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Abstract 

Keywords: 

1. Introduction

2. Materials and Methods

2.1. Experimental design 

Two rice (Oryza sativa L.) experiments were designed, encompassing a combination of

treatments in rice cultivar, planting density and N rate. These two experiments were respectively

conducted in 2014 and 2015 from July to September at the experimental station of National En-

gineering and Technology Center for Information Agriculture (NETCIA), Rugao, Jiangsu, China

(120°19′ E, 32°14′ N) with same treatments for each year.  The predominant soil texture was

loam and the organic carbon concentration in soil was 12.95 g·kg−1. The annual average tempera-

ture was 14.6 °C and annual average precipitation was 1055.5 mm, respectively.

Four N fertilization rates [0 (N0), 100 (N1), 200 (N2) and 300 (N3) kg N ha−1] were ap-

plied in the form of urea, with 40% at preplanting, 10% at tillering, 30% at jointing and 20% at

booting. In particular, there were two planting densities (0.30 m by 0.15 m and 0.50 m by 0.15

m) for N1 and N2 rates and one planting density (0.30 m by 0.15 m) for N0 and N3 rates. Each

treatment had three replicates which were arranged in a randomized block design. For all plots,

135 kg P2O5 ha−1 (as phosphate fertilizer) and 190 kg K2O ha-1 (as potassium fertilizer) were ap-

plied  before  transplanting.  The  two  rice  cultivars  were  Japonica  rice  with  erect  plant  type,

Wuyunjing 24 (V1) and Indica rice with spread type, Y liangyou 1 (V2). Each plot size was 5 m
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by 6 m and a total of 36 plots (12 cultivation conditions with three replications) were grown in

each experiment. 

2.2. Acquisition and preprocessing of hyperspectral imagery

2.2.1. Hyperspectral image data acquisition

Fig. 1. (A) Experimental setup of the near-ground hyperspectral imaging system in the paddy field and (B) onset of

the hyperspectral camera in the system.

Table 2

Summary of image acquisition dates (also denoted as days after transplanting: DAT) for the rice experiment.

Year 
Early

tillering
Late

tillering
Jointing

Early
booting

Late
booting

Heading
Early
filling

Late fill-
ing

2014
8 Jul. 
(22)

20 Jul. 
(34)

4 Aug. 
(49)

/
20 Aug. 

(65)
3 Sept. 

(78)
/

20 Sept. 
(96)

2015
9 Jul. 
(24)

21 Jul. 
(36)

31 Jul. 
(46)

14 Aug. 
(60)

25 Aug. 
(71)

/
9 Sept. 

(86)
/

All  hyperspectral  images  were  acquired by a  pushbroom scanning sensor  (ImSpector

V10E-PS, SpecIm, Finland) mounted on a platform about 1.2 m above the rice canopies (Fig. 1).

Our platform could be lifted up to a maximum height of 3 m above the ground and we could en-
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sure fields of view in the same size at the top of canopy during the whole growing season. The

spectral range of this sensor was from 360 nm to 1025 nm divided into 520 bands with a spectral

resolution of 2.8 nm. The spatial dimension of image data was acquired by the movement of a

linear actuator. The spatial resolution at near-nadir position (42.8° field of view) was about 1.3

mm and the swath width was about 0.9 m. The exposure time of this sensor was fixed manually

to adapt to brightness variation between scans under natural light conditions, with approximately

0.2 ms for sunny days. This hyperspectral imaging system completed a scene by scanning rice

canopies across the row orientation (5 m wide) and generated a total of 432 images for the two

experiments. In particular, 36 images were collected for each growth stage (Fig. 2). The sum-

mary of image acquisition dates is shown in Table 2. 

Fig. 2. Example true color images cropped from hyperspectral scenes acquired throughout the growing season in
2014. A total of  12 plots (one replication) for each growth stage were shown here. V1: Wuyunjing 24 (Japonica
rice); V2: Y liangyou 1 (Indica rice). N0-N3: four N fertilization rates (0, 100, 200 and 300 kg·N·ha−1). D1-D2: two
row spacings (30 cm and 50 cm). ET: early tillering stage; LT: late tillering stage; JT: jointing stage; LB: late booting
stage; HD: heading stage; LF: late filling stage.  

2.2.2. Data preprocessing
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The  image  preprocessing  procedures  including  subtraction  of  sensor  electronic  noise

(dark  current)  and  radiometric  correction  were  implemented  within  the  specVIEW software

(Specim, Oulu, Finland). The final relative reflectance values were converted from the original

digital number (DN) values using the calibration equation as follows (Zhou et al., 2017):   

target noise
target panel

panel noise

DN DN
Ref Ref

DN DN


 

 Ref target=
DN target−DN noise

DN panel−DN noise

Ref panel (1)

where DNtarget,  DNnoise and DNpanel is the DN value of target, electronic noise (dark current) and

99% reflective white reference panel, respectively. Reftarget and Refpanel is the reflectance value of

target and reference panel, respectively. A barium sulfate (BaSO4) panel was placed on the tripod

as the white reference panel. The relative reflectance data were smoothed using the Minimum

Noise  Fraction  (MNF) transform procedure  in  the  ENVI 4.8  (EXELIS,  Boulder,  CO,  USA)

software environment.  The spectral  data  in  the  400–900 nm range were retained because  of

strong noise in other spectral regions even after smoothing. 

2.2.3. Image spatial subsampling

To avoid the BRDF effects on the left and right edges of images, we cropped original

images and only used the middle half of the original images (i.e., the swath width was about 45

cm). The performance of LNC estimation was evaluated over various spatial resolutions. Given

the swath width was 450 mm, we selected the spatial resolutions by dividing 450 mm by a factor

of two iteratively. The original spatial resolutions of 1.3 mm was degraded to 2, 4, 7, 14, 28, 56,

113, 225 mm, 450 mm by aggregating over cells of N×N pixels as suggested in Jay et al. (2017).

An example image at different spatial resolutions is illustrated in Fig. 3.   
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Fig.  3. Example  true  color  images  with  gradual  degradation  of  spatial  resolution  acquired  on  8  July  2014.
Illustration for (A) 1.3 mm, (B) 14 mm, (C) 28 mm, (D) 56 mm, (E) 113 mm and (F) 225 mm.

2.2.4. Discrimination of non-vegetation background and vegetation

To investigate  the  relationships between LNC and VIs  derived from pure  leaf  pixels

across the whole image at  1.3 mm spatial  resolutions,  we firstly  identified vegetation pixels

applying a threshold of the enhanced vegetation index (EVI) (Pinto et al.,  2016; Zhou et al.,

2017) (EVI > 0.45).  Afterwards,  we constructed the classification decision tree developed in

Zhou et al. (2017) by applying photochemical reflectance index (PRI) (Gamon et al., 1992) and

transformed  chlorophyll  absorption  reflectance  index  (TCARI)  (Haboudane  et  al.,  2002)

thresholds at two sequential steps for discriminating all the pixels of sunlit and shaded canopy

organs in the images. Specifically, we extracted all the leaf pixels with PRI > -0.058 and all

panicle  pixels  with  PRI ≤  -0.058.  Then,  the  pixels  of  sunlit  leaves  and shaded leaves  were

identified with TCARI values greater and less than 0.172, respectively; the sunlit and shaded

panicles were identified with a TCARI value of greater and lower than 0.241, respectively. More

detailed information regarding the discrimination of different components within rice canopies

could be found in Zhou et al. (2017). 
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We calculated the green fraction from the original images with 1.3 mm spatial resolution

for which the fraction of mixed pixels was negligible. Then, we followed the strategy in Jay et al.

(2017) to adjust the threshold values of EVI, TCARI, PRI for individual resolutions to keep the

green fraction close to that calculated at the 1.3 mm spatial resolution. As shown in Fig. 4, the

EVI threshold values decreased as the spatial resolution degraded for the early tillering stage and

the late  tillering stage but slightly increased for the reproductive stages.  In  contrast,  TCARI

threshod values exhibited a tendency to decline from 2 mm resolution to 225 mm resolution for

each stage. The PRI threshold values increased with the degradation of spatial resolution for the

heading stage but decreased for the filling stage. Given only one pixel left when degrading the

original cropped image to 450 mm spatial resolution, we did not provide the separate thresholds

for this resolution. Additionally, the average spectra of all-leaf pixels, sunlit- and shaded-leaf

pixels for 450 mm spatial resolution were assigned as the average spectra of whole-image pixels

(vegetation pixels and background pixels) across the original cropped image (1.3 mm spatial

resolution). Example classified images obtained from two contrasted stages for different spatial

resolutions were illustrated in Fig. 5. 

  

Fig. 4. The profiles of EVI (A), TCARI (B) and PRI (C) threshold values adjusted for coarser resolutions to keep the

similar green fraction.  ET: early tillering stage; LT: late tillering stage; JT: jointing stage; BT: booting stage; HD:

heading stage; FL: filling stage. 
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Fig. 5. Example classified images obtained from two contrasted stages, i.e., low green fraction for the early tillering

stage (A), and large green fraction for the late filling stage (E). The resulting discrimination results are illustrated for

1.3 mm (B, F), 7 mm (C, G) and 14 mm (D, H) spatial resolutions. The white background represents non-vegetation

pixels or panicle pixels.   

2.4. Calculation of VIs

VIs are designed with band combinations to amplify their sensitivity towards particular

biochemical or biophysical parameters and while also minimize the possible confounding effects

(Malenovský et al. 2015). We included indices from the literature, specifically the evaluation of

N  status  of  crops  based  on  leaf  and  canopy  level  reflectance.  We  selected  three  types  of

published VIs, including the ratio indices, the normalized difference indices and the combined

vegetation indices to estimate LNC as listed in Table 3. The band selection for each index was

deliberately implemented as suggested in Yu et al. (2013) by involving different spectral range

for blue, red, green, red-edge and NIR. 
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Table 3

Published VIs related to N status of crops used in this study.

Index Equation Reference
Simple ratio indices  
SR[800, 675] R800/R675 Jordan (1969)
SR[810, 560] R810/R560 Xue et al. (2004)
SR[750, 550] R750/R550 Kim et al. (1994)
SR[750, 710] R750/R710 Zarco-Tejada et al. (2001)
CIRed-edge R800/R720 -1 Gitelson et al. (2003)
Normalized difference indices
NDVI (R800-R670)/(R800+R670) Rouse et al. (1974)
GNDVI (R750-R550)/(R750+R550) Gitelson et al. (1996)

ND705 (R750-R705)/(R750+R705)
Gitelson and Merzlyak 
(1994)

mND705 (R750-R705)/(R750+R705-2*R445) Sims and Gamon (2002)
mSR705 (R750-R445)/(R705-R445) Sims and Gamon (2002)
MTCI (R750-R710)/(R710-R680) Dash and Curran (2004)
PRI (R531-R570)/(R531+R570) Gamon et al. (1992)
Combined difference indices
TCARI 3*[(R700-R670)-0.2*(R700-R550)(R700/R670)] Haboudane et al. (2002)
OSAVI (1+0.16)(R800-R670)/(R800+R670+0.16) Rondeaux et al. (1996)
TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002)
DCNI (R720-R700)/(R700-R670)/(R720-R670+0.03) Chen et al. (2010)

2.5. Multivariate methods

Using multivariable methods is helpful for taking advantage of hyperspectral data with

large number of wavebands at fine spectral resolution (Inoue et al., 2012). 

2.5.1. Partial least squares regression (PLSR)

PLSR (Martens and Næs, 1998; Wold et al., 2001) is one of the reliable analytical tools

for multivariable data analysis and have been widely used in the assessment of crop nitrogen sta-

tus (Vigneau et al., 2012; Inoue et al., 2012; Ecarnot et al., 2013; Yu et al., 2014). It possesses an

advantage to avoid high multi-collinearity among variables, which is the inherent issue in multi-

ple stepwise regression (Inoue et al., 2012). When compared with multiple stepwise regression or

principal component, PLSR generally exhibits better predictive performance (Ye et al.,  2008;

Ecarnot et al., 2013; Yu et al., 2014). Specifically, PLSR models are built based on latent vari -
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ables instead of real variables (Yu et al., 2014).

2.5.2. Gaussian Process regression (GPR)

GPR is a nonparametric method that learns the relationship between the input variables

(e.g., reflectance) and output parameters (e.g., LNC) by fitting a flexible probabilistic (Bayesian)

model directly in function space, with no intermediate model or model parameters (Verrelst et

al., 2012; Verrelst et al., 2013). Over the last decade, GPR has emerged as an effective machine

learning approach to retrieving biophysical parameters (Verrelst et al., 2012; Verrelst et al., 2013;

Verrelst et al., 2016). In particular, GPR has been used for mapping leaf area index and fractional

vegetation cover (Verrelst et al., 2012) and quantifying vegetation traits such as leaf chlorophyll

content (Verrelst et al.,  2012; Verrelst et al.,  2013) and canopy water content (Verrelst et al.,

2016). 

GPR has alleviated some shortcomings of similar machine learning methods, while gen-

erally achieving good predictive performances and stabilities. For example, training GPR is far

simpler than neural networks or support vector machines by using very flexible kernels with sev-

eral free parameters. Furthermore, GPR provides a ranking of features (e.g., wavelengths) and

samples (e.g., reflectance spectra) and thus partly overcoming the blackbox problems encoun-

tered in nonparametric regression methods (Verrelst et al., 2012).

2.5. LNC measurements

After each measurement of canopy hyperspectral images, three clusters of plants at the

center of the spectral sampling area from each plot were selected randomly and destructively

sampled for the determination of leaf weight and LNC. For each sample, all green leaves were

separated from their stems, and oven-dried for 30 minutes at 105◦C, and then for about 24 hours
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at 80◦C till constant weight. Dried leaf samples were ground and then stored in plastic bags prior

to chemical analysis. LNC (%) was determined with micro-Keldjahl analysis method (Tian et al.,

2014). 

2.6. Calibration and validation of predictive models

The predictive models were divided into two types: stage-specific and stage-nonspecific

(i.e., global models that are suitable for the full season). Specifically, the stage-specific models

for individual growth stages before booting or stage-groups after booting were constructed using

simple linear or nonlinear regression analysis between LNC and VIs derived from the average

spectra of all the leaf pixels, sunlit or shaded leaf pixels for individual spatial resolution datasets. 

The global models were constructed using two multivariable methods: PLSR (Martens

and Næs, 1998; Wold et al., 2001) and GPR (Rasmussen and Williams, 2006) based on the sam-

ples across all growth stages. Specifically, we calibrated models between LNC and reflectance

spectra (400-900 nm) or continuum-removed reflectance spectra (550-750 nm) (Kokaly et al.,

2003) using PLSR and GPR, respectively. Additionally, we selected the optimal number of latent

variables for calibrating the PLSR model by leave-one-out cross-validation on the calibration set.

Two replications for each treatment were used for calibrating predictive models (i.e., 2/3

of the samples used as the calibration samples) and one replication (i.e., 1/3 of the samples used

as the validation samples) were used for validating the models. With regard to the stage-specific

models, there were 24 calibration samples and 12 validation samples for individual growth stages

before booting but 144 calibration samples and 72 validation samples for the stage-group after

booting (i.e., reproductive stages). For the global models, there were 288 calibration samples and

144 validation samples through the whole growing season. The performance of models was as-
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sessed using the predictive coefficient of determination (R2), root mean square error (RMSE) be-

tween the measured and predicted LNC values.

2. Results 

3.1 Seasonal variation in LNC and spectral properties of all-leaf pixels and whole-image pixels

Fig. 6 shows the statistics of LNC measurements for individual growth stages in 2014

and 2015. Generally, the LNC values for 2014 and 2015 decreased from 4.29 % to 1.36 % with

the development of growth stages. For both years, LNC changed dramatically from early tillering

to jointing stages. 

Fig. 6. The temporal profiles of LNC in paddy rice over the whole season in 2014 (A) and 2015 (B). ET: early tiller-

ing stage; LT: late tillering stage; JT: jointing stage; EB: early booting stage; LB: late booting stage; HD: heading

stage; EF: Early filling stage; LF: Late filling stage.   

Regardless of spectral datasets for all-leaf pixels and whole-image pixels, the average re-

flectance of all plots in the visible region decreased from the early tillering stage to the booting

or heading stage and then raised until the filling stage (Fig. 7). However, the reflectance in the

NIR region showed an opposite tendency as compared to the visible region. With regard to the
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comparison between the reflectance spectra of all-leaf pixels and whole-image pixels for individ-

ual stages, the NIR reflectance spectra averaged over all the leaf pixels exhibited higher ampli -

tudes than those averaged over all canopies, especially during the early growth stages.

Fig. 7. Mean reflectance spectra derived from all leaf pixels (A) and all image pixels (B) at individual growth stages.

Plots represent the combined data from 2014 and 2015. ET: early tillering stage; LT: late tillering stage; JT: jointing

stage; BT: booting stage (including early and later booting stages); HD: heading stage; FL: filling stage (including

early and later filling stages).  

3.2 Relationships of rice LNC with VIs derived from all-leaf pixels and whole-image pixels for 

various stages 

Table 4 shows a summary of squared Spearman’s correlation coefficients for all VIs re-

lating to LNC by growth stage. From the early tillering stage to the jointing stage, most of the

correlations (p<0.05) for the VIs derived from all-leaf pixels exhibited higher R2 values than

those derived from whole-image pixels. This contrast generally became less significant with the

development of growth stages but was still apparent at the group of reproductive stages. Among 
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Table 4

Squared correlation coefficients (ρ2) from Spearman’s correlation for the relationships between LNC and VIs derived from all-leaf pixels or whole-image pixels

(leaf + background pixels) of the original images at 1.3 mm spatial resolution for individual growth stages in the vegetative period and the group of reproductive

stages.

VIs
Early tillering Late tillering Jointing Reproductive

Leaf
pixels

Leaf +back-
ground pixels

Leaf
pixels

Leaf +back-
ground pixels

Leaf
pixels

Leaf +back-
ground pixels

Leaf
pixels

Leaf +back-
ground pixels

Simple ratio         
SR[800, 675] 0.27** 0.27** 0.43** 0.23** 0.42** 0.37** 0.43** 0.28**

SR[810, 560] 0.49** 0.29** 0.46** 0.28** 0.58** 0.47** 0.64** 0.46**

SR[750, 550] 0.49** 0.26** 0.45** 0.27** 0.55** 0.44** 0.59** 0.40**

SR[750, 710] 0.69** 0.35** 0.59** 0.34** 0.66** 0.52** 0.67** 0.53**

CIRed-edge 0.71** 0.39** 0.61** 0.40** 0.67** 0.58** 0.70** 0.61**

Normalized difference in-
dex
NDVI 0.27** 0.27** 0.41** 0.23** 0.42** 0.37** 0.47** 0.31**

GNDVI 0.49** 0.26** 0.45** 0.27** 0.55** 0.44** 0.59** 0.40**

ND705 0.69** 0.35** 0.60** 0.31** 0.64** 0.49** 0.65** 0.50**

mND705 0.62** 0.39** 0.69** 0.36** 0.69** 0.57** 0.71** 0.59**

mSR705 0.62** 0.39** 0.69** 0.36** 0.69** 0.57** 0.71** 0.59**

MTCI 0.70** 0.41** 0.64** 0.52** 0.69** 0.63** 0.71** 0.63**

PRI 0.05 0.12* 0.01 0.08 0.08 0.29** 0.51** 0.36**

Combined difference in-
dex
TCARI 0.42** 0.06 0.64** 0.01 0.75** 0.06 0.66** 0.33**

OSAVI 0.15** 0.25** 0.07 0.18** 0.37** 0.39** 0.36** 0.22**

TCARI/OSAVI 0.64** 0.47** 0.76** 0.67** 0.72** 0.60** 0.69** 0.52**

DCNI 0.48** 0.28** 0.62** 0.49** 0.75** 0.56** 0.63** 0.48**

* P<0.01; ** P <0.001. The highest correlations in each column are highlighted in bold. 
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Fig. 8. Best-fit linear relationships of LNC with three representative VIs derived from all-leaf pixels and whole-im-

age pixels: (A; D) CIRed-edge, (B; E) MTCI and (C; F) TCARI/OSAVI across the original cropped images at 1.3 mm

spatial resolution. ET: early tillering stage; LT: late tillering stage; JT: jointing stage; RP: reproductive stages (stages

after booting).   

the VIs examined, the ones employing red-edge bands (i.e., SR[750, 710], ND705, mSR705, MTCI,
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mND705,  CIRed-edge) displayed higher R2  values than others. CIRed-edge, MTCI and  TCARI/OSAVI

represented the best performing VIs for the three groups, respectively. With regard to the perfor-

mance of these three representative VIs, TCARI/OSAVI generally exhibited higher ρ2 than CIRed-

edge and MTCI at the late tillering stage but lower ρ2 at the reproductive stages. In contrast, these

three VIs exhibited similar ρ2
 values for remaining two stages (early tillering and jointing). 

Fig. 8 shows the scatter plots of LNC~VI models with three representative VIs derived

from all-leaf pixels and whole-image pixels for different growth stages. Within both all-leaf pix-

els and whole-image pixels represented by the three VIs, the LNC~VI models were different

among the first three stages and another single model could fit for the remainder (reproductive

phase) of growth stages. From early tillering to reproductive stages, the LNC decreased substan-

tially but the VIs did not follow the decrease, which led to the presence of four clusters in each of

the scatter plots. Specifically, the scatter plots of the VIs derived from all-leaf pixels were more

concentrated than those of the VIs derived from whole-image pixels for any of the stages before

booting,  with the  most  significant  discrepancy being for  the  early tillering stage.  While  the

LNC~VI models for the stages of late tillering and jointing exhibited similar slopes to those for

the reproductive stages, the models for the early tillering stage differed from all of them in slope

and intercept. These model differences between stages precluded the data from being fitted with

a global model for the whole season. A multi-stage model was possible only for data from the

post-booting stages as shown in Fig. 8 and Table 4. For the correlations with LNC in the pooled

data over reproductive stages, most indices derived from all-leaf pixels exhibited marginal differ-

ences in R2 as compared to those derived from whole-image pixels except TCARI. 

3.3 Sensitivity of the stage-specific LNC~VI relationships to spatial resolution 

Fig. 9 shows the sensitivity (in terms of ρ2) of LNC~VI relationships (derived from leaf
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pixels, sunlit and shaded leaf pixels) to spatial resolution for different growth stages. Generally,

the correlations of VIs with LNC decreased with the degradation of spatial resolutions at a spe-

cific stage (or stage-group). Specifically, most  ρ2  values for the early tillering stage remained

nearly stable from 1.33 mm to 14 mm spatial resolutions, except for a maximum (ρ2 = 0.73 as the

Fig. 9. The squared Spearman’s correlation (ρ2) between three representative VIs as a function of spatial resolution.

VIs are derived from the average reflectance spectra of all-leaf pixels, sunlit- and shaded- leaf pixels across the

whole image for different growth stages. The VIs for all-leaf pixels, sunlit- and shaded-leaf pixels at 450 mm spatial

resolution were all calculated from the average reflectance spectra of whole-image pixels. 

highest  value  for  the  early  tillering  stage) being  observed  at  7  mm  spatial  resolution  for
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TCARI/OSAVI derived from shaded leaf pixels. In contrast, most  ρ2  values decreased substan-

tially from 14 mm to 450mm spatial resolution regardless of leaf pixel types. The changing pat-

terns of ρ2 for the late tillering, jointing and reproductive stages were generally similar to that of

the early tillering stage except the decline starting from 56mm spatial resolution for VIs derived

from leaf pixels and shaded leaf pixels but from 113mm spatial resolution for VIs derived from

sunlit leaf pixels. 

Comparing three types of leaf pixels, most VIs of sunlit leaves displayed weaker relation-

ships with LNC than those of all leaves and shaded leaves. In particular, VIs of sunlit leaves ex-

hibited much lower correlations with LNC at the late tillering stage for 1.3 mm ~ 14 mm spatial

resolution (ρ2 = 0.23~0.62). In contrast, more stable values of ρ2
 were observed for considering

all-leaf pixels over different spatial resolutions. Especially, MTCI derived from all-leaf pixels ex-

hibited closet ρ2 between different spatial resolutions at specific stages. 

As shown in Table 5, the best performing VI for all the individual stages before booting

was TCARI/OSAVI. In particular, the best models were observed at a finer resolution for the

early tillering stage (shade leaf pixels at 7 mm spatial resolution) and the late tillering stage (leaf

pixels at 4 mm spatial resolution) but at a coarser resolution for the jointing stage (leaf pixels at

56 mm spatial resolution). For the reproductive stages, MTCI derived from leaf pixels at 28 mm

spatial resolution performed better than other situations.  
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Table 5

The  prediction  accuracies  for  the  best-fit  linear  relationships  between  LNC  and  a  specific  VI  from  three

representative VIs at a specific spatial resolution for the early tillering stage, the late tillering stage, the jointing stage

and  the reproductive stages. 

Growth stages Best VIs R2 RMSE (%)

Early tillering TCARI/OSAVI (Shaded-leaf pixels, 7 mm)
0.6
5

0.25

Late tillering TCARI/OSAVI (All-leaf pixels, 4 mm) 0.66 0.18
Jointing TCARI/OSAVI (All-leaf pixels, 56 mm) 0.67 0.18
Reproductive stages MTCI (All-leaf pixels, 28 mm) 0.72 0.23

3.4 Sensitivity of global LNC predictions to spatial resolution 

When applying the global models (i.e., stage-nonspecific models for all stages) to the val-

idation dataset, the prediction accuracies generally decreased with the degradation of spatial res-

olution. The R2 for all-leaf pixels slightly changed from 1.3 mm to 28 mm (e.g., R2 = 0.69~0.72

for GPR using reflectance spectra of leaf pixels) and then gradually decreased. Specifically, leaf

pixels  exhibited  more  stable  predictive  accuracies  over  different  spatial  resolutions  (R2 =

0.55~0.73 for GPR; R2 = 0.50~0.63 for PLSR) than sunlit leaf pixels (R2 = 0.43~0.75 for GPR;

R2 = 0.45~0.63 for PLSR) and shaded leaf pixels (R2 = 0.53~0.68 for GPR; R2 = 0.42~0.60 for

PLSR). In contrast, the accuracies for the sunlit leaf pixels dramatically declined with the degra-

dation of spatial resolutions after 7 mm spatial resolution. In particular, sunlit leaf pixels pro-

duced the best prediction of LNC at 1.3 mm ~ 4 mm spatial resolution (R2 > 0.74, RMSE < 0.33

%) while performing GPR regardless of using reflectance spectra and continuum-removed re-

flectance spectra. 

GPR generally exhibited higher R2 and lower RMSE values than PLSR regardless of
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spectral information derived from all-leaf pixels, sunlit-leaf pixels and shaded-leaf pixels (Fig.

11).  With regard to reflectance spectra and continuum-removed spectra,  the former generally

showed better predictive performances than the latter for PLSR but similar accuracies for GPR.

Specifically, the reflectance spectra of shaded-leaf pixels exhibited higher R2 as compared to the

continuum-removed spectra of shaded-leaf pixels when performing GPR.

Fig. 12 shows the band-by-band values of parameter σ for GPR models and regression

coefficients for PLSR models from degraded imaging data with 28 mm spatial resolution, which

is optimal for generating stable predictive performance. In the case of GPR model, the band with

the lowest σ represents the most contribution to the regression model. As shown in Fig. 12, most

contributing bands were located around the red region (680 nm), red-edge region (700 nm), the

blue region (420 nm), the green region (520 nm, 560 nm) regardless of leaf pixel types. Specifi -

cally, leaf pixels generally exhibited lower σ values than sunlit and shaded leaf pixels over all the

wavelengths. In contrast, the highest σ values were observed in the near-infrared shoulder region

for sunlit leaves.

For PLSR models, the importance of each band was evaluated by the coefficient values.

The important bands (coefficients in absolute value) for PLSR models were found around the

similar region as compared with the GPR models. The absolute coefficient values for all-leaf pix-

els were generally higher than sunlit- and shaded-leaf pixels. However, there were not substantial

differences in the coefficients of PLSR models among three types of leaf pixels in the near-in-

frared shoulder region.
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Fig. 11. LNC prediction accuracies for GPR and PLSR using reflectance spectra (REF) and continuum-removed

spectra (CR) derived from all-leaf pixels (A; D), sunlit-leaf pixels (B; E) and shaded-leaf pixels (C; F). 

Fig. 12. The dedicated parameter σ of each band for GPR and the regression coefficient of each band for PLSR us -

ing average spectra of all-leaf pixels (A; D), sunlit-leaf pixels (B; E) and shaded-leaf pixels (C; F) from imaging

data with 28 mm spatial resolution. 
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