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A B S T R A C T

Smart Manufacturing, or Industry 4.0, has gained significant attention in recent decades with the integration of
Internet of Things (IoT) and Information Technologies (IT). As modern production methods continue to increase
in complexity, there is a greater need to consider what variables can be physically measured. This advancement
necessitates the use of physical sensors to comprehensively and directly gather measurable data on industrial
processes; specifically, these sensors gather data that can be recontextualized into new process information. For
example, artificial intelligence (AI) machine learning-based soft sensors can increase operational productivity
and machine tool performance while still ensuring that critical product specifications are met. One industry
that has a high volume of labor-intensive, time-consuming, and expensive processes is the semiconductor
industry. AI machine learning methods can meet these challenges by taking in operational data and extracting
process-specific information needed to meet the high product specifications of the industry. However, a key
challenge is the availability of high quality data that covers the full operating range, including the day-to-day
variance. This paper examines the applicability of soft sensing methods to the operational data of five industrial
etching machines. Data is collected from readily accessible and cost-effective physical sensors installed on the
tools that manage and control the operating conditions of the tool. The operational data are then used in an
intelligent data aggregation approach that increases the scope and robustness for soft sensors in general by
creating larger training datasets comprised of high value data with greater operational ranges and process
variation. The generalized soft sensor can then be fine-tuned and validated for a particular machine. In this
paper, we test the effects of data aggregation for high performing Feedforward Neural Network (FNN) models
that are constructed in two ways: first as a classifier to estimate product PASS/FAIL outcomes and second as a
regressor to quantitatively estimate oxide thickness. For PASS/FAIL classification, a data aggregation method is
developed to enhance model predictive performance with larger training datasets. A statistical analysis method
involving point-biserial correlation and the Mean Absolute Error (MAE) difference score is introduced to select
the optimal candidate datasets for aggregation, further improving the effectiveness of data aggregation. For
large datasets with high quality data that enable model training for more complex tasks, regression models that
predict the oxide thickness of the product are also developed. Two types of models with different loss functions
are tested to compare the effects of the Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
loss functions on model performance. Both the classification and regression models can be applied in industrial
settings as they provide additional information regarding the process outcome. Individually, these models can
reduce the number of metrology steps in semiconductor factories, and when developed further, can empower
the development of advanced process control strategies.
1. Introduction

In the current decade, there has been a world-wide surge in demand
for electronic products. This has in turn dramatically increased the

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

manufacturing demand for related commodities such as microelectron-
ics, hard drives, and integrated circuits (Nguyen et al., 2024). The in-
novations of modern-day electronics and their rising demand is in part
owed to the rising density of transistors in semiconductor chips, which
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improves the computing performance of these chips (Burg and Ausubel,
2021). This increased demand has resulted in recurring shortages of
electronics and has hurt the global economy, which now depends on the
manufacturing of electronic devices. Thus, there is a growing need to
pursue innovation in the manufacturing sectors (Nguyen et al., 2023).
Smart manufacturing and Industry 4.0 concepts were proposed in the
mid-2000s for developing smart plants and factories that utilize net-
work communications, Information Technology (IT), Internet of Things
(IoT) and big data (Christofides et al., 2007; Fuchs, 2018). Industry 4.0
aims to achieve resilient manufacturing processes that are characterized
y high efficiency, high conformance, and high fidelity.

Smart Manufacturing, or Industry 4.0, necessitates holistic and con-
tinuous sensing, monitoring, and automation of processes that produce
ata in the form of quantifiable parameters. For instance, numer-
us advanced sensors are employed in manufacturing processes to
onitor and understand the process parameters, and at the same

ime, they provide measured feedback to controllers for process au-
omation. These sensors directly measure physical properties to obtain
rocess information for monitoring and product quality assessment.
or example, a quartz crystal microbalance is commonly used in the
emiconductor industry to measure film thickness, providing coverage
ata for etching and deposition processes (Songkhla and Nakamoto,

2021). However, the operation of the measurement equipment is labor-
ntensive, time-intensive, and costly. In some scenarios, the capital
nd resource expenditures outweigh the value of the final product,
ne example of which is the treatment of wastewater (Wang et al.,

2022). However, the costs of these measurement steps can be mitigated
hrough advanced process monitoring (Perera et al., 2023). As indus-

trial processes become increasingly complex, the direct measurement
of key process parameters, which are often key performance indicators
(KPIs), becomes more challenging. One process monitoring method is
soft sensing, which detects critical process parameters by leveraging the
wide range and scope of operational data that is generated in modern
manufacturing processes (O’Donovan et al., 2015). Soft sensors use
ata from existing physical sensors and prior knowledge to develop
ata-driven algorithms that predict specific physical quantities and
roduct quality, offering a more efficient, high-measuring frequency,
nd less labor-intensive alternative to traditional sensing approaches.
hus, they are particularly effective when there is a need to capture
omplex physical phenomena that are not easily measured or modeled
r when there is a need for embedded fidelity that comes from years
f operational experience. However, even when vast amounts of data
re generated, the sensor performance will suffer if that data does
ot adequately cover the range, scope, and function of the operation

relative to the sensor objectives.
In the context of modern complex manufacturing processes and

he vast amounts of data they generate, there is a growing body of
esearch that applies machine learning methods to develop soft sensors
or detecting process and product properties. Recent literature reviews
n deep learning methods in soft sensing (Sun and Ge, 2021) emphasize

the significance of neural network approaches, including Convolu-
ional Neural Networks (CNN) (Coleman et al., 2022), Recurrent Neural

Networks (RNN) (Lee et al., 2021), and a combination of RNN and
eedforward Neural Networks (Hong et al., 2023). Seagate Technol-

ogy also reported using the novel transformer network to predict the
PASS/FAIL of an industrial etching process with time series data as
the input (Zhang et al., 2021). Deep learning with neural networks
have advantages in capturing complex nonlinear correlations between
input and output parameters, and when large amounts of training
data are available, they often outperform traditional machine learning

ethods (Sarker, 2021).
While many works have investigated which models are best suited

for which deep-learning tasks, the question of if and how data aggrega-
tion can be used to supplement modeling tasks with small data volumes
remains unanswered. Thus, this work proposes a deep-learning-based
soft sensor developed using industrial data for detecting both binary
2 
properties (PASS/FAIL) and numerical properties (oxide thickness) for
several industrial etching tools from Seagate Technology with high-
dimensional input parameters. To address the problem where there
is not enough data to train a model with high performance on a
single tool, this paper proposes a novel data aggregation method where
datasets from other tools are combined with the dataset of a single
tool to improve model performance on that specific tool. The data
ggregation approach aims to improve the performance of the trained
oft sensor model by properly (in a sense to be made clear below)
ombining datasets to increase the amount and variety of training
ata. Specifically, this work introduces a statistical method to optimize
ataset selection during the aggregation process to improve aggregation
fficiency.

This work is organized as follows: Section 2.1 provides an overview
f the industry data used, Section 2.2 describes the preprocessing

operations applied to the datasets, Section 2.3 and Section 2.4
describe the development of the soft sensor models, Section 3 demon-
trates and evaluates the performance of the trained soft sensor models,
nd Section 4 summarizes the findings of this work.

2. Data processing and modeling

This section describes the collection, processing, and contextualiza-
tion of data from five industrial plasma etching tools, which are used to
train two models: a classification model and a regression model. Then,
we cover a cross-process data aggregation procedure for improving the
classification model and the various loss functions used in training the
regression model.

In the semiconductor fabrication industry, all products begin as a
raw silicon wafer substrate. These substrates follow a set of procedures
called the process flow, which describes each process step that the
wafer must undergo. Once the wafer has gone through the entire
process flow, it is a completed product. As the fabrication process is
very repetitive, each wafer will be processed on the same tool multiple
times at different process steps. This paper examines a toolset of five
electrically-induced plasma etching tools. This toolset consists of five
physically identical chemical etching reactors that possess up to two
chambers; the reactor is referred to as the ‘‘tool’’, and the chamber is
referred to as a ‘‘module’’. Each module can run a variety of process
steps. The process data is gathered on a per-module basis, which
means that each datum is for a specific tool-module combination. For
example, an entry from T1-PM1 means that the wafer was processed
in module PM1 of tool T1. A detailed diagram explaining the overall
manufacturing process is shown in Fig. 1.

2.1. Industrial data generation

The process data used in this work was collected from four tools:
T2, T4, T5, and T7. Each tool has up to two modules: PM1 and PM2.
pecifically, process data was collected from T7-PM1, T7-PM2, T2-
M2, T5-PM2, and T4-PM1. Each data entry comes from a single run,
hich is defined as a process step that starts at 𝑡 = 0 and ends at
 preset process time, 𝑡𝑒𝑛𝑑 . During the process, physical sensors track
3 numerical features, and their average is recorded down alongside
wo process-specific discrete features and a time stamp. Thus, there
s no time-series data. Once the wafer has finished processing, it is
eferred to as the product. The dataset used in this work spans from
ebruary 1st, 2018 to December 31st, 2022. The numerical features
re categorized into three classes of variables which are pressure and
as flow, electromagnetic, and other equipment statuses and properties.
he discrete features are the process name ID and substrate family
D, which are both alphanumeric text entries. These 35 pieces of
nformation are inputs for both the classification and regression model.

The information that both models aim to predict is whether the
process was successfully completed, and this information is gathered at
a different tool. After the etch step, the product wafer is processed at
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Fig. 1. The overall manufacturing system for an industrial etching equipment. Each tool is an etching reactor that has multiple modules and can run various processes. Wafers
start as pure silicon substrates, and after a series of production processes, they become a finished product.
a metrology tool that measures how much substrate was etched away.
As all of the processes examined in this paper are oxide etches, the
metrology tool will measure the remaining oxide thickness. Depending
on how much the measured oxide thickness deviates from the target
oxide thickness, the run will be labeled as either a ‘‘PASS’’ or a ‘‘FAIL’’.
The classification model uses the binary PASS/FAIL measurement as its
output, and the regression model uses the target oxide thickness as an
additional input and the measured oxide thickness as its output.

2.2. Data preprocessing

Data preprocessing is a crucial step to effectively train any model.
A properly preprocessed dataset allows the model to effectively learn
the patterns of the data. For instance, Ranganathan (2021) highlights
the necessity and importance of data preprocessing in several deep
learning-based applications. Preprocessing steps often include remov-
ing or filling in invalid and abnormal data as is appropriate, encoding
discrete variables, and normalizing features to avoid skewing caused
by the absolute value of variables. These steps ensure that the model
receives consistent and relevant data, which facilitate better learning
and prediction ability; specifically for interpolating unseen data points
within the applied training range. The input data preprocessing proce-
dures in this work are demonstrated in Fig. 2, and the procedures for
output data preprocessing are shown in Fig. 3.

From a practical manufacturing standpoint, physical sensors do not
function properly at all times, and not all parameters can be measured
in all processes. Thus, there are almost always missing physical mea-
surements in real industrial data. The data analyzed in this work is not
exempt from this phenomena. Some particular tool-module combina-
tions are missing entire features, and other features are only collected
within certain time ranges. To address these issues, any feature that
has no measured value (which is recorded as N/A) is filled in with a
numerical value of 0 to maintain consistency with the other data points.
On the other hand, any runs (one row of data) that are missing either of
the outputs, which are the PASS/FAIL criterion and the measured oxide
3 
thickness, are removed from the dataset. Without the true results, the
input features are meaningless. By applying these two methods, all the
invalid and abnormal data is pared from the datasets.

As with most machine learning models, which includes neural net-
works, all inputs must be numerical. Thus, it is necessary to encode
any categorical or nonnumerical features if they are included in the
training process. For this work, the label encoder from the scikit-learn
package (Pedregosa et al., 2011) is used to encode both the substrate
family ID and the process name ID from alphanumeric features into
numerical features. To create a consistent and holistic encoder that is
capable of handling all possible cases, the encoder is trained on data
that comprise the concatenation of all datasets from all tool-modules.
This step creates a complete map for the encoder, ensuring that each
discrete feature is transformed into a unique number, which avoids
conflicts during the training of the model. Additionally, for the binary
PASS/FAIL output data, a 0/1 encoder is applied, which encodes PASS
as 1 and FAIL as 0. These methods ensure that all the categorical
features are transformed into numerical values so that the models can
function effectively.

For neural networks, it is especially crucial to scale all numer-
ical data to prevent the vanishing gradient and gradient explosion
phenomena from occurring during the training process (Rehmer and
Kroll, 2020). This is particularly important for input data features
that vary significantly in absolute values. For instance, the dataset
examined in this work has features in the range of both 10−4 and
102. A scaler normalizes the input features of the data, forcing each
numerical feature to exist in a similar range and making the training
process more stable and the optimizer task easier. For the classification
task with a binary PASS/FAIL output, the numerical input features
are scaled with a standard scaler, and the output features are already
encoded as 1/0. For the regression task with numerical output features,
separate MinMax scalers are applied for both the input and output
data. The standard scaler is described in Eq. (1), and the MinMax
scaler is described in Eq. (2). After the encoding process described
earlier and the scaling processes described here are completed, all the
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Fig. 2. Input data preprocessing Step 1: Eliminate or pad missing data. Step 2: Scale
the numerical features, and encode the discrete features. Step 3: Combine numerical
and discrete features into one complete input dataset.

input features, including the scaled numerical features and encoded
categorical features, are concatenated into a data vector that represents
a single run.

𝑍 = 𝑋 − 𝑢
𝑠

(1)

𝑍 =
𝑋 −𝑀 𝑖𝑛(𝑋)

𝑀 𝑎𝑥(𝑋) −𝑀 𝑖𝑛(𝑋)
(2)

where 𝑍 is the output vector of a scaled numerical feature, 𝑋 is the
input vector of the original feature, 𝑢 is the average value of 𝑋, and 𝑠
is the standard deviation of 𝑋. Note that the vectors used here consist of
all the data for a particular feature (a data column). The standard scaler
scales the original dataset around 0 for each feature in a similar range,
while MinMax scaler scales the numerical data into a range of [0,1].
There is no fixed rule to determine the best scaling method. Rather,
scaler selection is dependent on the optimal model performance, which
will be more rigorously defined later on in Section 3. Specifically, both
the standard scaler and the MinMax scaler are applied to the same
dataset and used to train two independent models. Then, the scaler that
yields the best performance is chosen for that task.

2.3. Classification model

The goal of a classification model is to accurately determine whether
future, unknown wafers from a specific tool-module combination will
pass or fail the following metrology step. The preprocessed input data
vectors are the input variables to the model, and the output variable
is a binary PASS/FAIL value. The dataset is first separated into two
datasets by time: the modeling set and the test set. The modeling set
comprises all the runs from February 1st, 2018 to December 31st, 2021,
and it will be used to train the model. The test set comprises all the
4 
Fig. 3. Output data preprocessing Step 1: Eliminate missing data. Step 2: Encode
binary output to FAIL(0) and PASS(1). Step 2-2: Scale numerical output with MinMax
Scaler.

runs from January 1st, 2022 to December 31st, 2022, and it is used
to evaluate model performance. These datasets are separated by time
because it is necessary for the model to be generalizable across all
times. From a practical point of view, the soft sensor model can only be
considered successful if it can be effectively applied on unseen data and
conditions from future manufacturing processes. To prevent overfitting,
the modeling set is further separated into two more sets: the training set
and the validation set. 80% of the modeling dataset is randomly chosen
for the training set, and the remaining 20% is allocated to the validation
set. The model is only trained and optimized on the training set, and
the performance of each model is examined on both the training and
validation sets to tune and optimize the generalization ability of the
model. Stratified sampling is also used to ensure that the PASS/FAIL
distribution is nearly identical between the training and validation
datasets. With these specifications, when the model is trained on the
training set and tested on the validation set, the candidate model is the
model with the best performance on the validation set.

2.3.1. Model training
The Feedforward Neural Network (FNN) is applied to the classifica-

tion model in this work. The general structure of the network is shown
in Fig. 4.

In an FNN, each neuron in the hidden layers takes a weighted sum
of inputs from the input layer or previous hidden layers, applies a non-
linear activation function, and then passes the result to the next layer.
The final output layer produces the binary PASS/FAIL classification



F. Ou et al. Digital Chemical Engineering 13 (2024) 100195 
Fig. 4. The general structure of the Feedforward Neural Network (FNN) is shown here. The hidden layer neurons take a weighted sum from the input layer or the previous hidden
layer, which is then activated by nonlinear functions. The output layer takes the weighed sum from the last hidden layer to output the result.
by using the sigmoid function to transfer the input value into the
[0,1] range. The sigmoid function is also employed as the activation
function in the hidden layers of classification models, due to its superior
performance in classifier models (Zhang et al., 2021). The sigmoid
function is described below in Eq. (3):

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(3)

The FNN has several tunable hyperparameters that need to be opti-
mized to determine the best network structure. These hyperparameters
include the number of hidden layers, the number of neurons in each
hidden layer, the learning rate, and the L2 regularization coefficient.
A grid search method is applied in this work to find the proper
combination of hyperparameters to optimize the model performance on
the validation set. The complete list of tuned hyperparameters and their
candidate values are shown in Table 1. The models are trained on pow-
erful graphical processing units (GPU), such as the Nvidia RTX A4000,
Nvidia RTX 3060, and Nvidia RTX 4090, to facilitate the complete
grid search of hyperparameters by exploiting the high computational
capabilities of these GPUs. The selected hyperparameters are bolded in
Table 1.

The training goal of a neural network is to minimize the loss
function. For most binary classification tasks whose output values are
processed by a sigmoid function, a cross-entropy loss is typically used,
as shown in Eq. (4):

𝐽 = − 1 ∑

[𝑦𝑖 ln(𝑦
𝑝) + (1 − 𝑦𝑖) ln(1 − 𝑦𝑝)] (4)
𝑁 𝑖
𝑖 𝑖

5 
Table 1
Classification FNN hyperparameters and tuning range.

Hyperparameters Candidate values

Number of layers [1,2,3]
Number of neurons [32,64,128]
Learning rate [0.005,0.001,0.0005,0.0001]
Dropout rate [0,0.1,0.5]
L2 regularizer [0,0.0001,0.0005,0.001]

where 𝐽 is the loss value, 𝑦𝑖 is the true value (0 or 1) of the data
point 𝑖, 𝑦𝑝𝑖 is the predicted value from the model within range [0,1],
and 𝑁 is the number of data points. However, it is important to
note that the data is imbalanced because it comes from an industrial
toolset that generally runs well with a low but still significant fail
rate. All the fail rates for all five datasets are shown in Table 2, and
most datasets exhibit a fail rate of approximately 2.5%. T5-PM2 is
a notable exception with a significantly higher fail rate. This can be
partially explained by its small dataset volume, which causes a few
FAIL data points to have a large impact on the fail rate, but TM5-PM2’s
data clearly has more fails than the other tool-module combinations,
marking it as different. Thus, by aggregating the TM5-PM2 dataset with
other datasets and observing whether model performance increases or
decreases, the effects of aggregating less related datasets together can
be seen. For all other datasets, a model that always predicts ‘‘PASS’’ will
not result in a high loss with the normal cross-entropy loss function, and
that behavior will be favored during the training process.

However, such a model is not useful because it will have a 100%
false positive rate. In other words, the model will not be able to detect
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Table 2
Overall size and distribution of datasets.

Dataset Total data points PASS data points FAIL data points FAIL rate

T4-PM1 39 717 38 836 881 2.22%
T7-PM1 23 387 23 057 330 1.41%
T2-PM2 36 335 35 461 874 2.41%
T5-PM2 771 667 104 13.49%
T7-PM2 2722 2650 72 2.65%

any misprocessed wafers even though it has a very low training loss. To
address this issue, a weighted cross entropy algorithm is proposed by

ultiplying the weight to data points by the output distribution (Zhang
t al., 2021). The weighted loss function has the form:

𝐽 = − 1
𝑁

∑

𝑖
𝑤𝑖[𝑦𝑖 ln(𝑦

𝑝
𝑖 ) + (1 − 𝑦𝑖) ln(1 − 𝑦𝑝𝑖 )] (5)

where 𝑤𝑖 is the weight and 𝑁 is the total number of data points. The
eights for binary classification are calculated as follows:

𝑤𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑁
𝑛0

, if 𝑦𝑖 = 0
𝑁
𝑛1

, if 𝑦𝑖 = 1
(6)

where 𝑤𝑖 is the 𝑖th weight, 𝑛0 is the number of FAIL data points,
and 𝑛1 is the number of PASS data points. The weights applied in
the loss function emphasizes minority instances to favor models with
more comprehensive and balanced performances, thereby mitigating
the potential bias that can arise from imbalanced datasets.

The Adam optimizer is applied throughout the entire model training
process due to its excellent performance in handling various deep
learning tasks (Kingma and Ba, 2017). Adam combines the advantages
f other optimizers such as AdaGrad and RMSProp to enhance conver-
ence speed and model performance. Model training is conducted over
000 epochs, with the validation set loss continuously monitored after
ach epoch. The model with the lowest validation loss up to that epoch
s then saved as the best model until the end of the training process.
his approach ensures that the model with best generalization ability

s retained, effectively reducing the risk of overfitting and improving
he model’s generalization capabilities. After the training process, the

model is tested on future data of the test set to evaluate its performance.
To further reduce variability in the training and testing process, a

ross-validation method is applied. This approach can greatly reduce
odel variance and improve the reliability of the model performance

by averaging the performance of multiple models that are trained on
ifferent sections of the original data (King et al., 2021). First, the mod-

eling dataset is randomly divided into five segments. Then, a segment is
chosen as the validation set with the other four segments becoming the
training set. By repeating this five times in total, once for each segment,
five models are trained. Finally, each model is individually run on the
test dataset, and the average of the five scores from the five models is
used as the final test score for that dataset. This method enhances the
robustness of the model evaluation by ensuring that the performance
is consistent across different subsets of the data.

2.3.2. Data aggregation
Deep learning models, with their complex architectures and nu-

merous parameters, can effectively capture intricate patterns within
arge datasets, leading to superior performance in most tasks (Sarker,

2021). As a result, deep learning networks have a distinct advantage
over traditional machine learning methods, especially when working
with training data at the industrial scale. However, industrial datasets
often vary significantly in size between different tool-module combi-
nations. For example, in this work, as shown in Table 2, T7-PM2
and T5-PM2 have dramatically smaller datasets with less than 3000
oints compared to T4-PM1, T7-PM1, and T2-PM2, which have more
han 20 000 points. This variation in dataset size implies that models
 i

6 
trained using limited data from a particular tool-module combination
for that specific combination will have considerably worse training
esults compared to tool-module combinations with larger datasets.

Additionally, when the validation dataset is limited in size, it can lead
o bias in the model, decreasing its ability to generalize because the
alidation set might no longer accurately represent the general data
istribution. Moreover, even for the three tool-module combinations
ith large datasets, dataset aggregation will increase the variational
nd operational coverage of the training data and generally improve

model performance. Consequently, maximizing high-quality training
data volume is necessary to improve model performance. However, it
is not enough to simply merge a large dataset and a small dataset, as
that would merely result in a model that predicts the average behavior
of the two aggregated datasets. Rather, multiple datasets from various
tool-module combinations should be aggregated into a superset of
varied data. When trained on this superset, the model performance
improves as the larger volume of data better represents the overall
process, increases the operational scope, and has more comprehen-
sive information regarding process failures. A large amount of varied
training data points that can only be obtained from aggregating data
from multiple tool-module combinations refines the model, reduces
overfitting, and enhances the robustness of the predictions.

To provide more data to train a model for each tool-module dataset,
a data aggregation method is developed and tested that combines

ultiple datasets, significantly increasing the amount and variety of
raining data and improving model performance. During this process,
he candidate datasets for aggregation must be selected carefully, mak-
ng the analysis and selection process a critical data processing step.
f the chosen tool-module dataset is very different from the current
ataset, then the model will likely be misdirected by the new data and
ail to retain the distribution of the original dataset. One method to
uarantee optimal data aggregation is to exhaustively test all possible
ataset combinations, but that is only feasible when there are only a
ew datasets. The number of possible dataset combinations increases
xponentially with the number of datasets; 𝑛 datasets have 2𝑛− 1 unique
ombinations, making it impractical to exhaustively test all possible
ombinations when there are many tools and datasets.

To address this issue, this paper develops an indexing method to
evaluate the similarities and differences between datasets. It was then
sed to select candidate datasets for aggregation, ones that are most
imilar to the dataset of interest. The indexing method is a point-biserial
orrelation analysis, which is a statistical method that measures the
elationship between a continuous variable and a binary variable. In

this work, the point-biserial correlation analysis is conducted on each
numerical feature in the dataset with respect to the output binary
variables, which provides information about the contribution of each
feature to the binary outcome (PASS/FAIL). The analysis involves
calculating the correlation coefficient as shown in Eq. (7).

𝑟𝑏𝑖𝑠 =
𝑌1 − 𝑌0

𝑠𝑦

√

𝑁0𝑁1
𝑁(𝑁 − 1) (7)

where 𝑟𝑏𝑖𝑠 is the correlation score between a specific feature and the
utput, 𝑌1 is the average value of the feature for all PASS data points,
̄0 is the average value of the feature for all FAIL data points, 𝑠𝑦 is the
tandard deviation of the feature for all data points, 𝑁0 is the number

of FAIL data points, 𝑁1 is the number of PASS data points, and 𝑁 is the
total number of data points. After the correlation coefficients are calcu-
lated for each feature, they are assembled into a characteristic vector.
Each dataset has its own characteristic vector, and the difference score
etween any two datasets is calculated by finding the mean absolute
rror (MAE) between their characteristic vectors as shown in Eq. (8).

𝑑 = 𝐴𝑉 𝐺(|𝑐1 − 𝑐2|) (8)

where 𝑑 is the difference score between the two datasets, 𝐴𝑉 𝐺 is an
operation that takes the average value of all elements in a vector, 𝑐1
s the characteristic vector of first dataset, and 𝑐 is the characteristic
2



F. Ou et al.

p
a
d
c
c
a
f
i
f

r
d
b
o

L
s
c
a
c
e
t
S
c
f
s

r
f
t

w
r
b
t
r
t
c
t
i

i
t
p
i
a
l
l
m
a
e
t
T
i
p
e
e
p
d
b
m
u

Digital Chemical Engineering 13 (2024) 100195 
Table 3
Regression FNN hyperparameters and tuning range.

Hyperparameters Candidate values

Number of layers [2,3]
First hidden layer neurons [32,6,128]
Learning rate [0.0001,1E−5,5E−6,2E−6]
Dropout rate [0,0.1,0.25]
L2 regularizer [0,0.0001,0.0005,0.001]

vector of second dataset. After the difference scores are calculated
between the current analyzed dataset and all other datasets, the one
with the smallest difference score is chosen as the candidate dataset for
aggregation. The statistical analysis of the datasets themselves does not
require any model training until the candidate datasets for aggregation
are selected. This approach significantly reduces the number of models
that need to be trained and tested, saving a substantial amount of time
and computational resources.

2.4. Regression model

This work also explores machine-learning models that quantitatively
redict the measured oxide thickness of processed wafers. This model,
lso called a regression model, is another FNN, though one with a
ifferent structure better suited for non-binary outputs. The prepro-
essed input data for the regression models are the same as that of the
lassification models, but with the addition of the target oxide thickness
s an input feature. This feature is included as the target oxide thickness
or each process must be known before the run starts. The model output
s the measured oxide thickness, which spans a wide numerical range,
rom 0 to over 5000 Å, depending on the process and product.

Regression models generally require more data than classification
models as the output of the latter is more complex. Thus, this work
only focuses on training regression models with large datasets (Sarker,
2021). Specifically, T2-PM2, T4-PM1, and T7-PM1 are used to train
egression models while T5-PM2 and T7-PM2 are not. The latter two
atasets cannot support the training of a complex regression model
ecause the limited data volume can induce problems such as severe
verfitting and high variance results. Due to a lack of feasible datasets,

data aggregation, which was explored for the classification task, is
not conducted for the regression task because there are only three
applicable datasets for regression. The available multi-dataset combi-
nations are limited; specifically there are three two-set aggregations
and one three-set aggregation. This small sample size means that any
conclusions reached through the statistical analysis may be biased.
astly, regression models do not require any data stratification like clas-
ification models because random selection and chronological selection
an easily create artificial differences in fail rates between the training
nd validation sets due to the natural imbalance of the datasets. Be-
ause only datasets with substantial data volumes are selected, which
ffectively reduces the variance in the input features between different
ime segments, the training-validation split is organized solely by time.
pecifically, the first 80% of the total training-validation dataset, sorted
hronologically, is used for training, and the remaining 20% is reserved
or validation. This approach aims to enhance model performance by
electing for the regression model that best predicts future data points.

2.4.1. Regression model training
The Feedforward Neural Network (FNN) for the oxide thickness

egression task applies the ReLU (Rectified Linear Unit) activation
unction to provide nonlinearity for the model, which is described by
he following equation:

ReLU(𝑥) = max(0, 𝑥) (9)

The ReLU function is chosen because of its promising performance
on various training tasks, ability to avoid gradient vanishing problem,
 v

7 
and increase in the speed of the training process (Xu et al., 2015;
Waoo and Soni, 2021). In addition, due to how complex it is to train
regression models and the need to save computational resources during
the hyperparameter grid search, the neural network is designed such
that each subsequent hidden layer has half the neurons of the previous
layer. This approach helps manage model complexity, reduces the risk
of overfitting, and ensures efficient feature extraction. Similar to the
classification task case, the tunable hyperparameters and their range of
interests are shown in Table 3, and the selected hyperparameters are
bolded.

A small learning rate and many training epochs (100,000 in this
ork) are essential for training regression models due to the wide

ange of output values and the highly complex nonlinear correlations
etween the 37 input/output features. These conditions ensure that
he training process reaches an optimum. Without the small learning
ate, the model is sensitive to improper convergence, which causes
he training process to jump around the optima or even diverge. By
ontrast, a small learning rate allows for more precise adjustments to
he weights during backpropagation. The extensive number of train-
ng epochs ensures that the model has sufficient iterations to learn

these complex relationships thoroughly, ultimately leading to better
generalization and performance on future data.

Because the output has such a wide range of numerical values, two
kinds of loss functions are tested in this work: the mean squared error
(MSE) and the mean absolute percentage error (MAPE). The MSE loss
function is given below:

𝐽 = 1
𝑁

∑

𝑖
(𝑦𝑝𝑖 − 𝑦𝑖)2 (10)

And the MAPE is described as follows:

𝐽 = 1
𝑁

∑

𝑖

|𝑦𝑝𝑖 − 𝑦𝑖|
𝑦𝑖 + 1 (11)

where 𝐽 is the loss function value, 𝑁 is the total number of data points,
𝑦𝑝𝑖 is the predicted output value by the regression model, and 𝑦𝑖 is the
true output value. The plus one term in the MAPE equation prevents
the equation from dividing by zero and also avoids ridiculously high
loss values when the true output is close to zero. The loss functions
are applied to the normalized data scaled by the MinMax Scaler, which
keeps small data values that are close to 0 still close to 0 and scales
large data values close to 1. As the original data’s minimum value
s retained, the data normalized by the MinMax scaler also retains
he properties of the original dataset, which improves the ultimate
erformance of the model. When applied, these two loss functions
ntrinsically favor very different modeling patterns. MSE measures the
verage of the squares of the errors, treating all errors equally regard-
ess of the magnitude of the true values. This results in data points with
ow true values having high percentage errors, as the model may focus
ore on minimizing absolute errors, which can disproportionately

ffect smaller values. Conversely, MSE can result in lower percentage
rrors for data points with high true values, as the absolute errors
end to be relatively smaller in proportion to the larger true values.
his can be advantageous when precision for higher value predictions

s critical. MAPE, on the other hand, measures the average absolute
ercentage error, ensuring that the model minimizes the percentage
rror across all data points. This results in a more uniform percentage
rror distribution, which is beneficial when the relative accuracy of
redictions is more important. Each loss function has its benefits and
rawbacks, which is why this work uses both to train the model. Using
oth MSE and MAPE allows for a holistic review of the data and the
odeling process. This dual approach provides a more comprehensive
nderstanding of the model’s potential across the entire range of output

alues.
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3. Results and analysis

3.1. Classification model performance

The performance of the classification models proposed in Sec-
ion 2.3 are ideally evaluated within the context of a manufacturing

environment. With the classifier model, there are four possible process
outcomes: a pass is classified as a pass (true positive), a pass is classified
as a fail (false negative), a fail is classified as a fail (true negative), and
 fail is classified as a pass (false positive). Of these outcomes, the true
ositive and true negative outcomes are trivially good outcomes, as the

classifier model is correct. The false negative, while not ideal, can be
itigated by manufacturing procedures. If all runs classified as fails

re reevaluated at the metrology machine and manually measured to
etermine whether they truly failed, then the false negatives will be
aught and correctly reclassified as passes. Thus, the main manufactur-
ng concern is false positives, as there is no easy way to identify them;
anually measuring all passes in addition to all fails would make the

lassifier model superfluous.
Generally speaking, most false positives will be eventually caught at

future metrology steps or at the final metrology and reliability testing of
he end product, which means that they will ultimately have little effect
n product quality (Elsayed, 2012). The main impact of misidentifying

a misprocessed wafer is that, as the misprocessed wafer moves through
the process flow, it wastes resources and time. Thus, a high-performing
classification model will have a low false positive rate as that minimizes
wasted manufacturing resources, and any metrics used to analyze these
models must be an indication of their false positive rates.

However, each model does not have a singular, representative false
ositive rate. Specifically, each model can be tuned to be more aggres-
ive in flagging misprocessed wafers, lowering the false positive rate
nd increasing the false negative rate, or more conservative, which

does the opposite. While confusion matrices are often used to evaluate
classifier model performances, they are insufficient to evaluate the
overall model performance, as a confusion matrix reflects the results
of a single tuning approach. It cannot capture the model’s performance
across all possible tuning configurations. Other traditional criteria for
evaluating classification model performance, such as overall accuracy,
are also unsuitable because the binary outputs of all the datasets are
highly imbalanced. As previously mentioned, a model that only predicts
PASS may have a high accuracy but it will have a 100% false positive
rate, rendering it meaningless in actual industrial applications. The
Receiver Operating Characteristic (ROC) analysis offers a more robust
evaluation method by examining the true positive rate (TPR) and false
positive rate (FPR) of the model’s predictions on test data at different
thresholds. The output from the sigmoid function in the model’s last
layer is a continuous value in the range of [0,1]. Although a fixed
threshold of 0.5 is traditionally used that classifies values higher than
.5 as pass and those lower as fail, this threshold can be set to any
alue within the [0,1] range. With different thresholds, different TPR
nd FPR values are produced. For instance, setting the threshold to 0
all pass) results in a TPR of 100% and an FPR of 100%. Conversely,
etting the threshold to 1 (all fail) yields a TPR of 0% and an FPR of
%. Thus, selecting an appropriate threshold involves balancing model
ensitivity (TPR) and false acceptance rates (FPR).

In this context, the model’s performance is evaluated using the Area
Under the Curve (AUC) score. The AUC score is defined as the area
under the ROC curve, which plots TPR on the 𝑦-axis and FPR on the 𝑥-
axis across different thresholds. Ideally, a perfect model would achieve
a TPR of 100% (max sensitivity) and an FPR of 0% (zero false alarms),
resulting in an AUC score of 1. Conversely, a model that makes random
guesses would have a TPR of 50% and an FPR of 50%, resulting in
an AUC score of 0.5. The ROC-AUC score provides a comprehensive
measure of model performance across all possible thresholds, making
it particularly useful and widely applied for evaluating models on

Gonçalves et al., 2014).
imbalanced datasets ( f

8 
Table 4
Single dataset training AUC score.

Dataset name Average AUC score

T4-PM1 0.73
T7-PM1 0.73
T2-PM2 0.80
T5-PM2 0.48
T7-PM2 0.52

3.1.1. Single dataset model performances
The model is first trained on single tool-module datasets to eval-

ate if the training method is effective at making predictions that
re significantly better than random guessing, which would have an
UC score of 0.5. For each dataset, five models are created via the
ross-validation training process as described in Section 2.3.1. The

average AUC score is defined as the mean value of the test scores for
each trained model. Note that all ROC graphs are of the model whose
performance best matches that of the average of the five models; this is
the representative model. The scores for each tool-module combination
are shown in Table 4.

The ROC-AUC plot of the representative model for all five datasets
s shown in Fig. 5 The single dataset training results in Fig. 5

demonstrate that the amount of training data is a key factor in model
erformance. The two smaller datasets, T5-PM2 and T7-PM2, show
nacceptable performance close to near-random guesses (AUC scores of
round 0.5). In contrast, the three larger datasets have AUC scores sig-
ificantly above 0.5, indicating successful model training and effective
lassification of the PASS/FAIL status of the product. For these three
ool-module combinations, the models can achieve a FPR rate of about
5% to 40% when the TPR is around 80%. This means that, if 10 000
afers are processed with 200 fails and 9800 passes (2% failrate), then
960 wafers would be false negatives (20% of 9800 passes) and 70

wafers would be false positives (35% of 200 fails). This means that
he overall rate of missed fails is less than 1% of the overall product
hroughput, which is considered high-performing. The single dataset
ases suggest that data volume is crucial to model performance; with
nough data, the models are able to effectively classify runs between
ASS/FAIL. And with even more data, the AUC score can be further
mproved and the FPR reduced.

3.1.2. Multi dataset model performances
To validate the efficacy of data aggregation in enhancing model

erformance, the process is first investigated within each module (PM1,
M2). Specifically, this involves forming each unique superset between
4-PM1 and T7-PM1 for PM1 and each superset between T2-PM2,
5-PM2, and T7-PM2 for PM2. This results in three two-set supersets
or PM2 and one two-set superset for PM1. PM2 also has the option
o aggregate all three datasets. The optimal AUC score for a given
ool-module combination is defined as the best AUC score among all
he possible supersets that contain that tool-module combination, and
he optimal AUC score for each tool-module combination is illustrated
n Fig. 6. This analysis aims to determine whether combining datasets
rom different tools within the same module can lead to improved
redictive performance, as measured by the AUC score.

From the same-module data aggregation results shown in Fig. 6, the
UC score for the T7-PM2 model trained on only the T7-PM2 dataset

s just above 0.5, which is an unacceptable performance. However, for
the best-case two- or three-set supersets, the AUC score improves past
0.6. The results for T5-PM2 are even better. In the case of T2-PM2,
it is clear that the base T2-PM2 dataset contributes the most to the
model and that the model receives little benefit when it is aggregated
with the other smaller datasets. However, the contribution that the T2-
PM2 dataset makes in the orange and green bars of the T7-PM2 and
T5-PM2 models demonstrates substantial performance improvement
or Tools 05 and 07, which have smaller datasets. Generally, data
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Fig. 5. ROC plot for all five datasets. The performance of the models trained on datasets T5-PM2 and T7-PM2 is similar to random guesses, while the models based on the other
three datasets have superior performances.
Fig. 6. Best possible AUC score for all five tool-module combinations. Model performances improve substantially as data increases for all five cases. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
aggregation substantially improves model performance for tool-module
combinations with smaller datasets, such as T5-PM2. Furthermore, the
three-set aggregation in PM2 allows the models to achieve a FPR of
around 50% with a TPR of about 80%, as shown in the ROC plot in
9 
Fig. 7. For the base model trained on only one dataset, an 80% TPR
would correspond to an 80% FPR, which would result in an overall
missed fail rate of 1.6% given a 2% fail rate. However, the model
trained with multi-dataset aggregation would have a missed fail rate
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Fig. 7. ROC plots of the representative models of T5-PM2 and T7-PM1, which were trained by aggregating all available datasets in the module. The performances are noticeably
better than that of random guessing and single-set models. The FPR values for an 80% TPR value have also significantly improved.
Table 5
Difference score between each pair of datasets.

T4-PM1 T7-PM1 T2-PM2 T5-PM2 T7-PM2

T4-PM1 N/A 0.019 0.017 0.083 0.037
T7-PM1 0.019 N/A 0.011 0.083 0.032
T2-PM2 0.017 0.011 N/A 0.080 0.029
T5-PM2 0.083 0.083 0.080 N/A 0.101
T7-PM2 0.037 0.032 0.029 0.101 N/A

of 1%, a significant improvement. Additionally, even the tool-module
combinations that have the largest datasets improve with data aggre-
gation. Compared to their single-set results in Fig. 6, the AUC scores
of the aggregated models reach over 0.8 for both T2-PM2 and T7-PM1,
as shown in Fig. 6. These results underscore the effectiveness of data
aggregation in bolstering model accuracy, especially for tool-module
combinations with limited datasets.

3.1.3. Candidate dataset selection method
While the previous section shows that data aggregation improves

model performance, it does not explain how it should be conducted.
Additionally, there is no easy way to evaluate a model’s performance
without actually developing and testing the model. Even in Fig. 6,
the displayed datasets had varying levels of improvement. Thus, to
minimize the presence of false positives, it is necessary to examine how
to optimally aggregate datasets together. To that end, five datasets (T4-
PM1, T7-PM1, T2-PM2, T5-PM2, T7-PM2) are examined to assess the
effectiveness of the indexing method explained in Section 2.3.2 that
is used to select ideal datasets to aggregate with the base dataset, also
called candidate datasets. The difference scores for each dataset pair as
calculated with Eq. (8) are shown in Table 5.

The candidate dataset selection criterion for a given dataset is
to choose the paired dataset with the smallest difference score. For
example, to improve the T4-PM1 model, the T4-PM1 dataset should be
aggregated with the T2-PM2 dataset, as the T4-PM1/T2-PM2 pair has
the smallest difference score (0.017) compared to the T4-PM1/T7-PM1
(0.019), T4-PM1/T5-PM2 (0.083), and T4-PM1/T7-PM2 (0.037) pairs.
For the same reason, the candidate datasets for T5-PM2 and T7-PM2 are
both T2-PM2; the T5-PM2/T2-PM2 (0.080) pair is the smallest amongst
all the T5-PM2 pairings, and the same holds for the T7-PM2/T2-PM2
10 
pair. Note that the candidate dataset relationship is not necessarily true
in reverse. While the candidate dataset for T5-PM2 may be T2-PM2, the
candidate dataset for T2-PM2 is not necessarily T5-PM2. From Table 5,
it can be seen that the candidate dataset for T2-PM2 is actually T7-
PM1, with a difference score of 0.011. Additionally, to aggregate three
datasets, or when choosing the second candidate dataset, the difference
score has to be recalculated between the current two-set superset
and all the other datasets. For example, to determine the candidate
dataset for the T4-PM1/T2-PM2 superset (SS1), the difference scores
for the SS1/T7-PM1, SS1/T5-PM2, and SS1/T7-PM2 pairs must be
recalculated.

To further assess the effectiveness of this data aggregation metric,
four datasets are examined in a case study: all three PM2 datasets and
T4-PM1. It is still possible to exhaustively test the 15 possible unique
supersets formed from these four datasets, which will allow us to
evaluate both the idea that data aggregation generally improves model
performance and the effectiveness of the candidate dataset selection
method. First, the best possible AUC score for each tool-module com-
bination is found by exhaustively creating a model for every possible
superset and then selecting the superset that yields the highest AUC
score for that tool-module. The best possible AUC score at each superset
size is shown in Fig. 8. Then, the best possible AUC score is compared
to the AUC score obtained by aggregating candidate datasets, and this
is shown in Fig. 9 for two-set supersets and Fig. 10 for three-set
supersets.

Fig. 8 validates the idea that data aggregation generally improves
model performance because the best possible AUC scores for all four
tool-module combinations increase as more datasets are aggregated.
Additionally, in Fig. 9 for two-set aggregation and Fig. 10 for three-set
aggregation, the AUC scores of the proposed data aggregation strategy
based on statistical analysis methods aligns with the best possible score,
with T7-PM2 being an exception in both cases. The exception of T7-
PM2 can be explained by examining the difference score between its
historical data and its future data. In Table 6, the difference score
between the historical data used to train models and the future data
used to test models is displayed for five tool-module combinations.
Notably, the difference score for T7-PM2 is the largest of the examined
datasets, which implies that there is significant variability between
the modeling set and testing set that may impact data aggregation
effectiveness as the data aggregation strategy is purely based on the
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Fig. 8. Best possible AUC score as a function of how many datasets are aggregated among the four datasets. Model performance improves significantly for all tool-modules as
data aggregation increases.
Fig. 9. Comparison between the best AUC score for a two-set superset and the AUC score for the superset proposed by the candidate dataset selection method. Proposed AUC
scores conform with the best-case scores for most tool-modules.
historical dataset. This indicates that the proposed statistical analysis
methods are effective for this case study and can be considered as a
preliminary solution for selecting candidate datasets for aggregation.

One of the most important applications of the candidate dataset
selection method is to address scenarios where numerous tool-module
combinations are involved. In these situations, it is impractical to
exhaustively test all possible combinations of data aggregation to deter-
mine the ideal superset for each tool-module combination. To further
test the capabilities of the candidate dataset selection method, the
five datasets in Table 5 are reexamined. For this analysis, not all
possible superset combinations are tested. Instead, only the supersets
proposed by the candidate dataset selection method are examined. The
resulting AUC scores are then evaluated to validate the effectiveness of
11 
Table 6
Historical and future data difference score.

Dataset name Difference score

T4-PM1 0.089
T7-PM1 0.052
T2-PM2 0.082
T5-PM2 0.090
T7-PM2 0.093

the proposed aggregation method that was previously demonstrated to
work well for the four dataset case study. This approach aims to show
that the aggregation strategy will continue to be feasible even as the
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Fig. 10. Comparison between the best AUC score for a three-set superset and the AUC score for the superset proposed by the candidate dataset selection method. Proposed AUC
scores conform with the best-case scores for most tool-modules.
Fig. 11. AUC scores for the models trained on the supersets proposed by the candidate dataset selection method. The AUC scores for all the tool-module combinations improve
as more datasets are aggregated into the modeling set.
number of datasets increases and prove that statistical analysis methods
can identify the ideal candidate dataset without training numerous
models. Among the five datasets, the candidate dataset for T2-PM2 is
T7-PM1 as this pair has the lowest difference score (0.011), and the
remaining datasets have the same candidate datasets as in the previous
case study. The aggregation AUC scores are shown in Fig. 11, and
a specific example is shown in Fig. 12. Fig. 11 illustrates a notice-
able improvement in the performance for all the tool-module models.
Specifically, T2-PM2 and T7-PM1 achieve AUC scores of 0.87 and 0.88,
respectively, which is considered high performing. As shown in Fig. 12,
the ROC plots for T2-PM2 and T7-PM1 indicate that aggregating data
has lowered the FPR from between 35%–40% to 20% at 80% TPR,
representing a significant improvement.
12 
Fig. 11 also demonstrates the importance of data volume and how
data aggregation can supplement datasets with small volumes. This is
especially in the case of T7-PM2, which previously underperformed in
the four dataset case study. Table 2 states that it has a small volume
of data of 2722 compared to T4-PM1, T7-PM1, and T2-PM2, which
have dataset sizes in the tens of thousands. For the cases where only
one or two datasets are used, the T7-PM2 model performs poorly,
with an average ROC-AUC score of 0.5, which is the same as ran-
domly guessing. However, by aggregating three datasets, it achieved
an AUC score close to 0.7 and an FPR of about 40% with a TPR
of around 80%. This demonstrates the effectiveness of the data ag-
gregation strategy based on statistical analysis methods at enhanc-
ing model performance, particularly in scenarios where there are so
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Fig. 12. ROC plots for model performance on T2-PM2 and T7-PM1, which are trained by aggregating three datasets. The performances are noticeably better than the models
trained on single datasets. The FPR values at 80% TPR are improved from good (around 40%) to perfect (around 20%).
many datasets that it is impractical to exhaustively test all possible
combinations.

While data aggregation is certainly powerful, it also has its own lim-
itations. The two tool-module combinations with the smallest datasets,
T5-PM2 and T7-PM2, cannot attain a FPR of 20% at a TPR of 80%
like T2-PM2, a tool-module with a large dataset. This is because the
original dataset is simply too limited. Although data aggregation can
greatly increase the amount of training data by combining similar
datasets, the newly added data will never perfectly follow the distri-
bution of the original data, or in other words, data aggregation dilutes
the ‘‘identity’’ of the original dataset. This forms a complex balance
between data aggregation increasing the data volume, which improves
model performance, and data aggregation diluting the identity of the
original dataset, which decreases model performance. Additionally, the
improvement effect from increased data volume experiences dimin-
ishing returns as seen in Fig. 11; T7-PM1’s performance experiences
a sizable increase when moving from one to two datasets, but its
performance only experiences a minor boost when moving from two to
three datasets. Thus, the diminishing returns of increased data volume
and the cost of identity dilution implies that there exists an optimum
where further data aggregation would lead to decreased rather than
increased model performance.

This optimum will also differ for each individual classification
problem and dataset. For example, complex problems naturally require
larger datasets in comparison to simpler problems, which reduces
the diminishing returns effect of increased data volume. Additionally,
the dilution extent of the original dataset’s identity is dependent on
the potential candidate datasets; if the datasets to be aggregated are
very similar, then the dilution effect will be weak whereas if the
datasets to be aggregated are very different, the dilution effect will
be strong. Nonetheless, the improved AUC scores and reduced FPRs
highlight the efficacy of data aggregation at limiting the number of
missed misprocessed wafers. A key part to data aggregation is the
candidate dataset method and its ability to search for ideal datasets
that optimize model accuracy and efficiency when dealing with ex-
tensive datasets as randomly selecting datasets will result in minor
improvements if not decreases in performance. It should be mentioned
that the point-biserial analysis and difference scores are not guaranteed
to nominate the ideal candidate dataset. Nevertheless, the results of
this work demonstrate that the proposed data aggregation method can
13 
still significantly improve the performance of industrial classification
models, validating the practicality and effectiveness of the approach in
real-world applications.

3.2. Regression model performance

The regression model is evaluated with the median percentage error
metric. Percentage error is chosen as it is commonly used in industrial
settings for numerical data that spans a wide range from 0 to over
5000 Å, and it is calculated with the following equation:

𝐽𝑝𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 =
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|

𝑦𝑡𝑟𝑢𝑒
(12)

where 𝐽𝑝𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 is the percentage error, 𝑦𝑝𝑟𝑒𝑑 is the predicted oxide
thickness, and 𝑦𝑡𝑟𝑢𝑒 is the measured oxide thickness. 𝑦𝑡𝑟𝑢𝑒 spans from 0 to
5000 Å, and some values are close to 0 Å, e.g. 0.001 Å. The percentage
error for these data points with small 𝑦𝑡𝑟𝑢𝑒 values will be abnormally
large despite their small absolute error. To minimize the influence of
these outliers, the median, rather than the mean, is used to represent
the overall percentage error as it is a more robust and representative
measure of model performance. The 𝑅2 criterion is not applied here
because of the imbalanced data distribution; the data points are dense
around a low target region (from 0 to 200) and sparse at a high target
region (from 200 to over 5000). A model that mostly focuses on the
dense, low target region can still receive a good 𝑅2 score even if it
performs badly on the sparse, high target region. Thus, the median
percentage error is a better criterion for evaluating the overall model
performance on all ranges of data. As previously stated, the regression
task is more complex than the classification task, so only the T2-PM2,
T4-PM1, and T7-PM1 datasets are analyzed. Furthermore, since the
training, validation, and test datasets for the regression task are all
sorted by time rather than randomly selected as was the case for the
classification task, the median percentage error of all three datasets is
an informative metric and will be shown.

Since the target oxide thickness is always known, a benchmark
model can be constructed. Specifically, the benchmark model is defined
as a model that always predicts the measured oxide thickness to be
the same as the target oxide thickness; it always guesses that the prod-
uct will pass metrology. Then, by calculating the median percentage
error of this benchmark model on the validation set, it can act as a
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Fig. 13. The median percentage error after training with the MAPE loss function, compared to the benchmark model. Each tool-module labeled on the 𝑥-axis has three groups of
bars, which represent the training, validation and test sets, respectively. Within each groups of bars, the blue bar is the median percentage error of the trained regression model,
and the orange bar is the median percentage error of the benchmark model. Fig. 14 to Fig. 18 have the same formatting. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
baseline for performance evaluation. The minimum requirement for an
acceptable regression model is to outperform the benchmark model.
By comparing the performance of various regression models against
this benchmark, we can better assess the regression model’s accuracy
at predicting the measured oxide thickness, especially in an industrial
context where reliability is crucial.

3.2.1. MAPE training results
The results for all the models trained with the Mean Absolute

Percentage Error (MAPE) loss function for the three specified datasets
split by the training, validation and test datasets are shown is shown
in Fig. 13. Fig. 13 shows that, although the trained regression model
outperforms the benchmark model on the training and validation
datasets for T2-PM2, the regression model still underperforms in com-
parison to the benchmark model on the test set. For T4-PM1, the trained
regression model even fails to outperform the benchmark model on
the validation set. Moreover, for T7-PM1, the trained model does not
outperform the benchmark model on any of the dataset. Overall, it is
evident that any regression models trained with the MAPE loss function
cannot surpass the benchmark model when evaluated over the entire
dataset.

Even when the data is divided into runs with a target oxide thickness
value lower than 200 Å (low target) and runs with a target oxide
thickness higher than 200 Å (high target) as shown in Figs. 14 and
15, the previous conclusion remains consistent. The regression model
trained with the MAPE loss function does not outperform the bench-
mark model on either the low target or the high target test sets. The
designation of ‘‘low’’ and ‘‘high’’ targets is arbitrarily determined by
the real-world behavior of the tool-module combinations. Specifically,
the runs with a target below 200 Å and those above 200 Å have
very different behaviors. By splitting up the data and analyzing it in
detail, it gives a more detailed and comprehensive sense of the overall
model performance by examining the model performance in different
applications.

3.2.2. MSE training results
The results for all the models trained with the Mean Square Error

(MSE) loss function for the three specified datasets split by the training,
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Table 7
Percentage of runs with high targets in each dataset.

Tool-Module Training Validation Testing

T2-PM2 20% 17% 38%
T4-PM1 21% 39% 38%
T7-PM1 8% 18% 11%

validation and test datasets are shown in Fig. 16. Fig. 16 shows that
the median percentage error of the regression model trained with the
MSE loss function is worse than that of the regression model trained
with the MAPE loss function. This is expected as the MAPE loss better
aligns with the evaluation criterion. The regression models trained with
the MSE loss function perform worse than the benchmark model for all
three tool-module combinations across the training, validation, and test
sets. This trend is also evident in the model’s performance on low target
data points, as shown in Fig. 17. Due to the intrinsic properties of the
MSE loss function, which treats absolute errors on the high and low
target data points the same, the median percentage error on runs with
low targets is even higher than the median percentage error on all runs.
Conversely, this means that the model performs exceptionally well on
runs with high targets, as shown in Fig. 18. When only examining
the runs with high targets, the median percentage error of the trained
regression models is significantly lower than those of the benchmark
model across the training, validation, and test datasets.

The results shown in Figs. 16–18 prove that the MSE loss function
can achieve exceptional performance in terms of median percentage
error for runs with high targets. Nevertheless, if the runs with high
targets only constitute a negligible portion of the overall dataset, then
the good performance of the regression model in this category is
not particularly noteworthy. In this work, however, the high target
data points contribute significantly to the overall dataset, as shown in
Table 7. For instance, over one-third of the data points in the test sets
of T2-PM2 and T4-PM1 have high target oxide thicknesses.

Given this substantial representation, although the model trained
with the MSE loss function cannot be confidently used in all cases, it
holds a distinct advantage in predicting the measured oxide thickness
when the target oxide thickness is high. Since the target value is always
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Fig. 14. Comparison of the median percentage error between various regression models trained with the MAPE loss function for the training, validation and test sets and the
benchmark model on runs with target oxide thicknesses of less than 200 Å.
Fig. 15. Comparison of the median percentage error between various regression models trained with the MAPE loss function for the training, validation and test sets and the
benchmark model on runs with target oxide thickess of over 200 Å.
known before processing, this characteristic can be strategically utilized
to employ the model in areas where it shows strong performances.

The poor performance of the regression models for both the MSE
and MAPE loss functions, compared to that of the benchmark model,
can primarily be attributed to the exceptionally high pass rate, which
reaches 98% in some datasets. In industry, a common pass criterion
is for the result to be within a specified threshold of the target value.
This high pass rate indicates that most runs are successfully etched and
that their measured oxide thickness is very close to the target thickness,
15 
resulting in the benchmark model having a very low median percentage
error in most cases. However, this means that it is very difficult to
train a regression model that outperforms the benchmark model across
all target values. This stands in stark contrast to the results of the
classification model, where the favorable ROC-AUC curves in Fig. 12
show that the trained models can and do outperform a benchmark
model that randomly guesses the outcome.

The reason for the different results stems from the difference in com-
plexity between the tasks. The available process data contains enough
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Fig. 16. The median percentage error after training with the MSE loss function, compared to the benchmark model. For all tool-module combinations and all datasets, the trained
regression model performance is worse than that of the benchmark model.
Fig. 17. Comparison of the median percentage error between various regression models trained with the MSE loss function for the training, validation and test sets and the
benchmark model on runs with low target oxide thicknesses. The performance of the regression model here is even worse than in Fig. 16.
information to train a high-performing classification model that simply
allocates the results into two classes. However, the regression model
must predict the exact oxide thickness value from a wide range of
possible values. As the regression task is many times more complex than
the classification task, a high-performing regression model requires
process data that contains deep insight into the process itself. Thus,
the reason why the regression models do not outperform the benchmark
model is because the process data does not contain enough information
regarding the process. To improve the performance of the regression
models, more complex process data, such as time-series data, must be
incorporated into the training process. In conclusion, machine learning-
based soft sensors are powerful at predicting the physical properties of
16 
the process, but only if the model is trained on sufficiently insightful
process data collected from physical sensors.

4. Conclusion

This paper describes machine learning-based soft sensors trained
on process data from five industrial etching reactors for two tasks:
PASS/FAIL classification and oxide thickness regression. A data ag-
gregation method is proposed to improve the model performance for
the predictive classification task. In addition, for the regression task
of predicting measured oxide thickness, both MSE and MAPE losses
are tested for model training. The results presented in this paper val-
idate the hypothesis that data aggregation and statistical analyses can
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Fig. 18. Comparison of the median percentage error between various regression models trained with the MSE loss function for the training, validation and test sets and the
benchmark model on runs with high target oxide thicknesses. The performance of the regression model is better than that of the benchmark model on all examined runs for all
three training, validation and test datasets.
significantly enhance the binary PASS/FAIL prediction accuracy and
robustness of feed forward neural network models on industrial etching
reactors. This is done by aggregating datasets using point-biserial cor-
relations and difference scores as metrics to choose candidate datasets
for aggregation, particularly for tools with initially small data volumes.
The two datasets with the smaller number of data points improved from
a score barely above random guessing (𝐴𝑈 𝐶 ≈ 0.5) when trained on a
single dataset to a significantly better performance (𝐴𝑈 𝐶 ≈ 0.65) with
a 40% false positive rate (FPR) at a 80% true positive rate (TPR) when
trained on an aggregation of three datasets out of five possible datasets.
The other datasets with relatively larger datasets still benefited from
data aggregation; their model performance improved from 𝐴𝑈 𝐶 ≈ 0.8
to 𝐴𝑈 𝐶 ≈ 0.9, and the FPR improved from around 35% at 80% TPR
to 20%. The statistical analyses accurately chose the best candidate
dataset for aggregation, aligning with the results shown by exhaustively
testing every possible dataset combination. These results confidently
show the effectiveness of data aggregation and using statistical methods
as an aggregation strategy. Additionally, for regression models that
predict oxide thicknesses, while the MAPE loss function was more
effective for overall percentage error minimization, the trained model
could not outperform the benchmark model that always predicted the
measured oxide thickness to be the target thickness. Although the
model trained with the MSE loss function did not yield satisfactory
predictions across all data points, it exhibited exceptional performance
for runs with high target oxide thickness with target values of over
200 Å. This finding is useful for specific processes with high target
values, as these target values are typically known in industrial settings.
Consequently, the strategic use of MSE for processes with high target
values can enhance regression model performance in these specific
scenarios.
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