that because the phase difference is given by a ratio
of Fourier modes, it is completely insensitive to the nor-
malization of δF , and hence to quasar continuum fitting
errors, provided that these errors do not add power on
scales comparable to k. In the remainder of this section,
we provide a statistical description of the distribution of
phase differences and we explore the properties and de-
pendencies of this distribution. To simplify notation we
will omit the subscript and henceforth denote the phase
difference as simply θ(k, r⊥) = θ1(k)−θ2(k), where r⊥ is
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Fig. 3.— Schematic representation of the heuristic argument
used to determine the phase difference distribution: phase are
determined by density filaments crossing the lines of sight of
two quasars. If the orientation of the filaments ϕ is isotropi-
cally distributed then θ′, dependent on the longitudinal distance
L = r⊥ tanϕ, follows a Cauchy distribution.

the transverse distance between the two spectra δF1(v)
and δF2(v).

4.2. An Analytical Form for the PDF of Phase
Differences

The phase difference between homologous k-modes is a
random variable in the domain [−π, π], which for a given
thermal model, depends on two quantities: the longi-
tudinal mode in question k and the transverse separa-
tion r⊥. One might advocate computing the quantity
〈cos θ(k, r⊥)〉 analogous to the cross-power (see eqn. 13),
or the mean phase difference 〈θ(k, r⊥)〉, to quantify the
coherence of quasar pair spectra. However, as we will
see, the distribution of phase differences is not Gaussian,
and hence is not fully described by its mean and vari-
ance. This approach would thus fail to exploit all the
information encoded in its shape. Our goal is then to de-
termine the functional form of the distribution of phase
differences at any (k, r⊥), and relate this to the ther-
mal parameters governing the IGM. This is a potentially
daunting task, since it requires deriving a unique func-
tion in the 2-dimensional space θ(k, r⊥) for any location
in our 3-dimensional thermal parameter grid (T0, γ, λJ).
Fortunately, we are able to reduce the complexity consid-
erably by deriving a simple analytical form for the phase
angle distribution.
We arrive at a this analytical form via a simple heuris-

tic argument, whose logic is more intuitive in real space.
Along the same lines, we focus initially on the IGM den-
sity distribution along 1D skewers, and then later demon-
strate that the same form also applies to the Lyα flux
transmission. Consider a filament of the cosmic web
pierced by two quasar sightlines separated by r⊥, and

oriented at an angle ϕ relative to the transverse direc-
tion. A schematic representation is shown in Figure 3.
This structure will result in two peaks in the density field
along the two sightlines, separated by a longitudinal dis-
tance of L = r⊥ tanϕ. If we assume that the positions of
these density maxima dictate the position of wave crests
in Fourier space, the phase difference for a mode with
wave number k can be written as θ′ = kL = kr⊥ tanϕ.
We can derive the probability distribution of the phase
difference by requiring that p(θ′)dθ′ = p(ϕ)dϕ, and as-
suming that, by symmetry, ϕ is uniformly distributed.
This implies that θ′ follows the Cauchy-distribution

p(θ′) =
1

ǫπ

1

1 + (θ′/ǫ)2
, (17)

where ǫ parametrizes the distribution’s concentration.
As a final step, we need to redefine the angles such that
they reside in the proper domain. Because tanϕ spans
the entire real line, so will θ′; however, for any integer n,
all phases θ′+2πn corresponding to distances L+2πn/k
will map to identical values of θ, defined to be the phase
difference in the domain [−π, π]. Redefining the domain,
requires that we re-map our probabilities according to

P[−π,π](θ) =
∑

n∈Z

p(θ + 2πn), (18)

a procedure known as ‘wrapping’ a distribution. Fortu-
nately, the exact form of the wrapped-Cauchy distribu-
tion is known:

PWC(θ) =
1

2π

1− ζ2

1 + ζ2 − 2ζ cos(θ − µ)
, (19)

where µ = 〈θ〉 is the mean value (in our case µ = 0 by
symmetry), and ζ is a concentration parameter between
0 and 1, which is the wrapped analog of ǫ above. In the
limit where ζ → 1 the distribution tends to a Dirac delta
function δD(x), which is the behavior expected for identi-
cal spectra. Conversely, ζ = 0 results in a uniform distri-
bution, the behavior expected for uncorrelated spectra.
A negative ζ gives distributions peaked at θ = π and is
unphysical in this context.

4.3. The Probability Distribution of Phase Differences
of the IGM Density

We now show that this wrapped-Cauchy form does a
good job of describing the real distribution of phase dif-
ferences for our simulated IGM density skewers. Note
that for our simple heuristic example of randomly ori-
ented filaments, the concentration parameter ζ only de-
pends on the product of kr⊥; whereas, in the real IGM,
one expects the spectral coherence quantified by ζ to de-
pend on the Jeans scale λJ . Because we do not know
how to directly compute the concentration parameter in
terms of the Jeans scale from first principles, we opt to
calculate ζ from our simulations. At any longitudinal
wavenumber k, pair separation r⊥, and Jeans scale λJ ,
our density skewers provide a discrete sampling of the
θ distribution. We use the maximum likelihood proce-
dure from Jammalamadaka & Sengupta (2001) to calcu-
late the best-fit value of ζ from an ensemble of θ values,
as described further in Appendix B. Figure 4 shows the
distribution of phases determined from our IGM den-
sity skewers (symbols with error bars) compared to the
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Fig. 4.— Phase difference probability functions of the density fields at different separations r⊥, wavenumbers k and Jeans scale λJ .
Points with errorbars represent the binned phase distribution of the density field as obtained from the simulation, while the solid lines
are the best-likelihood fit using a wrapped-Cauchy distribution. When the spectra are highly correlated the phases are small and the
distribution is peaked around zero, whereas independent skewers result in flat probability functions. The error are estimated from the
number of modes available in the simulation, assuming a Poisson distribution. By symmetry p(θ) must be even in θ, hence it is convenient
to plot only the range [0, π], summing positive and negative probabilities (clearly obtaining p(|θ|) ) to increase the sampling in each bin.
We express the scale of each mode both giving the wavelength λ in Mpc and the wave number k (in s km−1) in the transformed velocity
space. The wrapped-Cauchy function traces with good approximation the phase distribution obtained from the simulation, showing less
accuracy in the cases of strongly concentrated peaks, where low-probability bins are noisy. Each color is a different smoothing length:
λJ = 50, 100 and 200 kpc (respectively black, red and blue). It is important to notice that the relative distributions are different not only
at scales comparable to λJ , but also for larger modes, because the 3D power of high-k modes when projected on a 1D line contributes to all
the low-k components (see the text for a detailed discussion). Secondly, it is clear that the most relevant pairs are the closest (r⊥ . λJ ),
because for wide separations the coherence is too low to get useful information. These two consideration together explain why close quasar
pairs are the most effective objects to measure the Jeans scale, even if they cannot be observed at high resolution.

best-fit wrapped-Cauchy distributions (curves) for differ-
ent longitudinal modes k, transverse separations r⊥, and
values of the Jeans scale λJ . We see that the wrapped-
Cauchy distribution typically provides a good fit to the
simulation data points to within the precision indicated
by the error bars. For very peaked distributions which
correspond to more spectral coherence (i.e. low-k or large
λJ ), there is a tendency for our wrapped-Cauchy fits to
overestimate the probability of large phase differences
relative to the simulated data, although our measure-
ments of the probability are very noisy in this regime.
We have visually inspected similar curves for the entire
dynamic range of the relevant k, r⊥ and λJ , for which the

shape of the wrapped-Cauchy distribution varies from
nearly uniform (ζ ≃ 0) to a very high degree of coher-
ence (ζ ≃ 1), and find similarly good agreement.
It is instructive to discuss the primary dependencies of

the phase difference distribution on wavenumber k, sep-
aration r⊥, and the Jeans scale λJ illustrated in Figure
4. At a fixed wavenumber k, a large separation relative
to the Jeans scale results in a flatter distribution of θ,
which approaches uniformity for r⊥ ≫ λJ . The distribu-
tion approaches the fully coherent limit of a Dirac delta
function for r⊥ ≪ λJ , and the transitions from a strongly
peaked distribution to a uniform one occurs when r⊥ is
comparable to the Jeans scale λJ . We see that quasar
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pairs with transverse separations r⊥ . 3λJ , contain in-
formation about the Jeans scale, whereas this sensitivity
vanishes for larger impact parameters. At fixed r⊥, lower
k-modes (i.e. larger scales) are more highly correlated
(smaller θ values) as expected, because sightlines spaced
closely relative to the wavelength of the mode kr⊥ ≪ 1,
probe essentially the same large scale density fluctuation.
Overall, the dependencies in Figure 4 illustrate that there
is information about the Jeans smoothing spread out over
a large range of longitudinal k-modes. Somewhat surpris-
ingly, even modes corresponding to wavelengths & 100
times larger than λJ can potentially constrain the Jean
smoothing.
This sensitivity of very large-scale longitudinal k-

modes to a much smaller scale cutoff λJ in the 3D power
merits further discussion. First, note that the range
of wavenumbers typically probed by longitudinal power
spectra of the Lyα forest lie in the range 0.005 s km−1 <
k < 0.1 s km−1 (see Figure 2), corresponding to modes

with wavelengths 60 km s−1 < v < 1250 km s−1 or
830 kpc < λ < 17Mpc. Here the low-k cutoff is set by
systematics related to determining the quasar continuum
(see e.g. Lee 2012), whereas the high-k cutoff is adopted
to mitigate contamination of the small-scale power from
metal absorption lines (McDonald et al. 2000). In prin-

ciple high-resolution (echelle) spectra FWHM= 5km s−1

probe even higher wavenumbers as large as k ≃ 3, how-
ever standard practice is to only consider k . 0.1 in
model-fitting (see e.g. Zaldarriaga et al. 2001). Thus
even the highest k-modes at our disposable k ≃ 0.1 corre-
spond to wavelengths ≃ 830 kpc significantly larger than
our expectation for the Jeans scale ∼ 100 kpc. Further-
more, we saw in § 3.1 that degenerate combinations of
the Jeans smoothing and the IGM temperature-density
relation can produce the same small-scale cutoff in the
longitudinal power. Thus both metal-line contamination
and degeneracies with thermal broadening imply that
while it is extremely challenging to resolve the Jeans scale
spectrally, the great advantage of close quasar pairs is
that they resolve the Jeans scale spatially, provided they
have transverse separations r⊥ comparable to λJ . We
will thus typically be working in the regime where k/
k⊥ ≪ 1, where we define k⊥ ≡ x0/aHr⊥, where aHr⊥
is the transverse separation converted to a velocity and
x0 = 2.4048 is a constant the choice of which will become
clear below.
In this regime, it is straightforward to understand why

the phase differences between large-scale modes are nev-
ertheless sensitive to the Jeans scale. Consider the quan-
tity 〈cos θ(k, r⊥)〉, which is related to the cross-power
discussed in § 4.1. This ‘moment’ of the phase angle
PDF can be written

〈cos θ(k, r⊥)〉 =
∫ π

−π

P (θ(k, r⊥)) cos θ(k, r⊥)dθ, (20)

which tends toward zero for totally uncorrelated spectra
(P (θ) = 1/2π) and towards unity for perfectly correlated,
i.e. identical spectra (P (θ) = δD(θ)) spectra. Following
the discussion in § 4.1, we can write

π(k, r⊥) = 〈ρ1(k)ρ2(k) cos θ(k, r⊥)〉≈ (21)

〈ρ1(k)ρ2(k)〉〈cos θ(k, r⊥)〉≈P (k)〈cos θ(k, r⊥)〉,

where the first approximation is a consequence of the
approximate Gaussianity of the density fluctuations, and
the second from the fact that 〈ρ1ρ2〉 ≈ P (k) for k/k⊥ ≪
1, as demonstrated by the dashed curves in the right
panel of Fig 2. Thus we arrive at

〈cos θ(k, r⊥)〉 ≈
π(k, r⊥)

P (k)
=

∫∞

k dqqJ0(r⊥
√

q2 − k2)P3D(q)
∫∞

k
dqqP3D(q)

,

(22)
where J0 is the cylindrical Bessel function of order zero.
The numerator and denominator of the last equality in
eqn. (22) follow from the definitions of the longitudinal
and cross power for an isotropic 3D power spectrum (see
e.g. Lumsden et al. 1989; Peacock 1999; Hui et al. 1999;
Viel et al. 2002). The denominator is the familiar expres-
sion for the 1D power expressed as a projection of the 3D
power. Note that 1D modes with wavenumber k receive
contributions from all 3D modes with wavevectors ≥ k,
which results simply from the geometry of observing a
3D field along a 1D skewer. A long-wavelength (low-
k) 1D longitudinal mode can be produced by a short-
wavelength (high-k) 3D mode directed nearly perpendic-
ular to the line of sight (see e.g. Peacock 1999). The
numerator of eqn. (22) is similarly a projection over all
high-k 3D modes, but because of the non-zero separation
of the skewers the 3D power spectrum is now modulated
by the cylindrical Bessel function J0(x). Because J0(x) is
highly oscillatory, the primary contribution to this pro-
jection integral will come from arguments in the range
0 < x < x0. Here x0 = 2.4048 is the first zero of J0(x),
which motivates our earlier definition of k⊥ ≡ x0/aHr⊥.
For larger arguments x, the decay of J0(x) and its rapid
oscillations will result in cancellation and negligible con-
tributions. Thus for k/k⊥ ≪ 1, we can finally write

〈cos θ(k, r⊥)〉 ≈
∫ k⊥

k dqqJ0(r⊥
√

q2 − k2)P3D(q)
∫∞

k dqqP3D(q)
. (23)

This equation states that the average value of the phase
difference between homologous k modes is determined by
the ratio of the 3D power integrated against a ‘notch fil-
ter’ which transmits the range [k, k⊥], relative to the to-
tal integrated 3D power over the full range [k,∞]. Hence
phase angles between modes with wavelengths & 100
times larger than λJ , are nevertheless sensitive to the
amount of 3D power down to scales as small as the trans-
verse separation r⊥. This results simply from the geom-
etry of observing a 3D field along 1D skewers, because
the power in longitudinal mode k is actually dominated
by the superposition of 3D power from much smaller
scales ≫ k. Provided that quasar pair separations re-
solve the Jeans scale r⊥ ∼ λJ , even large scale modes
with k ≪ k⊥ ∼ 1/λJ are sensitive to the shape of the
3D power on small-scales, which explains the sensitivity
of low-k modes to the Jeans scale in Figure 4.
Finally, the form of eqn. (23) combined with eqn. (20)

explains the basic qualitative trends in Figure 4. For
large r⊥ (small k⊥) the projection integral in the numer-
ator decreases, 〈cos θ(k, r⊥)〉 approaches zero, indicat-
ing that P (θ(k, r⊥)) approaches uniformity. Similarly, as
r⊥ → λJ , 〈cos θ(k, r⊥)〉 grows indicating that P (θ(k, r⊥))
is peaked toward small phase angles, and in the limit
r⊥ ≪ λJ 〈cos θ(k, r⊥)〉 → 1 and P (θ(k, r⊥)) approaches
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Fig. 5.— Same plot of figure 4 but for the Lyα transmitted flux field instead of density. We vary the Jeans scale λJ , keeping fixed
the equation-of-state parameters, T0 = 10000 K and γ = 1.6. The properties of the distributions are analogous to the previous plot, they
follow with good approximation a wrapped-Cauchy profile and they exhibit the same trends with r⊥, k and λJ . Overall, the flux shows an
higher degree of coherence and a slightly smaller sensitivity to λJ .

a Dirac delta function. At fixed r⊥, lower k modes will
result in more common pathlength in the projection in-
tegrals in the numerator and denominator of eqn. (23),
thus 〈cos θ(k, r⊥)〉 is larger, P (θ(k, r⊥)) is more peaked,
and the phase angles are more highly correlated.
To summarize, following a simple heuristic argument,

we derived a analytical form for the phase angle distri-
bution in § 4.2, which is parametrized by a single num-
ber, the concentration ζ. We verified that this simple
parametrization provides a good fit to the distribution
of phase differences in our simulated skewers, and ex-
plored the dependence of this distribution on transverse
separation r⊥, wavenumber k, and the Jeans scale λJ .
Phase differences between large-scale modes with small
wavenumbers k ≪ 1/λJ , are sensitive to the Jeans scale,
because geometry dictates that low-k cross-power across
correlated 1D skewers is actually dominated by high-k 3D
modes up to a scale set by the pair separation k⊥ ∼ 1/
r⊥.

4.4. The Probability Distribution of Phase Differences
of the Flux

Having established that the wrapped-Cauchy distribu-
tion provides a good description of the phase difference
of IGM density skewers, we now apply it to the Lyα for-
est flux. Figure 5 shows the PDF of phase differences
for the exact same transverse separations r⊥, wavenum-
bers k, and Jeans smoothings λJ that were shown in
Figure 4. The other thermal parameters T0 and γ have
been set to (T0, γ) = (10, 000K, 1.6). Overall, the be-
havior of the phase angle PDF for the flux is extremely
similar to that of the density, exhibiting the same ba-
sic trends. Namely, the flux PDF also transitions from
a strongly peaked distribution (r⊥ . λJ ) to a flat one
(r⊥ ≫ λJ ) at around r⊥ ≃ λJ . Lower k-modes tend to
be more highly correlated, and low-k modes correspond-
ing to wavelengths & 100λJ are nevertheless very sensi-
tive to the Jeans scale, in exact analogy with the density
field. Note that because the 3D power spectrum of the
flux field is now anisotropic, the assumptions leading to
the derivation of eqn. 23 in the previous section breaks
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Fig. 6.— Phase difference probability density functions for different separations r and wavenumbers k. All models have the same Jeans
scale J = 140 kpc. For clarity we plot only the best-fit wrapped-Cauchy function without simulated points with errorbars. The black
and the red lines are the phase angle PDFs for the transmitted flux of the Ly forest and the IGM density field, respectively. The green
line represents the case of the Ly forest flux where peculiar velocities are set to zero. By comparing the green and the black lines we see
that in peculiar motions always increase the coherence between the two sightlines, which partly explains the differences between the flux
and density distributions, since the latter is calculated in real space. The flux and density further differ because of the non-linear FGPA
transformation, which has a stronger effect on smaller scale modes.

down for the flux. Nevertheless, the explanation for the
sensitivity of low-k modes to the Jeans scale is likely the
same, namely the low-k power across correlated skewers
is actually dominated by projected high-k 3D power up
to a scale k⊥ ∼ 1/r⊥, which is set by the pair separation.
The primary difference between the phase angle PDF

of flux versus the density appears to be that the flux
PDF is overall slightly less sensitive to the Jeans scale.
In general, we do not expect the two distributions to be
exactly the same for several reasons. First, the flux rep-
resents a highly nonlinear transformation of the density:
according to the FGPA formula δF ∼ exp [−(1 + δ)β ]
where β = 2 − 0.7(γ − 1). Second, the flux is observed
in redshift space, and the peculiar velocities which deter-
mine the mapping from real to redshift space, can further
alter the flux relative to the density. Finally, the flux
field is sensitive to other thermal parameters T0 and γ,
both through the nonlinear FGPA transformation, and
because of thermal broadening. In what follows, we in-

vestigate each of these effects in turn, and discuss how
each alters the phase angle PDF and its sensitivity to the
Jeans scale.
In Figure 6 we show the flux PDF (black) alongside

the density PDF (red) for various modes and separa-
tions, again with the thermal model fixed to (T0, γ, λJ) =
(20, 000 K, 1.0, 140) kpc. To isolate the impact of pecu-
liar velocities, we also compute the phase angle PDF
of the real-space flux, i.e. without peculiar velocities
(green). Specifically, we disable peculiar velocities by
computing the flux from eqn. (8) with vp,‖ set to zero.
Overall, the PDFs of the real-space flux and density (also
real-space) are quite similar. For low wavenumbers, the
real-space flux skewers are always slightly more coher-
ent than the density (P (θ) more peaked) for all separa-
tions. However, at the highest k, the situation is reversed
with the density being more coherent than the real-space
flux. A detailed explanation of the relationship between
the phase angle PDF of the real-space flux and the den-
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Fig. 7.— Phase difference probability density functions for different separations r⊥, wavenumbers k and equation-of-state parameters
T0−γ. Points with errorbars (estimated Poisson error) are the results of our simulations, while the coloured lines are the best-likelihood fit
using a wrapped-Cauchy distribution. All models have the same Jeans scale λJ = 140 kpc. This plot shows the most remarkable property
of phases: they do not exhibit any relevant sensitivity to the equation of state, so they robustly constrain the spatial coherence given by
pressure support.

sity fields requires a better understanding of the effect
of the non-linear FGPA transformation on the 2-point
function of the flux, which is beyond the scope of the
present work. Here we only argue that the 3D power
spectrum of the real-space flux has in general a different
shape than that of the density, and using our intuition
from eqn. (23), this will result in a different shape for the
distribution of phase angles. The net effect of peculiar ve-
locities on the redshift-space flux PDF is to increase the
amount of coherence between the two sightlines (P (θ)
more peaked) relative to the real-space flux. This likely
arises because the peculiar velocity field is dominated by
large-scale power, which makes the 3D power of the flux
steeper as a function of k. Again based on our intuition
from eqn. (22), a steeper power spectrum will tend to
increase the coherence (〈cos(θ(k, r⊥))〉 closer to unity),
because the projection integrals in the numerator and
denominator of eqn. (22) will both have larger relative
contributions from the interval [k, k⊥]. Note that the rel-
ative change in the flux PDF due to peculiar velocities
is comparable to the differences between the real-space

flux and the density. At the highest k-values where the
real-space flux is less coherent than the density (lowest
panel of Figure 6), peculiar velocities conspire to make
the redshift-space flux PDF very close to the density
PDF.
Finally, we consider the impact of the other thermal

parameters T0 and γ on the distribution of phases in
Figure 7. There we show the PDF of the phase an-
gles for the flux for a fixed Jeans scale λJ = 140 kpc,
and three different thermal models. Varying T0 and
γ over the full expected range of these parameters has
very little impact on the shape of the phase angle PDF,
whereas we see in Figure 5 that varying the Jeans scale
has a much more dramatic effect. The physical expla-
nations for the insensitivity to T0 and γ are straightfor-
ward. The thermal parameters T0 and γ can influence
the phase angle PDF in two ways. First, the FGPA de-
pends weakly on temperature T−0.7 through the recom-
bination coefficient. As a result the non-linear transfor-
mation between density and flux depends weakly on γ
δF ∼ exp [−(1 + δ)β ] where β = 2 − 0.7(γ − 1). We
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speculate that the tiny differences between the thermal
models in Figure 7 are primarily driven by this effect,
because we saw already in Figure 7 that the non-linear
transformation can give rise to large differences between
the density and flux PDFs. This small variation of the
PDF with γ then suggests that it is actually the expo-
nentiation which dominates the differences between the
flux and density PDFs in Figure 7, with the weaker γ
dependent transformation (1 + δ)2−0.7(γ−1) playing only
a minor role, which is perhaps not surprising. Note that
there is also a T−0.7

0 dependence in the coefficient of the
FGPA optical depth, but as we require all models to have
the same mean flux 〈exp(−τ)〉, this dependence is com-
pensated by the freedom to vary the metagalactic pho-
toionization rate Γ. Second, both T0 and γ determine the
temperature of gas at densities probed by the Lyα forest,
which changes the amount of thermal broadening. The
insensitivity to thermal broadening is also rather easy to
understand. Thermal broadening is effectively a convo-
lution of the flux field with a Gaussian smoothing kernel.
In k-space this is simply a multiplication of the Fourier
transform of the flux δF̃ (k) with the Fourier transform
of the kernel. Because all symmetric kernels will have
a vanishing imaginary part6, the convolution can only
modify the moduli of the flux but the phases are invari-
ant. Thus the phase differences between neighboring flux
skewers are also invariant to smoothing, which explains
the insensitivity of the flux phase angle PDF to thermal
broadening, and hence the parameters T0 and γ.
The results of this section constitute the cornerstones

of our method for measuring the Jeans scale. We found
that the phase angle PDF of the flux has a shape very
similar to that of the density, and that both are well
described by the single parameter wrapped-Cauchy dis-
tribution. Information about the 3D smoothing of the
density field λJ , is encoded in the phase angle PDF of the
flux, but it is essentially independent of the other ther-
mal parameters governing the IGM. This results because
1) the non-linear FGPA transformation is only weakly
dependent on temperature 2) phase angles are invariant
under symmetric convolutions. The implication is that
close quasar pair spectra can be used to pinpoint the
Jeans scale without suffering from any significant degen-
eracies with T0 and γ. Indeed, in the next section we
introduce a Bayesian formalism for estimating the Jeans
scale, and our MCMC analysis in § 6 will assess the ac-
curacy with which the thermal parameters can be mea-
sured, and explicitly demonstrate the near independence
of constraints on λJ from T0 and γ.

5. ESTIMATING THE JEANS SCALE

5.1. The Covariance of the Phase Differences

In the previous section, we showed that the PDF
of phase differences between homologous longitudinal
modes of the flux field are well described by the wrapped-
Cauchy distribution (see eqn. 19). However, the one-
point function alone is insufficient for characterizing the
statistical properties of the stochastic field θ(k, r⊥), be-
cause in principle values of θ closely separate in either

6 The imaginary part of the Fourier transform of the symmetric
function W (|x|) is ℑ[W (k)] =

∫
W (|x|) sin(kx)dx which is always

odd and will integrate to zero.

wavenumber k or real-space could be correlated. Un-
derstanding the size of these two-point correlations is of
utmost importance. Any given quasar pair spectrum pro-
vides us with a realization of θ(k, r⊥), and we have seen
that the distribution of these values depends sensitively
on the Jeans scale λJ . In order to devise an estimator for
the thermal parameters in terms of the phase differences,
we have to understand the degree to which the θ(k, r⊥)
are independent.
It is easy to rule out the possibility of spatial correla-

tions among the θ values deduced from distinct quasar
pairs. Because quasar pairs are extremely rare on the sky,
the individual quasar pairs in any observed sample will
typically be ∼ Gpc away from each other, and hence dif-
ferent pairs will never probe correlated small-scale den-
sity fluctuations. However, the situation is much less
obvious when it comes to correlations between θ values
for different k-modes of the same quasar pair. In partic-
ular, nonlinear structure formation evolution will result
in mode-mode coupling, which can induce correlations
between mode amplitudes and phases (e.g. Chiang et al.
2002; Watts et al. 2003; Coles 2009). We are thus moti-
vated to use our simulated skewers to directly quantity
the size of the correlations between phase differences of
distinct longitudinal k-modes.
We calculate the correlation coefficient matrix of θ be-

tween modes k and k′ defined as

Cθ(k, k
′; r⊥) =

〈θ(k, r⊥)θ(k′, r⊥)〉
√

〈θ2(k, r⊥)〉 〈θ2(k′, r⊥)〉
. (24)

Our standard setup of 330 pairs at each discrete separa-
tion r⊥ results in a very noisy estimate of Cθ(k, k

′; r⊥),
so we proceed by defining a new set of 80,000 skewers at
two distinct discrete transverse separations of r⊥ = 70
kpc and r⊥ = 430 kpc for a single thermal model with
(T0, γ, λJ) = (20, 000K, 1, 143 kpc).
Figure 8 displays the correlation coefficient matrix for

the two separations r⊥ that we simulated. We find that
the off-diagonal correlations between k-modes are high-
est at high k values and for smaller impact parameters.
This is the expected behavior, since higher longitudinal
k-modes will have a larger relative contributions from
higher-k 3D modes, which will be more non-linear and
have larger mode-mode correlations. Likewise, as per the
discussion in § 4.3, phase differences at smaller pair sep-
arations r⊥ are sensitive to higher k 3D power ∼ k⊥,
and should similarly exhibit larger correlations between
modes. Note however that over the range of longitudinal
k values which we will use to constrain the Jeans scale
0.005 < k < 0.1, the size of the off-diagonal elements are
always very small, of the order of ∼ 1− 3%.
The small values of the off-diagonal elements indicates

that the mode-mode coupling resulting from non-linear
evolution does not result in significant correlations be-
tween the phase angles of longitudinal modes. This could
result from the fact that the intrinsic phase correlations
of the 3D modes is small, and it is also possible that
the projection of power inherent to observing along 1D
skewers (see § 4.3) dilutes these intrinsic phase correla-
tions, because a given longitudinal mode is actually the
average over a large range of 3D modes. From a prac-
tical perspective, the negligible off-diagonal elements in
Figure 8 are key, because they allow us to consider each
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Fig. 8.— Logarithm of the phase k − k correlation for separations r⊥ = 70 kpc (left) and r⊥ = 430 kpc (right). This matrices are
calculated for a model with λJ = 143 kpc, T0 = 20000 K and γ = 1. Phases are more correlated when the impact parameter is smaller than
the jeans scale and at high k where nonlinear growth of perturbations couples different modes. Even in this cases we rarely find correlations
higher than ≈ 3%, for which reason we will work in the diagonal approximation. This approximation may break out if the measured Jeans
scale will be significantly larger than expected.

phase difference θ(k, r⊥) as an independent random draw
from the probability distributions we explored in § 4.4,
which as we show in the next section, dramatically sim-
plifies the estimator that we will use to determine the
Jeans scale.

5.2. A Likelihood Estimator for the Jeans Scale

The results from the previous sections suggest a simple
method for determining Jeans scale. Namely, given any
quasar pair, the phase angle difference for a given k-mode
represents a draw from the underlying phase angle PDF
determined by the thermal properties of the IGM (as
well as other parameters governing e.g. cosmology and
the dark matter which we assume to be fixed). In § 4.4 we
showed that the phase angle PDF is well described by the
wrapped-Cauchy distribution and in § 5.1 we argued that
correlations between phase angle differences θ(k, r⊥), in
both k-space and real-space can be neglected. Thus for
a hypothetical dataset θ(k, r⊥) measured from a sample
of quasar pairs, we can write that the likelihood of the
thermal model M = {T0, γ, λJ} given the data is

L ({θ}|M) =
∏

i,j

PWC(θ(ki, rj)|ζ(k, r⊥|M)). (25)

This states that the likelihood of the data is the product
of the phase angle PDF evaluated at the measured phase
differences for all k-modes and over all quasar pair sep-
arations r⊥. Note that the simplicity of this estimator
is a direct consequence of the fact that there are negli-
gible θ correlations between different k-modes and pair
separations. All dependence on (T0, γ, λJ) is encoded in
the single parameter ζ, which is the concentration of the
wrapped-Cauchy distribution (eqn. 19).
We can then apply Bayes’ theorem to make inferences

about any thermal parameter, for example for λJ

P (λJ |{θ}) =
L ({θ}|λJ )p(λJ )

P ({θ}) (26)

where p(λJ) is our prior on the Jeans scale and the de-
nominator acts as a renormalization factor which is im-
plicitly calculated by a Monte Carlo simulation over the
parameter space. The same procedure can be used to
evaluate the probability distribution of the other param-
eters. Throughout this paper, we assume flat priors on
all thermal parameters, over the full domain of physically
plausible parameter values.
In § 6 we will use MCMC techniques to numerically

explore the likelihood in eqn. (26) and deduce the pos-
terior distributions of the thermal parameters. In order
to do this, we need to be able to evaluate the function
ζ(k, r⊥|T0, γ, λJ ) at any location in thermal parameter
space. This is a non-trivial computational issue, because
we do not have a closed form analytical expression for ζ
which can be evaluated quickly, and thus have to resort to
our cosmological simulations of the IGM to numerically
determine it for each model, as described in Appendix B.
In practice, computational constraints limit the size of
our thermal parameter grid to only 500 thermal models,
and we thus evaluate ζ at only these 500 fixed locations.
In the next section, we describe a fast procedure referred
to as an emulator, which allows us to interpolate ζ from
these 500 locations in our finite thermal parameter grid,
onto any value in thermal parameter space (T0, γ, λJ).

5.3. Emulating the IGM

Our goal is to define an algorithm to calculate
ζ(k, r⊥|T0, γ, λJ ) as a function of the thermal param-
eters, interpolating from the values determined on a
fixed grid. As we will also compare Jeans scale con-
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straints from the phase angle PDF (eqn. 26), to those
obtained from other statistics, such as the longitudinal
power P (k) and cross-power π(k, r⊥) (see § 6), we also
need to be able to smoothly interpolate these functions
as well. To achieve this, we follow the approach of the
’Cosmic Calibration Framework’ (CCF) to provide an
accurate prediction scheme for cosmological observables
(Heitmann et al. 2006; Habib et al. 2007). The aim of
the CCF is to build emulators which act as very fast
– essentially instantaneous – prediction tools for large
scale structure observables such as the nonlinear power
spectrum (Heitmann et al. 2009, 2010; Lawrence et al.
2010), or the concentration-mass relation (Kwan et al.
2012). Three essential steps form the basis of emulation.
First, one devises a sophisticated space-filling sampling
scheme that provides an optimal sampling strategy for
the cosmological parameter space being studied. Sec-
ond, a principle component analysis (PCA) is conducted
on the measurements from the simulations to compress
the data onto a minimal set of basis functions that can
be easily interpolated. Finally, Gaussian process mod-
eling is used to interpolate these basis functions from
the locations of the space filling grid onto any value in
parameter space. A detailed description of our IGM em-
ulator will be described in a companion paper (A.Rorai
et al. 2013, in preparation). Below we briefly summarize
the key aspects.
Whereas CCF uses more sophisticated space filling

Latin Hypercube sampling schemes (e.g. Heitmann et al.
2009), we adopt a simpler approach motivated by the
shape of the IGM statistics we are trying to emulate,
which change rapidly at scales comparable to either the
Jeans or thermal smoothing scale. We opt for an ir-
regular scattered grid which fills subspaces more effec-
tively than a cubic lattice. We consider parameter values
over the domain {(T0, γ, λJ ) : T0 ∈ [5000, 40000]K; γ ∈
[0.5, 2]; λJ ∈ [43, 572] kpc}. The lower limit of 43 kpc
for the Jeans scale is chosen because this is about the
smallest value we can resolve with our simulation (see
Appendix A), while the upper limit of 572 kpc is a con-
servative constraint deduced from the longitudinal power
spectrum: a filtering scale greater than this value would
be inconsistent with the high−k cutoff, regardless of the
value of the temperature. The ranges considered for T0

and γ are consistent with those typically considered in
the literature and our expectations based on the physics
governing the IGM. We sample the 3D thermal parame-
ter space at 500 locations, where we consider a discrete
set of 50 points in each dimension. A linear spacing of
these points is adopted for γ, whereas we find it more ap-
propriate to distribute T0 and λJ such that the scale of
the cutoff of the power spectrum kf is regularly spaced.

Since kf ∝ λ−1
J for Jeans smoothing and kf ∝ T

−1/2
0

for thermal broadening, we choose regular intervals of
these parameters after transforming λJ → 1/λJ and
T0 → 1/

√
T0. Each of the 50 values of the parameters is

then repeated exactly 10 times in the 500-point grid, and
we use 10 different random permutations of their indices
to fill the space and to avoid repetition. For each thermal
model in this grid, we generate 10,000 pairs of skewers
at 30 linearly spaced discrete pair separations between 0
and 714 kpc.
We then use these skewers to compute the IGM statis-

tics ζ(k, r⊥), P (k), and π(k, r⊥) for all k and r⊥ for
each thermal model. A PCA decomposition is then per-
formed in order to compress the information present in
each statistic and represent its variation with the thermal
parameters using a handful of basis functions φ. A PCA
is an orthogonal transformation that converts a family
of correlated variables into a set of linearly uncorrelated
combinations of principal components. The components
are ordered by the variance along each basis dimension,
thus relatively few of them are sufficient to describe the
entire variation of a function in the space of interest,
which is here the thermal parameter space. To provide a
concrete example, the longitudinal power spectrum P (k)
is fully described by the values of the power in each k
bin, but it is likely that some of these P (k) values do not
change significantly given certain combinations of ther-
mal parameters. The PCA determines basis functions
of the P (k) that best describe its variation with ther-
mal parameters, enabling us to represent this complex
dependence with an expansion onto just a few principal
components

P (k|T0, γ, λJ) =
∑

i

ωi(T0, γ, λJ)Φi(k), (27)

where {Φ(k)} are the basis of principal components, and
{ω} are the corresponding coefficients which depend on
the thermal parameters. The number of components for
a given function is set by the maximum tolerable inter-
polation errors of the emulator, and these are in turn set
by the size of the error bars on the statistic that one is
attempting to model. We defer a detailed discussion of
the PCA analysis and the procedure used to determine
the number of components to an upcoming paper (Ro-
rai et al. 2013, in prep), but we note that the number of
PCA components we used to fully represent the functions
ζ(k, r⊥), P (k), and π(k, r⊥) were 25, 15, and 25, respec-
tively (phase distribution and cross power spectrum are
2D functions, so they need more components).
Gaussian process interpolation is then used to interpo-

late these PCA coefficients ωi(T0, γ, λJ) from the irregu-
lar distribution of points in our thermal grid to any loca-
tion of interest in the parameter space. The only input
for the Gaussian interpolation is the choice of smoothing
length, which quantifies the degree of smoothness of each
function along the direction of a given parameter in the
space. We choose these smoothing lengths to be a mul-
tiple of the spacing of our parameter grid. The choice of
these smoothing lengths is somewhat arbitrary, but we
checked that the posterior distributions of thermal pa-
rameters (eqn. 26) inferred do not change in response to
a reasonable variations of these smoothing lengths. A
full description of the calibration and testing of the em-
ulator is presented in an upcoming paper (Rorai et al.
2013, in prep).
To summarize, our method for measuring the Jeans

scale of the IGM involves the following steps:

• Calculate the phase differences θ(k, r⊥) for each k-
mode of an observed sample of quasar pairs with
separations r⊥.

• Generate Lyα forest quasar pair spectra for a
grid of thermal models in the parameter space
(T0, γ, λJ), using our IGM simulation framework.
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For each model, numerically determine the con-
centration parameter ζ(k, r⊥|T0, γ, λJ) at each
wavenumber k and separation r⊥, from the distri-
bution of phase differences θ(k, r⊥).

• Emulate the function ζ(k, r⊥|T0, γ, λJ), enabling
fast interpolation of ζ from the fixed values in the
thermal parameter grid to any location in thermal
parameter space.

• Calculate the posterior distribution in eqn. (26) for
λJ , by exploring the likelihood function in eqn. (25)
with an MCMC algorithm.

6. HOW WELL CAN WE MEASURE THE JEANS SCALE?

Our goal in this section is to determine the precision
with which close quasar pair spectra can be used to mea-
sure the Jeans scale. To this end, we construct a mock
quasar pair dataset from our IGM simulations and ap-
ply our new phase angle PDF likelihood formalism to
it. A key question is how well constraints from our new
phase angle technique compare to those obtainable from
alternative measures, such as the cross-power spectrum,
applied to the same pair sample, or from the longitudi-
nal power spectrum, measured from samples of individ-
ual quasars. In what follows, we first present the like-
lihood used to determine thermal parameter constraints
for these two additional statistics. Then we describe the
specific assumptions made for the mock data. Next we
quantify the resulting precision on the Jeans scale, ex-
plore degeneracies with other thermal parameters, and
compare to constraints from these two alternative statis-
tics. We explore the impact of finite signal-to-noise ratio
and spectral resolution on our measurement accuracy,
and discuss possible sources of systematic error. Finally,
we explicitly demonstrate that our likelihood estimator
provides unbiased determinations of the Jeans scale.

6.1. The Likelihood for P (k) and π(k, r⊥)

For the longitudinal power P (k), we assume that the
distribution of differences, between the measured band
powers of a k-bin and the true value, is a multi-variate
Gaussian (see e.g. McDonald et al. 2006), which leads to
the standard likelihood for the power-spectrum

L (Pd|M)= (2π)−N/2 det (Σ)
−1/2

(28)

exp

[

−1

2
(Pd − PM )TΣ−1(Pd − PM )

]

,

where Pd is a vector of N observed 1D band powers,
PM is a vector of power spectrum predictions for a given
thermal model M = (T0, γ, λJ), and

Σ(k, k′) = 〈[P (k)− PM (k)][P (k′)− PM (k′)]〉, (29)

is the full covariance matrix of the power spectrum mea-
surement. As we describe in the next subsection, we will
choose a subset of the skewers from a fiducial thermal
model to represent the ‘data’ in this expression, which
are then compared directly to thermal models (T0, γ, λJ),
where the same emulator technique described in § 5.3 is
used to interpolate PM (k|T0, γ, λJ) to parameter loca-
tions in the thermal space. To determine the covari-
ance of this mock data Σ(k, k′), we use the full ensem-
ble of 2 × 10, 000 1D skewers for the fiducial thermal

model, directly evaluate the covariance matrix, and then
rescale it to the size of our mock dataset by multiply-
ing by the ratio of the diagonal terms σ2

dataset/σ
2
full.

This procedure of evaluating the covariance implicitly as-
sumes that the only source of noise in the measurement is
sample variance, or that the instrument noise is negligi-
ble. For the high-resolution and high signal-to-noise ra-
tio spectra used to measure the longitudinal power spec-
trum cutoff (McDonald et al. 2000; Croft et al. 2002),
this is a reasonable assumption. For reference, the rel-
ative magnitude of off-diagonal terms of the covariance,
Σ(k, k′)/

√

Σ(k, k)Σ(k′, k′), are at most 20 − 30% with
the largest values attained at the highest k.
For the cross-power spectrum π(k, r⊥), we follow the

same procedure. Namely, a mock dataset is constructed
for the fiducial thermal model by taking a subset of the
full ensemble of quasar pair spectra. We again assume
that the band power errors are distributed according to
a multi-variate Gaussian, but because we must now ac-
count for the variation with separation r⊥, the corre-
sponding likelihood is

L (π|M) =
∏

i

L (πd(k, r⊥,i)|M), (30)

where L (πd(k, r⊥,i)|M) has the same form as the lon-
gitudinal power in eqn. (29). In exact analogy with the
longitudinal power, we compute the full covariance ma-
trix Σ(k, k′|r⊥) of the cross-power using our full ensemble
of simulated pair spectra for our fiducial model, but now
at each value of r⊥.

6.2. Mock Datasets

To determine the accuracy with which we can measure
the Jeans scale and study the degeneracies with other
thermal parameters, we construct a dataset with a real-
istic size and impact parameter distribution, and use an
MCMC simulation to explore the phase angle likelihood
in eqn. (25). We compare these constraints to those ob-
tained from the cross-power spectrum for the same mock
pair dataset, by similarly using an MCMC to explore the
cross-power likelihood in eqn. (30). We also compare to
parameter constraints obtainable from the longitudinal
power alone, by exploring the likelihood in eqn. (29), for
which we must also construct a mock dataset for longi-
tudinal power measurements.
For the mock quasar pair sample, we assume 20

quasar pair spectra at z = 3, with fully overlapping
absorption pathlength between Lyα and Lyβ. Any real
quasar pair sample will be composed of both binary
quasars with full overlap and projected quasar pairs
with partial overlap, so in reality 20 represents the total
effective pair sample, whereas the actual number of
quasar pairs required could be larger. The distribution
of transverse separations for these pairs is taken to be
uniform in the range 24 < r⊥ < 714 kpc. Specifically,
we require 200 pairs of skewers in order to build up
the necessary path length for 20 full Lyα forests, and
these are randomly selected from our 10,000 IGM pair
skewers which have 30 discrete separations. We draw
these pairs from a simulation with a fiducial thermal
model (T0, γ, λJ) = (12, 000K, 1.0, 110, kpc), which lies
in the middle of our thermal parameter grid. Note that
follow-up observations of quasar pair candidates has
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resulted in samples of > 400 quasar pairs in the range
1.6 < z . 4.3 with r⊥ < 700 kpc, and for those with
> 50% overlap, the total effective number of fully over-
lapping pairs is ≃ 300 (Hennawi 2004; Hennawi et al.
2006b; Myers et al. 2008; Hennawi et al. 2009). Many
of these sightlines already have the high quality Lyα
forest spectra required for a Jeans scale measurement
(e.g. Hennawi et al. 2006a; Hennawi & Prochaska 2007;
Prochaska & Hennawi 2009; Hennawi & Prochaska
2008; Prochaska et al. 2012), hence the mock dataset we
have assumed already exists, and can be easily enlarged
given the number of close quasar pairs known.
Longitudinal power spectrum measurements which

probe the small-scale cutoff of the power have been
performed on high-resolution (R ≃ 30, 000 − 50, 000;
FWHM=6−10 km s−1) spectra of the brightest quasars.
Typically, the range of wavenumbers used for model
fitting is 0.005 s km−1 < k < 0.1 s km−1 (see Fig-
ure 2), where the low-k cutoff is chosen to avoid sys-
tematics related to quasar continuum fitting (Lee 2012),
and the high-k cutoff is adopted to mitigate contam-
ination from metal absorption lines (McDonald et al.
2000; Croft et al. 2002; Kim et al. 2004). Because quasar
pairs are very rare, one must push to faint magni-
tudes to find them in sufficient numbers. In contrast
with the much brighter quasars used to measure the
small-scale longitudinal power (McDonald et al. 2000;
Croft et al. 2002; Kim et al. 2004), quasar pairs are typ-
ically too faint to be observable at echelle resolution
(FWHM=6 − 10 km s−1) on 8m class telescopes. How-
ever, quasar pairs can be observed with higher efficiency
echellette spectrometers, which deliver R ≃ 10, 000 or
FWHM= 30 km s−1. The cutoff in the power spec-
trum induced by this lower resolution is kres = 1/σres =

2.358/FWHM = 0.08 s km−1, which is very close to the

upper limit k < 0.1 s km−1 set by metal-line contami-
nation. For these reasons, we will consider only modes
in the range 0.005 s km−1 < k < 0.1 s km−1 in the like-
lihood in eqn. (25). We initially consider perfect data,
ignoring the effect of finite signal-to-noise rate and res-
olution. Then in § 6.4, we will explore how noise and
limited spectral resolution influence our conclusions.
For the mock sample used to study the longitudi-

nal power, we assume perfect data, which is reasonable
considering that such analyses are typically performed
on spectra with signal-to-noise ratio S/N ∼ 30 and
resolution FWHM= 6km s−1 (McDonald et al. 2000;
Croft et al. 2002; Kim et al. 2004) such that the Lyα
forest, and in particular modes with k < 0.1, are fully
resolved. For the size of this sample, we again assume 20
individual spectra at z = 3 with full coverage of the Lyα
forest, which is about twice the size employed in recently
published analyses (McDonald et al. 2000; Croft et al.
2002; Kim et al. 2004). However, the number of exist-
ing archival high-resolution quasar spectra at z = 3 eas-
ily exceeds this number, so samples of this size are also
well within reach. Also, adopting a sample for the lon-
gitudinal power with the same Lyα forest path length
as the quasar pair sample, facilitates a straightforward
comparison of the two sets of parameter constraints.

6.3. The Precision of the λJ Measurement

Given our mock dataset and the expression for the
phase angle likelihood in eqn. (25), and armed with
our IGM emulator, which enables us to quickly evaluate
this likelihood everywhere inside our thermal parameter
space, we are now ready to explore this likelihood with an
MCMC simulation to determine the precision with which
we can measure the Jeans scale and explore degeneracies
with other thermal parameters.
We employ the publicly available MCMC package de-

scribed in Foreman-Mackey et al. (2012), which is par-
ticularly well adapted to explore parameter degeneracy
directions. The result of our MCMC simulation is the full
posterior distribution in the 3-dimensional T0 − γ − λJ

space for each likelihood that we consider. It is impor-
tant to point out that, in general, these posterior distri-
butions will not be exactly centered on the true fiducial
thermal model (T0, γ, λJ) = 12, 000K, 1, 110, kpc. In-
deed, the expectation is that the mean or mode of the
posterior distribution for a given parameter will scatter
around the true fiducial value at a level comparable to
the width of this distribution. Nevertheless, the poste-
rior distribution should provide an accurate assessment
of the precision with which parameters can be measured
and the degeneracy directions in the parameter space.
In § 6.6 we will demonstrate that our phase angle PDF
likelihood procedure is indeed an unbiased estimator of
the Jeans scale, by applying this method to a large en-
semble of mock datasets, and showing that on average,
we recover the input fiducial Jeans scale.
The red shaded regions in Figure 9 show the con-

straints in thermal parameter space resulting from
our MCMC exploration of the phase angle likelihood
(eqn. 25). The results are shown projected onto the
T0−λJ and γ−λJ planes, where the third parameter (γ
and T0, respectively) has been marginalized over. The
dark and light shaded regions show 65% and 96% con-
fidence levels, respectively. The phase difference tech-
nique (red) yields essentially horizontal contours, which
pinpoint the value of the Jeans scale, with minimal de-
generacy with other thermal parameters. This is a direct
consequence of the near independence of the phase an-
gle PDF of T0 and γ shown in Figure 6, and discussed
in § 4.4. The physical explanation for this independence
is that 1) the non-linear FGPA transformation in only
weakly dependent on temperature 2) phase angles are
invariant to the thermal broadening convolution. This
truly remarkable result is the key finding of this work:
phase angles of the Lyα forest flux provide direct con-
straints on the 3D smoothing of the IGM density inde-
pendent of the other thermal parameters governing the
IGM.
The blue shaded regions in Figure 9 show the corre-

sponding parameter constraints for our MCMC of the
longitudinal power spectrum likelihood (eqn. 29). Con-
sidering the longitudinal power spectrum alone, we find
that significant degeneracies exist between λJ , T0 and
γ, which confirms our qualitative discussion of these de-
generacies in § 3.1 and illustrated in Figure 2. These
degeneracy directions are easy to understand. The lon-
gitudinal power is mostly sensitive to thermal parame-
ters via the location of the sharp small-scale cutoff in the
power spectrum. This thermal cutoff is set by a combina-
tion of both 3D Jeans pressure smoothing and 1D ther-
mal broadening. The thermal broadening component is
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Fig. 9.— Constraints on the γ − λJ and T0 − λJ planes. The contours show the estimated 65% and 96% confidence levels obtained
with the longitudinal power (blue) and the phase difference (red). The white dot marks the fiducial model in the parameter space. The
degeneracy affecting the 1D power already shown in figure 2 can now be seen clearly in the parameter space through the inclination of the
black contours. Conversely, the fact that constraints given by the phase difference statistic are horizontal guarantees that this degeneracy
is broken and that the measurement of the Jeans scale is not biased by the uncertainties on the equation of state.

Fig. 10.— Constraints on the γ−λJ and T0 −λJ planes. The contours show the estimated 65% and 96% confidence levels obtained with
the longitudinal power (blue) and the cross power (green). The white dot marks the fiducial model in the parameter space. Comparing
this plot with figure 9 makes clear why the cross power spectrum is not the optimal statistic for measuring λJ since the phase information
is diluted and the degeneracy is not efficiently broken.

set by the temperature of the IGM at the characteristic
overdensity probed by the forest, which is δ ≈ 2 at z = 3
(Becker et al. 2011). One naturally expects a degeneracy
between T0 and γ, because it is actually the tempera-
ture at T (δ ≈ 2) that sets the thermal broadening. A
degeneracy between λJ and T (δ ≈ 2) is also expected
because both smoothings contribute to the small-scale
cutoff. Thus, a lower Jeans scale can be compensated by
more thermal broadening, which can result from either a
steeper temperature density relation (larger γ) or a hot-
ter temperature at mean density T0, since both produce

a hotter T (δ ≈ 2).
Previous work that has aimed to measure thermal

parameters such as T0 and γ, from the longitudinal
power spectrum (Zaldarriaga et al. 2001; Viel et al.
2009), the curvature statistic (Becker et al. 2011),
wavelets (Theuns et al. 2002b; Lidz et al. 2009;
Garzilli et al. 2012), and the b-parameter distri-
bution (Haehnelt & Steinmetz 1998; Theuns et al.
2000; Ricotti et al. 2000; Bryan & Machacek 2000;
Schaye et al. 2000; McDonald et al. 2001; Theuns et al.
2002a; Rudie et al. 2012), have for the most part ignored
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the degeneracies between these thermal parameters and
the Jeans scale (but see Zaldarriaga et al. 2001 who
marginalized over the Jeans scale, and Becker et al. 2011
who also considered its impact). Neglecting the possible
variation of the Jeans scale is equivalent to severely
restricting the family of possible IGM thermal histories.
Because the phase angle method accurately pinpoints
the Jeans scale independent of the other parameters,
it breaks the degeneracies inherent to the longitudinal
power spectrum and will enable accurate and unbiased
measurements of both T0 and γ, as evidence by the
intersection of the red and black contours in Figure 9.
Similar degeneracies between the Jeans scale and (T0,γ)
exist when one considers other statistics such as the
flux PDF (McDonald et al. 2000; Kim et al. 2007;
Bolton et al. 2008; Calura et al. 2012; Garzilli et al.
2012), which we will explore in an upcoming study
(Rorai et al. 2013, in prep). In light of these significant
degeneracies with the Jeans scale, it may be necessary
to reassess the reliability and statistical significance of
previous measurements of T0 and γ.
Figure 10 shows the resulting thermal parameter con-

straints for our MCMC analysis of the cross-power spec-
trum likelihood (eqn. 30) in green, determined from ex-
actly the same mock quasar pair sample that we ana-
lyzed for the phase angles. The confidence regions for
the longitudinal power are shown for comparison in blue.
The cross-power spectrum is a straightforward statistic
to measure and fit models to, and the green confidence
regions clearly illustrate that it does exhibit some sensi-
tivity to the Jeans scale, as discussed in § 3.2 and shown
in the right panel of Figure 2. However, a comparison of
the cross-power confidence regions in Figure 10 (green)
with the phase angle PDF confidence regions in Figure 9
(red) reveals that there is far more information about the
Jeans scale in quasar pair spectra than can be measured
with the cross-power. The cross-power produces con-
straints which are effectively a hybrid between the hori-
zontal Jeans scale contours for the phase angle distribu-
tion and the diagonal banana shaped contours produced
by the longitudinal power, which reflects the degeneracy
between Jeans smoothing and thermal broadening. This
quantitatively confirms our argument in § 4.1, that the
cross-power is a product of moduli, containing informa-
tion about the 1D power, and the cosine of the phase,
which depends on the 3D power.
The results of this section indicate that among the

statistics that we have considered, the phase angle PDF
is the most powerful for constraining the IGM pressure
smoothing, because it is more sensitive to the Jeans scale
and results in constraints that are free of degeneracies
with other thermal parameters. We demonstrate this
explicitly in Figure 11, where we show the fully marginal-
ized posterior distribution (see eqn. 26) of the Jeans scale
for each the statistics we have considered. The probabil-
ity distributions quantify the visual impression from the
contours in Figures 9 and 10, and clearly indicate that
the phase angle PDF is the most sensitive. The rela-
tive error on the Jeans scale σλ/λJ = 3.9%, which is a
remarkable precision when compared to the typical pre-
cision ∼ 30% of measurements of T0 and γ in the pub-
lished literature (see e.g. Figure 30 in Lidz et al. 2009,
for a recent compilation), especially when one considers
that only 20 quasar pair spectra are required to achieve
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Fig. 11.— Estimated accuracy on the measurement of λJ ,
obtained marginalizing over T0 and γ the posterior distribution
from the MCMC analysis. The phase difference statistic (red) sets
tighter constraints than the cross power (blue) and the longitudi-
nal power (black), which are affected by parameter degeneracies.
In this case we do not account for the effect of noise and limited
resolution, and we find a relative precision of 3.9% for λJ .

this accuracy.
We close this section with a caveat to our statements

that our Jeans scale constraints are free of degeneracies
with other thermal parameters. The phase angle PDF is
explicitly nearly independent of the temperature-density
relation because 1) the non-linear FGPA transformation
is only weakly dependent on temperature and 2) the
phase angle PDF is invariant to the thermal broaden-
ing convolution (see § 4.4). However, in our idealized
dark-matter only simulations, the Jeans scale is taken to
be completely independent of T0 and γ; whereas, in real-
ity all three parameters are correlated by the underlying
thermal history of the Universe. In this regard, the Jeans
scale may implicitly depend on the T0 and γ at the red-
shift of the sample, as well as with their values at earlier
times. We argued that because the thermal history is
not known, taking the Jeans scale to be free parameter
is reasonable. However, the validity of this assumption
and the implicit dependence of the Jeans scale on other
thermal parameters is clearly something that should be
explored in the future with hydrodynamical simulations.

6.4. The Impact of Noise and Finite Spectral Resolution

Up until this point we have assumed perfect data with
infinite signal-to-noise ratio and resolution. This is unre-
alistic, especially considering, as discussed in § 6.2, that
that close quasar pairs are faint, and typically cannot be
observed at echelle resolution or very high signal-to-noise
ratio & 20, even with 8m class telescopes. In this section
we explore the impact of noise and finite resolution on
the precision with which we can measure the Jeans scale.
We consider the exact same sample of 20 mock

quasar spectra, but now assume that they are ob-
served with spectral resolution corresponding to FWHM
= 30 km s−1, and two different signal-to-noise ratios of
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Fig. 12.— The effect of noise and resolution in the measurement
of λJ . The plots shows the posterior distribution of the Jeans scale,
marginalized over T0 and γ. Each line represent a different degree
of noise, assuming a resolution of FWHM=30 km/s. We selected
a different subsample of the simulation as our mock dataset which
has a precision of 3.6% for S/N=∞ (black solid), 4.8% for S/N=10
(green dot-dashed) and 7.2% for S/N=5 (red dashed).

S/N ≃ 5 and S/N ≃ 10 per pixel. These values are
consistent with what could be achieved using an echel-
lette spectrometer on an 8m class telescope. To create
mock observed spectra with these properties, we first
smooth our simulated spectra with a Gaussian kernel
to model the limited spectral resolution, and interpo-
late these smoothed spectra onto a coarser spectral grid
which has 10 km s−1 pixels, consistent with the spectral
pixel scale of typical echellette spectrometers. We then
add Gaussian white noise to each pixel with variance σ2

N

determined by the relation S/N = F̄ /σN, where F̄ is
the mean transmitted flux. This then gives an average
signal-to-noise ratio equal to the desired value.
As we already discussed in § 4.4 in the context of ther-

mal broadening, phase angles are invariant under a con-
volution with a symmetric Gaussian kernel. Thus we do
not expect spectral resolution to significantly influence
our results, provided that we restrict attention to modes
which are marginally resolved, such that we can measure
their phases. Indeed, the cutoff in the flux power spec-
trum induced by spectral resolution is kres = 1/σres ≈
2.358/FWHM = 0.08 s km−1, is comparable to the maxi-

mum wavenumber we consider k = 0.1 s km−1, and hence
we satisfy this criteria. Note further that this invariance
to a symmetric spectral convolution implies that we do
not need to be able to precisely model the resolution,
provided that it has a nearly symmetric shape and does
not vary dramatically across the spectrum. This is an-
other significant advantage of the phase angle approach,
since the resolution of a spectrometer often depends on
the variable seeing, and can be challenging to accurately
calibrate.
Although our results are thus likely to be very indepen-

dent of resolution, noise introduces fluctuations which

are uncorrelated between the two sightlines, and this will
tend to reduce the coherence of the flux that the phase
angle PDF quantifies. Noise will thus modify the shape
of the phase angle PDF away from the intrinsic shape
shown in Figure 5. In order to deal with noise and its
confluence with spectral resolution, we adopt a forward-
modeling approach. Specifically, for each thermal model
we smooth all 10,000 IGM skewers to finite resolution, in-
terpolate onto coarser spectral grids, and add noise con-
sistent with our desired signal-to-noise ratio. We then fit
the resulting distribution of phase angles to the wrapped-
Cauchy distribution, determining the value of the con-
centration parameter ζ(k, r⊥), at each k and r⊥ as we did
before. We again emulate the function ζ(k, r⊥|T0, γ, λJ )
using the same thermal parameter grid, but now with
noise and spectral resolution included, enabling fast eval-
uations of the likelihood in eqn. (25). Thermal parameter
constraints then follow from MCMC exploration of this
new likelihood, for which the impact of noise and resolu-
tion on the phase angle PDF have been fully taken into
account.
In Figure 12 we show the impact of noise on the fully

marginalized constraints on the Jeans scale from the
phase angle PDF. The solid curve represents the pos-
terior distribution for a mock dataset with infinite reso-
lution and signal-to-noise ratio, which is identical to the
red curve in Figure 11. The dotted and dashed curves
illustrate the impact of S/N = 10 and S/N = 5, respec-
tively. Note that the slight shift in the modes of these
distributions from the fiducial value are expected, and
should not be interpreted as a bias. Different noise re-
alizations generate scatter in the phase angles just like
the intrinsic noise from large-scale structure. The in-
ferred Jeans scale for any given mock dataset or noise
realization will not be exactly equal to the true value,
but should rather be distributed about it with a scatter
given by the width of the resulting posterior distribu-
tions. The relative shifts in the mode of the posterior
PDFs are well within 1σ of the fiducial value, and are
thus consistent with our expectations.
The upshot of Figure 12 is that noise and limited spec-

tral resolution do not have a significant impact on our
ability to measure the Jeans scale. For a signal-to-noise
ratio of S/N = 10 per pixel we find that the relative
precision with which we can measure the Jeans scale is
σλ/λJ = 4.8%, which is only a slight degradation from
the precision achievable from the same dataset at infi-
nite signal-to-noise ratio and resolution σλ/λJ = 3.9%.
The small impact of noise on the Jeans scale precision
is not surprising. For the 10 km s−1 spectral pixels that
we simulate, the standard deviation of the normalized
Lyα forest flux per pixel is

√

〈δF 2〉 ≃ 32%, whereas for
S/N = 10 our Gaussian noise fluctuations are at a sig-
nificantly smaller ≃ 10% level. Heuristically, these two
‘noise’ sources add in quadrature, and thus the primary
source of ‘noise’ in measuring the phase angle PDF re-
sults from the Lyα forest itself, rather than from noise in
the data. For a lower signal-to-noise ratio of S/N = 5 per
pixel, the precision is further degraded to σλ/λJ = 7.2%,
which reflects the fact that noise fluctuations are becom-
ing more comparable to the intrinsic Lyα forest fluctua-
tions.
These numbers on the scaling of our precision with
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Fig. 13.— The effect of overestimating the signal-to-noise ratio
by a 20% factor (red, dashed line) when the real value is S/N= 10:
we do not find any significant bias on the measured value of the
Jeans scale.

signal-to-noise ratio S/N provide intuition about the op-
timal observing strategy. For a given sample of pairs, it
will require four times more exposure time to increase the
signal-to-noise ratio from S/N ≃ 5 to S/N ≃ 10, whereas
the same telescope time allocation could be used to in-
crease the sample size by a factor of four at the same
signal-to-noise ratio (assuming sufficient close pair sight-
lines exist). For the latter case of an enlarged sample, the
precision will scale roughly as ∝

√

Npairs, implying a σλ/
λJ = 3.6% for a sample of 80 pairs observed at S/N = 5.
This can be compared to σλ/λJ = 4.8% for 20 pairs
observed at S/N ≃ 10. There is thus a marginal gain
in working at lower S/N ≃ 5 and observing a larger pair
sample, although we have not considered various system-
atic errors which could impact our measurement. How-
ever, higher signal-to-noise spectra are usually preferable
for the purposes of mitigating systematics, and hence
one would probably opt for higher signal-to-noise ratio,
a smaller pair sample, and tolerate slightly higher statis-
tical errors.

6.5. Systematic Errors

We now briefly discuss the systematic errors which
could impact a measurement of the Jeans scale. First,
consider the impact of errors in the continuum normal-
ization. Because the phase angle is a ratio of Fourier
modes of the normalized flux eqn. (16), it is completely
insensitive to the continuum normalization of δF , pro-
vided that the continuum is not adding significant power
on the scale of wavelength of the k-mode considered. In
the previous section, we argued that finite spectral reso-
lution does not have a significant impact the phase angle
PDF, because phase angles are invariant under convo-
lutions with symmetric kernels. We do take resolution
into account in our forward-modeling of the phase angle
PDF, but precise knowledge of the spectral resolution or
the line spread function is not required, since the line

spread function will surely be symmetric when averaged
over several exposures, thus leaving the phase angles in-
variant. The only requirement is that we restrict atten-
tion to modes less than the resolution cutoff k . kres
whose amplitudes are not significantly attenuated, such
that we can actually measure their phase angles.
Noise does modify the phase angle PDF, but our

forward-modeling approach takes this fully into account
provided the noise estimates are correct. One potential
systematic is uncertainty in the noise model. The typical
situation is that the standard-deviation of a spectrum re-
ported by a data reduction pipeline is underestimated at
the ∼ 10−20% level (S/N overestimated), because of sys-
tematic errors related to the instrument and data reduc-
tion (see e.g. McDonald et al. 2006; Lee et al. 2013). To
address this issue we directly model the impact of under-
estimated noise for a case where we think the S/N ≃ 10,
but where in reality it is actually 20% lower S/N ≃ 8.
Specifically, using our same mock dataset we generate
20 quasar pair spectra with S/N ≃ 8. However, when
forward-modeling the phase angle PDF with the IGM
simulations, we take the signal-to-noise ratio to be the
overestimated value of S/N ≃ 10. Excess noise above
our expectation would tend to reduce the coherence in
the spectra (less peaked phase angle PDF) mimicking
the effect of a smaller Jeans scale. We thus expect a
bias in the Jeans scale to result from the underestimated
noise. Figure 13 compares the posterior distributions of
the Jeans scale for the two cases S/N ≃ 10 (black curve)
and signal-to-noise ratio overestimated to be S/N ≃ 10
but actually equal to S/N ≃ 8 (red curve). We see that
≃ 20% level uncertainties in the noise lead to a negligible
bias in the Jeans scale.
The only remaining systematic that could impact the

Jeans scale measurement is metal-line absorption within
the forest. Metal absorbers cluster differently from the
IGM, and it is well known that metals add high-k power
to the Lyα forest power spectrum because the gas traced
by metal lines tends to be colder than H I in the
IGM (McDonald et al. 2000; Croft et al. 2002; Kim et al.
2004; Lidz et al. 2009). As this metal absorption is not
present in our IGM simulations, it can lead to discrep-
ancies between model phase angle PDFs and the actual
data, resulting in a biased measurement. This is very
unlikely to be a significant effect. We restrict attention
to large scale modes with k < 0.1 s km−1, both because
this is comparable to our expected spectral resolution
cutoff, and because below these wavenumbers metal line
absorption results in negligible contamination of the lon-
gitudinal power (McDonald et al. 2000; Croft et al. 2002;
Kim et al. 2004; Lidz et al. 2009). Since the metal ab-
sorbers have a negligible effect on the moduli of these
large scale modes, we also expect them to negligibly
change their phase angles.
We thus conclude that the phase angle PDF is highly

insensitive to the systematics that typically plague Lyα
forest measurements, such as continuum fitting errors,
lack of knowledge of spectral resolution, poorly cali-
brated noise, and metal line absorption.

6.6. Is Our Likelihood Estimator Unbiased?

Finally, we determine whether our procedure for mea-
suring the Jeans scale via the phase angle likelihood
(eqn. 25) outlined at the end of § 5.3, produces unbiased
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estimates. To quantify any bias in our Jeans scale esti-
mator we follow a Monte Carlo approach, and generate
400 distinct quasar pair samples by randomly drawing
20 quasar pair spectra (allowing for repetition) from our
ensemble of 10,000 skewers. Note that the distribution
of transverse separations is approximately the same for
all of these realizations, since we only simulate 30 dis-
crete separations, and the full sample of 20 overlapping
pair spectra requires 200 pairs of skewers, which are ran-
domly selected from among the 30 available pair separa-
tions. We MCMC sample the likelihood in eqn. (25) for
each realization, and thus generate the full marginalized
posterior distribution (eqn. 26; red curve in Figure 11).
The ‘measured’ value of the Jeans scale for each realiza-
tion is taken to the be the mean of the posterior distribu-
tion. We conducted this procedure for the case of finite
spectral resolution (FWHM = 30 km s−1) and signal-to-
noise ratio S/N ≃ 5, where our forward-modeling proce-
dure described in § 6.4 is used to model the impact of
resolution and noise on the phase angle PDF.
The distribution of Jeans scale measurements resulting

from this Monte Carlo simulation is shown in Figure 14.
We find that the distribution of ’measurements’ is well
centered on the true value of λJ = 110 kpc, and the mean
value of this distribution is λJ = 111.1 kpc, which dif-
fers from the true value by only 1%, confirming that our
procedure is unbiased to a very high level of precision.
The relative error of our measurements from this Monte
Carlo simulation is σλJ

/λJ = 6.3%, which is consistent
with the value of σλJ

/λJ = 7.2%, which we deduced in
§ 6.3 from an MCMC sampling of the likelihood for a sin-
gle mock dataset. This confirms that the posterior dis-
tributions derived from our MCMC do indeed provide an
accurate representation of the errors on the Jeans scale
and other thermal parameters. However, we note that
there is some small variation in the value of σλJ

/λJ in-
ferred from the posterior distributions for different mock
data realizations, as expected. Given that we only gen-
erated 400 samples, the error on our determination of
the mean of the distribution in Figure 14 is ≃ σλJ

/λJ/√
400 = 0.3%, and thus our slight bias of 1% constitutes

a ∼ 3σ fluctuation. We suspect that this is too large to
be a statistical fluke, and speculate that a tiny amount
of bias could be resulting from interpolation errors in our
emulation of the IGM. It is also possible that choosing
an alternative statistic of the posterior distribution as
our ‘measurement’ instead of the mean, for example the
mode or median, could also further reduce the bias. But
we do not consider this issue further, since the bias is so
small compared to our expected precision.
We conclude that our phase angle PDF likelihood pro-

cedure for estimating the Jeans scale has a negligible
≃ 1% bias. We would need to analyze a sample of
≃ 500−1000 quasar pair spectra for this bias to be com-
parable to the error on the Jeans scale. Furthermore,
it is likely that we could, if necessary, reduce this bias
even further by either reducing the interpolation error in
our emulator or by applying a different statistic to our
posterior distribution to determine the measured value.

7. DISCUSSION AND SUMMARY

Spectra of correlated Lyα forest absorption in close
quasar pair sightlines represent a unique opportunity to
improve our understanding of the physics governing the
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Fig. 14.— Probability distribution of the measured value of λJ

for 400 different mock datasets drawn from the fiducial simulation.
This plot confirms that our method is not biased, since the dis-
tributions is be centered at the true value, marked with a vertical
dashed line. This test is performed assuming S/N= 5. The red line
is the posterior distribution deduced from our MCMC sampling of
the phase angle PDF likelihood for one of these 400 mock dataset
realizations. Its similarity in shape to the distribution of mock
measurements illustrates that our MCMC simulations provide re-
liable error estimates.

IGM. In this paper we have shown that the degree of
coherence of Lyα absorption in quasar pair spectra is
sensitive to the Jeans filtering scale, provided the pair
separation is small enough to resolve it. Although the
Jeans scale has never been measured, it has fundamental
cosmological implications: it provides a thermal record of
heat injected by ultraviolet photons during cosmic reion-
ization events, determines the clumpiness of the IGM, a
critical ingredient in reionization models, and sets the
minimum mass of galaxies to gravitationally collapse
from the IGM.
We introduce a novel technique to directly measure

the Jeans scale from quasar pair spectra based on the
probability distribution function (PDF) of phase angle
differences of homologous longitudinal Fourier modes in
close quasar pair spectra. To study the efficacy of this
new method, we combined a semi-analytical model of the
Lyα forest with a dark matter only simulation, to gener-
ate a grid of 500 thermal models, where the temperature
at mean density T0, slope of the temperature-density re-
lation γ, and the Jeans scale λJ were varied. A Bayesian
formalism is introduced based on the phase angle PDF,
and MCMC techniques are used to conduct a full param-
eter study, allowing us to characterize the precision of a
Jeans scale measurement, explore degeneracies with the
other thermal parameters, and compare parameter con-
straints with those obtained from other statistics such as
the longitudinal power and the cross-power spectrum.
The primary conclusions of this study are:

• The longitudinal power is highly degenerate with
respect to the thermal parameters T0, γ and λJ ,
which arises because thermal broadening smooths
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the IGM along the line-of-sight (1D) at a compa-
rable scale as the Jeans pressure smoothing (3D).
It is extremely challenging to disentangle this con-
fluence of 1D and 3D smoothing with longitudinal
observations alone. Similar analogous degenera-
cies are likely to exist in other previously consid-
ered statistics sensitive to small-scale power such
as the wavelet decomposition, the curvature, the
b-parameter distribution, and the flux PDF. Hence
it may be necessary to reassess the reliability and
statistical significance of previous measurements of
T0 and γ.

• The cross-power measured from close quasar pairs
is sensitive to the 3D Jeans smoothing, and can
break degeneracies with the unknown Jeans scale.
However, it is not the optimal statistic, because it
mixes 1D information in the moduli of longitudinal
Fourier modes, with the 3D information encoded in
their phase differences. We show that by focusing
on the phase differences alone, via the full PDF
of phase angles, one is much more sensitive to 3D
power and the Jeans smoothing.

• Based on a simple heuristic geometric argument,
we derived an analytical form for the phase an-
gle PDF. A single parameter family of wrapped-
Cauchy distributions provides a good fit to the
phase differences in our simulated spectra for any
k, r⊥, the full range of T0,γ and λJ .

• Our phase angle PDFs indicate that phase differ-
ences between large-scale longitudinal modes with
small wavenumbers k ≪ 1/λJ , are nevertheless
very sensitive to the Jeans scale. We present a sim-
ple analytical argument showing that this sensitiv-
ity results from the geometry of observing a 3D field
along 1D skewers: low-k cross-power across corre-
lated 1D skewers is actually dominated by high-k
3D modes up to a scale set by the pair separation
k⊥ ∼ 1/r⊥.

• The phase angle PDF is essentially independent
of the temperature-density relation parameters T0

and γ. This results because 1) the non-linear
FGPA transformation is only weakly dependent on
temperature 2) phase angles of longitudinal modes
are invariant to the symmetric thermal broadening
convolution.

• Our full Bayesian MCMC parameter analysis indi-
cates that a realistic sample of only 20 close quasar
pair spectra observed at modest signal-to-noise ra-
tio S/N ≃ 10, can pinpoint the Jeans scale to ≃ 5%
precision, fully independent of the amplitude T0

and slope γ of the temperature-density relation.
The freedom from degeneracies with T0 and γ is
a direct consequence of the near independence of
the phase angle PDF of these parameters.

• Our new estimator for the Jeans scale is unbiased
and insensitive to a battery of systematics that typ-
ically plague Lyα forest measurements, such as con-
tinuum fitting errors, imprecise knowledge of the
noise level and/or spectral resolution, and metal-
line absorption.

In order for the parameter study presented here, with
a large grid (500) of thermal models, to be computation-
ally feasible, we had to rely on a simplified model of the
IGM, based on a dark-matter only simulation and sim-
ple thermal scaling relations. In particular, the impact of
Jeans pressure smoothing on the distribution of baryons
is approximated by smoothing the dark-matter particle
distribution with a Gaussian-like kernel, and we allowed
the three thermal parameters T0, γ, and λJ to vary com-
pletely independently. Although the Gaussian filtering
approximation is valid in linear theory (Gnedin et al.
2003), the Jeans scale is highly nonlinear at z ≃ 3, hence
a precise description of how pressure smoothing alters the
3D power spectrum of the baryons requires full hydrody-
namical simulations. Furthermore, the three thermal pa-
rameters we consider are clearly implicitly correlated by
the underlying thermal history of the Universe. Indeed,
a full treatment of the impact of impulsive reionization
heating on the thermal evolution of the IGM and the con-
comitant hydrodynamic response of the baryons, proba-
bly requires coupled radiative transfer hydrodynamical
simulations.
Our approximate IGM model is thus justified by the

complexity and computational cost of fully modeling
the Jeans smoothing problem, and despite its simplic-
ity, it provides a good fit to current measurements of
the longitudinal power (see Figure 2). Most impor-
tantly, our simple model allowed us to develop valuable
physical intuition about how 3D pressure smoothing of
baryons is manifest in Lyα forest spectra of close quasar
pairs. Based on this intuition, we devised a powerful
new method which isolates this small-scale 3D informa-
tion. By combining this new technique with existing
close quasar spectra, we will make the first direct mea-
surement of the Jeans scale of the IGM. Given that pre-
cise ≃ 5% constraints on the Jeans scale will soon be
available, the time is now ripe to use hydrodynamical
and radiative transfer simulations to improve our under-
standing of how reionization heating altered the small-
scale structure of baryons in the IGM.
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Pons-Bordeŕıa, 493–522
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APPENDIX

A. RESOLVING THE JEANS SCALE WITH DARK-MATTER SIMULATIONS

The Lyα forest probes the structure of the very low density regions of the IGM, setting strict requirements on the
resolution of our dark-matter only simulation. In particular, because our simulation is discrete in mass, each dark-
matter particle represents a fixed amount of gas distributed according to the gravitational softening length and the size
of the smoothing kernel that we use to represent Jeans smoothing (eqn. 5). At very low densities, it is possible that
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Fig. 15.— The probability distributions of the relative baryonic density ∆ = ρ/ρ̄ in our simulations. Each panel represent a different
filtering scale λJ , which was used to smooth the dark matter density for the same three simulations, which have different mean inter-particle
separations ∆l. When ∆l is too large relative to λJ the IGM density is poorly resolved at low densities, and the PDF is not converged.
Empirically, we find that a safe criterion for convergence is ∆l < λJ , which allow us to resolve Jeans scales down to 50 kpc with our
Lbox = 50 h−1 Mpc and Np = 15003 simulation.

a very large region is described by a single particle, and that most of this void region is left empty. This undesirable

situation occurs when the mean inter-particle separation ∆l = Lbox/N
1/3
p , which defines the typical size of regions

occupied by each particle, is much larger than the Jeans scale λJ , which is the minimum scale we want to resolve.
Under such circumstances the density profile of skewers through our simulation cube will have many pixels which
are nearly empty, because they have few or no neighboring particles. This insufficient sampling of the volume due to
large mean inter-particle separation will then manifest itself through the appearance of artifacts in the volume-weighted
probability distribution function (PDF) of the density. On the other hand, if the inter-particle separation is sufficiently
small, the density field will be sufficiently sampled, and further decreasing the inter-particle separation will not alter
the density PDF. Therefore we can define our resolution criteria for the mean inter-particle separation to be smaller
than some multiple of the Jeans scale ∆l < αλJ , where the exact value of this coefficient α is determined by checking
that convergence is achieved in the density PDF.
We estimate α by plotting the PDF of log(∆) from our IGM skewers for a set of simulations with varying mean

inter-particle separation, where ∆ = ρ/ρ̄ = 1 + δ is the density in units of the mean. The employed simulations have
mean inter-particle separations ∆l = {86, 171, 653} kpc, corresponding to box sizes Lbox = {100, 250, 720}Mpc/h with
Np = {15003, 20483, 18003} particles, respectively. In Figure 15 we check for convergence using three different values of
λJ . The results indicate that a safe criterion for resolving the jeans scale is ∆l < λJ or α ≃ 1. The simulation employed
in this work has Lbox = 50 h−1Mpc and Np = 15003 particles, or a mean inter-particle separation of ∆l = 48 kpc.
This simulation thus allows us to study pressure smoothing down to a Jeans scale as small as ≃ 50 kpc. Note however
that the results of this paper rely on our estimation of the Jeans scale from various Lyα forest statistics around the
fiducial value of λJ = 110 kpc, so we are confident that the Jeans scale is resolved in our simulations and that our
results are not impacted by resolution effects.

B. DETERMINING THE CONCENTRATION PARAMETER ζ OF THE WRAPPED-CAUCHY DISTRIBUTION

For a given sample of phases {θ} we employ a maximum-likelihood algorithm to determine the best-fit concentra-
tion parameter ζ, which uniquely specifies a wrapped-Cauchy distribution. This procedure is described in detail in
Jammalamadaka & Sengupta (2001). Briefly, we first reparametrize the wrapped-Cauchy distribution (eqn. 19) by
writing ν = 2ζ/(1 + ζ2), which gives

P (θ) ∝ 1

1− ν cos(θ)
≡ w(θ|ν). (B1)

Following the standard recipe of maximizing the logarithm of the likelihood with respect to the desired parameter, we
sum the logarithms of the probability of all angles and impose the condition that its derivative with respect to ν is
zero, resulting in the equation

n
∑

i=1

w(θi|ν)[cos(θi)− ν] = 0, (B2)

which can be solved iteratively. The concentration parameter is then easily determined by inverting the above relation
to get ζ = (1 −

√
1− ν2)/ν. This procedure is repeated for each distinct population of phases, parametrized by

transverse separation r⊥ and k-mode, θ(r⊥, k), and for each model in the thermal parameter grid (T0, γ, λJ) that we
consider.




