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ABSTRACT
Introduction  Maps of malaria risk are important tools for 
allocating resources and tracking progress. Most maps 
rely on cross-sectional surveys of parasite prevalence, but 
health facilities represent an underused and powerful data 
source. We aimed to model and map malaria incidence 
using health facility data in Uganda.
Methods  Using 24 months (2019–2020) of individual-
level outpatient data collected from 74 surveillance health 
facilities located in 41 districts across Uganda (n=445 648 
laboratory-confirmed cases), we estimated monthly 
malaria incidence for parishes within facility catchment 
areas (n=310) by estimating care-seeking population 
denominators. We fit spatio-temporal models to the 
incidence estimates to predict incidence rates for the rest 
of Uganda, informed by environmental, sociodemographic 
and intervention variables. We mapped estimated 
malaria incidence and its uncertainty at the parish level 
and compared estimates to other metrics of malaria. To 
quantify the impact that indoor residual spraying (IRS) may 
have had, we modelled counterfactual scenarios of malaria 
incidence in the absence of IRS.
Results  Over 4567 parish-months, malaria incidence 
averaged 705 cases per 1000 person-years. Maps 
indicated high burden in the north and northeast of 
Uganda, with lower incidence in the districts receiving 
IRS. District-level estimates of cases correlated with 
cases reported by the Ministry of Health (Spearman’s 
r=0.68, p<0.0001), but were considerably higher (40 166 
418 cases estimated compared with 27 707 794 cases 
reported), indicating the potential for underreporting 
by the routine surveillance system. Modelling of 
counterfactual scenarios suggest that approximately 
6.2 million cases were averted due to IRS across the 
study period in the 14 districts receiving IRS (estimated 
population 8 381 223).
Conclusion  Outpatient information routinely collected 
by health systems can be a valuable source of data 
for mapping malaria burden. National Malaria Control 
Programmes may consider investing in robust surveillance 
systems within public health facilities as a low-cost, high 
benefit tool to identify vulnerable regions and track the 
impact of interventions.

BACKGROUND
Understanding the spatial distribution of 
malaria burden is critical for identifying high 
transmission areas, evaluating local effective-
ness of control efforts, and targeting future 
interventions to areas of greatest need.1 2 
However, most existing maps of malaria risk 
have inadequate operational utility for local 
decision-making because they are low in 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Understanding the spatial distribution of malaria is 
critical for targeting control efforts and keeping track 
of burden. Today’s maps have inadequate operation-
al utility for local decision-making because they are 
low in resolution and rely on poor indicators such as 
parasite prevalence.

	⇒ One underused but potentially powerful source of 
data for malaria risk mapping is information collect-
ed at public health facilities.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates the potential value of health 
facility data for risk mapping. Model validation, in-
cluding out-of-sample prediction, indicated that ac-
curacy was high, particularly in areas where health 
facilities were clustered more closely together. With 
an average distance of 170 km between health fa-
cilities, out-of-sample predictions were accurate—
nearly as accurate as in-sample predictions.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These findings indicate that creating a network of 
sentinel health facilities with extra quality control 
measures may be a worthwhile investment for 
National Malaria Control Programmes, while remain-
ing more inexpensive and clinically relevant than 
other surveillance efforts, such as cross-sectional 
surveys conducted every 3–5 years. Risk maps 
generated using enhanced health facility data have 
the potential to be an essential tool for high burden 
countries as they aim to achieve targets towards 
control and elimination.
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resolution and rely on poor surveillance indicators such 
as parasite prevalence collected with limited geographical 
and temporal representativeness.3–7 Health management 
information system (HMIS) data collected routinely 
through the public health system are an underused 
source of rich information on counts of malaria cases 
that could be used for high-resolution risk maps of 
malaria incidence.8 9 These data typically have limitations 
including poor case ascertainment, inadequate reporting 
rates, reporting of aggregate case data and ambiguous 
population denominators around health facilities.4 10 11 
However, HMIS data exhibit important strengths: they 
provide a direct measure of morbidity, are collected 
continuously over time, cover a broad geographical 
range and are relatively inexpensive to collect.8 9

Uganda is a country that could benefit greatly from 
high resolution maps of malaria burden. Malaria remains 
one of the leading health problems of Uganda despite 
rigorous efforts to improve vector control and case 
management over the past several decades.2 12 The burden 
of malaria is heterogeneous across the country; in some 
areas, burden is low due to geographical and climate vari-
ation, and in others due to the successful deployment of 
vector control measures such as indoor residual spraying 
(IRS).13 14 High-resolution maps of malaria risk could 
be used by the country’s National Malaria Control Divi-
sion (NMCD) to best target its resources; for example, 
from 2019 to 2020, funding was only available to cover 
14 of the 135 districts in the country with IRS. In addi-
tion, these maps could be used to evaluate the impact 
of interventions—a crucial step towards maximising the 
limited resources available and allowing Uganda to meet 
its targets established by the by the WHO’s Global Tech-
nical Strategy for malaria, including reducing malaria 
incidence from 2015 by at least 90% by 2030.15

In this analysis, we used enhanced health facility surveil-
lance data to measure and map malaria incidence in 
Uganda in 2019–2020. First, we generated high-resolution 
monthly estimates of malaria incidence using data from 
74 high volume public health facilities across the country 
by modelling catchment area populations around facili-
ties. Second, we built a spatio-temporal prediction model 
for malaria incidence using sociodemographic, environ-
mental and intervention covariates. Third, we used this 
model to map malaria risk across Uganda. Fourth, we 
compared estimates from our model to other measures 
used by the NMCD and modelled counterfactual vector 
control intervention scenarios.

METHODS
Enhanced health facility data
The Uganda Malaria Surveillance Programme (UMSP) 
has been conducting enhanced outpatient malaria 
surveillance in selected high volume level III and IV public 
health facilities in Uganda, called malaria reference 
centres (MRCs), since 2006.16 At each MRC, individual-
level data are entered into an electronic Microsoft Access 

database for all individuals presenting to the outpatient 
department using a standardised format. Information 
collected on outpatients includes demographics (sex, 
age and village/parish of residence), results of labo-
ratory tests (rapid diagnostic test or microscopy), diag-
noses given and treatments prescribed. UMSP provides 
laboratory support and quality control training to ensure 
high-quality diagnostic testing, adherence to recom-
mended case management and data completeness. This 
analysis used 2 years (24 months) of health facility-based 
surveillance data from 74 UMSP MRCs (figure 1), from 
January 2019 to December 2020. This study window was 
selected to maximise the number of UMSP MRCs oper-
ating during the analytic period as 49 new UMSP sites 
were opened in 2019 and 2020. For information on the 
number of months each site contributed to the analysis, 
see online supplemental table 1.

Estimation of malaria incidence outcome
To quantify malaria incidence in each parish, estimates 
of the care-seeking population living in the catchment 
area of each health facility are needed to serve as a 
denominator. Since these estimates are not available and 
the catchment areas of health facilities are not clearly 
defined, we modelled catchment area populations using 
a method previously described.17 In brief, we calculated 
village-level travel times to each MRC using Malaria Atlas 
Project’s (MAP) friction surface 2015 raster file.18 This 
friction surface provides Uganda-specific travel times 
associated with road types or, in the absence of roads, 
walking times. Using information on each outpatient’s 
village of residence (the highest resolution information 
on patient residence available in the UMSP database), 
we estimated a care-seeking model for the relationship 

Figure 1  Map of malaria reference centres and parishes 
within the catchment area of each health facility.

https://dx.doi.org/10.1136/bmjgh-2022-011137
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between travel time and probability of attending the MRC 
using non-linear Poisson generalised additive models 
with non-linearity modelled with splines, restricting to 
villages for which the MRC was the nearest health facility. 
This relationship was estimated among outpatients not 
suspected of having malaria because their probability of 
attendance was less likely to be directly correlated with 
malaria incidence across villages. This model implicitly 
assumed that differences in care-seeking for outpatients 
not suspected of having malaria over space was driven 
exclusively by travel time to the health facility and that 
the probability of seeking care among those living in 
the village where the MRC is located was 100%; results 
derived from this method, therefore, represent the 
relative probability of attendance for each village. With 
this care-seeking model, we generated relative proba-
bilities of attending the health facility for each village 
around the MRC. These probabilities were then used to 
down-weight village-level population estimates derived 
from the WorldPop Project19 to generate catchment 
area populations and estimate malaria incidences for 
each village. Catchment area borders were defined by 
restricting to villages residing in parishes for which the 
closest health facility was the MRC. WorldPop popula-
tion denominators were estimated for 2020 and were 

constrained to areas with human settlements detected 
by satellite.

For spatio-temporal modelling, we aggregated monthly 
malaria case counts and down-weighted care-seeking 
population estimates to the parish level (administrative 
level 6).20 We opted to fit the model to parish-level esti-
mates of malaria incidence to reduce statistical noise; 
malaria incidence estimates were more stable at lower 
resolution (eg, parish vs village) and model fit was 
substantially improved. Monthly incidence was defined 
as the count of laboratory-confirmed malaria cases from 
each parish within an MRC’s catchment divided by the 
down-weighted parish-level population estimate. The 
numerator of this estimate (of laboratory-confirmed 
malaria cases) was estimated as a count without adjust-
ment for missingness or testing rates given the quality of 
the UMSP database, with low (less than 5%) missingness 
of key variables and high (greater than 99%) diagnostic 
testing of patients with malaria suspected.

Covariate data
A set of environmental and sociodemographic varia-
bles known to be associated with malaria burden21 were 
considered as candidate predictors for model selection 
(table 1). Dynamic covariates, including precipitation,22 

Table 1  Candidate covariates for spatio-temporal generalised additive model

Covariate Description Temporal status Source
Available 
resolution

precip Cumulative monthly precipitation Monthly; 0, 1, 2, 3 month lags CHIRPS 0.05 decimal 
degrees

lst_day Daytime land surface temperature Monthly; 0, 1, 2, 3 month lags MODIS derivative 1 km

lst_night Night-time land surface temperature Monthly; 0, 1, 2, 3 month lags MODIS derivative 1 km

evi Enhanced Vegetation Index Monthly; 0, 1, 2, 3 month lags MODIS derivative 1 km

elevation Elevation as measured by the Shuttle 
Radar Topography Mission

Static Shuttle Radar 
Topography Mission

90 m

slope Static WorldPop 100 m

pop_density Population density per grid-cell Static WorldPop 100 m

dist_road Distance to OpenStreetMap major 
roads (in km)

Static WorldPop 100 m

dist_water Distance to OpenStreetMap major 
waterways (in km)

Static WorldPop 100 m

housing Prevalence of improved housing Static Malaria Atlas 
Project

1 km

night-time_lights Index that measures the presence 
of night-time lights from towns and 
cities

Static VIIRS 500 m

irs No of months since last IRS 
campaign×binary variable indicating 
IRS district

Monthly Uganda NMCD District level

llin No of months since last LLIN 
distribution

Monthly Uganda NMCD District level

CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data; IRS, indoor residual spraying; LLIN, long-lasting insecticide treated 
bednet; NMCD, National Malaria Control Division.
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daytime and night-time land surface temperature,23 and 
Enhanced Vegetation Index (EVI),24 were aggregated to 
monthly measures. A series of lags (0, 1, 2 and 3 months 
prior to the month of outcome data) were considered in 
models, given the potential for delayed impacts of envi-
ronmental variables and malaria outcomes. Moderate 
Resolution Imaging Spectroradiometer (MODIS) prod-
ucts (temperature and EVI) underwent gap-filling using 
a random forest model to adjust for gaps due to cloud 
cover (code available at https://github.com/disarm-plat-
form/gapfilling_rasters).

Static covariates included elevation measured through 
the Shuttle Radar Topography Mission,25 slope,26 popu-
lation density,27 distance to major roads and to major 
waterways,27 the prevalence of improved housing28 and 
the presence of night-time lights.29

We also included district-level variables representing 
vector control interventions. These included the number 
of months since the most recent long-lasting insecticide 
treated bednet (LLIN) distribution and the number of 
months since the latest IRS campaign.

Spatial aggregation of covariates
To aggregate raster data to the parish level, we calcu-
lated a weighted mean, weighing by raster values by 
human population estimates from WorldPop within each 
parish, due to the fact that malaria transmission occurs in 
human-dominated areas.19 Prior to model specification, 
all covariates were normalised to have a mean of 0 and an 
SD of 1. For variables with a long-tailed distribution such 
as night-time lights and distance from road, log transfor-
mation was performed prior to normalisation.

Spatio-temporal generalised additive model
The number of positive cases in parish v at month t 
(‍Yv,t ‍) was modelled via a negative binomial generalised 
additive regression model (GAM) with spatio-temporal 
smooths accounting for a spatial latent process varying 
with time.30 Parish-level population denominators 
derived from the care seeking model (‍Popseekv,t ‍) were 
included as an offset term in the incidence model. A non-
linear temporal trend was included with a smoothing 
function on month, ‍f

(
t
)
‍ . Spatio-temporal smooths were 

estimated using Gaussian Markov random fields (GMRF) 

‍f
(
t, parish

)
‍, allowing smooths to differ flexibly over space 

(parish) and time. GMRF are used to account for spatio-
temporal autocorrelation when spatial data are measured 
over discrete polygons.31 All environmental, sociodemo-
graphic and intervention variables were modelled with 
restricted cubic splines in ‍f

(
iv,t

)
‍.

	﻿‍ Yv,t ∼ NegBin
(
E
[
Yv,t

])
‍�

	﻿‍

log
(
E
[
yv,t

])
= β0 + f

(
t
)

+ f
(
t, parish

)
+

f
(
iv,t

)
+ offset

(
log

(
Popseekv,t

))
‍�

Covariate selection was conducted via a two-step process. 
First, collinearity among all candidate covariates was 
assessed by calculating variance inflation factors (VIF) 

using a linear model including all covariates. A stepwise 
selection of variables with VIF<10 was then conducted, 
sequentially removing the variable with the highest VIF 
(if the VIF≥10) until all VIF<10.32–34 Second, during GAM 
specification, regularisation was used to integrate model 
selection into the model fitting step by adding an extra 
penalty to each term. This allows coefficients for covari-
ates to be penalised to zero, meaning that splines can be 
kept minimal if the data do not support flexibility and 
covariates can essentially be removed from the model if 
their inclusion is not useful.30

Using the final model, malaria incidence aggregated to 
the 2-year study window was predicted at the parish level 
for all parishes in Uganda (n=7569). Parish-level esti-
mated incidence was then mapped, in addition to upper 
and lower bounds of 95% CIs and mean standard errors 
across the 24-month period.

Counterfactual scenarios of malaria incidence in the 
absence of IRS campaigns were estimated by setting the 
binary covariate representing whether a district received 
IRS during the study window to 0 and predicting malaria 
incidence at the parish level. These estimates were then 
compared with predicted malaria incidence in the orig-
inal model to estimate the impact of these campaigns in 
terms of cases averted and their 95% CIs.

Evaluation of predictive accuracy
Model performance was evaluated through four levels of 
10-fold cross-validation: (1) random selection of health 
facilities; (2) random selection of health facilities in the 
middle of the country where the density of sites was high 
(mean distance 170 km), excluding 10 facilities whose 
mean distance from other health facilities was 310 km 
(see online supplemental figure 2 for a map of the high 
density sites); (3) 200 km spatial blocks (see online supple-
mental figure 3 for spatial fold distribution35) and (4) by 
time. Furthermore, we assessed model performance in 
models including only spatial smooths, in addition to the 
full model (with spatial smooths and covariates). Predic-
tive accuracy was assessed by comparing the predicted log 
counts of cases to in-sample and out-of-sample observed 
log counts graphically by calculating goodness-of-fit 
measures including root mean squared error, mean abso-
lute error and R2.

Reflexivity
The international research team included early career 
and senior researchers from both the Global North and 
Global South. A structured reflexivity statement can be 
found in online supplemental appendix S1.

RESULTS
MRC data overview and quality
From 2019–2020, a total of 1 923 530 patients were seen 
across the 74 MRCs, 779 290 of whom tested positive 
for malaria. Diagnostic testing rates were high (99.6% 
of patients suspected of having malaria were tested), 
and missingness of key variables was near-zero (0.12% 

https://github.com/disarm-platform/gapfilling_rasters
https://github.com/disarm-platform/gapfilling_rasters
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
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missingness for age, 0.07% for sex and 4.25% missingness 
for village of residence in 2019–2020).

Catchment areas
Across the 74 sites, catchment areas included between 
1 and 8 parishes. The median catchment area popula-
tion size was 8054 individuals (IQR 4451–14 048). Online 
supplemental table 1 contains site-level information on 
the number of parishes included in each catchment area, 
in addition to the population estimate of each catch-
ment area using estimates from WorldPop and estimates 
of malaria incidence across the 24-month study period. 
Online supplemental figure 1 shows the number of 
months each parish contributed to the dataset.

Distribution of outcome and predictor variables
Figure  2 shows the distribution of parish-level malaria 
incidence by month and by MRC. There was substan-
tial variation in malaria incidence over the 24-month 
period, with monthly medians across all parishes of 85 
cases per 1000 person-years to 640 cases per 1000 person-
years. There was also substantial variation between sites, 
ranging from a median of 0 cases per 1000 person-years 
across the 24 months to 3203 cases per 1000 person-years.

Spatial distributions of predictor variables at the parish 
level across Uganda are shown in figure 3, with dynamic 
covariates averaged over the 24-month period.

Model results and predictive performance
To estimate the relationship between predictor variables 
and malaria incidence, we specified a spatio-temporal 
GAM with GMRF smooths to account for spatial auto-
correlation. Smoothed relationships from the final 

spatio-temporal GAM are shown in online supplemental 
figure 4.36 Of the potential dynamic variables and their 
lags we considered, the final model included precipita-
tion and night-time temperature at 0, 1, 2 and 3 months 
lags, daytime temperature at 0 and 3 months lags, and 
EVI at 0, 1 and 3 months lags, selected by excluding 
highly collinear variables as described in the methods 
section. Overall, malaria incidence increased over the 
24-month study period as indicated by the monthly 
temporal smooth. EVI at 0 and 1-month lags were posi-
tively associated with incidence in this dataset—higher 
EVI was associated with increases in malaria incidence—
while EVI at a 3-month lag displayed a negative associa-
tion, with increases in EVI associating with lower malaria 
incidence. Overall, once accounting for other covariates, 
precipitation did not appear to be associated with inci-
dence in this dataset. Sociodemographic covariates such 
as improved housing, distance from road, and distance 
from water, night-time lights, and population density all 
demonstrated significant non-linear associations with 
incidence, as did elevation and slope, in addition to 
both intervention variables (months since LLIN and IRS 
campaigns).

Model diagnostics were satisfactory (online supple-
mental figure 5), with normality of residuals. Predic-
tive performance both in-sample and out-of-sample is 
presented in table  2. The in-sample predictive perfor-
mance of our model was good, indicated by an R2 of 0.73 
when predicting over time and space (parish-months, 
n=4567), 0.85 when predicting over space (parishes, 
n=310) and 0.99 when predicting over time (months, 
n=24). As expected, the out-of-sample predictive perfor-
mance was lower for all rounds of out-of-sample cross-
validation (random selection of sites, random selection 
of high density sites, spatial blocks and temporal blocks). 
The largest drop was observed for spatial block cross-
validation (when predicting at the parish level as was 

Figure 2  Distribution of outcome (malaria incidence) over 
time (top) and between sites (bottom).

Figure 3  Spatial distribution of spatial covariates. Dynamic 
covariates are averaged over the 24-month period. Greyed 
out areas represent national parks.

https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
https://dx.doi.org/10.1136/bmjgh-2022-011137
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done for the maps in this analysis, R2 reduced from 0.85 
in-sample to 0.56). When sites were randomly selected, 
both across all sites and among high density sites, perfor-
mance was better (eg, when predicting at the parish level, 
R2 was 0.73 and 0.75, respectively). Models performed 
well when predicting to out-of-sample temporal blocks 
(R2=0.83 when aggregated to parishes). When covariates 
were excluded from the model, performance remained 
relatively high, particularly when health facilities were 
randomly selected among high density sites. Covariates 
improved model fit when predicting further away (as 
demonstrated through spatial block cross-validation) and 
when predicting temporal trends.

Model results
Figure 4 shows the parish-level map of malaria incidence 
resulting from the spatio-temporal GAM. Estimated 
malaria incidence was generally highest in the north, 
except for an area in the Northeast that was undergoing 
sustained IRS since 2014 (outlined in green), which 
demonstrated substantially lower incidence. An estimated 
14.8% of parishes had incidence below 100 cases per 
1000, 49.8% of parishes fell between 100 and 500 cases 
per 1000, 22.3% between 500 1000 cases per 1000 and 
13.2% greater than 1000 cases per 1000 population. As 
expected, estimates had greater certainty (narrower CIs) 
in areas with more MRCs, particularly in the north of the 
country, where predictions are more stable as they were 
informed by nearby parishes through spatial smoothing 
and covariates reflecting similar environments. Estimates 
were much less precise in the southwest, where the envi-
ronment was somewhat distinct and only 2 MRCs were 
present (figure 4B).

Comparison of estimates to other estimates of malaria 
incidence
A comparison of case counts reported by the Ugandan 
HMIS to modelled case counts at the district level in 2019 
and 2020 is plotted and mapped in figure 5A,C. In sum, 
the model estimated 40 166 418 cases of malaria across 
24 months; 27 707 794 cases were reported by the HMIS 
in the same period. There was moderate correlation 
between modelled and reported case counts for each 
district (Spearman’s r=0.68, p<0.0001). In most districts, 
predicted case counts were higher than HMIS-reported 
counts (figure 5C); however, in some areas, particularly 
in areas in the Northwest of the country, HMIS cases were 
higher than modelled cases.

We also compared parish-level incidence in 2019 
modelled by the MAP37 (by calculating the population-
weighted average mapped incidence within each parish) 
to parish-level incidence resulting from our model 

Table 2  Model performance indicators (R2) for in-sample and out-of-sample cross-validated predictions

Level of prediction aggregation

Parish-months Parishes Months

Full model 
(spatial 
smooth and 
covariates)

Spatial 
smooth 
only (no 
covariates)

Full model 
(spatial 
smooth and 
covariates)

Spatial 
smooth 
only (no 
covariates)

Full model 
(spatial 
smooth and 
covariates)

Spatial 
smooth 
only (no 
covariates)

In-sample 0.73 0.50 0.85 0.72 0.99 0.49

Random selection of sites 
cross-validation

0.57 0.43 0.73 0.68 0.99 0.71

Random selection of sites 
cross-validation (high density 
sites)

0.64 0.56 0.75 0.74 0.99 0.78

Spatial block cross-validation 0.37 0.20 0.56 0.49 0.98 0.68

Temporal block cross-
validation

0.69 0.45 0.83 0.72 0.95 0.75

Figure 4  (A) Parish-level estimated incidence per 1000 
over the study window; (B) mean SE on the log scale 
and locations of malaria reference centres; (C) lower and 
(D) upper bound of the 95% CI. Districts receiving indoor 
residual spraying campaigns are outlined in green in A, C and 
D.
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(figure  5B,D). The mean parish-level incidence across 
Uganda was 440 cases per 1000 population from our 
model and 268 cases per 1000 population from MAP. The 
Spearman correlation between these measures is 0.46 
(p<0.0001). Across most of the higher burden North and 
East of Uganda, our modelled incidence was higher than 
MAP incidence (figure  5D). One key exception is the 
parishes undergoing IRS in the Northeast of the country 
(outlined in black), where MAP incidence, which does 
not directly incorporate up-to-date intervention data 
aside from static modelled surfaces indicating coverage 
of LLINs and IRS, was higher than our modelled inci-
dence. In the lower burden Southwest of the country, our 
modelled incidence was lower than MAP incidence.

Estimating the impact of interventions
One potential use case for locally accurate risk maps 
of malaria incidence is the estimation of the impact of 
malaria control interventions by modelling counterfac-
tual scenarios. An example of this is shown in figure 6, 
where we predicted what the malaria incidence would 
have been in 2019–2020 in the 14 districts (with an esti-
mated population of 8 381 223) that have undergone 
sustained IRS since 2014, had they not received this inter-
vention. The model predicted 1 062 216 cases (95% CI 
696 620 to 1 660 893] in the IRS scenario and 7 235 816 
cases (95% CI 4 862 569 to 10 963 248] in the modelled 
non-IRS scenario, suggesting approximately 6.2 million 
cases (95% CI 4.2 million to 9.3 million) were averted 
across the 24-month period. The difference between 
the estimated counterfactual incidence and estimated 

incidence under IRS was greater in districts in the north, 
where incidence is higher.

DISCUSSION
This study used routinely collected data from 74 health 
facilities to estimate, model and map malaria incidence 
and its uncertainty in Uganda. Our findings indicate 
that individual-level, high-quality patient data collected 
at a limited number of sentinel health facilities across a 
geographical area represent a viable avenue for gener-
ating high resolution maps of malaria risk with the poten-
tial for operational utility. Model performance in out-of-
sample prediction was good, especially when predicting 
to health facilities in nearby parishes, as demonstrated 
through random cross-validation. As expected, the model 
performed less well at predicting to more distant locations 
with different environments, as demonstrated through 
spatial block cross-validation. This suggests that the maps 
we generated are less informative in areas distant and/or 
environmentally distinct from sentinel surveillance sites 
and that estimates are more accurate and precise in areas 
with a higher density of sites, particularly in the north 
and northeast of Uganda. The findings from this analysis 
underscore the potential that high-quality health facility 
data have for generating accurate, high-resolution maps 
of malaria risk efficiently and at a relatively low cost.

Over the past several years, the steady decline of 
malaria cases and deaths that has taken place since the 
1990s has stalled, particularly in high burden countries 
such as Uganda.2 Given this, in combination with the 
heterogeneous nature of malaria transmission, NMCDs 
must have high-quality information to maximise limited 
resources by targeting vector control approaches and 
other interventions such as novel vaccines and chemo-
prevention and evaluating their impact. Contempora-
neous maps of malaria risk represent a potential source of 
this information. At present, most malaria risk mapping 
is done using cross-sectional surveys capturing parasite 
prevalence, such as Malaria Indicator Surveys or Demo-
graphic and Health Surveys. These surveys are conducted 
infrequently (typically, every 3–5 years) and are limited 
in geographical scope. Furthermore, while parasite 

Figure 6  Predicted malaria incidence in 14 districts 
undergoing indoor residual spraying in 2019–2020 under 
(A) true IRS conditions and (B) counterfactual IRS conditions 
with no IRS. IRS, indoor residual spraying; PY, person-years.

Figure 5  (A) Comparison of district-level case counts 
reported by the Ugandan health management information 
system (HMIS) to estimated district-level case counts in 
thousands in 2019 and 2020; (B) comparison of parish-level 
average malaria incidence modelled by the Malaria Atlas 
Project (MAP) to estimated parish-level incidence in 2019; 
(C) mapped district-level differences in case counts reported 
by the Ugandan HMIS to estimated district-level case counts 
in thousand in 2019 and 2020; (D) mapped parish-level 
differences in average malaria incidence modelled by the 
MAP to estimated parish-level incidence in 2019. The identity 
line in A and B is indicated in red and a lowess smooth is 
indicated in blue. PPY; per person-year.
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prevalence as a metric may be related to malaria burden, 
it has less programmatic relevance than more direct indi-
cators such as malaria incidence.6 To compensate for 
this, methods to estimate incidence using cartographic 
tools linking parasite prevalence to incidence have been 
recently developed by the MAP.38 39 While these methods 
improve the operational utility of risk maps by converting 
prevalence to a more meaningful surveillance measure, 
they can lack both accuracy and precision because of the 
sparsity of underlying data and because the relationship 
between prevalence and incidence is poorly defined and 
inconsistent, especially in areas where transmission inten-
sity is high.2 For this reason, a recent push by the WHO’s 
High Burden to High Impact initiative has focused on 
leveraging HMIS for surveillance and risk mapping.2 
However, this comes with its own challenges. First, quality 
surveillance requires accurate diagnosis, yet only 38% 
of febrile children brought for care at a public health 
facility in sub-Saharan Africa received a diagnostic test 
in 2015–2019.2 Second, once cases are identified, they 
must be reported through the HMIS, yet reporting rates 
vary significantly and cases are often reported in aggre-
gate, limiting the utility of the data because geographical 
information on the location of cases is lost.2 Third, even 
under conditions of high-quality HMIS data, translating 
raw case numbers into meaningful indicators of disease 
burden is challenging because catchment areas around 
health facilities are not well defined.

This study proposes potential solutions for each of 
these challenges. First, our dataset had high spatial and 
temporal resolution for much of Uganda, particularly 
in comparison with cross-sectional surveys typically used 
for risk mapping purposes. We continuously collected 
incidence data from 310 of the 7569 parishes across the 
country over a period of 2 years, representing 1 308 228 
outpatients, 904 595 of whom were tested for malaria. 
The most recent (2018–19) Malaria Indicator Survey in 
Uganda, in contrast, was a one-time survey conducted in 
320 clusters, testing malaria parasite prevalence status 
among 6626 children under 59 months.40 Second, we 
leveraged a network of enhanced HMIS sentinel sites 
that addresses many of the limitations associated with 
standard HMIS systems: data are at the individual patient 
level, diagnostic testing rates are high, and missingness 
of key variables is near-zero. While these improvements 
required some initial investment in training and quality 
control, maintaining this quality is relatively economical 
and ultimately the costs are low given the large gains 
in information. Finally, we translated these individual-
level case data to accurate measures of monthly malaria 
incidence by using information on patients’ places of 
residence to estimate catchment area populations.17 
Compared with modelling incidence as a function of 
parasite prevalence, this method is more direct and relies 
on fewer assumptions.

Our findings indicate that on a country-level, malaria 
burden may be under-reported by the HMIS: the model 
estimated approximately 12.5 million more cases in 

2019–2020 than those reported by HMIS. There are 
several factors that may drive this discrepancy, including 
gaps in reporting by health facilities to the routine HMIS 
system. Furthermore, this comparison was for laboratory-
confirmed diagnosis, which is remarkably high at MRCs 
but is likely much lower in other public health facili-
ties. Countrywide estimated malaria incidence from our 
model was also higher than that estimated by the MAP, 
which relies on parasite prevalence surveys to estimate 
incidence. Given the prevalence-incidence relation-
ship is especially unstable in high transmission settings 
such as Uganda, incidence from the MAP may be an 
underestimate.

While this study focused on Uganda, this method has 
the potential to improve malaria surveillance at an opera-
tional level in malaria endemic settings globally. Because 
malaria incidence is measured directly, continuously and 
locally at health facilities, barriers NMCDs face to obtain 
relevant estimates are lower than relying on a complex 
mathematical model built on sparse and expensive preva-
lence data. Measures of incidence can then be combined 
with publicly available remotely sensed data in order to 
extend these estimates to areas where sentinel sites are 
not present. The greater spread and higher density of 
sentinel surveillance sites that are included the more 
precise these estimates would be, since the model would 
be able to leverage spatial interpolation and rely less on 
extrapolation to distant and perhaps ecologically distinct 
regions. For example, we found that with an average 
distance of 170 km between high density sites, out of 
sample predictions were high and did not rely much on 
spatial covariates to maintain high accuracy. Harnessing 
sentinel site data to generate maps of risk has the added 
operational benefit of high temporal resolution, meaning 
that NMCDs can use these maps to track changes in 
burden over time and estimate the impact of control 
interventions by modelling counterfactual scenarios.

While sentinel surveillance may have substantial 
untapped potential, there are limitations in these data 
and the analysis presented here which are important to 
consider. First, health facility data are limited to informa-
tion recorded for patients that visit that health facility. 
While our incidence estimates do adjust for relative care-
seeking as a function of distance to the facility, we do not 
adjust for probabilities of care-seeking for reasons other 
than distance. However, if this were of interest, these data 
could be combined with survey data on care-seeking. 
For example, we conducted cross-sectional surveys in 
randomly selected households around 64 of these MRCs 
from November 2021 to March 2022. Of 4737 individuals 
that were treated for malaria in the last 6 months, 81% 
went to the MRC. Because these villages were very close to 
the MRC (and therefore travel time should be negligible), 
we could apply an additional assumption that our model 
captures only 81% of true cases in Uganda. This would 
further increase the gap between estimated cases and 
cases reported by the HMIS, suggesting that HMIS data 
may be substantially underestimating burden. Similarly, 
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the beginning of the COVID-19 pandemic and the 
resulting lockdowns occurred during the study window, 
which may have impacted care-seeking, and therefore, 
underestimated cases captured at health facilities during 
the second half of the study period. However, an analysis 
from 2021 assessing the potential effect of the first year of 
the COVID-19 pandemic at UMSP sites found no associ-
ation between the pandemic and malaria cases and non-
malarial visits at health facilities.41 Second, despite being 
substantially less expensive than cross-sectional surveys, 
sentinel surveillance systems do require some investment 
compared with standard HMIS data, including additional 
time and labour associated with inputting individual-level 
patient data to a digital database. Furthermore, an initial 
investment is needed to accurately record where patients 
reside and to link these areas of residence to places on a 
map. Third, we rely on modelling assumptions that may 
be incorrect. For example, we rely on data from 74 health 
facilities in combination with covariate information to 
extrapolate malaria burden to the rest of the country, 
meaning that in areas with lower density of MRCs, our 
estimates had greater uncertainty. However, the relatively 
low cost of adding more sentinel surveillance sites could 
greatly diminish reliance on these modelling assump-
tions and vastly improve these maps across the entire 
country. Some MRCs contributed as few as 4 months of 
data; estimates derived from these catchments were likely 
to be less precise than others with more data but reflect 
the realities of practical implementation; for example, 
a programme may benefit from using such data a few 
months after initiation of data collection versus relying on 
less temporally and geographically relevant data. Finally, 
there is inherent uncertainty in the spatial layers used 
in this analysis. For example, the friction surface used 
to derive care-seeking probabilities requires underlying 
assumptions about modes of transportation and travel 
speeds in the population of interest. However, while abso-
lute travel times may be incorrect, relative travel times 
(comparing one village to another) are likely stable and 
therefore can be used to estimate probabilities of seeking 
care.

CONCLUSIONS
This proposed risk mapping method may be of interest 
to NMCDs given the benefits of measuring and mapping 
malaria incidence locally and continuously. To establish a 
robust system to estimate and map malaria burden, local 
stakeholders could establish a network of high-quality 
HMIS surveillance sites. Although a larger number of sites 
would have greater operational benefit, local NMCDs 
may select the number and distribution of sites based on 
local need and factors influence decision-making (eg, if 
vector control interventions are typically implemented 
at the district level, 1 or 2 sites per district may suffice). 
At these sites, individual-level data on a few key indica-
tors including demographics, place of residence and 
malaria diagnostics—all of which are standard patient 

information in many public health facilities—could be 
collected. Using information on patient residence, popu-
lation denominators accounting for care-seeking may be 
estimated, or, alternatively and more simply, catchment 
areas could be defined including patients living imme-
diately around the health facility where care-seeking 
can be assumed to be maximal. With this informa-
tion, enhanced HMIS surveillance data can be used to 
generate high-quality measures of malaria incidence that 
can then be extrapolated to other areas of the country 
through simple spatial smoothing or by combining this 
information with spatial covariates. This proposed meth-
odology represents a ‘best of both worlds,’ allowing for 
high-quality, local surveillance data to be collected and 
mapped contemporaneously at a low cost with minimal 
additional labour required. Risk maps generated using 
this method have the potential to be an essential tool for 
high burden countries around the globe as they aim to 
achieve targets towards control and elimination.
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