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ABSTRACT

The potential energy surfaces (PES) of 28 simple rare-gas (Rg)-linear molecule van

der Waals (vdW) complexes were calculated using four dispersion-corrected density

functionals (HFPBE-XDM, PW86PBE-XDM, a PW86PBE-XDM hybrid functional,

and B97-D) and compared with accurate coupled cluster CCSD(T) reference data.

In this benchmark study, the quality of the PES are assessed based on the values

of the binding energies (BEs), and the geometry at the global minimum and the

overall anisotropies and shapes of the PES. All functionals perform adequately on

Rg-H2, Rg-N2, Rg-CO, Rg-OCS, and Rg-CO2 dimers. The functionals display various

problems for the remaining vdW molecules. In particular, B97-D predicts overbound

global minima and incorrect geometries for He,Ne,Ar,Kr-HCN and Ne,Ar,Kr-C2H2,

PW86PBE-XDM and the hybrid functional massively overbind Rg-HF, and HFPBE-

XDM predicts different global minima than the reference PES for Rg-HCl and Rg-HBr

complexes. The error trends of the functionals are assessed relative to the size of the

Rg atoms and the polarity of the linear molecules. Based on this assessment, we

find that delocalization error affects the performance of the functionals and depends

on the polarity of the linear molecule. The hybrid functional, which we denote as

PW1PBE-XDM, provides lower error statistics than other functionals, which leads

to a possibility that this functional can be applied to study other classes of vdW

molecules in future PES studies.
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I. INTRODUCTION

The calculation of weak van der Waals (vdW) interactions is a challenging task

with applications in chemistry, physics, and biology. Much in this area of research con-

centrates on developing accurate treatments of vdW interactions that exist between

noncovalently-bonded, closed-shell molecules called vdW molecules. vdW molecules

are bound by a balance between long-range and short-range contributions to the

overall vdW interaction1–3. Long-range interactions include electrostatic interactions,

which arise from the interaction between the permanent charge distributions of the

two monomers (i.e. atoms or molecules); induction, which comes from the distor-

tion of the monomer charge distribution in response to the electric field of the other

monomer’s electrons; and dispersion, which arises due to instantaneous fluctuations

in the charge distribution of each monomer. Short-range interactions are also present

due to the overlap of the wavefunctions between monomers. The most dominant

short-range contribution is exchange-repulsion, which is responsible for the repulsion

of electrons as the monomers come into close contact. The overall vdW interaction

energy is attractive where the long-range electrostatic, induction, and dispersion con-

tributions are negative, while the short-range exchange-repulsion contributions are

positive. In general, the vdW interaction is a dynamical correlation effect4 that arises

due to the many-body effects between electrons in the monomers. However, dispersion

is more difficult to describe accurately than the other contributions since dispersion

arises from very long-range electron correlation due to instantaneous interactions be-

tween electrons on different centers4,5. In this context, the movement of electrons

depends on the presence of other electrons. Thus, dispersion is a non-local dynamical

correlation effect4. Treating dispersion accurately is tremendously essential because

the structures of many systems of interest are determined, in part, by dispersion,

including bioorganic molecules, molecular crystals, surface adsorption, and gas-phase

molecular dimers1,5.
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Many studies of vdW molecules aimed to describe the full vdW interaction in

terms of the potential energy surface (PES). The PES maps the vdW interaction in

terms of interaction energies dependent on the relative orientation and distance of

the two monomers2,3,6–8. Jacobi coordinates are used to generate the configuration

space of the PES3. For instance, the PES of a prototypical rare-gas (Rg)-linear

molecule vdW dimer contains two degrees of freedom: the bond distance from the

Rg atom to the center-of-mass of the linear molecule (normally denoted as R) and

the bond angle between the axis of the linear molecule, the center of mass, and the

Rg atom (denoted as θ)8. The bond lengths of the linear molecule are generally

fixed to reduce the number of degrees of freedom of the PES. The PES describes the

orientation-dependent behavior of the vdW interaction and locates the most stable

geometry of the vdW molecule in terms of the lowest energy (global minimum) and

other competing structures (local minima, if any). Moreover, the PES provides useful

information to describe the dynamics of vdW molecules in terms of rovibrational

spectra and bound states2,3,6,8. In short, the PES is mainly used to reveal the structure

and dynamics of vdW molecules.

FIG. 1. Jacobi coordinates for the Rg-hydrogen halide complex.

Experimental and computed PES of Rg-linear vdW molecules have been con-

structed thoroughly and are well-known in the literature2,3,6–8. Advances in spec-

troscopy (both experimental technology and theory)6,7,9 have made the determina-
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tion of highly-accurate PES possible, leading to predictions of the lowest energy con-

figurations, presence of other bound states, rovibrational spectra, and dynamics of

Rg-linear complexes3,6,8. Analytical PES can be carefully fitted to experimental data

and account for long-range and short-range vdW interactions by using asymptotic

expansions6,8. In addition, experimental PES account for molecular vibrations of the

linear molecules and intermolecular nuclear motions, which are essential to describe

the spectra accurately. A more complete description of the vdW interaction involves

the vibrational average of the PES from the ground state and the first excited state

since vdW molecules are not always present in their ground state8. Overall, the PES

predicts spectroscopic information for Rg-linear molecule vdW complexes, which can

be verified experimentally6,8,9.

Computational studies of vdW molecules are carried out to verify experimental

results and to predict the shape of the PES when experimental data are not available.

Methods of calculating the PES use a supermolecule approach to calculate interaction

energies, or binding energies (BEs), by taking the difference between the energy of

the vdW dimer and the energies of each monomer2,3,8. As a first approximation,

computational methods treat the linear molecule as a rigid rotor and the nuclear

motions between the Rg atom and the linear molecule are frozen. This simplifies

the calculation of the PES and yields reasonable BEs, lowest-energy configurations,

and correct anisotropies. A rigid-rotor approximated PES may provide accurate

spectroscopic data that agrees with experiment. However, the calculation of the

PES requires appropriate measures such as the selection of a large-enough basis set3,8,

removal of basis-set-superposition-error (BSSE)2,3,8 with counterpoise-correction (CP)

methods10, and the inclusion of dispersion. BSSE arises due to the large energy

difference between the energy of the dimers and monomers in a given basis set3.

For a given basis set of a dimer, the basis functions of each monomer compensates

for the basis set incompleteness of the other monomer11. Consequently, the BEs

becomes largely overbound3,11. CP correction methods are designed to remove the

BSSE to compute BEs3. Self-consistent field (SCF) calculations2,3, which are done
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in an iterative procedure such as Hartree-Fock (HF) theory, have difficulties treating

dispersion since they do not take into account electron correlation appropriately. Post-

SCF methods were developed to tackle the shortcomings of SCF methods. Methods

such as configuration interaction (CI)12, Møller-Plesset (MP) perturbation theory3,13,

and coupled-cluster methods14 provide various degrees of dynamical correlation, which

account for the vdW interaction. There are known deficiencies for several post-SCF

methods. CI is not size consistent since the sum of the energies of the dimer at

infinite separations is different from the individual sum of the monomer energies

when computed separately3,12. MP perturbation theory is also problematic since the

perturbation series may not converge3,15. Moreover, both CI and MP perturbation

theory are affected by BSSE due to the finite size of the basis set3. A complete

and correct description of dispersion requires inclusion of electron correlation using

coupled-cluster methods16 or symmetry-adapted perturbation theory (SAPT)9,17–19.

However, conventional density-functional theory (DFT) methods are not accurate

for modeling dispersion unless non-local effects are included19. Consequences are

severe when dispersion energies are incorrectly calculated, such as predicting unbound

complexes and repulsive or artificially low BEs, and incorrect anisotropies and shapes

of the PES.

In recent years, researchers8 employed coupled-cluster methods to calculate highly

accurate PES for Rg-linear complexes that reproduce experimental PES. The pop-

ular CCSD(T) method (the coupled cluster single and double excitations with a

non-iterative perturbation treatment of triple excitations)14 reproduces appropriate

behavior of the PES at both short and long-range. Authors employ CCSD(T) calcu-

lations with large basis sets including midbond functions to speed the convergence of

computed BEs8. In addition, several authors treat the linear molecule as a rigid rotor

and others account for vibrational motions of the linear molecule by including vibra-

tional coordinates in addition to traditional Jacobi coordinates. They claimed that

the rigid-rotor model may not be sufficient to compute accurate spectra beyond the

ground state since intermolecular vibrations were neglected8. Thus some of the PES
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are vibrationally averaged to account for intermolecular vibrations8. The PES are also

used to determine the most stable, lowest-energy configurations of the vdW complex

and its rovibrational properties2,3,8,9. The construction of the PES with CCSD(T) is

computationally demanding and it is impractical for larger systems. Despite its com-

putational expense, CCSD(T) is a popular source of reference data to compare and

assess the overall performance of other promising computational methods for PES and

for BEs of vdW molecules that include simple biological and organic molecules and

exhibit various types of intermolecular forces. CCSD(T) is an appropriate standard

for benchmarking studies.

Density-functional theory (DFT) methods have gained tremendous attention in

recent years for treatment of vdW interactions5,20,21. In DFT, the energy is expressed

as a functional of the density20,21. DFT is widely used in computational chemistry

because it performs well for thermochemistry with low computational cost20,21. How-

ever, popular conventional functionals such as the local density approximation (LDA)

and generalized gradient approximation (GGA) have serious drawbacks for describ-

ing dispersion22. First, contributions to the exchange-correlation energy arise only

in overlapping regions of the monomer electron densities, whereas the dispersion en-

ergy remains significant in cases where the monomer densities are non-overlapping5,23.

Second, the long-range decay behavior of the PES, particularly with GGAs, has an

exponential decay rather than the correct −1/R6 behavior, which is a main character-

istic of the dispersion energy24. Problems with these functionals were revealed from

computational studies of Rg dimers, where functionals either predicted the interac-

tion between the Rg dimers to be significantly overbound or underbound depending

on the functional22,25. Since vdW interactions arise from dynamical correlation effects

(both local and non-local)4,5, conventional functionals have difficulties in describing

these interactions particularly the highly non-local dynamical correlation effects that

give rise to dispersion.

Dispersion-corrected methods were proposed to tackle the shortcomings of semilo-

cal functionals for vdW complexes5,20,21. One of these approaches is fitting the func-
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tionals to reproduce BEs of vdW molecules, a popular approach used in the develop-

ment of the Minnesota functionals by Truhlar and coworkers5,20,21,26,27. This allows

functionals to predict accurate BEs at the minimum conformation. The problem is

that these functionals are not designed to include the correct asymptotic behavior,

even though they can be used to obtain useful equilibrium properties. Another ap-

proach is to include a simple pair-wise additive -C6/R
6 correction term that is added

to the total DFT energy5,28. This approach computes dispersion energies with an

affordable computational cost. To remove the divergence of the dispersion-correction

term at short-range, a damping function is used5,28. One of the popular functionals

that incorporates this approach is the B97-D functional29. The dispersion coefficients

are computed from the London dispersion formula, using ionization potentials and

static dipole polarizabilities from DFT calculations. The dispersion-correction term

includes a global scaling parameter that is compatible with the B97 functional30. The

B97-D functional is constructed from adjusting the short-range portion of the B97

hybrid GGA functional in the presence of the long-range correction term. As a result,

B97-D obtains accurate heats of formation for the G97/2 test set31 and it performs

well for the vdW molecules within the training set. Other functional developments

emphasize dispersion coefficients that depend on the chemical environment. For in-

stance, Becke and Johnson developed a method to calculate nonempirical dispersion

coefficients that depend on dipole moments of the exchange hole, atomic polarizabili-

ties, effective volumes, and expectation values of the multipole operators. This is the

basis of the exchange-hole dipole moment (XDM) model that expresses the dispersion

energy as a functional of the density and orbitals.

Despite of the relative successes of conventional functionals for predicting proper-

ties of atoms, molecules, and solids and dispersion-corrected functionals for describ-

ing vdW interactions, these functionals suffer from systematic errors, one of which

is the delocalization error5,20,21,32. Delocalization error is a well-known systematic

error where functionals predict non-physical properties5,20,32. Delocalization error

leads to the following major consequences: underestimation of reaction barriers of
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chemical reactions, band gaps of materials, the energies of dissociating molecular

ions, and charge-transfer excitation energies and the overestimation of BEs of charge-

transfer complexes and response properties of molecules and materials to an electric

field32. A classic example of delocalization error is the dissociation energy curve of

the H2
+ molecule20,21,24,32. The BEs at the minimum and the short-range repulsion

are reasonable, but when the H atoms are separated at long-range, the BE becomes

increasingly negative as a result of the delocalization of charge between the two H

atoms. Consequently, each H atom has a fractional charge, which causes incorrect

stability at large separations. Due to the possible formation of fractional charges on

each monomer, this non-physical overstabilizing behavior can occur in highly-polar

vdW or charge-transfer complexes when modeled with GGAs due to the sensitivity of

GGAs to delocalization error. To reduce delocalization error, range-separated func-

tionals, which include a long-range exact exchange term and a short-range term that

uses a density-functional approximation, are commonly used5,20,21. Other approaches

combine exact (Hartree-Fock) exchange with non-local correlation functionals to de-

scribe dispersion, which is advantageous in taking account of dispersion at long-range.

However, using fully non-local functionals increases the computational cost. Func-

tional development is tricky since increasing the level of theory, as with non-local

functionals, does not always guarantee improved accuracy, while less-sophisticated

functionals are less computationally expensive, but susceptible to delocalization er-

ror. Functional development is still in progress to tackle the delocalization error

problem and to enhance the description of dispersion between vdW molecules5,20.

In this work, we computed PES using the exchange-hole dipole moment (XDM)

dispersion model by Becke and Johnson33–39. XDM has the necessary components to

calculate nonempirical dispersion coefficients and it describes the proper physics of the

dispersion interaction. The idea is that dispersion-corrected functionals can be used

with any number of base functionals that recover correct exchange-repulsion behavior

similar to HF, but we must also consider delocalization error. We chose a combina-

tion of base exchange and correlation functionals paired with XDM. We include the
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HFPBE-XDM functional, which pairs non-local HF exchange with a semilocal GGA

correlation functional, to explore the effects of the full treatment of exact exchange.

We also select PW86PBE-XDM, a GGA functional that includes PW86 exchange,

which reproduces the HF exchange-repulsion at short-range in PES of Rg dimers40,

and PBE correlation. PW86PBE-XDM performs excellently for the Kannemann-

Becke set of 65 molecules (KB65) and for the Rg dimer set40, which justifies our

selection of this functional. Finally, we selected a new PW86PBE-XDM hybrid func-

tional (denoted as the PW1PBE-XDM) that includes a fraction of exact exchange

and a portion of GGA exchange, paired with GGA correlation. The inclusion of

the hybrid may improve the overall performance for the PES by including additional

non-local effects from exact exchange. In addition, we will compare XDM-corrected

functionals to the popular empirical B97-D functional since the ability of the latter

method to give accurate PES has not yet been studied in the literature. Density-

functional treatments of the PES are known. For instance, density-functionals with a

mixture of exact exchange were paired with damped dispersion corrections41–43. Other

approaches combined the long-range correction scheme for exact exchange with the

Andersson-Langreth-Lundqvist (ALL)44 vdW functional to obtain accurate PES of

Rg dimers45 and other Rg-linear molecule vdW complexes46. Alternatively, double

hybrid functionals47 were implemented to obtain satisfactory PES of various Rg-linear

molecules48,49.

One of the goals of this work is also to assemble a benchmark set to assess the per-

formance of the functionals compared with accurate reference data. The benchmark

set of Rg-linear dimers is an appropriate and extremely sensitive test for base-XDM

functionals and B97-D. The comparison between CCSD(T) and dispersion-corrected

DFT methods is appropriate because both methods account for dispersion via non-

local dynamical correlation. The set includes complexes of noble gas atoms and

linear molecules of varying size (size of the atoms and the number of atoms) and po-

larity. The following linear molecules are chosen to pair with the Rg atoms: nonpolar

molecules (H2, N2, CO2, and C2H2), moderately polar molecules (CO, OCS, HCl,
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and HBr), and highly-polar molecules (HF and HCN). This set of vdW molecules

includes various intermolecular forces, including dispersion and dipole-induced dipole

interactions between the Rg atom and the linear molecule. Twenty-eight Rg-linear

molecule complexes are selected depending on the availability of CCSD(T) reference

PES and BE data. The list of molecules is shown in Tables I-III, which include BEs

and optimized geometries for the global minimum of each dimer. In this work, we

briefly outline the XDM method, the base functionals, and implementation in Sec.II.

Sec.III highlights the overall performance of base-XDM functionals based on qualita-

tively comparing the PES and quantitatively comparing the BEs and geometries at

the global minimum to CCSD(T) reference data. Finally, we conclude by selecting

the functional which gives the most accurate PES.
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II. THEORY

A. The exchange-hole dipole moment model

The exchange-hole dipole moment (XDM) model is a method by Becke and

Johnson33–39 that describes dispersion interactions from the dipole moment of the

exchange-hole. For a given electron of σ spin at r1, which is the reference point

in an atom or a molecule, the exchange-hole hXσ(r1,r2) measures the depletion of

probability, with respect of the total electron density ρσ, to find another electron at

r2 with the same spin. The hole is expressed as pair-wise sum over occupied orbitals,

which can be Kohn-Sham or Hartree-Fock orbitals33

hXσ(r1, r2) = − 1

ρσ(r1)

∑
ij

ψiσ(r1)ψjσ(r1)ψiσ(r2)ψjσ(r2). (1)

The features of the exact hole include the following conditions33,50: The probability

of finding another electron at r1 = r2 is extinguished completely as required by the

Pauli Principle

hXσ(r1, r1) = −ρσ(r1), (2)

the hole is always negative hXσ(r1,r2) < 0, and the hole will always normalized to

one electron

∫
hXσ(r1, r1) = −1. (3)

The hole is usually asymmetric around the reference point r1. Therefore, a nonzero

dipole moment is present even though the overall charge between the hole and the

electron is zero. The dipole moment upon integrating Eq. (1) with respect of r2 is33

dXσ(r1) =

[
1

ρσ(r1)

∑
ij

rijσψiσ(r1)ψjσ(r1)

]
− r1 (4)
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rijσ =

∫
r2ψiσ(r2)ψjσ(r2)d

3r2.

The dipole moment of the exchange hole from Eq. 4 is position dependent and

is generally non-zero. This expression is a key ingredient to derive the dispersion

energy.

The hole can be Taylor expanded to second order near the reference point, where

the hole is written as a spherical average of of hXσ(r1,r2) around r1
35

hXσ(r, r + s) = −ρσ −Qσs
2 (5)

where s is the interelectronic distance, and

Qσ =
1

6

[
∇2ρσ − 2τσ +

1

2

(∇ρσ)2

ρσ

]
(6)

where the kinetic energy density τσ is

τσ =
∑
i

(∇ψiσ)2. (7)

Eqs 5-7 are the components of the Becke-Roussel (BR) model51, which approximates

the behavior of the exact exchange hole. Since the exchange-hole from Eq. 1 is

exact, involving a sum over occupied orbitals, the computational cost increases sig-

nificantly for larger systems such as solids. Thus, an approximation to the exact hole

is appropriate to reduce computational cost35.

The construction of the BR hole35 uses an off-centered exponential (a3/8π)e−ar at

a distance b from the reference point. The hole is derived from the density of the

hydrogen atom and it is computed by taking a spherical average centered at the refer-

ence point. The hole is expressed in terms of a and b and the hole is normalized. The

derivatives of the BR hole are taken at the reference point to equate the coefficients of

the second-order Taylor expansion form of the exchange-hole from Eq. 5 to obtain the

correct curvature at the reference point. The resulting non-linear equation35, which

is numerically solvable, is
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xe−2x/3

x− 2
=

2

3
π2/3ρ

5/3
σ

Qσ

. (8)

The value of x is numerically solved and, by using the relation x = ab, the resulting

expression for b is

b3 =
x3e−x

8πρσ
, (9)

which obtains the correct values of a and b. The BR hole depends on ρσ, ∇ρσ, ∇2ρσ,

and τσ, which are the components of a meta-GGA functional.

Since the exchange-hole has a non-zero dipole moment, higher-order multipole mo-

ments are also present36,38. As an example, for a simple spherical atom, the exchange-

hole dipole moment faces towards the nucleus. For an electron a distance r from the

nucleus, the distance between the mean position of the hole to the nucleus at the

origin is (r− dXσ). At the nucleus, there are higher multipole moments that exist in

addition to non-zero dipole moments. The l-multipole moment can be written as36,38

Mlσ = −[rl − (r − dXσ)l], (10)

which is dependent only on the magnitude of dXσ. This is an important feature

of the XDM model because the magnitude of the exchange-dipole moment can be

approximated by using the BR exchange-hole model through densities alone35. The

magnitude of the dipole moment is

dXσ(r) = b. (11)

Becke and Johnson derived an approach36,38 to describe the dispersion interaction

by using the spherical interaction model. From their simple model of two monomers,

there is an interaction potential that includes multiple moments of the electron plus

the hole at position rA in monomer A interacting with the multiple moments of

the electron plus the hole at position rB in monomer B. Second-order perturbation

theory was used to compute the dispersion energy to obtain dispersion coefficients
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that depend on the multipole moments and atomic polarizabilities by squaring the

interaction potential, integrating the interaction for all positions rA and rB, and

dividing by the average excitation energy36,38.

A further feature of XDM34,38 involves the partitioning of a molecular system into

atoms using the Hirshfeld partitioning scheme52 where the weight for an atom i is

wi(r) =
ρati (r)∑
m ρ

at
m(r)

(12)

where ρat is a spherical, free-atomic density placed at the appropriate nucleus and

the m summation runs over all nuclei. At the vicinity of nucleus i, wi(r) is 1 while

it will approach 0 far from that atom. The sum of the weights will equal 1 at each

grid point. The partitioning scheme decomposes the density into atomic pieces. By

incorporating the partition scheme, the expectation value of the multipole moment

becomes36,38

〈M2
l 〉i =

∑
σ

∫
wi(r)ρσ(r)[rli − (ri − dXσ)l]2d3r. (13)

The average excitation energy, which is computed from second-order perturbation

theory, is related to the atomic polarizability, which is the tendency for an atom to

respond to a perturbation of the electric field. By applying the partition scheme,

it can be generalized that an effective polarizability αi can be written based on a

qualitative relationship between polarizability and volume36,38

αi =
〈r3〉i
〈r3〉i,free

αi,free (14)

where the following integrals 〈r3〉i and 〈r3〉i,free are

〈r3〉i =

∫
r3wi(r)ρ(r)d3r (15)

and

13



〈r3〉i,free =

∫
r3ρi,free(r)d3r (16)

for atomic index i.

The dispersion energy is generally written as an asymptotic series33–37

Edisp = −
∑

n=6,8,10

∑
ij

Cn,ij
Rn
ij

(17)

where Rij is the distance between the nuclei and this series diverges for small Rij. One

way to remove the divergence of the dispersion energy is to use a damping function

proposed by Becke and Johnson37,38,

f(Rij) =
Rn
ij

Rn
vdw,ij +Rc,ij

(18)

where Rc,ij is the critical distance that takes the average of the ratio of dispersion

coefficients37,38

Rc,ij =
1

3

[(
C8,ij

C6,ij

)1/2

+

(
C10,ij

C6,ij

)1/4

+

(
C10,ij

C8,ij

)1/2
]
, (19)

and Rvdw,ij is the effective vdW separation that has two universal fit parameters a1

and a2

Rvdw,ij = a1Rc,ij + a2. (20)

The selection of parameters a1 and a2 will depend on the choice of exchange and cor-

relation functionals as described in Sec.II B and Sec.II C. Combining all the equations

together, the XDM dispersion energy38,39 is

EXDM
disp = −

∑
n=6,8,10

∑
ij

Cn,ij
Rn
vdw,ij +Rn

c,ij

(21)

and the dispersion coefficients are37,38

C6,ij =
αiαj〈M2

1 〉i〈M2
1 〉j

〈M2
1 〉iαj + 〈M2

1 〉jαi
(22)
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C8,ij =
3

2

αiαj (〈M2
1 〉i〈M2

2 〉j + 〈M2
2 〉i〈M2

1 〉j)
〈M2

1 〉iαj + 〈M2
1 〉jαi

(23)

C10,ij = 2
αiαj (〈M2

1 〉i〈M2
3 〉j + 〈M2

3 〉i〈M2
1 〉j)

〈M2
1 〉iαj + 〈M2

1 〉jαi
+

21

5

αiαj〈M2
2 〉i〈M2

2 〉j
〈M2

1 〉iαj + 〈M2
1 〉jαi

. (24)

The main advantage of XDM is that the dispersion energy can be computed after per-

forming a DFT calculation with a corresponding base functional. XDM is nonempir-

ical and fast, thus it is physically meaningful to treat dispersion and efficient5,21,38,39.

B. DFT and exchange-correlation functionals

The basic machinery of DFT is the total energy functional that depends on the

electron density rather than a wavefunction53. The formulation of Hohenberg-Kohn

theorems54 and Kohn-Sham equations55 made DFT applicable to physical, chemical,

and biological problems due to the key ingredient of the total DFT energy: the

exchange-correlation energy. The total energy is20,21,23,53,55

E[ρ] = Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ] (25)

where Ts[ρ] is the non-interacting kinetic energy, Vne[ρ] is the electron-nuclear attrac-

tion energy, J [ρ] is the self-repulsion energy, Exc[ρ] is the exchange-correlation energy,

and the electron density is

ρσ(r) =
∑
i

|ψiσ(r)|2 (26)

where ψiσ(r) is a single-particle Kohn-Sham orbital. The energies are obtained by

solving the Kohn-Sham equations self-consistently20,21,53,55. Expressions for the non-

interacting kinetic energy, electron-nuclear attraction energy, and the self-repulsion

energy are known, but the exact functional form for the exchange-correlation energy
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is unknown20,21,53. An appropriate approach to approximate the exchange-correlation

energy is to split Exc[ρ] into exchange Ex[ρ] and correlation Ec[ρ] functionals23,53

Exc[ρ] = Ex[ρ] + Ec[ρ] =

∫
d3rρ(r)εx +

∫
d3rρ(r)εc (27)

where εx and εc are the exchange and correlation energy densities per particle, re-

spectively. Exchange arises due to the repulsion of electrons with the same spin;

a consequence of the Pauli-exclusion principle21. The correlation energy takes care

of other many-body correlation effects and it arises from the cusp conditions of the

electron density4. The exchange-correlation energy, which is a small portion of the

overall DFT energy, contributes to the binding nature of atoms and molecules due

to the non-random and correlated motion of electrons24. Moreover, the exchange-

correlation functional is also designed to correct the non-interacting kinetic energy

and the self-repulsion energy, which makes DFT a promising area of research to ob-

tain accurate exchange-correlation energies for noncovalent systems20. In general,

both the exchange and correlation energies are negative and the exchange energy

makes up the majority of the exchange-correlation energy23,53. The exact form of

exchange is known, which is Hartree-Fock (HF) exchange21. In contrast, correlation

functionals are less obvious to construct21. Many approximate exchange and correla-

tion functionals are constructed to satisfy properties of the exchange and correlation

holes, respectively.

One of the earliest approximations to the exchange-correlation energy is the local

density approximation (LDA). The LDA energy depends on the local density alone

and its derivation is based on the properties of the uniform electron gas20,21,23,53. The

exchange functional of the LDA is

ELDA
x [ρ] =

∫
d3rρ(r)εunifx (ρ(r)) = Cx

∫
d3rρ(r)4/3 (28)

where εunifx (ρ) = Cxρ(r)1/3 is the exchange energy density per particle for the uni-

form electron gas and Cx = -3/4(3/π)1/3. The correlation functional for LDA was
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obtained by parameterization to values from quantum Monte Carlo calculations53,56.

The LDA performs well for systems with uniform density or extremely slowly-varying

densities, such as simple metals53. For spin-polarized systems, the spin variant of

LDA is used, which is the local-spin density-approximation (LSDA)23,53. The LDA

(or LSDA) perform well for molecular geometries, dipole moments, and vibrational

frequencies, but molecules are massively overbound. However, molecules and atoms

do not have uniform or slowly-varying densities, thus corrections to the LDA (or

LSDA) are necessary to account for changes in the density that will describe correct

properties of atoms and molecules.

The construction of exchange functionals comes from exploiting and reproducing

the properties of the exact exchange hole from Sec.II A. One of the earliest ap-

proaches to account for changes in the electron density is the gradient expansion,

which includes the gradient of the density, ∇ρ, its second derivative or the Lapla-

cian, ∇2ρ, and its higher order derivatives21,23. However, the gradient expansion is

not effective since it violates properties of the exchange hole and the results were

less encouraging than LDA (or LSDA)21,23. The generalized gradient approximation

(GGA) was designed to correct the deficiencies of LDA (or LSDA) and the gradient

expansion by satisfying properties of the exact exchange hole20,21,50,53. GGAs are

local. Meta-GGAs, which depend on τ , are semi-local50. The exchange-correlation

functional for GGAs is also expressed in terms of separate exchange and correla-

tion terms. Popular GGA exchange functionals that became useful in chemistry

are Perdew-Wang-86 (PW86)57, Becke-88 (B88)58, Perdew-Wang-91 (PW91)59, and

Perdew-Burke-Ernzerhof-96 (PBE)60 exchange.

A general form of the GGA exchange energy functional is53

EGGA
x [ρ] =

∫
d3rρ(r)εGGA

x (ρ(r),∇ρ(r)) = Cx

∫
d3rρ(r)4/3F (s) (29)

where εGGA
x (ρ,∇ρ) is the exchange energy density per particle, which is also written

as εunifx (ρ)F (s), and F (s) is an expression that includes the reduced density gradient
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s =
|∇ρ|
2kFρ

(30)

where kF = (3π2ρ)1/3 is the Fermi wave vector. The main characteristic of GGA func-

tionals is that they include dependence on the density ρ and its gradient, ∇ρ. GGA

functionals recover LDA exchange when F (s) = 1, and for non-uniform densities,

LDA exchange is corrected by finding an appropriate function F (s) that will retain

the known properties of the hole50. Perdew and Wang proposed a GGA exchange

functional57 with

F (s) = (1 + 1.296s2 + 14s4 + 0.2s6)1/15. (31)

This PW86 functional was originally designed to correct the gradient expansion with

real-space cutoffs. PW86 exchange is non-empirical since the parameters are deter-

mined from fitting the exact exchange hole57. In addition, PW86 exchange reproduces

quite well the exchange part of the long-range interaction between Rg atoms50,61 due

to the s2/5 term in F (s)39. Thus, this functional is suitable to pair with XDM. Even

though PW86 and XDM borrow from the same roots by satisfying some properties

of the exact hole, an appropriate correlation functional is necessary to complement

the exchange functionals.

GGA correlation functionals are constructed from satisfying various conditions

of the correlation hole62, and one of the main constraints is the sum rule where

the integration of the density of the correlation hole is zero50. Functionals that

were constructed by using specific conditions are Lee-Yang-Parr (LYP) correlation63,

PW91 correlation64, Perdew-Burke-Ernzerhof (PBE) correlation functional60, and

many others20,21. PBE is a GGA functional that incorporates the properties of LSDA,

the sum rule of the correlation hole, and fundamental constants as parameters, which

is a simplification of the PW91 correlation functional. The PBE correlation functional

has the form23,60,62
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EPBE
c =

∫
d3rρ(r){εc(rs, ζ) +HPBE(rs, ζ, t)} (32)

where rs is the Seitz radius

rs = (3/4πρ)1/3, (33)

ζ is the relative spin polarization to account for uneven electron-spin densities

ζ =
(ρ↑ − ρ↓)

ρ
, (34)

t is the reduced density gradient, related to the Thomas-Fermi screening wavevector

ks

t =
|∇ρ|

2ksφρ
, (35)

ks = (4kF/π)1/2, (36)

φ is the spin-scaling factor

φ =
1

2
[(1 + ζ)2/3 + (1− ζ)2/3], (37)

and HPBE is the enhancement factor

HPBE = γφ3 ln

(
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

])
(38)

where

A =
β

γ
[exp{−εunifc /γφ3} − 1]−1, (39)

and the constants are γ = 0.031091 and β = 0.066725. This functional was developed

from satisfying slowly-varying, high-varying, and high-density limits and uniform-

scaling conditions. Thus, the PBE correlation functional is nonempirical60,62.
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Combining the XDM dispersion energy, the PW86 exchange, and the PBE corre-

lation functionals gives an approximated Exc

EPW86PBE
xc = EPW86

x + EPBE
c + EXDM

disp . (40)

The PW86PBE-XDM functional performs well for the Rg gas dimer set40 and the

KB65 set of various dispersion-bound and hydrogen-bonded dimers65 and other sys-

tems containing vdW interactions39,66. Since this is a GGA functional, it is susceptible

to delocalization error. Other possible approaches are to pair full exact exchange with

PBE correlation or to use a hybrid functional that includes a certain fraction of exact

exchange.

C. HF exchange and hybrid functionals

In Hartree-Fock (HF) theory, the energy is calculated self-consistently for a Slater

determinant wavefunction composed of single-particle HF orbitals21. The HF energy

includes the kinetic energy of single-particle HF orbitals, nuclear-electron attraction

energies, the self-repulsion energies, and the exchange energy. HF is an exact treat-

ment for exchange, however, HF treats the movement of electrons in a mean-field

approximation, which does not treat electron correlation21,67. Mathematically, the

HF exchange energy is expressed as a sum over occupied HF orbitals, and integrated

with respect to two distinct electronic coordinates r1 and r2, which is a feature of a

non-local functional

EXσ = −1

2

∑
ij

∫ ∫
ψiσ(r1)ψjσ(r1)ψiσ(r2)ψjσ(r2)

r12
d3r1d

3r2. (41)

The inclusion of HF exchange in density functionals is popular because it accounts for

non-local effects and it is not prone to delocalization error. The exchange-correlation

energy including full HF exchange from Eq. 41, PBE correlation, and XDM is
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EHFPBE
xc = EHF

x + EPBE
c + EXDM

disp . (42)

However, using HF exchange increases the computational cost and PBE correlation

is semilocal, which is not fully compatible with non-local exchange. The pairing of

non-local exchange with a semilocal functional is terrible for thermochemistry68. An

improved possibility is to use a hybrid functional that includes a mixture of both HF

and PW86 exchange, paired with PBE correlation and XDM, which is

EPW1PBE
xc = cEHF

x + (1− c)EPW86
x + EPBE

c + EXDM
disp (43)

where c is the fraction of HF exchange, the value of which is determined from fitting

to a training set of atomization energies such as the 222 compounds in the G3/99

set69. This approach was originally and popularly applied to construct hybrid func-

tionals such as the Becke-3-Parameter-Lee-Yang-Parr (B3LYP) hybrid68. The B97-D

functional29, which adds a dispersion-correction term to Becke-97 functional30, is also

a hybrid GGA that uses a small fraction of exact exchange, but it was fitted with 10

parameters. Results for the PW86PBE-XDM, HFPBE-XDM, and PW86PBE-XDM

hybrid (which we denote PW1PBE-XDM) functionals as well as the B97-D functional

will be benchmarked against reference CCSD(T) data for vdW PES in the following

sections.

D. Computational details

All calculations in this work were performed using the GAUSSIAN 09 program70

and POSTG39,65, an external program to run XDM computations. Jacobi coordinates

were used to construct the PES for all Rg-linear dimers. The geometries of the linear

molecules were optimized for each functional as a systematic approach to determine

fixed bond lengths (denoted as req), while reference CCSD(T) computations taken

from literature sources used experimental bond lengths. The BEs were computed as

the magnitude of the energy difference between the vdW molecule, ERgX , and the
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sum of monomer energies (the Rg atom, ERg and the linear molecule, EX) for each

bond length R and bond angle θ

BE = |ERgX(req, R, θ)− ERg − EX |. (44)

The linear molecule was treated as a rigid rotor, where motions of the nuclei were

frozen and intermolecular vibrations were neglected. The calculation of the PES

with XDM-corrected functionals was done in two steps. First, self-consistent-field

(SCF) energies from the base functionals were computed with GAUSSIAN 09, then

the POSTG program was used to calculate XDM dispersion energies from the re-

sulting wavefunction (GAUSSAN 09 .wfx files). For B97-D, the PES calculations

were performed directly with GAUSSIAN 09. For geometry optimizations of the

vdW molecule, the coordinates of the linear molecule were held fixed and only the

coordinates of the Rg atom were allowed to optimize. Geometry optimizations for

base functional-XDM were carried simultaneously using both programs, while B97-D

calculations were performed directly with GAUSSIAN 09 alone.

Since the PES are relatively flat for Rg-linear complexes, a large integration grid

is necessary. The integration grid in DFT calculations uses the Lebedev quadrature

scheme. Meta-GGA functionals are sensitive to integration grids71,72. Calculations

of the potential energy curves of Rg dimers with default integration grids showed

spurious oscillations due to numerical noise72. Preliminary calculations of the PE

curves of the Rg dimers with HFPBE-XDM and PW86PBE-XDM with the Lebedev

quadrature scheme of 200 radial grid points and 590 angular grid points showed that

numerical noise was present around the minimum. But with a larger quadrature

scheme of 200 radial grid points and 974 angular grid points, the PE curves were

smooth and free from numerical noise. Thus, we used the (200,974) quadrature

scheme for all of the calculations.

The damping function from Eq. 20 is necessary to make the base functionals

compatible with XDM. The damping parameters were obtained from minimizing
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the root-mean-square (RMS) percent error in calculated BEs related to reference

data for a given training set. Optimized damping parameters for PW86PBE-XDM

were obtained for the KB65 set65 that includes hydrogen-bonding, dispersion, elec-

trostatic, and stacking interactions along with Rg dimers. The damping parameters

for PW86PBE-XDM from the KB65 set are a1 = 0.7564 and a2 = 1.4545 Å with

the Woon and Dunning augmented correlation-consisted triple-zeta (aug-cc-pVTZ)

basis set73 (aug-cc-pV5Z for Rg atoms). The damping parameters for HFPBE-XDM

are a1 = 0.5955 and a2 = 1.5076 Å with the aug-cc-pV5Z basis set, determined by

fitting only to the set of 10 Rg dimers due to the poor performance of the HFPBE

functional for hydrogen-bonding systems. For PW1PBE-XDM, the fraction of HF

exchange is c = 0.1732, which was obtained by fitting to the atomization energies

from the G3/99 set69. The damping parameters are a1 = 0.8834 and a2 = 1.0715 Å

which are obtained by minimizing the RMS error for the KB65 set. Larger basis sets

than aug-cc-pVTZ are still compatible with the damping parameters.

We selected a large aug-cc-pV5Z for Rg atoms since these atoms are sensitive

to basis-set superposition error (BSSE). For Rg-diatomic dimers, we use the aug-

cc-pV5Z basis set for all atoms although we used a mixed basis set for larger Rg-

linear dimers with aug-cc-pVQZ for the triatomic and tetraatomic linear molecules

since this is more computationally more affordable. In addition, we decided not to

perform counterpoise corrections since DFT methods are less susceptible to BSSE

than wavefunction methods like CCSD(T) and XDM is not parameterized to work

with CP corrections in order to treat intermolecular and intramolecular interactions

on equal footing.

The vdW molecules mentioned in Sec.I were selected based on the availability of

CCSD(T) reference data. The majority of the PES in the roster of vdW molecules

are based on a rigid rotor model. For some of the vdW molecules (Kr-N2
74, Ne-

CO75, Ar-CO76, He-CO2
77, Ne-CO2

78, and Kr-CO2
79), only vibrationally averaged

PES are available in the literature. In general, rigid-rotor PES are preferred for this

benchmark study since they are directly comparable to the DFT results. However, the
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differences between the rigid-rotor and vibrationally averaged PES are quite small.

The vibrationally averaged values for Ar-OCS80 (R = 3.650 Å, θ = 106.10◦, BE =

227.28 cm−1) and Kr-OCS81 (R = 3.783 Å, θ = 103.50◦, BE = 271.23 cm−1) are

comparable with the rigid-rotor values listed on Tables I-III. Therefore, we included

vdW molecules with vibrationally averaged PES in this benchmark study.

For consistency, we choose a combination of points that matches the boundaries,

dimensions, and units of the CCSD(T) PES, as summarized in Appendix A in Ta-

ble A.2. For most of the PES, the contours are expressed in wavenumbers (cm−1)

and some PES may use milihartrees (mEh). Additional energy points may be in-

cluded to plot smoother contours for the PES. The contours of the PES are visualized

with MATLAB82 for qualitative comparisons with the reference PES. We will not fit

our PES analytically since we will not perform any spectroscopic calculations. We

note that authors who performed CCSD(T) calculations for Kr-HF obtained accu-

rate results, but they accidentally flipped the description of their Jacobi coordinates.

We performed a test calculation for Kr-HF with CCSD(T), which verified that the

minimum-energy arrangement corresponds to the Kr-H-F geometry, which should

occur for a bond angle of 0◦.
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III. RESULTS AND DISCUSSION

A. Comparison of PES

We assess the quality of the PES of base-XDM functionals and B97-D by compar-

ing both the minimum BEs for the global minima and anisotropies of the CCSD(T)

PES. In this section, we focus on the appearance of the computed PES. A satis-

factory PES must reproduce the correct anisotropy of the vdW interaction, which

means that the PES contains the correct number of minima, corresponding to the

same geometries, and with values of the BEs in agreement with the CCSD(T) refer-

ence data. In this section, we identify cases where base-XDM and B97-D functionals

describe the anisotropies and BEs within acceptable accuracy. In addition, we explore

problematic cases where dispersion-corrected functionals obtain incorrect geometries

at the minimum with adequate accuracy of the BEs, cases with incorrect BEs only,

and cases where BEs and geometries at the minimum are incorrect. Performance of

individual functionals is discussed based on overall trends and deviations observed

from the calculations. As discussed previously, base functionals without XDM fail

to predict the correct anisotropy and global minimum BEs of vdW molecules, nor-

mally predicting very weak binding interactions or unbound complexes. We select

noteworthy examples of PES of certain vdW molecules to guide the assessment of the

functionals and the remaining PES plots for all dispersion-corrected functionals are

shown in Appendix B.

The XDM-corrected functionals and B97-D perform relatively well, reproducing

the correct shape and anisotropy of the PES for Rg-N2, Rg-H2, Rg-CO2, Rg-CO, and

Rg-OCS complexes and obtaining satisfactory global minimum BEs in comparison

with CCSD(T). For Rg-N2 and Rg-CO2, the most preferable geometry (i.e. the global

minimum) is T-shaped74,77–79,83,85 as shown in Fig. 2 for Ar-N2 as a representative

example (the contour lines represent energy level relative to the infinitely separated

monomers). In addition, the functionals predict the following correct geometries
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FIG. 2. PES of Ar-N2 with XDM-corrected functionals and B97-D.
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FIG. 3. PES of Ar-C2H2 with XDM-corrected functionals and B97-D.
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for the remaining compounds in this set: the secondary minima at the collinear

arrangement for He-CO2
77, Ne-CO2

78, and Rg-OCS86–88, a collinear geometry at the

global minimum for Rg-H2
89,90, and distorted T-shaped geometries for Rg-CO75,76,91,92

and Rg-OCS86–88. However, PW86PBE-XDM predicts a distorted T-shaped geometry

instead of a perfect T-shape arrangement74 for Kr-N2. With the inclusion of exact

exchange with the hybrid functional, PW1PBE-XDM, the global minimum geometry

is restored to the correct T-shape. In general, all dispersion-corrected functionals

obtain appropriate geometries and satisfactory BEs for this set of Rg-linear vdW

molecules. This shows that the functionals are able to treat dispersion interactions

for Rg-linear nonpolar and Rg-linear moderately polar dimers, since the dispersion

interaction is the main contribution to the stability of these complexes. As previously

mentioned in Sec.II D, several vdW molecules only have vibrationally averaged PES

available for this sensitive test. The inclusion of these PES are appropriate since the

vibrationally averaged PES retains the same shape as the PES of vdW molecules

that are treated as a rigid rotor, as exemplified from the PES of Ar-OCS80,87 and Kr-

OCS81,88, respectively. Fortunately, the shapes of the PES of these vdW molecules

from DFT methods agrees quite well with vibrationally averaged PES.

The Rg-C2H2 dimers are problematic cases for predicting correct anisotropies with

all functionals due to the flatness of the PES93, as shown for the example of Ar-

C2H2 in Figure 3. For instance, B97-D predicts a favorable pseudo-hydrogen-bonding

interaction between the noble gas atoms (Ne, Ar, and Kr) and the H atom from the

C2H2 molecule at the collinear geometry while the global minima for these complexes

are distorted T-shaped geometries84,94. Both PW86PBE-XDM and PW1PBE-XDM

predict incorrect anisotropies as follows: a distorted T-shape secondary minimum for

He-C2H2; a perfect T-shape global minimum for Ne-C2H2; and less-distorted T-shape

global minima for Ar-C2H2 and Kr-C2H2, which are nearly perpendicular to the axis

of the C2H2 molecule. It is possible that PW86PBE and B97-D have difficulties in

treating interactions involving the π system of the C-C bond in C2H2. Moreover,

the addition of a small portion of exact exchange along with XDM for the hybrid
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functional does not fix the incorrect anisotropy of the Rg-C2H2 interaction, unlike

the Kr-N2 case. Only HFPBE-XDM predicts the correct anisotropies for Ne-C2H2,

Ar-C2H2, and Kr-C2H2 where the shapes are equivalent to the CCSD(T) PES plots.

Because the PES of Rg-C2H2 are so flat around the π region of C2H2, the results

are susceptible to small errors in the repulsive exchange-only curves from the base

functional. However, full exact exchange is capable of providing a qualitatively correct

picture of these PES when paired with XDM.

The Rg-HCN complexes also reveal difficulties in predicting the correct anisotropies

with the dispersion-corrected functionals. All PES of Rg-HCN dimers have a global

minimum at the Rg-HCN arrangement95 where hydrogen bonding is favored due to

the high polarity of the HCN molecule. Most of the functionals obtain the correct

global minimum. The number of local minima for Rg-HCN complexes, which are

present at the T-shaped configurations between 50◦ to 60◦. and 100◦ to 110◦, differ

depending on the Rg atom. For He-HCN, there is only one local minimum at the

T-shaped configuration, Ne-HCN has two local minima at the T-shaped arrangement

and the third local minimum is at the Ne-NCH collinear geometry, and both Ar-

HCN and Kr-HCN have two T-shaped local minima95. The anisotropy problems for

Rg-HCN PES with the dispersion-corrected functionals bear some slight similarities

with the problematic cases of Rg-C2H2, but with some differences. HFPBE-XDM

predicts a global minimum at a distorted T-shaped geometry tilting towards the H

atom for Ar-HCN and Kr-HCN rather than the collinear arrangement where the Rg

atom aligns with the H atom of HCN, although it predicts the linear arrangement

for He-HCN and Ne-HCN. The polarizability of Ar and Kr might influence the global

minimum for HFPBE-XDM, which favors dispersion interactions with the π region.

In terms of anisotropies of the PES of Rg-HCN complexes, the functionals do not

identify all other local minima since the PES around the local minima predicted by

CCSD(T) are quite flat and these functionals are apparently not sensitive enough to

capture those interactions.
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The Rg-hydrogen halide dimers are relatively stable due to both induction and

dispersion interactions, owing to the permanent dipole moments of the hydrogen

halide molecules. Two minima are present: the first where the Rg atom aligns nearest

the H atom (pseudo-hydrogen-bonding) and the second structure where the Rg atom

aligns nearest the halogen (F, Cl, and Br), where dispersion dominates due to the

polarizability of the heavier halogens. Here, we cover Rg-HCl and Rg-HBr complexes

separately from Rg-HF since the latter involve different issues with respect to the

performance of the functionals.

The Rg-HCl and Rg-HBr dimers reveal problems predicting correct anisotropies

with dispersion-corrected functionals, similar to the Rg-C2H2 and Rg-HCN complexes.

Since HCl and HBr are moderately polar molecules, the Rg-H-X and Rg-X-H (X =

Cl, Br) collinear minima are competing structures where the differences in the BEs

between those configurations are small. For He-HCl, all functionals favor pseudo-

hydrogen-bonding between the He atom and the H atom, which is the opposite to

what is observed in the CCSD(T) PES of He-HCl97 although the two minima are very

nearly degenerate. However for Ne-HCl and Ne-HBr, the behavior is reversed and

CCSD(T) favors the global minimum configuration as the pseudo-hydrogen-bonding

interaction between Ne and the H-atom98,99. HFPBE-XDM is the only functional

that incorrectly predicts the global minimum at the Ne-X-H configuration, favoring

dispersion between the heavy halogen atom and Ne. The flatness of these PES is a

concern for HFPBE-XDM, which obtains global minimum geometries that contrast

with CCSD(T) reference data. However, HFPBE-XDM performs better in terms of

the shapes and the curvature of the PES, and their minima are quite close in energy.

We note that the defined Jacobi coordinates for Ne-HBr99 are slightly different since

the Ne atom aligns to the Br atom rather than the center of mass of HBr. The results

are not affected since the center of mass is extremely close to the Br atom.

The Rg-HF dimer is a particularly problematic case for XDM-corrected func-

tionals and B97-D. Since HF is quite polar, the preferred global minimum is the

pseudo-hydrogen-bonding interaction between the Rg atom and H at the collinear
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FIG. 4. PES of Kr-HF with XDM-corrected functionals and B97-D. The bond length is

aligned at the horizontal axis of the reference PES.
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FIG. 5. PES of Kr-HF with selected base functionals.

HFPBE

θ (degree)

R
 (

a 0)

−80
−70

−60 −50
−30

−20
−11.5
−6

−4.8 −4 −3

−8

−40

−15

−3 −4

−2

−4
.8

−2
0

10
30

50
100

200

0 20 40 60 80 100 120 140 160 180

6

6.5

7

7.5

8

8.5

9

9.5
PW86PBE

θ (degree)

R
 (

a 0)

−265

−225

−165

−125

−90

−65
−55

−45 −35

−25
−20

−15

−7

−10

−5

−15
−7

10
50

100
200300

0 20 40 60 80 100 120 140 160 180

6

6.5

7

7.5

8

8.5

9

9.5

PW1PBE

θ (degree)

R
 (

a 0)

−200
−165

−125

−90

−75 −55

−45 −35

−27.5

−20

−15

−10

−10

−7
−5

−3.5

−3.5
1020
50

100
300 200

0 20 40 60 80 100 120 140 160 180

6

6.5

7

7.5

8

8.5

9

9.5

geometry96,100. Before proceeding to our discussion, the Jacobi coordinates of the

global minimum for Kr-HF are noteworthy since the authors of the CCSD(T) study

claimed that the global minimum is at the Kr-F-H arrangement96. The work on Xe-

HF101 follows a similar trend while studies of He-HF100 and Ne-HF102 do not. We

claim that the authors who performed the calculations on Kr-HF and Xe-HF acciden-

tally flipped the definition of the angular coordinates, which was verified by our test

calculations using CCSD(T); the global minimum is actually the pseudo-hydrogen-

bonding interaction.

From the PES plots of Kr-HF in Fig. 4, PW86PBE-XDM severely overbinds the

Kr-HF interaction as indicated from the PES and the secondary Kr-F-H local mini-

mum is not even present. The He-HF complex follows the same trend as Kr-HF, but
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to a much lesser extent. The addition of exact exchange to PW86PBE-XDM slightly

improves the BEs for He-HF and Kr-HF, but it does not fix the incorrect shape of

the PES at the secondary minimum. From Fig. 5 for Kr-HF, PW86PBE and the

hybrid predict a strong binding interaction between Kr and HF even without XDM.

This overly-strong bonding between the Rg atom and HF suggests that PW86PBE

suffers from delocalization error due to a nonphysical charge transfer between the

Rg atom and HF, where the Rg atom becomes charged. The charge on Kr for the

minimum with PW86PBE-XDM is 0.038. This fractional charge transfer leads to

artificially large binding, and this phenomenon is well known to occur as a result of

delocalization error. For Rg-HF, HFPBE-XDM, which does not suffer from delocal-

ization error, performs the best and it reproduces BEs and anisotropies comparable

to CCSD(T).

B. Binding energies

We optimized the molecular geometries of all Rg-linear vdW molecules at the global

minima with XDM-corrected functionals and B97-D and computed the BEs using Eq.

44. Based on mean absolute errors (MAE) for the BEs in Table I, bond angles in

Table II, and bond lengths in Table III, the PW1PBE-XDM hybrid performs the best

compared to other dispersion-corrected functionals. This indicates that addition of

exact exchange improves PW86PBE-XDM for most of the vdW molecules.

In general, HFPBE-XDM predicts shorter bond lengths than CCSD(T) while B97-

D and PW86PBE-XDM predict longer bond lengths, and PW1PBE obtains bond

lengths closest to CCSD(T), with the exception of the Rg-HF complexes. Some of

the bond lengths may differ significantly when the position of the global minimum is

different from CCSD(T). In terms of bond angles, all dispersion-corrected functionals

predict relatively good agreement in the bond angles for most of the vdW molecules,

although there are cases again where the functionals obtain a global minimum BE at

a different geometry. Examples include the collinear hydrogen bonding interaction
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of Ne-C2H2, Ar-C2H2, and Kr-C2H2 by B97-D, the distorted T-shaped minimum

for Ar-HCN and Kr-HCN rather than hydrogen bonding by HFPBE-XDM, and the

distorted T-shaped minimum predicted by PW86PBE-XDM for Kr-N2. There are

instances where the inclusion of HF exchange with PW86PBE-XDM restores the

agreement with reference geometries, such as Kr-N2, but not Rg-C2H2 where the

anisotropy computed by PW86PBE-XDM remains.

TABLE I: Global minimum BEs of the Rg-linear vdW molecules with XDM-corrected functionals,

B97-D, and CCSD(T) in cm−1.

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Ne H2 25.44 32.97 28.24 48.27 21.4689

Kr H2 90.27 81.92 69.63 78.65 61.7690

Ne N2 57.87 50.86 48.99 74.44 49.5085

Ar N2 131.30 94.15 89.17 97.26 99.0183

Kr N2 164.47 112.27 105.22 127.50 112.0174

He CO 28.48 22.77 22.59 32.56 22.0291

Ne CO 61.68 53.78 50.75 70.95 49.4175

Ar CO 148.12 108.29 97.97 93.84 102.0076

Kr CO 190.77 136.06 120.80 125.28 119.6892

He HF 45.46 67.00 56.30 82.04 43.84100

Kr HF 291.97 415.70 341.61 350.32 252.3596

He HCl 32.10 35.72 30.41 49.85 32.7497

Ne HCl 63.51 85.02 68.33 114.67 66.8598

Ne HBr 76.99 77.34 62.35 109.64 58.6099

He CO2 60.12 40.90 40.92 53.10 49.3977

Ne CO2 107.20 77.01 75.06 113.40 93.0578

Kr CO2 325.71 207.40 192.06 221.17 231.7079
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TABLE I – Continued

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Ne OCS 109.12 82.68 78.81 112.20 81.2686

Ar OCS 291.96 186.52 173.46 162.91 221.0587

Kr OCS 387.30 234.44 217.71 226.61 270.7388

He HCN 33.76 31.90 28.08 51.55 29.9095

Ne HCN 66.48 72.94 62.06 115.73 56.9795

Ar HCN 184.55 165.94 145.09 177.03 147.0095

Kr HCN 246.83 211.72 184.57 243.41 179.0095

He C2H2 27.33 25.62 21.90 43.35 24.2284

Ne C2H2 56.63 60.42 52.90 96.56 50.2084

Ar C2H2 168.83 130.41 117.59 134.40 122.1784

Kr C2H2 234.43 165.73 150.69 185.96 151.8894

MAE 32.75 18.44 12.33 29.94

MAPE 27.71 17.66 10.27 43.22

TABLE II: Bond angles corresponding to the global minima of Rg-linear vdW molecules with

XDM-corrected functionals, B97-D, and CCSD(T) in degrees.

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Ne H2 0.00 0.00 0.00 0.00 0.0089

Kr H2 0.00 0.00 0.00 0.00 0.0090

Ne N2 90.00 90.00 90.00 90.00 90.0085

Ar N2 89.83 89.79 90.00 90.00 90.0083

Kr N2 90.04 106.81 90.00 90.00 90.0074

He CO 87.05 80.68 80.82 82.50 70.8191

Ne CO 89.31 95.43 89.06 86.75 82.5075
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TABLE II – Continued

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Ar CO 95.43 104.21 99.42 92.10 93.0076

Kr CO 97.94 108.33 103.87 97.55 98.5092

He HF 0.00 0.00 0.00 0.00 0.00100

Kr HF 0.00 0.00 0.00 0.00 0.0096

He HCl 0.00 0.00 0.00 0.00 180.0097

Ne HCl 180.00 0.00 0.00 0.00 0.0098

Ne HBr 180.00 0.00 0.00 0.00 0.0099

He CO2 90.00 90.00 90.00 90.00 90.0077

Ne CO2 90.00 90.00 90.00 90.00 90.0078

Kr CO2 90.00 90.00 90.00 90.00 90.0079

Ne OCS 108.13 105.25 106.69 106.80 108.4686

Ar OCS 104.79 103.65 104.41 105.00 105.9887

Kr OCS 103.75 102.78 103.34 100.56 105.0088

He HCN 0.00 0.00 0.00 0.00 0.0095

Ne HCN 0.00 0.00 0.00 0.00 0.0095

Ar HCN 63.70 0.00 0.00 0.00 0.0095

Kr HCN 65.93 0.00 0.00 0.00 0.0095

He C2H2 0.00 0.00 0.00 0.00 0.0084

Ne C2H2 47.94 90.00 90.00 0.00 43.3084

Ar C2H2 61.25 75.08 75.24 0.00 60.6084

Kr C2H2 66.55 74.01 75.16 0.00 65.2294

MAE 25.19 11.38 10.17 13.36
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TABLE III: Bond lengths corresponding to the global minima of the Rg-linear vdW molecules with

XDM-corrected functionals, B97-D, and CCSD(T) in Å .

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Ne H2 3.307 3.254 3.295 3.387 3.31289

Kr H2 3.565 3.664 3.708 3.800 3.76190

Ne N2 3.278 3.415 3.401 3.530 3.38085

Ar N2 3.534 3.769 3.770 3.950 3.70983

Kr N2 3.649 3.938 3.916 4.029 3.86274

He CO 3.241 3.406 3.386 3.571 3.39991

Ne CO 3.250 3.419 3.395 3.535 3.38675

Ar CO 3.506 3.787 3.776 3.955 3.72076

Kr CO 3.620 3.929 3.923 4.023 3.88892

He HF 3.047 2.966 2.994 3.124 3.166100

Kr HF 3.428 3.390 3.420 3.670 3.54496

He HCl 3.758 3.715 3.761 3.863 3.34997

Ne HCl 3.388 3.697 3.750 3.800 3.83398

Ne HBr 3.430 3.962 4.021 4.050 4.07099

He CO2 2.926 3.124 3.098 3.331 3.06377

Ne CO2 3.032 3.224 3.211 3.336 3.15378

Kr CO2 3.392 3.649 3.651 3.741 3.57179

Ne OCS 3.292 3.453 3.458 3.605 3.47486

Ar OCS 3.470 3.737 3.744 3.941 3.66987

Kr OCS 3.562 3.856 3.863 3.947 3.78088

He HCN 4.091 4.128 4.135 4.212 4.21695

Ne HCN 4.124 4.120 4.149 4.181 4.24895

Ar HCN 3.633 4.398 4.418 4.505 4.49795
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TABLE III – Continued

Rg Molecule HFPBE PW86PBE PW1PBE B97-D CCSD(T)

Kr HCN 3.703 4.519 4.540 4.591 4.63495

He C2H2 4.289 4.313 4.338 4.400 4.35084

Ne C2H2 3.789 3.597 3.623 4.345 3.95084

Ar C2H2 3.773 3.904 3.918 4.708 3.99084

Kr C2H2 3.795 4.013 4.026 4.770 4.06494

MAE 0.249 0.099 0.082 0.189

Based on the MAE results for the BEs in Table I for the entire set of vdW com-

plexes, HFPBE-XDM and B97-D perform worse compared to the other functionals.

HFPBE-XDM and B97-D tend to overestimate the BEs, while PW86PBE-XDM and

the hybrid provide lower MAEs. However, using the MAE alone is not the most

effective approach to gauge the performance of these functionals since the BEs span

such a large range. The mean-absolute-percent error (MAPE) is more appropriate

to describe the trends in the BE errors for each functional. We also assess the error

trends with respect to the size of the Rg atom and with respect to the polarity of

the linear molecule in Table IV. In our set of vdW molecules, there are six molecules

that pair with He, nine with Ne, five with Ar, and eight with Kr. In our set of linear

molecules, there are four nonpolar molecules (H2, N2, CO2 and C2H2), four polar

molecules with moderate polarity (CO, OCS, HBr, and HCl), and two very polar

molecules with large dipole moments (HF and HCN). We tabulate the MAPEs of the

vdW molecules and group the errors with respect to the size of the Rg atom and

the polarity of the linear molecules for all functionals in Table IV. We note that we

do not have the complete set for other Rg-linear vdW molecules due to the lack of

accurate CCSD(T) reference data in the literature.

Based on the MAPEs for the entire set of Rg-linear vdW molecules, the PW86PBE-

XDM hybrid performs the best while B97-D performs the worst. This suggests, at
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TABLE IV. Mean Absolute Percent Error (MAPE) of the BEs for base-XDM functionals

and B97-D with respect to the size of the Rg atom and the polarities of the linear molecule.

Roster HFPBE PW86PBE PW1PBE B97-D

Full 27.71 17.66 10.27 43.22

He 13.74 15.82 11.82 57.76

Ne 19.52 21.19 8.95 70.34

Ar 34.73 9.26 8.09 13.30

Kr 43.00 20.32 11.96 20.49

nonpolar 29.73 15.00 11.20 38.03

polar 30.65 13.11 7.00 39.57

highly polar 18.74 30.57 13.87 59.65

first glance, that the PW86PBE-XDM hybrid works nicely while B97-D has difficul-

ties in obtaining the correct BEs. Since B97-D, by construction, is a hybrid GGA

parameterized for organic molecules with an empirical correction, it does not model

the exchange repulsion well for Rg complexes. Since this functional is built on fitting

parameters to minimize the error for a test set, B97-D does not guarantee accuracy

and applicability to describe vdW interactions accurately for systems such as these

that fall outside the training set. HFPBE-XDM also has trouble computing accurate

BEs since the HFPBE functional does not include a balanced treatment of correla-

tion. The PW86PBE-XDM functional seems to perform quite well since it mimics

the HF exchange contribution to the PES well for Rg dimers, but the inclusion of

exact exchange improves the BEs even further. We will explore these errors in greater

detail in terms of the size of the Rg atoms and the polarities of the linear molecules.

Upon inspection of the MAPEs in the BEs for various Rg atoms, the errors for

HFPBE-XDM increases with increasing size of the Rg atom. This indicates that the

performance of HFPBE-XDM is size-dependent. Since HFPBE-XDM does not treat

correlation correctly, the HFPBE functional performs worse for larger Rg atoms where
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electron correlation becomes more important. In contrast, B97-D performs worse for

vdW molecules containing smaller Rg atoms, since it is empirical and these systems

fall outside the training set, while it performs decently for larger Rg atoms. The

source of error is incorrect behavior of the exchange-repulsion part of PES involving

vdW molecules with small Rg atoms. The PW86PBE-XDM functional performs

adequately with respect to reference CCSD(T) data, but the errors are larger for

complexes involving Ne. The BE errors for PW1PBE-XDM are consistently lower

than PW86PBE-XDM and HFPBE-XDM, which indicates that the hybrid functional

compensates the errors in the GGA by including some exact exchange, while retaining

a large fraction of PW86 exchange to pair well with PBE correlation. For PW86PBE-

XDM and PW1PBE-XDM, the BE errors are not proportional to the size of the Rg

atom.

As seen from the MAPEs in the BEs for varying polarity, GGA functionals tend

to perform worse for highly polar linear molecules. B97-D, in particular, mostly un-

derperforms, giving the highest MAPE for vdW molecules involving HF and HCN.

This suggests that B97-D overbinds these complexes significantly due to delocaliza-

tion error. The performance of HFPBE-XDM is decent, but it still gives larger errors

for vdW molecules containing nonpolar and moderately polar linear molecules. The

source of error in HFPBE is evidently due to difficulties in treating correlation prop-

erly. For highly polar molecules, HFPBE-XDM performs comparatively well since it

does not suffer from delocalization error, unlike functionals with GGA exchange. The

BE errors with HFPBE-XDM are not polarity-dependent, but these arise due to its

difficulty in treating correlation for larger Rg atoms. In contrast, PW86PBE-XDM

performs quite well for vdW molecules containing nonpolar and moderately-polar

molecules. However, the performance of PW86PBE-XDM is concerning for Rg-HF

vdW molecules, which contributes to a large MAPE. PW86PBE suffers from delocal-

ization error where charge-transfer overstabilizes the pseudo-hydrogen-bond between

the Rg atom and the H atom from HF. The errors of PW86PBE-XDM are not de-

pendent on the size of the Rg atom, but vary depending on the polarity of the linear
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molecule and the ability of the complex to experience spurious charge transfer. On

the other hand, the PW86PBE-XDM hybrid performs better than all of the other

functionals with respect to the polarity of the linear molecule. The errors in the

BEs with the PW86PBE-XDM hybrid do not increase with increasing polarity. How-

ever, the hybrid does not obtain the correct BEs for Kr-HF and He-HF dimers since

delocalization error is still present, although to a lesser extent than with the GGAs.
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TABLE V: General performance of functionals.

Functional Comments

B97-D Pros: Good BEs for vdW molecules with large Rg atoms.

Cons: Overbinds vdW molecules with small Rg atoms and polar

and highly polar molecules. Incorrect global minimum

geometries for Ne-C2H2, Ar-C2H2, Kr-C2H2, and Rg-HCN. Long

bond lengths.

HFPBE-XDM

Pros: Does not suffer from delocalization error. Relatively

reasonable BEs for vdW molecules with small Rg atoms and

highly polar molecules.

Cons: Large BE errors for vdW molecules with large Rg atoms,

BEs are overbound, incorrect global minimum geometries, for

Ne-HCl, Ne-HBr, Ar-HCN, and Kr-HCN. Short bond lengths.

PW86PBE-XDM
Pros: Good BEs and geometries for vdW molecules with

non-polar and moderately polar linear molecules.

Cons: Overbinds Rg-HF and Rg-HCN due to delocalization error

and incorrect geometries for Kr-N2, Ne-C2H2, Ar-C2H2, and

Kr-C2H2.

PW1PBE-XDM
Pros: BEs and geometries in agreement with CCSD(T) reference

data. Reduces delocalization error relative to PW86PBE-XDM.

Cons: Kr-HF is overbound and incorrect geometries for Ar-C2H2,

Kr-C2H2, and Rg-HCN.
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IV. SUMMARY AND OUTLOOK

We computed the PES and BEs at optimized geometries for the set of Rg-linear

vdW molecules with XDM-corrected functionals and the popular B97-D method.

We determined that the PW86PBE-XDM hybrid functional performs better than

other functionals for determining BEs, bond lengths, and bond angles. In addition,

it reproduces the shapes of the PES from CCSD(T) and it corrects the anisotropies,

relative to PW86PBE-XDM, for some of the vdW molecules. In addition, we compare

the performance of functionals for problematic vdW molecules: Rg-C2H2, Rg-HCN,

Ne-HCl, Ne-HBr, and Kr-HF; dimers that are troublesome for GGA functionals.

The principal sources of error come from the delocalization error of GGA functionals

and the poor treatment of correlation with HFPBE. We highlighted the performance

of XDM-corrected functionals and B97-D in terms of the relative size of the Rg

atoms and the polarities of the linear molecules. B97-D generally performs poorly for

any Rg-linear vdW molecules since it is empirical by design, with a poor treatment

of exchange repulsion. HFPBE-XDM performs poorly for larger noble gas atoms.

PW86PBE-XDM performs worse for more polar molecules such as HF. Thus, using a

fraction of exact exchange and PW86PBE paired with XDM reduces the errors. The

quality of the results from the hybrid functional is not size-dependent with respect to

the Rg atom and it performs relatively well for vdW molecules with both non-polar

and polar monomers. However, this functional does not correct all of the features of

the PES since it has a large fraction of PW86 exchange and a large portion of the

remaining errors come from the PW86 exchange functional.

We conclude that the PW86PBE-XDM hybrid is the most ideal functional for

the considered PES due to its ability to provide consistently accurate results and

applicability for the majority of the Rg-linear vdW molecules. HFPBE-XDM and

PW86PBE-XDM perform well for certain molecules, but are not as consistent as the

hybrid. However, some errors with the hybrid functional are unavoidable due to the

remaining delocalization error, even though XDM is an excellent dispersion correc-
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tion to pair with this functional. The motivation for applying DFT with dispersion-

corrected functionals is promising as long as the effects of delocalization (charge trans-

fer) errors can be reduced. In the future, we may extend our work to benchmark

larger closed-shell vdW molecules such as linear-linear and Rg-non-linear complexes

to further investigate the performance of the hybrid functional.
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Appendix A: Additional information for the vdW molecules

FIG. A.1. Jacobi coordinates for the remaining vdW complexes.
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TABLE A.1 Optimized bond lengths of linear molecules with respect to the center of mass as the

origin in Å with dispersion-corrected functionals.

Molecule Bond HFPBE PW86PBE PW1PBE B97-D

CO C-X 0.6248 0.6488 0.6434 0.6470

O-X 0.4686 0.4866 0.4826 0.4853

H2 H-X 0.3653 0.3731 0.3715 0.3719

N2 N-X 0.5291 0.5511 0.5463 0.5489

HF H-X 0.7997 0.8385 0.8302 0.8317

F-X 0.0889 0.0932 0.0922 0.0924

HCl H-X 1.1839 1.2177 1.2098 1.2098

Cl-X 0.0696 0.0716 0.0712 0.0712

HBr H-X 1.3539 1.3953 1.3861 1.3856

Br-X 0.0387 0.0399 0.0396 0.0396

CO2 C-O 1.1246 1.1717 1.1609 1.1669

OCS O-X 1.6389 1.6955 1.6825 1.6899

C-X 0.5241 0.5267 0.5256 0.5254

S-X 1.0160 1.0452 1.0383 1.0420

HCN H-X 1.5341 1.5748 1.5657 1.5723

C-X 0.4826 0.5021 0.4978 0.5008

N-X 0.6328 0.6553 0.6504 0.6539

C2H2 C-X 0.5853 0.6030 0.5992 0.6023

H-X 1.6338 1.6713 1.6631 1.6694

51



TABLE A.2 Bond length and angle increments for Jacobi coordinates used to compute the PES

of vdW molecules.

Rg Molecule R θ

Range Increment Range Increment

Ne H2 4.00-5.40 a0 0.20 a0 0-90◦ 10◦

5.50-7.30 a0 0.05 a0

7.40-7.50 a0 0.10 a0

7.70-9.50 a0 0.20 a0

Kr H2 3.00-4.50 Å 0.05 Å 0-90◦ 10◦

4.60-5.00 Å 0.10 Å

5.20-6.00 Å 0.20 Å

Ne N2 3.00-4.50 Å 0.05 Å 0-60◦ 10◦

4.60-4.70 Å 0.10 Å 65-90◦ 5◦

4.80-5.00 Å 0.20 Å

Ar N2 3.20-4.50 Å 0.05 Å 0-60◦ 10◦

4.60-4.70 Å 0.10 Å 65-90◦ 5◦

4.80-5.00 Å 0.20 Å

Kr N2 6.00-6.50 a0 0.10 a0 0-60◦ 10◦

6.55-9.00 a0 0.05 a0 65-90◦ 5◦

9.10-9.90 a0 0.10 a0

He CO 6.00-6.50 a0 0.10 a0 0-60◦ 10◦

6.55-9.00 a0 0.05 a0 70-105◦ 5◦

9.10-9.90 a0 0.10 a0 115-135◦ 10◦

150-180◦ 15◦

Ne CO 5.00-7.40 a0 0.05 a0 0-60◦ 10◦
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TABLE A.2 – Continued

Rg Molecule R θ

Range Increment Range Increment

7.50-8.10 a0 0.10 a0 75-105◦ 5◦

8.30-9.50 a0 0.20 a0 115-125◦ 10◦

135-180◦ 15◦

Ar CO 3.20-4.50 Å 0.05 Å 0-60◦ 10◦

4.60-5.30 Å 0.10 Å 75-105◦ 5◦

5.50-6.10 Å 0.20 Å 115-125◦ 10◦

6.15-6.30 Å 0.10 Å 135-180◦ 15◦

6.50 Å

Kr CO 6.00-8.00 a0 0.05 a0 0-60◦ 10◦

8.10-8.20 a0 0.10 a0 75-125◦ 5◦

8.40-10.00 a0 0.20 a0 135-165◦ 10◦

170-180◦ 10◦

He HF 2.60-4.30 Å 0.05 Å 0-80◦ 20◦

4.40-5.00 Å 0.10 Å 105-135◦ 10◦

5.20-5.60 Å 0.20 Å 150-180◦ 15◦

5.05 Å

Kr HF 5.70-6.00 a0 0.10 a0 0-180◦ 15◦

6.05-7.45 a0 0.05 a0

7.50-7.70 a0 0.10 a0

7.90-9.50 a0 0.20 a0

He HCl 3.00-4.50 Å 0.05 Å 0-180◦ 15◦

4.60-5.00 Å 0.10 Å
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TABLE A.2 – Continued

Rg Molecule R θ

Range Increment Range Increment

Ne HCl 3.00-4.20 Å 0.05 Å 0-180◦ 15◦

4.30-5.00 Å 0.10 Å

Ne HBr 3.00-5.00 Å 0.05 Å 0-180◦ 15◦

5.10-5.50 Å 0.10 Å

He CO2 4.50-5.00 a0 0.10 a0 0-90◦ 5◦

5.05-9.00 a0 0.05 a0

9.10-10.00 a0 0.10 a0

Ne CO2 5.00-9.00 a0 0.05 a0 15-90◦ 5◦

9.10-10.00 a0 0.10 a0 0◦

10.20-12.00 a0 0.20 a0

Kr CO2 5.60-9.30 a0 0.05 a0 15-90◦ 5◦

9.40-10.20 a0 0.10 a0 0◦

10.40-13.00 a0 0.20 a0

Ne OCS 2.80-3.00 Å 0.10 Å 0-20◦ 5◦

3.10-5.30 Å 0.05 Å 30-160◦ 5◦

5.40-6.00 Å 0.10 Å 165-180◦ 15◦

6.20-7.00 Å 0.20 Å

Ar OCS 3.10-3.20 Å 0.10 Å 0-20◦ 5◦

3.25-5.10 Å 0.05 Å 30-160◦ 5◦

5.20-5.40 Å 0.10 Å 165-180◦ 15◦

5.60-6.00 Å 0.20 Å

Kr OCS 6.00-10.00 a0 0.05 a0 0-40◦ 20◦
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TABLE A.2 – Continued

Rg Molecule R θ

Range Increment Range Increment

10.10-10.20 a0 0.10 a0 50-135◦ 5◦

10.40-11.00 a0 0.20 a0 150-170◦ 20◦

180◦

He HCN 6.00-9.00 a0 0.05 a0 0-130◦ 5◦

9.10-9.60 a0 0.10 a0 140-180◦ 10◦

9.80-10.00 a0 0.20 a0

Ne HCN 6.00-9.00 a0 0.05 a0 0-110◦ 5◦

9.10-9.60 a0 0.10 a0 120-180◦ 10◦

9.80-10.00 a0 0.20 a0

Ar HCN 6.00-9.50 a0 0.05 a0 0-110◦ 5◦

9.60-10.00 a0 0.20 a0 120-180◦ 10◦

Kr HCN 6.00-9.50 a0 0.05 a0 0-120◦ 5◦

9.60-10.00 a0 0.20 a0 130-180◦ 10◦

He C2H2 3.00-5.50 Å 0.05 Å 0-90◦ 5◦

Ne C2H2 3.10-5.00 Å 0.05 Å 0-90◦ 5◦

Ar C2H2 3.50-5.00 Å 0.05 Å 0-90◦ 5◦

Kr C2H2 3.50-5.50 Å 0.05 Å 0-90◦ 5◦
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Appendix B: PES of other Rg-linear molecule vdW complexes
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FIG. B.1. PES of Ne-H2 with XDM-corrected functionals and B97-D.
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FIG. B.2. PES of Kr-H2 with XDM-corrected functionals and B97-D. The reference PES

did not use bond length of H2.
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FIG. B.3. PES of Ne-N2 with XDM-corrected functionals and B97-D. The global minimum

from the reference PES is labeled as 0 cm−1.
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FIG. B.4. PES of Kr-N2 with XDM-corrected functionals and B97-D. Only the half portion

of the reference PES is shown and the bond angle is aligned at the vertical axis.
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FIG. B.5. PES of He-CO with XDM-corrected functionals and B97-D.
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FIG. B.6. PES of Ne-CO with XDM-corrected functionals and B97-D.
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FIG. B.7. PES of Ar-CO with XDM-corrected functionals and B97-D.
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FIG. B.8. PES of Kr-CO with XDM-corrected functionals and B97-D.
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FIG. B.9. PES of He-HF with XDM-corrected functionals and B97-D.
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FIG. B.10. PES of He-HCl with XDM-corrected functionals and B97-D.
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FIG. B.11. PES of Ne-HCl with XDM-corrected functionals and B97-D. The bond angle is

aligned at the vertical axis of the reference PES.
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FIG. B.12. PES of Ne-HBr with XDM-corrected functionals and B97-D. The bond angle is

aligned at the vertical axis of the reference PES.
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FIG. B.13. PES of He-CO2 with XDM-corrected functionals and B97-D. The contours of

the reference PES are in increments of 5 cm−1.
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FIG. B.14. PES of Ne-CO2 with XDM-corrected functionals and B97-D. The contours of

the reference PES are in increments of 5 cm−1.
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FIG. B.15. PES of Kr-CO2 with XDM-corrected functionals and B97-D. The contours of

the reference PES are in increments of 10 cm−1.

HFPBE-XDM

θ (degree)

R
 (

a 0)

−310
−220
−160
−110
−80
−50
−30
−20

−10

0 20 40 60 80 100 120 140 160 180

6

7

8

9

10

11

12

13

B97-D

θ (degree)

R
 (

a 0)

−210
−180
−140
−110
−80
−50

−30
−20

0 20 40 60 80 100 120 140 160 180

6

7

8

9

10

11

12

13

PW86PBE-XDM

θ (degree)

R
 (

a 0)

−200
−170
−130
−90
−60
−40
−30
−20

−10

0 20 40 60 80 100 120 140 160 180

6

7

8

9

10

11

12

13

PW1PBE-XDM

θ (degree)

R
 (

a 0)

−187
−157
−117
−87
−57
−37
−27
−17

−7

0 20 40 60 80 100 120 140 160 180

6

7

8

9

10

11

12

13

CCSD(T)79

71



FIG. B.16. PES of Ne-OCS with XDM-corrected functionals and B97-D. The reference

PES defines the angle θ = 0◦ at the Ne-O-C-S arrangement and the bond length is aligned

at the vertical axis.
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FIG. B.17. PES of Ar-OCS with XDM-corrected functionals and B97-D. The reference PES

defines the angle θ = 0◦ at the Ar-O-C-S arrangement and the bond length is aligned at

the vertical axis.
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FIG. B.18. PES of Kr-OCS with XDM-corrected functionals and B97-D.
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FIG. B.19. PES of He-HCN with XDM-corrected functionals and B97-D. The contours of

the PES are in terms of milihartrees (mEh).
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FIG. B.20. PES of Ne-HCN with XDM-corrected functionals and B97-D. The contours of

the PES are in terms of milihartrees (mEh).
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FIG. B.21. PES of Ar-HCN with XDM-corrected functionals and B97-D. The contours of

the PES are in terms of milihartrees (mEh).
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FIG. B.22. PES of Kr-HCN with XDM-corrected functionals and B97-D. The contours of

the PES are in terms of milihartrees (mEh).
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FIG. B.23. PES of He-C2H2 with XDM-corrected functionals and B97-D.
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FIG. B.24. PES of Ne-C2H2 with XDM-corrected functionals and B97-D.
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FIG. B.25. PES of Kr-C2H2 with XDM-corrected functionals and B97-D. The bond length

is aligned at the horizontal axis of the reference PES.
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