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Abstract: Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental
disorders defined clinically by core deficits in social reciprocity and communication, restrictive
interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89
children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1–2%.
While there is increasing consensus that ASD results from complex gene x environment interactions,
the identity of specific environmental risk factors and the mechanisms by which environmental and
genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD
etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been
linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate
signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical
morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review
human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the
potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly
associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral
target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in
the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently
irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk
factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically
susceptible individuals.

Keywords: axons; bladder dysfunction; dendritic arborization; dendritic spines; calcium signaling;
neuronal connectivity; persistent organic pollutants; ryanodine receptor; synapses

1. Introduction

Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders
defined clinically by core deficits in social reciprocity and communication, restrictive interests and
repetitive behaviors. The severity of core symptoms, the expression of co-morbidities, which include
intellectual disability, seizures, anxiety, gastrointestinal symptoms, and immunological abnormalities,
and the response to treatment vary considerably between individuals diagnosed with ASD [1,2].
The Center for Disease Control (CDC) estimates the current prevalence of ASD among 8-year-old
children in the United States to be 1 in 54 (https://www.autism-society.org). A project funded by
the European Parliament and managed by the European Commission reported in December 2018
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that the prevalence of ASD in Europe ranged from 4.4 to 19.7 per 1000 children aged 7–9 years old,
with an averaged estimated prevalence of 12.2 per 1000 (or 1 in 89 children) (http://asdeu.eu/wp-
content/uploads). A recent meta-analysis of literature published up to August 6, 2018, concluded that
the pooled estimated of ASD prevalence in Asia was 3.6% (95% CI: 0.16–0.79%) [3]. Large-scale surveys
estimate the median worldwide prevalence of ASD to be 1–2% [4,5]. When considered in the context of
the tremendous costs of ASD to the affected individual, their families, and society [6–8], these statistics
underscore the need to identify factors that confer ASD risk and/or modify symptom severity.

Until recently, research on the etiology of ASD largely focused on genetic causes. Genetic research
has identified a strong hereditary component for ASD [9–11] and shown that the candidate genes
most strongly associated with ASD encode proteins that regulate the patterning of neuronal networks
during development [12–15]. However, genetic research has also shown that genes linked to ASD
rarely segregate in a simple Mendelian fashion [10] and that single genetic anomalies account for
a very small proportion of cases [14,16]. Moreover, there is incomplete concordance of ASD diagnosis
in monozygotic twins [16], and even in genetic syndromes strongly associated with ASD, a significant
percentage of carriers do not express autistic phenotypes [16,17]. These observations are consistent
with a model in which environmental factors act as modifiers of ASD risk genes.

The rapid rise in ASD prevalence over the past several decades [14,18] also provides compelling
evidence in support of the hypothesis that environmental factors interact with genetic susceptibilities
to determine ASD risk. While improved detection and broadening of diagnostic criteria for ASD
contribute to the progressive rise in ASD prevalence, several studies have concluded that factors
other than diagnostic drift account for more than half of new cases, indicating a true increase in the
number of individuals diagnosed with ASD [19–21]. Findings from large twin studies suggest that
environmental factors account for approximately 50–60% of ASD cases [22,23]. A critical influence
of environmental factors on ASD risk and severity provides a plausible explanation for not only the
dramatic increase in ASD prevalence, but also the significant clinical heterogeneity that is a hallmark
characteristic of this disorder.

In contrast to genetic risks, which are currently irreversible, environmental factors are modifiable
risk factors. Identifying specific environmental factors that influence risk for ASD may suggest rational
approaches for the primary prevention of the symptoms associated with the disorder. Progress has been
made in identifying environmental risk factors for ASD, including advanced paternal age at conception,
complications during pregnancy, maternal diet, and prenatal exposure to psychotropic drugs [24,25].
While environmental chemicals are widely posited to also contribute to ASD risk [14,26–28], it has been
difficult to demonstrate this in human studies. This reflects two major challenges in the field. First, ASD is
phenotypically heterogeneous with children diagnosed as having ASD based on observable symptom
clustering, not causal pathways [29–31]. Second, the complexity of heritable risk factors contributing
to ASD likely creates a range of sensitivities to environmental risk factors [32], which masks clear
associations between exposure and diagnosis. To overcome these challenges and to inform more
targeted epidemiologic studies, experimental models are being leveraged to identify environmental
chemicals that modulate the same signaling pathways and neurodevelopmental events as ASD
susceptibility genes [32,33]. Such studies have identified polychlorinated biphenyls (PCBs) as putative
ASD risk factors [28].

PCBs are a class of 209 structurally related chemicals, known as congeners, comprised of a biphenyl
with variable numbers of chlorine substitutions in varying positions on the benzene rings. Congeners
with ≤4 chlorine substituents are referred to as lower-chlorinated PCBs; congeners with >4 chlorine
substituents, as higher-chlorinated PCBs [34]. Lower-chlorinated PCBs tend to be more volatile while
higher-chlorinated PCBs tend to bioaccumulate [34]. PCBs can also be classified according to their
planar structure, which is determined by the position of the chlorine substituents on the biphenyl.
In the absence of any chlorines in the ortho position, the rings of the biphenyl backbone assume
a coplanar geometry, whereas, in the presence of one to four chlorines in the ortho position, the rings
assume an increasingly noncoplanar geometry. Coplanar congeners can bind the aryl hydrocarbon
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receptor (AhR), and, since the AhR is the canonical receptor for 2,3,7,8,-tetrachlorodibenzo-p-dioxin
(TCDD), coplanar PCB congeners are often referred to as dioxin-like (DL) PCBs [35]. In contrast,
noncoplanar congeners have little to no binding affinity for the AhR and thus are referred to as
non-dioxin-like (NDL) PCBs.

Beginning in the late 1920s, PCBs were synthesized in large amounts predominantly for use
as coolants, lubricants, and stabilizers in diverse industrial and commercial applications. However,
in response to increasing evidence of their environmental persistence and concerns regarding the
carcinogenic potential of the DL PCBs, the United States banned further PCB production in 1979.
In 2001, the signatory countries of the Stockholm Convention on Persistent Organic Pollutants (POPs)
instituted a more global ban on PCB production, which was appended in 2008 and 2014. Despite
the cessation of large-scale PCB production, humans continue to be exposed to legacy PCBs (a term
used to refer to the congeners present in commercial mixtures) because these compounds continue
to be released from PCB-containing transformers and capacitors still in use, hazardous waste sites,
and construction materials used in buildings erected prior to the ban on PCB production [36]. In addition,
data emerging over the past decade demonstrate widespread human exposure to not only legacy
but also “contemporary” PCB congeners that were not present in commercial PCB mixtures but are
unintentional byproducts of current manufacturing processes for pigments [34,36,37]. These non-legacy
PCBs are detected in indoor and outdoor environments and in human tissues, and the most likely
source is off gassing from common household paints, varnishes, and caulking [36–38].

It is thought that humans are predominantly exposed to the higher-chlorinated PCBs via the
ingestion of contaminated foods, and to lower-chlorinated PCB via inhalation [34]. However, recent
reports demonstrating the prevalence of the lower-chlorinated congener PCB 11 in commercial milk
products in northern California [39], and evidence that PCB 95, a higher-chlorinated congener, is the
second most abundant PCB detected in the air in schools in the United States [40], suggest that humans
may be exposed to both higher- and lower-chlorinated PCBs via diet and inhalation [41]. PCBs are
detected in human tissues globally with the highest PCB body burdens detected in the Inuit population
in Greenland whose adipose tissue contains 3–34-fold higher amounts of PCBs than comparable
samples from individuals living in Quebec City, Canada [42]. Total PCB levels in human postmortem
samples (adipose, brain and liver) from Greenland were approximately 66 ng/g wet weight (ww) [42].
In contrast, mean PCB concentrations ranging from 10.6 to 35.3 ng/g have been reported in liver, muscle,
kidney, and brain samples from men and women in Belgium [43], while median levels of 1.5 ng/g ww
(range <LOD—18.5 ng/g ww; based on eight congeners) were detected in postmortem human tissue
samples from the United States [44].

PCBs readily cross the placenta and are transferred through breast milk [45]. Thus, PCBs are a
particular concern for the developing brain, which develops rapidly during gestation and early life.
National Health and Nutrition Examination Survey (NHANES) data confirm widespread exposure
to PCBs among women of childbearing age currently living in the United States [46], including the
lower-chlorinated contemporary PCBs [36,37,47–49]. The sum of 34 total PCB congeners in the blood of
pregnant women living in northern California was determined to be 16.1–148 ng/g lipid [50], while the
sum of 17 PCB congeners was 33.63–662.34 ng/g lipid [51]. Similar results have been reported in
countries around the world. Analysis of PCB levels in blood from pregnant women in two different
Japanese cohorts reported the sum total PCBs (13 examined) of 17.8–362 ng/g lipid [52], and 20–210 ng/g
lipid (29 congeners examined [53]. Median levels of PCB 153, widely used as an indicator PCB, in the
serum of pregnant mothers in Greenland were 107 ng/g lipid [42], while, in the Ukraine, they were
27 ng/g lipid; the latter was associated with cognitive defects in the children [54]. Non-legacy PCBs
are detected in the plasma of pregnant women at levels ranging from 0.005 to 1.717 ng/mL [37,49].
PCBs have also been detected in human cord blood (56.29 ng/g lipid [55]) and in brain tissue from
human fetuses and young children (22–122 ng/g lipid [56] and 3.72–67.15 ng/g lipid [44]). Interestingly,
levels of PCB 95 in post-mortem brain tissue from children with ASD were found to be significantly
higher than levels in brain tissue from neurotypical children [44].
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Below, we summarize what is currently known about the effects of developmental PCB exposure
on the developing human brain and discuss mechanisms of PCB developmental neurotoxicity that map
onto signaling pathways and neurodevelopmental outcomes associated with ASD. We also propose
mechanisms by which PCBs may interact with ASD risk genes to increase the risk and/or severity of
ASD and discuss the potential for PCBs to contribute to not only the core symptoms, but also common
comorbidities of ASD using bladder dysfunction as an example.

2. Neurobehavioral Effects of Developmental PCB Exposures

PCBs first gained attention as human developmental neurotoxicants as a result of the accidental
ingestion of cooking oil contaminated with PCBs in Yusho, Japan, in 1968 [57] and in Yu-Cheng, Taiwan,
in 1979 [58]. Children born to women who ingested PCB-contaminated cooking oil while pregnant had
a significantly increased incidence and severity of cognitive and psychomotor deficits. While these
incidents involved high-level PCB exposures, subsequent epidemiologic studies of infants and children
exposed to lower levels of PCBs also found an association between PCBs and neuropsychological deficits
(reviewed in [59–62]). The conclusions of these earlier reviews were recently extended by a summary
of the literature on human PCB developmental neurotoxicity published in English-language journals
between 1990 and 2018 [45]. The authors of this summary identified 29 papers that met the following
inclusion criteria: (1) sample size of ≥100 subjects; (2) prospective cohort study design that measured
prenatal PCB exposures; (3) quantification of PCBs in biospecimens, primarily maternal serum or
plasma collected during pregnancy or at delivery, including from the umbilical cord and placenta;
and (4) subjects were ≥3 years of age “as neurodevelopmental outcomes can be measured more reliably
in older children”. These 29 studies described populations from diverse geographic regions, including
North America (the United States, Canada, and Greenland), Asia (Japan), and Europe (Ukraine, Spain,
the Netherlands, Germany, the Faroe Islands, Denmark, and Belgium). The studies were also diverse
with respect to cohort birth year, reflecting differing PCB congener profiles during pregnancy as levels
of legacy PCBs have slowly decreased since the ban on PCB production, while environmental levels of
contemporary PCBs have increased [63]. The studies included in the summary also varied widely with
respect to the number and type of PCB congeners measured in biospecimens, as well as the limit of
detection of the methods used to quantify PCBs [45].

The review identified 12 publications from 9 different cohorts that examined impacts of PCBs
on cognitive function among children aged 3–11 years [45]. Most (8 of 12) found associations of
developmental PCB exposure with deficits in at least one measure of cognition. Two studies that
identified an association of PCBs with decreased IQ at 3 years of age found this association weakened
by the time children were 4 and 6 years of age. A total of 17 studies from 11 different cohorts
examined associations of prenatal PCBs with attention, behavioral regulation and social behavior
among 3–12-year-old children [45]. The majority (10 of 17) reported PCB-related associations with
impulse control, hyperactivity, and attention. Only two of 17 studies examined PCBs in relation to
social behavior and autistic traits, with one study reporting that total PCB levels were associated with
fewer autistic traits [64], and the other reporting congener-specific associations with autistic traits [65].

Overall, this focused summary concluded that most studies found prenatal PCB exposures were
related to poorer cognitive function and behavior problems [45]. As acknowledged by the authors,
a limitation of their review was that associations with specific PCB congeners or mechanism-based
classes of congeners were not evaluated, largely because most epidemiologic studies report total sum
PCB levels or levels of “indicator” PCBs. The significance of this limitation is underscored by a recent
study suggesting that NDL PCBs with activity at the ryanodine receptor (RyR), but not DL PCBs or total
PCBs, are marginally positively associated with ASD [51]. The genetic substrate likely also influences
the impact of PCBs on ASD-relevant outcomes, as illustrated by a recent pilot study not included in
the focused summary that identified a trend towards a positive association between PCB 153 and
ASD in individuals with a deletion mutation in the gene encoding glutathione transferase but not in
individuals who did not have this mutation [66]. Also not included in the summary, because the age of
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the child at the time of ASD diagnosis was not specified, was a 2017 study that found ASD risk was
elevated for a number of PCB congeners, particularly for the highest vs. lowest quartile of PCB138/158
(AOR = 1.79; 95% CI: 1.10, 2.71) and PCB153 (AOR = 1.82; 95% CI: 1.10, 3.02), and for the highest deciles
of other congeners examined in secondary analyses [67]. Finally, a 2020 study reported an association
between plasma PCB concentrations measured during pregnancy and increased incidence of autistic
behaviors in children aged 3–4 years old when the data were analyzed using Bayesian predictive odds
ratios [68]. When considering these additional studies that have examined the impact of prenatal PCB
on ASD phenotypes together with the with studies included in the review, most (five of six) report that
PCBs increase the expression of autistic traits.

Preclinical studies in non-human primate and rodent studies confirm that developmental PCB
exposures, primarily via the maternal diet or direct oral exposure in young animals, negatively impact
cognitive function and occur in the absence of adverse effects on reproduction or birth outcomes
(reviewed in [69–72]). While many of the earlier studies focused on the developmental neurotoxicity
of legacy commercial mixtures, more recently, the neurodevelopmental impacts of individual PCB
congeners or custom mixes based on PCB congener profiles documented in human tissues have been
investigated. These studies are summarized in a recent review of animal studies published in the past
decade that employed exposure paradigms relevant to humans, in terms of both the dose and exposure
route [73]. The authors of the review concluded that the developmental neurotoxicity associated
with exposures to legacy PCB mixtures is primarily mediated by NDL congeners. The relevance of
this conclusion is suggested by reports indicating that NDL PCBs represent a significantly greater
percentage of the PCBs detected in contemporary samples of human serum, adipose tissue, breast milk,
as well as brain tissue from children with ASD [44,51,74].

While cognitive function has been the major focus of animal studies investigating PCB effects on
behavior, there are emerging reports of PCB effects on behavioral domains of more direct relevance
to the core symptoms of ASD, such as social interactions and communication. While rodent models
cannot recapitulate many aspects of human social interaction [75], they can capture core aspects
of sociability [76]. Sociability in rodents, defined as an animal’s preference for investigating and
spending time with a conspecific animal, can be directly tested in a three-chamber social approach
test and similar tasks [75,77–79]. Ultrasonic vocalizations (USVs) and sociosexual choice are also
frequently used to assess sociability and communication in rodent models [80,81]. The animal literature
describing the effects of developmental PCB exposure on social behavior was recently reviewed [69,73].
Briefly, five studies, one in mice [82] and four in rats [83–86], have been published that describe PCB
effects on various metrics of sociability. In the mouse study, animals were exposed via the maternal
diet to a mixture of six NDL PCB congeners found in human blood at levels approximating those
in the human diet (10 or 1000 ng/kg/d). This exposure reduced nose-to-nose interactions between
males, but enhanced sociability and social approach in females and males [82]. In contrast, the four
rats studies (three of which were performed in the same laboratory), demonstrated that perinatal
exposures to either a mixture of PCBs 47 and 77 [84] or Aroclor 1221 [83,85,86] generally decreased
sociability metrics in males and had mixed effects in females depending on the dose and timing of
administration [73]. These observations are consistent with the sex bias of ASD; however, it is not
possible to determine from these studies whether the effects are attributable to a specific mechanistic
or structural subgroup of PCBs. Overall, there is a need for more comprehensive structure–activity
relationship (SAR) studies of the neurobehavioral effects of developmental PCB exposures to determine
whether the profile of developmental neurotoxicity varies in a congener- and sex-specific manner
across different behavioral domains.

A key unanswered question in the field is the role of xenobiotic metabolism in determining
neurotoxic outcomes following developmental PCB exposures. The cytochrome p450 enzymes play
a major role in PCB metabolism, converting the parent compounds to hydroxylated PCBs, which in turn
can be further metabolized to glucuronide, sulfate and other conjugates [34,87,88]. PCB metabolites are
detected in serum from occupationally exposed humans [89] and pregnant women [90]. Hydroxylated
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PCB exposure during pregnancy has been associated with impaired motor development and cognitive
function in children [91–93]. In adolescent children, exposure to hydroxylated PCBs during gestation
was negatively associated with long-term memory while other parameters, such as auditory attention,
had less frequent sub-optimal scores with higher exposures to hydroxylated PCBs [90]. Another recent
study observed a positive association between hydroxylated PCBs and mental development in children
30 months of age, while hydroxylated PCB 187 was associated with a lower mental development
index at 18 months of age [94]. The reasons for the discrepant findings of the association between
hydroxylated PCB exposure and cognitive performance are not known but could be linked to the
diverse effects of PCB metabolites on dendritic architecture (see Section 3) and/or endocrine disruption.
Hydroxylated PCBs have a differential ability to agonize or antagonize steroid hormone pathways [95],
and in vitro evidence indicates that estrogenic effects of hydroxylated PCBs can be greater than that of
their parent compound [96]. Maternal serum levels of hydroxylated PCBs have also been associated
with free thyroxin levels in neonates [97], suggesting disruption of thyroid hormone signaling may
influence the effects of hydroxylated PCB on cognition. Further complicating the interpretation of
the impact of metabolism on PCB developmental neurotoxicity, studies in mice have shown that
not only can the tissue distribution of parent PCBs and their metabolites differ, but for chiral PCBs,
which includes many RyR-active PCBs, the enantiomeric enrichment of parent versus metabolites can
differ in a tissue-specific manner [98]. Furthermore, PCB metabolism can be altered by pregnancy [99].
These studies highlight the need for a better understanding of how the biotransformation of PCBs
contributes to overall NDD risk.

3. Mechanisms of PCB Developmental Neurotoxicity Relevant to ASD

Recent advances in defining the molecular and cellular pathology of ASD point to altered
patterns of neuronal connectivity in the developing brain as the neurobiological basis for the clinical
symptoms associated with this disorder [13,28,100–102]. Axonal and dendritic morphology are critical
determinants of neuronal connectivity [103]. The number, length and branching patterns of these
processes determine the pattern of synaptic connections, which, in turn, regulates the distribution of
information within the nervous system. Experimental evidence indicates that even subtle perturbations
of temporal or spatial aspects of axonal and dendritic growth can cause persistent changes in synaptic
patterning in the developing brain and adversely impact neurobehavior [104–107]. Clinical evidence
indicates that both axonal and dendritic growth are altered in relevant brain regions of autistic
individuals [101,108–112].

PCBs have been reported to alter in vivo axonal outgrowth in a rat model of developmental PCB
exposure [113]. Rats were exposed throughout gestation and lactation to Aroclor 1254 in the maternal
diet at 125 ppm and then maintained on chow containing 125 ppm Aroclor 1254 after weaning until
being euthanized. Timm’s silver sulfide staining revealed that Aroclor 1254 significantly reduced the
length of II-P mossy fibers in 16-, 30- and 60-day-old rats. In contrast, Aroclor 1254 had no effect on
hilar or suprapyramidal mossy fibers or on cortical thickness. The reason(s) for the selective sensitivity
of granule cells that extend II-P mossy fibers has yet to be determined.

The effects of developmental exposures to Aroclor 1254 on dendritic morphogenesis have also been
evaluated in vivo [114–116]. In three independent cohorts of Long–Evans rats, pups were exposed to
Aroclor 1254 at 6 mg/kg/d in the maternal diet throughout gestation and lactation. In one study [116], a
lower dose of Aroclor 1254 (1 mg/kg/d) was also tested. In two of the three studies, Golgi staining results
indicated that Aroclor 1254 significantly altered dendritic morphology in the brains of offspring [114,116].
In one of these two studies [114], Aroclor 1254 at 6 mg/kg/d caused a robust age-related increase in
the rate of dendritic growth in Purkinje cells of the cerebellum and pyramidal neurons of the CA1
hippocampus. Specifically, at postnatal day (PND) 22, dendrites were significantly less complex in
PCB-exposed animals, but by PND 60, dendritic growth was equal to or significantly greater than that
observed in vehicle controls [114]. In the second study [116], basal dendritic arborization in cerebellar
Purkinje cells and neocortical pyramidal neurons of PND 31 male offspring was significantly increased
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by Aroclor 1254 exposure; however, experience-dependent dendritic growth was significantly stunted
in these groups. These dendritic effects were observed in the cerebellum of the 1 mg/kg/d, but not
6 mg/kg/d, exposure group. In contrast, dendritic arborization in the neocortex was significantly
enhanced in both the 1 and 6 mg/kg/d exposure groups relative to vehicle controls, but the effect
was significantly greater in the 1 mg/kg/d group. Interestingly, this study also found that exposure
to Aroclor 1254 at 1 mg/kg/d, but not 6 mg/kg/d, caused significant spatial learning and memory
deficits [116]. The third study [115], which only examined dendritic arborization in cerebellar Purkinje
cells at PND 21, found no effects of 6 mg/kg/d Aroclor 1254 on dendritic morphology. While this
finding is consistent with the second study [116], it is at odds with the first study [114], which reported
that developmental exposure to 6 mg/kg/d Aroclor 1254 altered the dendritic morphology of Purkinje
cells. Collectively, these studies indicate that developmental PCB exposure appears to modulate the
rate of dendritic growth in the postnatal brain. Thus, the discrepant findings between studies may
reflect differences in the ages at which dendritic morphology was evaluated.

Developmental exposure to PCB 95, a legacy NDL congener, was similarly shown to enhance
dendritic arborization in vivo [117]. Rats were exposed throughout gestation and lactation to 0.1,
1, or 6 mg/kg PCB 95 in the maternal diet. At PND 38, brains were Golgi-stained to quantify the
dendritic arbors of hippocampal CA1 pyramidal neurons. Similar to Aroclor 1254, PCB 95 enhanced
dendritic arborization in a non-monotonic dose-related manner with significantly enhanced dendritic
arborization observed in the 0.1 and 1 mg/kg/d, but not 6 mg/kg/d, groups [117]. In vitro studies
demonstrate that PCB 95 also enhances dendritic arborization in primary rat hippocampal and cortical
neurons, confirming that this effect is mediated independent of systemic effects of PCBs (reviewed
in [45]). The dendrite-promoting activity of PCB 95 [116–119], and another NDL congener, PCB 136 [120],
have been observed in high-density neuron-glia co-cultures derived from PND 1 rat hippocampi and
neocortices exposed to pM to nM concentrations, which are within the concentration range of PCB 95
detected in human brain tissue [44]. At nanomolar concentrations, PCB 95 also increases synaptogenesis
in primary rat hippocampal neurons by stimulating growth and maturation of dendritic spines [121].
These morphogenic effects are selective to dendrites in that neither PCB 95 nor PCB 136 alter axonal
morphology relative to vehicle controls. Similar to PCB 95-induced dendritic arborization in vivo, the
dendrite-promoting activity of PCB 95 and PCB 136 exhibits a non-monotonic concentration–response
relationship with increased dendritic growth triggered at nM-pM concentrations, but not at low µM
concentrations [117,120]. Dendritic growth in neurons exposed to low µM concentrations resembles
that of vehicle controls, and these cell cultures are viable [117,120], indicating that cytotoxicity is not
the explanation for the attenuated dendrite-promoting activity observed at the low µM concentrations.
The biological reason(s) for the lack of response to low µM concentrations of these PCBs has yet to
be determined.

PCB 95 also promotes dendritic growth in primary mouse hippocampal and cortical neurons,
although, in this species, the effect is sex dependent, with the sex specificity varying between
the two neuronal cell types [51]. The differing response is thought to reflect species and regional
variations in the rates of neuronal maturation [51]. Other laboratories have demonstrated that the
4-hydroxy metabolites of NDL PCBs 112, 165, and 187 promote dendritic growth in primary mouse
cerebellar Purkinje cells [122]. Interestingly, this same group found that the hydroxylated metabolites
of NDL PCBs 106, 121, and 159 did not enhance dendritic arborization in this same culture system;
however, these PCB metabolites inhibited the thyroid hormone-induced expansion of the dendritic
arbor [122,123]. Collectively, these observations suggest that not all NDL PCBs have dendrite-promoting
activity. Consistent with this observation, it has been reported that PCB 66, an NDL congener with
physicochemical properties very similar to those of PCB 95, has no effect on dendritic morphology in
primary rat hippocampal neurons when tested at pM to µM concentrations [117].

More recently, it has been shown that PCB 11, a contemporary lower-chlorinated NDL congener,
also has potent dendrite-promoting activity [49,124]. PCB 11 enhanced dendritic arborization in primary
rat and mouse hippocampal and cortical neurons at concentrations as low as 1 fM (approximately
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0.22 ng/mL), which is within the concentration range of PCB 11 detected in the serum of pregnant women
living in northern California [49]. In addition, both the 4-OH-PCB 11 and 4-OSO3-PCB 11 metabolites
significantly enhanced dendritic and axonal complexity in rat primary cortical and hippocampal
neuron cultures [125]. Not only were PCB 11 and its hydroxylated and sulfated metabolites more
potent than the legacy NDL PCBs in enhancing dendritic growth, but, unlike the legacy congeners,
these contemporary PCBs also promoted axonal growth. These results suggest that PCB 11 modulates
neuronal morphogenesis via different molecular mechanisms than PCB 95 and PCB 136. The findings
also raise the critical question of whether developmental exposures to PCB 11 promote dendritic and
axonal growth in vivo. Answering this outstanding question is vital in order to better evaluate the
public health significance of these initial findings.

Mechanistic studies have shown that the dendrite-promoting activity of PCB 95 and 136 is mediated
by the modulation of calcium signaling in neurons (reviewed in [45,63,73]). Early structure–activity
relationship (SAR) studies revealed that NDL PCBs [126,127], but not DL PCBs [128], increase levels of
intracellular Ca2+ and modify calcium signaling in primary neuronal cell cultures. Using pharmacologic
tools to block specific Ca2+ channels, NDL PCBs are reported to increase neuronal levels of
intracellular Ca2+ by activating L-type voltage-sensitive Ca2+ channels or NMDA receptors in
the plasma membrane [129,130], and by sensitizing inositol 1,4,5-trisphosphate receptors [131]
and ryanodine receptors (RyR) (reviewed in [74]) in the endoplasmic reticulum (ER). Of these
mechanisms, the most sensitive is RyR sensitization. RyR channels regulate Ca2+ storage and release
in the ER. At pM to nM concentrations, NDL PCBs bind directly to RyR channels to stabilize the
channel in the open configuration [132,133]. Electrophysiological, biochemical, cellular, and in vivo
techniques confirm that PCB interactions with RyR channels are governed by a stringent SAR, including
stereoselectivity [120,133–139].

Pharmacologic and siRNA knockdown of RyR1 and RyR2 block the dendrite-promoting effects
of PCB 95 and 136 in primary neuronal cell cultures [117,120]. Limited SAR studies confirm that
PCB congeners with negligible RyR activity, such as PCB 66 and the (+)−enantiomer of PCB 136,
also lack dendrite-promoting activity [119,120]. In vivo observations support the hypothesis that
PCB engagement of RyR are linked to PCB effects on dendritic morphology. As discussed earlier,
developmental exposure of rats to Aroclor 1254 enhanced basal dendritic arborization and interfered
with experience-dependent dendritic plasticity [116]. Consistent with data indicating that RyR-active
NDL congeners are the predominant PCBs in Aroclor 1254 [140,141], developmental exposure to Aroclor
1254 was found to significantly increase [3H]-ryanodine binding in the same brain regions in which
Aroclor 1254 altered dendritic arborization [116]. Only open RyR channels can bind ryanodine; therefore,
increased ryanodine binding indicates that Aroclor 1254 increased RyR activity [74]. Importantly,
the dose–response relationship for Aroclor 1254 effects on RyR activity and expression and dendritic
morphology overlapped [116].

Calcium signaling regulates activity-dependent dendritic growth and synapse formation via both
translation- and transcription-dependent mechanisms [142–144]. PCB 95 enhances dendritic growth by
hijacking these same signaling pathways downstream of glutamate receptors (Figure 1). In primary rat
hippocampal neurons, the PCB 95 sensitization of RyRs triggers the release of intracellular Ca2+ from
the ER, which activates the mechanistic target of rapamycin (mTOR) signaling to initiate translational
mechanisms that stimulate dendritic growth [118]. The increase in intracellular Ca2+ caused by the PCB
95 sensitization of RyR also triggers the sequential activation of calcium/calmodulin-dependent protein
kinase kinase (CaMKK), calcium/calmodulin-dependent protein kinase (CaMKIα/γ), rat sarcoma virus
(RAS), mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and
cAMP response element binding protein (CREB) to increase the transcription of wingless-type MMTV
integration site family, member 2 (Wnt2), which acts in an autocrine fashion to enhance dendritic
growth [119]. Pharmacological inhibition of RyR activity blocks the activation of these signaling
molecules, and experimental manipulations to inactivate the signaling molecules block PCB 95-induced
dendritic growth [118,119]. PCB 95 activation of CREB also upregulates miR132, which suppresses the
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translation of p250GAP to enhance dendritic spine density and increase the frequency of miniature
excitatory post-synaptic currents [121] (Figure 1).

Figure 1. Schematic representing the signaling pathways that mediate the effects of polychlorinated
biphenyls (PCBs) on dendritic morphology. Created with BioRender.com.

Blockade of RyR activity does not inhibit PCB 11-induced dendritic growth in primary hippocampal
neurons [125], consistent with the weak RyR activity of PCB 11 [37]. The dendrite-promoting activity of
PCB 11 is also not altered by the inhibition of signaling through the AhR or thyroid hormone receptor, but
it is blocked by pharmacologic inhibition or siRNA knockdown of CREB [125] (Figure 1). Interestingly,
even though the proximal signaling events mediating the dendritic effects of PCB 11 are divergent
from the RyR-dependent mechanisms by which NDL PCBs promote dendritic growth, both PCB
11 and the RyR-active NDL PCBs converge on CREB signaling to enhance dendritic arborization.
These observations suggest the intriguing possibility that genetic polymorphisms in CREB signaling
present relevant targets for stratifying epidemiological studies of PCB developmental neurotoxicity.

Preclinical studies demonstrate that PCBs also interfere with synapse formation and normal
patterns of neuronal connectivity in the developing brain. Developmental exposure to PCB 95 alters
the topographic organization of the primary auditory cortex of weanling rats to create an imbalance
between excitation and inhibition [145]. Proteomic studies reveal that NDL PCBs increase the expression
of synaptic proteins in rat cerebellar neurons [146], while morphometric and electrophysiological
studies demonstrate that RyR-active PCBs increase dendritic spine formation and synaptogenesis in
rat hippocampal neurons [121]. In primary rat neurons, PCB 95-induced synaptogenesis coincides
with upregulated miR132 expression and inhibition of miR132 activity by antisense oligonucleotides
blocks the synaptogenic effects of PCB 95 [121]. While dendritic spine density is often positively
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correlated with cognitive capacity, histological analyses of brains from individuals diagnosed with
ASD [110,147] or fragile X syndrome [148] reveal significantly increased dendritic spine densities
relative to neurotypical controls. If PCBs cause similar effects in children, it seems plausible that
PCBs might contribute to the deficits in communication and social interactions that are core to ASD.
Furthermore, these data suggest that hyperconnectivity may be as disruptive to normal cognitive
function as hypoconnectivity.

4. Mechanisms by Which PCBs Might Influence ASD Risk

While epidemiologic studies have linked developmental PCB exposures to an increased risk of
ASD in diverse populations [51,66–68,149], these associations are not strong. This is consistent with a
model in which PCBs interact with genetic susceptibilities to influence ASD risk rather than directly
causing ASD (Figure 2). Human studies are just beginning to uncover gene x environment interactions
of relevance to ASD. For example, the expression of variants in the MET receptor tyrosine kinase gene,
which is important in regulating neuronal differentiation [150], were recently linked to increased ASD
risk following developmental exposure to high levels of air pollution [151]. While human studies have
yet to identify specific genes that interact with PCBs to influence ASD risk, the human literature does
provide some hints. Post-mortem analysis of commonly detected PCBs and polybrominated diphenyl
ethers (PBDEs) in brain tissue from individuals with ASD identified significant group differences only
for PCB 95, which was found at higher levels in the brains of individuals with genetic forms of autism,
specifically 15q11-q13 duplication (Dup15q), compared to neurotypical controls or autism of unknown
etiology [44]. Subsequent in vitro studies found that PCB 95 differentially modified the methylation of
genes involved in chromatin regulation and neuronal synapses in human neuronal cells expressing
Dup15q [152]. These observations suggest the intriguing hypothesis that PCBs increase ASD risk in
individuals expressing the Dup15q mutation, but whether the combined effects of PCB 95 and Dup15q
on DNA methylation influence clinical phenotype has yet to be demonstrated.

Figure 2. Lock and key model of ASD. The risk for autism spectrum disorder (ASD) and its comorbidities
can be thought of as a lock that opens when the keys of environmental exposure to PCBs, risk genes,
and timing fit into the lock key-hole. Each individual’s lock may be slightly different, contributing to
the clinical heterogeneity of ASD. Created with BioRender.com.
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ASD risk genes that converge on molecular and cellular mechanisms implicated in PCB
developmental neurotoxicity are lead candidates for interacting with PCBs to increase ASD risk
and/or influence phenotypic expression in ASD (Table 1). Of significant interest are heritable mutations
that alter the fidelity of calcium signaling in neurons. Numerous ASD risk genes are associated
with dysregulated calcium signaling [153–156]. For example, multiple ASD risk genes encode for
voltage-gated and ligand-gated ion channels that regulate intracellular calcium levels in neurons.
A particularly interesting example is the gain-of-function missense mutation in the L-type calcium
channel Ca(v)1.2 that causes Timothy Syndrome. Timothy Syndrome has a 60% rate of co-morbidity
with ASD [157], making it one of the most penetrant monogenic forms of ASD. Induced pluripotent stem
cells (iPSC)-derived neurons from Timothy Syndrome patients exhibit increased neuritic complexity
and elevated expression of genes linked to Ca2+-dependent regulation of CREB, including CaMK [158].
These upregulated calcium-dependent signaling molecules map onto the signaling pathway shown
to link PCB sensitization of RyR to increased dendritic arborization [119]. A second example is
FMR1 premutation (55–200 CGG repeats in the 5′ non-coding portion of FMR1), which is the most
prevalent single gene disorder associated with increased ASD risk [159,160]. Hippocampal neurons
cultured from an FMR1 premutation knockin mouse model exhibit aberrant electrical spiking patterns
and synchronized Ca2+ oscillatory behaviors [161] coincident with impaired dendritic growth and
complexity [162] that phenocopy the effects of PCBs on primary hippocampal neurons derived from
postnatal rodents [144]. These observations suggest the testable hypothesis that the expression of
mutations that increase the rate and/or amplitude of Ca2+ oscillations amplifies the neuronal response to
PCBs that similarly alter Ca2+ fluxes, thereby increasing the likelihood and/or magnitude of functionally
significant changes in calcium-dependent neurodevelopmental processes that determine the patterning
of neuronal connections in the developing brain.

Table 1. Potential ASD risk genes that may interact with PCBs to increase ASD risk.

Genetic Factor ASD-Relevant Genetic Risk Factors Further Reading

Genetic variants or changes
in expression of genes
regulating calcium signaling
or gene products regulated
by calcium

• Voltage gated calcium channels
(CACNA family)

• Voltage gated sodium channels (SCN family)
• Ligand gated chloride channel (GABRB3)
• CGG-repeat expansions in the FMR1 gene
• Calcium-dependent signaling molecules: CREB,

mTOR, Wnt, CaMKI

Pasca et al., 2011 [158]
Stamou et al., 2013 [28]
Nguyen et al., 2018 [155]
Marcantoni et al., 2020 [154]
Hagerman and Hagerman, 2013 [163]

Genetic variants or changes
in expression of genes
regulating dendritic
arborization, axonal growth,
or synapses

• Neuroligins (NLG3, NLG4)
• Neurexins (NRXN1, NRXN3, CNTNAP2)
• SH3 and multiple ankyrin repeat domains 3

(SHANK3)
• MET receptor tyrosine kinase
• miR132

Qiu et al., 2012 [15]
Zoghbi et al., 2012 [102]
Stamou et al., 2013 [28]
Eagleson et al., 2017 [164]
Guang et al., 2018 [13]

Genetic polymorphisms that
alter metabolism or response
to PCBs

• Paraoxonase (PON)
• Glutathione S-transferases (GST)
• Delta-aminolevulinic acid dehydratase enzyme

(ALAD2)
• Cytochrome P450 monooxygenases

Rossignol et al., 2014 [165]
Bach et al., 2020 [66]

ASD has also been linked to the dysregulation of a number of genes whose gene products are
tightly regulated by calcium signaling, including CREB, mTOR, and Wnt [166–171]. These signaling
molecules are of particular interest because they function in calcium-dependent signaling pathways that
have been causally linked to PCB effects on dendritic arborization [118,119,125]. Recent observations
suggest that CREB is a convergent target for PCB congeners that promote dendritic growth via
RyR-dependent mechanisms, such as PCB 95, as well as lower-chlorinated PCBs such as PCB 11
that also enhance dendritic arborization but have negligible RyR activity [73]. Dysregulated CREB
signaling has been documented in ASD individuals [168,172], and transgenic mice expressing human
mutations in CREB-binding protein exhibit increased stereotypy as well as deficits in social and
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cognitive behavior [173]. One downstream effector of CREB activation is miR132, which has been
shown to be elevated in ASD [174–176] and has been implicated in PCB-induced synaptogenesis [121].
Wnt, another downstream effector of CREB, is also implicated in the pathogenesis of ASD, and is
thought to underlie the stereotypic, repetitive behaviors observed in ASD [166,167]. There is also
evidence suggesting that disrupting Wnt signaling in a rat model impairs social behaviors as a result
of changes in brain organizational patterning and interhemispheric connectivity that are reminiscent of
ASD [177]. Collectively, these observations identify CREB signaling as an intriguing target for future
studies investigating gene X PCB interactions in ASD.

A second major group of ASD risk genes that may interact with developmental PCB exposures to
confer increased ASD risk and/or severity are genes involved in the formation, elimination or plasticity of
dendrites, axons, or synapses. Genetic, histologic, electrophysiological and functional imaging studies
of children and adults with ASD all point to altered patterns of neuronal connectivity in the developing
brain as the neurobiological substrate underlying these disorders [13,15,28,102,112,164]. A number
of neurodevelopmental processes ranging from early events of cell proliferation and differentiation
to migration and axonal outgrowth to late events involving neuronal apoptosis, refinement of the
dendritic arbor and synapses, and myelination are critical determinants of neuronal connectivity
in all brain regions, including those involved in ASD. Even subtle shifts in the spatiotemporal
patterns or magnitude of any of these events can interfere with the formation of meaningful networks
resulting in deficits in functional connectivity [104,107,178]. Data from genetic studies of ASD and
neuropathological evidence from syndromic disorders with a high incidence of ASD diagnosis, such
as Fragile X syndrome, Timothy syndrome, and tuberous sclerosis, suggest that the later stages of
neurodevelopment, particularly dendritic growth and synaptogenesis, are probably most vulnerable
in ASD [13,17]. This is consistent with the usual diagnosis of ASD within the first three years of life,
during which time there is extensive formation and refinement of synaptic connections in the human
brain [179]. Studies of animal models expressing ASD risk genes further support the hypothesis that
the altered neuronal connectivity observed in ASD reflects perturbations of dendritic growth, synapse
formation and synapse stabilization [13,100–102,108]. RyR-active PCBs also promote basal dendritic
growth in hippocampal and cortical neurons, both cell types of relevance to ASD, in vivo [114–116,119]
and in vitro [116–118,120]. These effects phenocopy the enhanced dendritic arborization and neuronal
connectivity observed in at least a subset of individuals with ASD [108,112,147]. These results suggest
that the convergence of both genetic risk factors and PCBs on neuronal structure and connectivity
may be a way in which the genetic substrate and the environment interact to influence individual
ASD risk. Another genetic factor of particular interest to gene x environment interactions in terms of
connectivity is the role of miR132, which has been shown to be elevated in ASD [174–176]. As discussed
above, PCB 95-induced increases in synaptogenesis in primary rat neurons is driven by upregulated
miR132 expression [121]. In vivo studies in preclinical models indicate that while miR132 is required
for cognitive function, the overexpression of miR132 to supra-physiological levels compromises
cognitive function coincident with significantly increased spine formation [180]. These data suggest
that gain-of-function mutations in miR132 may interact with PCBs to increase ASD risk and/or severity.

Another mechanism by which genetic risk factors may interact with PCBs to influence ASD risk
and/or severity is through genetic influences on PCB metabolism. It is well established that genetic
polymorphisms in paraoxonase (PON) influence the detoxification of neurotoxic pesticides [181],
while mutations in genes encoding metal transport proteins (e.g., SLC11A3 or MTF1) alter the
disposition of metals in the brain and other target tissues [165]. A recent meta-analysis of two
high-risk prospective cohort studies that analyzed cord blood from children with ASD versus typically
developing controls found enrichment in toxic substance response and xenobiotic metabolism
genes among the ASD-associated nominally differentially expressed genes [182]. Genes in this
ontogeny included cytochrome P450 monooxygenases, which are involved in human metabolism
of PCBs [183]. In light of experimental evidence demonstrating that hydroxylated PCB metabolites
alter dendritic arborization in vitro [122,123,125] and increase reactive oxygen species and cell death



Toxics 2020, 8, 70 13 of 32

in the rodent cerebellum [184,185], these data suggest the possibility that PCBs may interact with
polymorphisms in cytochrome P450 to modulate individual risk for ASD. Other studies have similarly
identified polymorphisms in genes related to toxicant metabolism enriched in individuals with ASD
compared to neurotypical controls [165]. One of these ASD-linked genes was glutathione-S-transferase,
polymorphisms of which have previously been shown to interact with PCBs to determine the risk of
endometriosis [186,187]. Interestingly, a recent exploratory study observed a trend towards a positive
association between PCB 153 and ASD in individuals with a deletion mutation in glutathione transferase
but not in those who did not have this mutation [66]. These preliminary observations need to be
confirmed in studies adequately powered to examine the impact of PCB exposures on autism risk in
a population stratified by genotype for xenobiotic metabolism enzymes, such as glutathione transferase.
These types of genetic studies are challenging in humans because, even when polymorphisms in genes
responsible for toxicant metabolism are identified, they are not always linked to changes in function of
the gene product, and, conversely, changes in enzyme activity can occur without any indications of
genetic differences [165]. Future human studies aimed at linking genetic variants with enzyme activity
in the context of documented PCB exposure levels will help to address these key data gaps to more
directly understand whether and how genetic variants in xenobiotic metabolism and toxic substance
response interact with PCB exposures to influence ASD risk.

Relevant preclinical animal models are crucial to confirming and informing human studies of gene
x environment interactions in ASD. The utility of animal models in this context is elegantly illustrated
in studies of mice harboring a single allele mutation in the sonic hedgehog (Shh) gene, which is typically
silent. Relative to wild-type controls, Shh mutant mice were found to exhibit enhanced sensitivity to the
teratogenic effects of the pesticide synergist piperonyl butoxide [188]. Similarly, point mutations in RYR,
which are silent under normal physiologic conditions, confer susceptibility to malignant hyperthermia
(MH) triggered by exposure to halogenated anesthetics [74]. It is estimated that ~35% of the human
population carry one or more RYR1 or RYR2 variants [189]. While any one of the ~180 known human
RYR1 mutations may be rare, mechanistic studies of individual mutations indicate that they confer
susceptibility to MH via a common mechanism of Ca2+ dysregulation [74]. These same RYR mutations
also confer heightened sensitivity to RyR-active PCBs [190]. PCB 95 disrupts the normal homeostatic
mechanisms that regulate RyR channel opening and calcium release, such that RyR channels become
hyposensitive to inhibition by high concentrations of Mg+ and Ca2+ and therefore are stabilized in
their open configuration [190]. In RyR1 channel preparations from pigs with either wild-type Ryr1 or a
human MH mutation in Ryr1 (R615C), PCB 95 enhanced activity in mutant RyR1 channels relative
to wild-type channels: the IC50 for Ca2+ inhibition in wild-type RyR channels increased 10-fold in
the presence of PCB 95 compared to vehicle, while, in the mutant RyR channels exposed to PCB 95,
it increased 20-fold compared to vehicle [190]. Together these findings indicate that MH mutations
enhance the sensitivity of RyR to PCB 95, and provide proof-of-principle evidence that the genetic
substrate influences functional responses to PCBs. Moreover, a joint association test of results from a
genome wide association study identified RYR2 as an ASD candidate gene by using sex as an additional
risk factor [191].

Mouse models that express genes that result in dysregulated calcium signaling are of particular
interest to understanding the influence of gene x PCB interactions in ASD. These include mice
engineered to express human MH mutations in Ryr1 [192,193] or the human CGG repeat expansion in the
premutation range in the fragile X mental retardation (Fmr1) gene [156]. Relative to congenic wild-type
controls, mice that express these mutations exhibit altered dendritic morphology in hippocampal and
cortical neurons coincident with altered social behavior [194]. The effects on dendritic arborization
phenocopy the effects observed with developmental PCB exposure alone [116]. These genetic mouse
models are currently being used to test the hypothesis that the expression of these heritable
mutations that alter the fidelity of Ca2+ signaling influence the developmental neurotoxicity of
PCBs. Initial findings with these mice exposed developmentally to a PCB mixture that mimics the
congener profile detected in the serum of pregnant women at increased risk of having a child with
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ASD [37,195] indicate that expression of both the mutant Ryr1 and Fmr1 CGG repeat expansion
mutation enhances sensitivity to PCB effects on intestinal physiology, inflammatory markers, and the
microbiome [196]. Additional findings from these translational animal models related to effects on
neuronal connectivity and behavior should be informative for human studies aimed to determine
whether PCBs interact with genetic mutations to increase ASD risk.

5. The Peripheral Nervous System: A Point of Convergence between ASD and PCBs?

Evolving evidence suggests that the peripheral nervous system (PNS), and, in particular,
the autonomic nervous system, may contribute to the clinical symptoms associated with ASD [197].
There are reports of abnormal parasympathetic function in ASD during rest and while performing
mental tasks [198]. Heart rate variability, which is used to measure autonomic function, is lower in
children with ASD versus controls [199]. These findings were confirmed in a recent meta-analysis
that also concluded individuals with ASD exhibited lower heart rate variability versus controls
under conditions of social stress [200]. Autonomic pathways involved in facial recognition tasks are
abnormal in children with ASD compared to neurotypical controls, with deficits including both hypo-
and hyperresponsive sympathetic activity [201]. Peripheral nervous system responses measured by
electrodermal activity are more rigid in individuals with autism versus controls when viewing faces
accompanied by fear odors [202]. Children with ASD also display differences in sympathetic nervous
system function during sensory challenges, exhibiting enhanced taste and smell sensitivity [203].
In a similar manner, mouse models that express ASD-linked mutations in Mecp2, Gabrb3, Shank3,
and Fmr1 have been shown to exhibit hypersensitivity to tactile stimuli [204]. Recent evidence also
identifies impaired enteric nervous system function in valproic acid rat models of ASD with Vitamin A
deficiency [205].

PCBs have been reported to decrease sensory and motor nerve conductance velocity in
humans exposed to high levels of PCBs [206], and in vitro studies of sensory neurons isolated
from chick dorsal root ganglia support a direct toxic effect of PCBs on these peripheral neurons [207].
Epidemiologic studies of populations living in highly polluted areas of northern Italy or Anniston,
Alabama in southeastern United States found an association between PCBs and increased rates of
hypertension [208,209]. Since hypertension is often associated with increased sympathetic tone [210],
these observations suggest the possibility that PCBs increase hypertension via effects on the sympathetic
nervous system. Consistent with this possibility, unpublished data suggest that PCBs enhance the
dendritic arborization of primary sympathetic neurons in culture via RyR-dependent mechanisms
(Panesar and Lein, personal communication). Increases in the size of the dendritic arbor of
postganglionic sympathetic neurons is directly correlated with sympathetic tone [211] and has
been causally linked to hypertension [212,213]. These observations suggest that additional human and
preclinical studies to evaluate the effects of PCBs on the connectivity and function of autonomic and
sensory nerves are warranted.

Another plausible factor linking ASD, PCBs and the PNS is the gut microbiome. Emerging
evidence suggests that bidirectional communication between the gut microbiome and brain is mediated
in part by the enteric nervous system [214]. While the enteric nervous system is distinct from the
autonomic nervous system, it is similar to the sympathetic and parasympathetic nervous systems in
that it is derived from the neural crest [215]. There is growing clinical evidence that an altered gut
microbiome is associated with ASD [216,217], and recent studies demonstrate that PCBs can alter the
gut microbiome [218–222]. For example, in one of the latter studies [222], developmental exposure of
mice to a PCB mixture that mimics the PCB congener profile found in the serum of mothers at increased
risk of having a child with ASD [37,195], altered intestinal physiology in weanling mice, coincident
with changes in the microbiome [196]. Whether the PCB effects on intestinal physiology are linked to
changes in the enteric nervous system remains to be determined, but, collectively, these observations
suggest that the question of whether PCBs contribute to deficits in autonomic and sensory function in
individuals with ASD is deserving of further exploration.
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6. A Role for PCBs in ASD Comorbidities?

Developmental PCB exposures have been linked to disruptions in the microbiome and intestinal
physiology [222], liver function [223,224], lipid metabolism [225], and systemic inflammation [226,227].
These outcomes overlap with comorbidities common in ASD [1], raising the question of whether
developmental PCB exposures contribute to ASD comorbidities. One comorbidity that significantly
impacts quality of life for children and adults with ASD, and for their caregivers, is bladder and bowel
dysfunction, the incidence of which is significantly increased in ASD [228,229]. While much more is
known about bowel dysfunction [230] compared to bladder dysfunction in this population, bladder
dysfunction in individuals with ASD is gaining clinical interest. One study that examined both bowel
and urinary incontinence found that 40% of children with ASD experience some type of urinary or
bowel incontinence compared to 4.7% in typically developing controls [231]. Further examination of
bladder incontinence alone identified nocturnal enuresis (bed wetting) rates of 30% and daytime urinary
incontinence rates of 25% in children with ASD [231]. Urinary incontinence is not unique to ASD. It is
estimated that 20–40% of children with urinary incontinence fit criteria for a psychiatric disorder [232].
In a twin study that examined rates of other health problems in children with neurodevelopmental
disorders, including ASD, ADHD, or learning disability, daytime enuresis (daytime incontinence) was
found to be significantly more common in individuals with a diagnosed neurodevelopmental disorder
than in controls [233]. In children with a diagnosis of autism and learning disability, the prevalence
of daytime enuresis was 14 times greater, reaching rates of nearly 50% [233]. Incontinence is also a
common comorbidity among children with ADHD, and, in one study of ADHD and nocturnal enuresis,
genetic factors alone could not account for the high comorbidity, suggesting that environmental factors
play a role [234,235]. While additional large genetic studies are needed to understand the relative
contributions of genetics versus environmental factors of bladder dysfunction in ASD, the role of
environmental factors, such as PCBs, in determining urinary incontinence in ASD is an exciting new
avenue of study.

The hypothesis that environmental factors contribute to the high rate of bladder dysfunction in
ASD is strengthened by evidence that various environmental chemicals have been shown to alter urinary
function in preclinical models [236–238]. For example, the estrogenic chemical bisphenol A has been
linked to abnormal lower urinary tract function [236,239]. Several PCBs have been identified to have
estrogenic activity [96], but whether they alter urinary function is unknown. Of particular relevance to
the question of whether developmental PCB exposures alter bladder function, developmental exposure
to TCDD has been documented to disrupt lower urinary tract function [237,238]. These effects may be
modulated by the genetic substrate. In mice genetically susceptible to developing prostate neoplasia,
developmental TCDD exposure decreases bladder voiding pressure once mice reach adulthood and
exacerbates lower urinary tract dysfunction when adult mice are challenged with sex hormones that
mimic the aging process [238]. Testosterone and estradiol treatment of adult male mice triggers lower
urinary tract dysfunction with prostate enlargement. If the animal is developmentally exposed to
TCDD, these effects of sex hormone treatment in adulthood are exacerbated and the clinical profile
expanded to include increases in bladder volume, prostate proliferation, prostate smooth muscle
thickness, prostate and bladder collagen density, and prevalence of hydronephrosis [238]. In wild-type
mice, developmental exposure to TCDD followed by adult challenge with sex hormones also results in
abnormal voiding physiology, evidenced as increased frequency of small urination events compared
to mice with sex hormone treatment alone [237]. Developmental TCDD exposure acts in parallel,
rather than synergistically, with adult sex hormone challenge to exacerbate voiding dysfunction since
proteomic analysis reveals differential protein expression patterns between the two treatments [237].
A total of 102 proteins are differentially expressed in mice exposed to TCDD and sex hormones
compared to mice treated with sex hormones alone. These differentially expressed proteins belong
to several biological pathways of relevance to PCB developmental neurotoxicity, including dendrite
development and morphogenesis, xenobiotic metabolism, regulation of synapse structural plasticity,
regulation of muscle adaptation, and calcium dependent cell matrix adhesion [237]. Perhaps the most
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striking finding is that the protein most strongly increase in the TCDD + hormone group compared to
hormone only group is RyR1 [237]. The upregulation of RyR1 raises the intriguing hypothesis that
developmental TCDD exposure followed by adult exposure to sex hormones may enhance sensitivity
to the neurotoxic effects of RyR-active PCBs. While these studies focused on male mice and the
involvement of the prostate in urinary obstruction and abnormal voiding dynamics, whether TCDD
also alters female voiding dynamics and whether chemicals that target RyR, such as the RyR-active
PCBs, impact bladder or prostate biology are areas of future study. The evidence that other AhR
agonists such as TCDD impact voiding function, as well as the presence of RyR in muscle of the
lower urinary tract [240], suggest the possibility that DL and RyR-active PCBs act directly on the
lower urinary tract to alter voiding function. More broadly, these studies support the hypothesis that
environmental exposures contribute to the variable clinical profile of comorbidities in ASD, even in
individuals with similar genetic profiles.

To fully understand the pathogenesis of ASD comorbidities, greater knowledge of how PCBs and
other environmental factors influence the function of peripheral targets is needed (Figure 3). Autonomic
disturbances have been linked to gastrointestinal, bladder, and immune dysfunction [214,241,242],
suggesting that the PNS may be a convergence point through which environmental factors such
as PCBs influence the phenotypic expression of ASD comorbidities. In the context of the bladder,
parasympathetic and sympathetic neurons innervate the bladder to control the micturition reflex,
and sensory afferent signaling is responsible for the sensation of bladder fullness as well as responses
to noxious stimuli within the bladder [243,244]. Thus, PCB-induced perturbations in the “wiring”
or synaptic connectivity of the PNS during development could contribute to bladder dysfunction.
The voiding reflex also has central nervous system components including Barrington’s nucleus or the
pontine micturition center (PMC) [245]. Studies have demonstrated that calcium flux into neurons
within this region correlate with voiding [245]. Additionally, the PMC receives input from other
brain regions, including prefrontal, motor and somatosensory cortex, the hypothalamus, and the
midbrain [245]. The well-established role of RyR-active PCBs in sensitizing RyR in hippocampal and
cortical neurons to increase calcium release, which then alters dendritic arborization and synapse
formation, raises the possibility that PCB-induced changes in connectivity within the PMC or other
centers in the brain that regulate bladder function may also contribute to voiding dysfunction in
individuals with ASD.

Figure 3. Potential PCB targets that might contribute to bladder dysfunction observed in ASD. PCBs
could alter central control of micturition, sensory or autonomic control of bladder function and/or
function of target organs, such as smooth muscle in the bladder and prostate, which express RyR.
Created with Biorender.com.
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The above discussion raises a challenge and an opportunity with regards to studying the effects
of PCBs on peripheral target tissues linked to ASD comorbidities, such as the bladder, in that it is
conceivable that PCBs might alter bladder function via direct effects at the level of the bladder, the PNS,
or the CNS, or via effects on a combination of these targets (Figure 3). This is a current challenge but
with complementary approaches that employ ex vivo physiology techniques to examine the bladder
alone [246,247], mouse models that allow for the direct labeling of a subset of PMC neurons important
for voiding [245], voiding function physiology testing in live animals [248–250] and in vitro techniques
to culture sympathetic and sensory neurons [251,252], we can begin to understand this complex puzzle.
Such studies will provide a clearer picture of how PCBs not only contribute to ASD risk but how they
may also contribute to the comorbidities associated with ASD that so greatly impact quality of life.

7. Conclusions and the Path Forward

Experimental studies in preclinical models demonstrate that PCBs modulate Ca2+-dependent
signaling pathways implicated in ASD and these biochemical effects are linked to changes in dendritic
arborization and synaptic connectivity that phenocopy morphometric changes observed in autistic
patients and in animal models that express ASD risk genes. However, a critical observation emerging
from mechanistic studies of PCB developmental neurotoxicity is that not all PCB congeners exhibit these
activities. Not only are there differences between congeners, but also between parent compounds and
their metabolites. The question of whether and how PCB metabolism influences PCB developmental
neurotoxicity remains an outstanding question in the field. Given the known differences in human
vs. rodent metabolism of PCBs [87,253–257], it will be important to address species differences
in translating data from rodent models to human risk. One potential approach for overcoming
this challenge would be to use “humanized” mice [258–263] that not only express relevant human
cytochrome p450 isoforms [87,264–266] but also lack expression of rodent cytochrome P450 enzymes
involved in PCB metabolism. Another critical gap is whether the in vitro effects of PCB 11 on neuronal
morphogenesis [49,125] translate to the intact developing brain and whether they can be generalized
to other contemporary lower-chlorinated PCBs found at relatively high abundance in the serum of
pregnant women, such as PCB 28 [37].

Since PCBs likely do not cause ASD per se but rather modify genetic risks of ASD, this observation
may explain in large part why epidemiologic studies have found only weak associations between
PCBs and increased autistic traits. Key strategic goals moving forward are (1) to test a greater number
of individual PCB congeners, particularly those currently identified to be most prevalent in relevant
human tissues, (2) determine the SAR for PCB effects on neuronal connectivity, and (3) confirm the
molecular mechanisms mediating the effects of PCBs on neuronal connectivity and determine whether
and how these map onto ASD risk genes. Such information will be of immense value in optimizing
PCB analyses conducted in epidemiologic studies, helping to shift from the current strategy towards
testing associations within structural and mechanistic classes of PCBs or within specific genotypes.
This information will also inform strategies to stratify epidemiology studies to more effectively identify
gene x PCB interactions that increase ASD risk.

An emerging area of PCB research that has the potential to significantly shift the current paradigm
regarding the role of environmental risk factors in ASD is the influence of PCBs on not only core
symptoms of ASD, but also comorbidities commonly associated with ASD via effects on the central
and peripheral nervous systems, and/or peripheral target tissues (Figure 4). This is a nascent field of
inquiry, so significant data gaps need to be addressed to validate this model. However, by adapting the
biological framework established for PCB effects on the CNS, it should be relatively straightforward to
develop testable hypotheses regarding PCB influence on the morphometric determinants of neuronal
connectivity in the PNS. Data supporting a role for PCBs in influencing the phenotypic expression
of comorbidities would suggest interesting and potentially extremely important associations to test
in epidemiologic studies. Increased understanding of the impact of PCBs on autonomic and sensory
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neurons and how these effects contribute to the risk of ASD comorbidities may provide insights into
novel therapeutic approaches to greatly improve quality of life for individuals with ASD.

Figure 4. Links between PCBs and ASD. Developmental PCB exposure has been linked to altered
neuronal connectivity in the central nervous system (CNS), an endpoint that is also disrupted in
ASD. Growing evidence supports the involvement of the peripheral nervous system (PNS) in the
behavioral deficits observed in ASD as well as comorbidities such as gastrointestinal (GI) dysfunction.
The direct effects of PCBs on the PNS, GI tract and other organs, such as the bladder, are understudied,
but elucidating the impact of PCBs on peripheral targets may help to explain the clinical heterogeneity
that is a hallmark of ASD. Created with BioRender.com.

Clearly, work is urgently needed to better predict the specific ASD genes and specific PCB
congeners that together pose the greatest ASD risk. Ultimately, data indicating that developmental
PCB exposure increases the risk and/or severity of ASD core symptoms and/or comorbidities would
justify the resources needed for mitigating exposure of genetically susceptible individuals. The fact
that chemical exposures are more readily controlled than genetic factors to prevent or mitigate the
expression of phenotypic traits related to ASD, coupled with the significant toll of ASD on individuals,
their families and society, provides compelling reasons to engage in this endeavor.
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