
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Maintaining safe memory for security, debugging, and multi -threading

Permalink
https://escholarship.org/uc/item/6gk3m6p2

Author
Chuang, Weihaw

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gk3m6p2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Maintaining Safe Memory for Security, Debugging, and Multi-threading

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Weihaw Chuang

Committee in charge:

Brad Calder, Chair
Jeanne Ferrante
Ranjit Jhala
Andrew Kahng
Chandra Krintz

2006

Copyright

Weihaw Chuang, 2006

All rights reserved.

The dissertation of Weihaw Chuang is approved, and it

is acceptable in quality and form for publication on mi-

crofilm:

Chair

University of California, San Diego

2006

iii

For my parents, brother, and relatives who made this possible.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgments . xi

Vita and Publications . xii

Abstract . xiii

I Introduction . 1
A. The Importance of Software Bugs 1
B. Sources of Software Failure . 3
C. Silicon Fabrication Trends . 5
D. Goals of Thesis . 9

II Software Check Optimization . 13
A. Motivation for Memory Checks . 13

1. Bounds Security Exploits . 15
2. C and C++ Code Base . 17

B. Implementation of Bounds Check 18
1. Representing Bounds Information 20

C. Software Memory Check Related Work 23
1. Bounds Checking and Their Alternatives 23
2. Compiler Optimization . 25
3. Comparison . 26
4. Hardware Proposals for Security 28
5. Hardware Support for Debugging 29

D. Performance Analysis of Bounds Checking 31
1. Performance Profiling . 32
2. Bounds Tools . 33
3. Bounds Code-Generation for Directly-Asssociated Meta-Data . 34
4. Generating Bounds Information from Type Information and

Code Generation . 35

v

5. Performance Analysis . 36
E. Data Layout . 39

1. Methodology . 42
2. Meta-Data Overhead . 43
3. Storing Meta-Data for Bounds and Dangling Pointer Checks . . 44
4. Meta-Data Checking Overhead 47

F. Eliminating Unneeded Checks by Taint-Based Analysis 49
1. Interface Analysis Example . 49
2. Interface Analysis Algorithm 50
3. Aliasing Properties . 55
4. Memory Writer Algorithm . 55
5. Implementation Details . 57
6. Network External Interface Results 58
7. All External Interface Results 59

G. Hardware Acceleration . 62
1. Motivation for Meta Checker Instruction 62
2. Overview of Meta Data Check Architecture Extensions 63
3. Meta-Check Instruction . 64
4. Using the Meta-Check Instruction 66
5. Hardware support for Meta-Check Instruction 69
6. Performance Result . 74

H. Summary . 77
I. Acknowledgement . 78

III Transactional Memory . 80
A. Introduction to Transactional Memory 80

1. Race-Conditions . 84
2. Lock Synchronization and Transaction 85

B. Transaction Software Model . 90
1. Transactional Memories Programming Model 91
2. Details of Transactional Memory Programming Model 96
3. Related Model: Thread-Level-Speculation (TLS) 102
4. Transactified Examples . 103
5. Programming Models Comparison 105

C. Transactional Memory Related Work 109
1. Early Database Systems . 110
2. Hardware Transactional Memory (HTM) 111
3. Software Transactional Memory (STM) 116
4. Hybrid Hardware/Software Transactional Memory 118
5. VTM . 119
6. Thread-Level-Speculation (TLS) 121

vi

D. Paged Transactional Memory (PTM) 122
1. Structures . 123
2. Implementation . 135

E. Evaluation . 148
1. Simulation Platform . 149
2. Characterizing Transactional Applications 151
3. PTM Performance Comparisons 153

F. Conclusion . 157
G. Acknowledgement . 158

IV Conclusion and Future Work . 159
A. Future Direction . 161

1. Software Safety Checks . 161
2. Transactional Memory . 162

Bibliography . 164

vii

LIST OF FIGURES

I.1 Moore’s Law: doubling of transistor per chip every 18-24 months
on Intel Microprocessors . 7

I.2 Frequency doubled until 2003 on Intel Microprocessors 8

II.1 Cert Alerts 2004-2006 . 15

II.2 Stack Smashing example . 16

II.3 Psuedo-Code of Bound Check 20

II.4 Bounds Check Meta-Data representation 21

II.5 Run-time overhead of bounds checking (AMD Athlon). 38

II.6 Increased dynamic instructions due to bounds checking 38

II.7 Increased branch misprediction. 40

II.8 Increased Level One Data cache misses 40

II.9 Meta-data Representations . 41

II.10 Pointer Meta-Data Overhead 45

II.11 Object Meta-Data Overhead 45

II.12 OMD Software Check Implementations 46

II.13 Bounds Micro-op Expansion . 47

II.14 Bounds and combined Dangling Pointer and Bounds check over-
head . 48

II.15 Tainted Code Example . 51

II.16 Algorithm for interface optimization 53

II.17 TAINTED flow code for Figure II.18 56

II.18 TAINTED flow via scalar assignment and aliasing 56

II.19 Performance advantage of interface and memory-writer opti-
mizations. 61

viii

II.20 Reduction in the number of static bound instruction in the binary. 61

II.21 Comparison of heap size overhead in KB 62

II.22 Example meta-check instructions for dangling pointer and bounds
checking . 67

II.23 Performance Overhead of Bounds Checking using meta-check
instruction and MDC hardware 75

II.24 Performance Overhead of Dangling-Pointer Checking using meta-
check instruction and MDC hardware 76

III.1 Pseudo-code illustrating Lock Synchronization 88

III.2 Pseudo-code for overlimit that illustrates deadlock 88

III.3 Pseudo-code of credit card example using transactions synchro-
nization . 104

III.4 Transactified loop example- Ordered transactions protect against
loop carried dependency . 105

III.5 PTM Structures . 126

III.6 The Virtual Transaction Supervisor (VTS) has a memory backed
cache holding the SPT entries and the TAV nodes. 139

III.7 SPT cache entry . 141

III.8 Comparing TM speedup for lock-based multi-threading, (base)
VTM, Victim-Cache VTM, Copy-PTM and Select-PTM 155

III.9 Advantage of conflict detection at the word granularity. 155

ix

LIST OF TABLES

I.1 Causes of data-corrupting bug in MVS bug reports 4

I.2 Causes of severe non-memory corrupting failure that prevents
automatic MVS reboot and system recovery. 5

II.1 Distribution of open source projects by languages 18

II.2 Comparison of prior techniques. 27

II.3 Coverage for UIUC AccMon benchmarks 34

II.4 Simulation model based on the AMD Athlon. 43

II.5 Meta-Data Check Table (MDCT) 70

II.6 Meta-Data Register Map (MDRM) 70

III.1 Comparing Safety and Convenience of Transactional Memory
Programming Models . 106

III.2 Comparing Conflict Detection Actions of Parallel Programming
Models Without and With Ordering 108

III.3 TM vs TLS and Locks . 109

III.4 Transactional memory execution behavior for loop regions in the
SPLASH-2 programs . 152

x

ACKNOWLEDGMENTS

I would like to acknowledge Prof. Brad Calder for his support as my

advisor for these six years. I would also like extend my deep appreciation to my

co-authors and acknowledge their hard work: Satish Narayanasamy, Dr. Osvaldo

Colavin, Prof. Jeanne Ferrante, Prof. Ranjit Jhala, Dr. Gilles Pokam, Jack Samp-

son, Michael Van Biesbrouck, and Ganesh Venkatesh.

Section II.F contains materials to appear in “Bounds Checking with

Taint-Based Analysis”, in 2007 International Conference on High Performance

Embedded Architectures and Compilers (HiPEAC 2007), W. Chuang, S. Narayanasamy,

R. Jhala and B Calder. The dissertation author was the primary investigator and

author of this paper.

Sections III.D, and III.E contain material to appear in “Unbounded

Page-Based Transactional Memory”, in Proceedings of 12th International Confer-

ence on Architectural Support for Programming Languages and Operating System

(ASPLOS XII), W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M.

Van Biesbrouck, G. Pokam, O. Colavin and B. Calder. The dissertation author

was the primary investigator and author of this paper.

xi

VITA

1995 Bachelors of Science, Massachusetts Institute of Technology

1995–2000 Intel Corporation

2000–2006 Research Assistant, University of California, San Diego

2006 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

W. Chuang, S. Narayanasamy, R. Jhala and B Calder, “Bounds Checking with
Taint-Based Analysis”, to appear in 2007 International Conference on High Per-
formance Embedded Architectures and Compilers (HiPEAC 2007), Ghent, Bel-
gium, January 2007.

W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M.V. Biesbrouck, G.
Pokam, O. Colavin and B. Calder. “Unbounded Page-Based Transactional Mem-
ory”, to appear in Proceedings of 12th International Conference on Architectural
Support for Programming Languages and Operating System (ASPLOS XII), Oc-
tober 2006.

W.K. Chen, S. Bhansali, T.M. Chilimbi, X.G. Gao and W. Chuang, “Profile-
guided proactive garbage collection for locality optimization”, In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation (PLDI06), Ottawa, Ontario, Canada, June 2006.

W. Chuang, B. Calder, and J. Ferrante, “Phi Predication for Light Weight If-
Conversion”, In Proceedings of International Symposium on Code Generation and
Optimization (CGO), March 2003.

W. Chuang and B. Calder, “Predicate Predicate Prediction for Efficient Out-of-
order Execution”, In Proceedings of the 16th Annual ACM International Confer-
ence on Supercomputing (ICS03), June 2003.

L. Carter, W. Chuang and B. Calder, “An EPIC Processor with Pending Func-
tional Units”, In High Performance Computing, 4th International Symposium
(ISHPC 2002), May 2002.

xii

ABSTRACT OF THE DISSERTATION

Maintaining Safe Memory for Security, Debugging, and Multi-threading

by

Weihaw Chuang

Doctor of Philosophy in

Computer Science (Computer Engineering)

University of California, San Diego, 2006

Brad Calder, Chair

As transistor budgets grow enabling chip multi-core processors, adding

hardware support to ensure the correctness and security of programs will be

just as important, for the average user, as adding another core. The goal of our

research is to develop hardware support for software checks and for multi-threaded

synchronization that protects memory from corruption. This is the source of a

significant number of bugs and security issues. We want efficient low-overhead

run-time performance of these checks and synchronization so that it can be left

on all of the time, even in production code releases.

Bounds checking protects pointer and array accesses. It is the process of

keeping track of the address boundaries for objects, and checking that the loads

and stores do not stray outside bounds. It can serve two purposes: it can assist

debugging by precisely capturing invalid memory accesses, and it can guarantee

protection against buffer overflow attacks. Unfortunately, the high performance

overhead of runtime bounds checking has prevented its inclusion in most released

software. In this thesis, we analyze the sources of bounds checking overhead.

xiii

We then consider hardware/software enhancements: the effect merging the check

into a single instruction, software optimizations based on potential for overflow

to eliminate checks, and changes to meta-data layout to limit copying overhead.

Transactional Memories enable programmers to greatly simplify multi-

threaded code by eliminating lock synchronization and its attending deadlock

and livelock problems. Unlike locks they also enable speculative concurrent exe-

cution through the critical section. Specialized transactional memory can also aid

concurrent programming models by providing determinism only when needed at

run-time. A key limitation of past transactional memory proposals are that they

have a finite memory capacity. Virtualized transactional memory (unbounded

in space and time) are desirable, as they can increase the scope of transactions’

use, and thereby further simplify a programmer’s job. In this thesis, we intro-

duce Page-based Transactional Memory to support unbounded transactions. We

combine transaction bookkeeping with the virtual memory system to support

fast transaction conflict detection, commit, abort, and to maintain transactions’

speculative data.

xiv

I

Introduction

I.A The Importance of Software Bugs

Software safety is a paramount concern for developers and end users,

because billions of dollars are lost, and lives are at risk when software fails. A

NIST study estimated that $59.5 billion (2002) was lost due to software failure in

the United States alone (0.6% Gross Domestic Product) [75] . One of the most

famous case of software failure was caused by a data race condition in the Therac-

25, a radiation medical device, resulting in five deaths [51]. Consequently a great

deal of software development effort is spent avoiding software failure. Beizer [8]

estimates that between 30% to 90% of software development cost is devoted to

testing.

Broken applications do not fully describe the cost of these software fail-

ures. Malicious hackers exploit software bugs to steal personal, and financial

information from computers, or to perform other nefarious activities. Computer

viruses and Internet worms use software bugs to inject malicious code on a host

computer to commit Internet crimes like launching denial-of-service attacks, in-

stalling back doors [56, 77] or keystroke loggers, or scanning for information

like credit cards. Worms and viruses characteristically use that malicious code

1

2

to repropagate themselves, frequently overwhelming the ability of host and/or

networks to handle normal workloads. Much like the organic viral epidemics,

computer worms and viruses propagate at a rapid rate across the Internet reach-

ing all corners of the globe. Just one of these worm attacks, “Code-Red” on 19

July 2001, infected 359,000 computers in fourteen hours that hosted the Microsoft

Corporation “Internet Information Service” (IIS) server. The entire “Code-Red”

epidemic has been estimated to cost the US $2.6 billion dollars [89]. Another

IIS server worm called the “Witty Worm” in 2004 has the notoriety of being

the first worm to intentionally delete data on the host machine [78]. Desktop

machines are vulnerable too. A 2004 study found that an unpatched Windows

XP SP1 connected to the Internet would be exploited by worms in less than four

minutes [6].

Computer software has become more meaningful to the general pub-

lic because they now touch everyday life by providing instant information from

around the world and automating many common tasks like banking, maintain-

ing contact lists and doing taxes. When computers fail, many more people are

now affected. In the 1980’s and 1990’s, there was a large new demographic of

non-technical computer users because of the reduction in cost of ownership of

personal computers from transistor scaling which is commonly known as Moore’s

Law. This user base expects appliance like reliability from their computer, yet

is unable or unwilling to manually patch their computer software when a bug is

found [56], creating new demands on the computer vendors. Inter-networking of

computers was also enabled by transistor scaling, allowing the rapid dissemina-

tion of knowledge, and unfortunately enabling the spread of worms and viruses

as well. Microsoft faced both greater user expectations and new Internet based

attacks, with the “Code-Red” worm exploits on their IIS server, and many other

worm exploits on different software products. Bill Gates in a 2002 memo [26]

3

stated that Microsoft software needed to attain the reliability level of utility ser-

vices such as water or electric, because their customers expected this reliability,

especially because of earlier security breaches from worm attacks that shook their

customers’ trust. That memo launched Microsoft’s Trustworthy Computing cam-

paign, instituting more rigorous code development processes, automatic software

updates, and other initiatives to root out exploits. This cost the company $100

million dollars for just 2002-2003 [55]. The Internet played a critical role with

the “Code-Red” worm attack: Knowledge enabling the IIS exploit was posted on

the World-Wide-Web in 18 June 2001 [56, 77], and shortly by 12 July the first

worm appeared. Like all worms it infected its host, then used the Internet as the

transmission medium to re-propagate itself to other machines.

I.B Sources of Software Failure

Identifying the sources of these software failures is important to us as we

seek to prevent them. Sullivan and Chillarege [85, 13] analyzed the failures on a

rigorously tested and deployed IBM mainframe MVS operating system. Sullivan

and Chillarege classified the type of failure, its triggers, and the consequence

to the customer. They found that memory overwriting bugs are more likely to

cause a high priority bug report to be generated by a ratio of three-to-one than

the general population of bug reports, even though memory corruption comprise

just 15%-25% of that population. Memory corrupting bugs often allows the

program to continue for some time (Byzantine failure) that potentially corrupts

data and obscures the bug’s identity, instead of stopping immediately at the point

of failure. Another class of severe bugs overwrites the MVS recovery mechanism;

it is discussed after the memory corruption bugs.

The causes of these memory corruption bugs are listed in Table I.1. Over

half of the data-corrupting failures are directly due to memory mismanagement.

4

Table I.1: Causes of data-corrupting bug in MVS bug reports

Bug type % of bugs

Buffer overflow 20%

Use of deallocated memory 19%

Use of corrupt pointers 13%

Unknown 13%

Type mismatch 12%

Synchronization 8%

Register Reused 7%

Uninitialized Ptr 5%

Undefined State 4%

Buffer-overflow accesses data outside its allocated region typically when an array

index or pointers, exceeds the bounds. This either returns the incorrect value

or corrupts nearby data. The second most prevalent bug is use of deallocated

memory, which is also commonly known as the dangling pointers. In this case

there exist two or more pointers with different uses of the same memory, caused

by one pointer seeing the original use of the memory, and another pointer seeing

memory that’s been been freed once and been reallocated to it. The third bug

occurs when a buffer overflow overwrites a pointer, that causes that pointer to

reference the wrong location. The fifth set of bugs is due to memory corruption

caused by multi-threaded synchronization problems such as race conditions. Here

different ordering of thread execution causes different results in an unexpected

way. Other types of concurrency problems can occur without having to corrupt

memory as well.

Sullivan and Chillarege also classify the regular population of software

failures that includes the memory corruption bugs described above, and all other

bugs. The most severe non-memory corrupting errors prevent the MVS oper-

ating system from automatically recovering from failure, thus decreasing system

availability. This strikes at the primary reason for having the MVS mainframe

5

Table I.2: Causes of severe non-memory corrupting failure that prevents auto-
matic MVS reboot and system recovery.

Bug type % of bugs

Deadlock 58%

Synchronization 22%

Undefined State 4%

Copying Overrun 4%

Data Error 3%

Unknown 3%

system marketed for high availability. Non-recoverable errors occur at a rate of

6.3% of the regular bug report population. Of these, the two largest causes are

from deadlocks(58%) and synchronization (22%) errors, as given in Figure I.2,

caused by multi-threaded concurrency bugs. Sullivan and Chillarege summarize

that the three main causes of severe failure are memory corruption, concurrency

and administrative errors.

The Sullivan and Chillarege’s study succinctly provides the central mo-

tivation for this thesis. It covers two different areas of software bugs- memory

corruption and concurrency bugs- that share the property that they have severe

consequences and are difficult to isolate and repair in the field. However, there are

techniques to avoid these bugs by systematically checking for failure conditions,

though costly in terms of performance. Our approach is to provide hardware

techniques that accelerate these checks to avoid the overhead.

I.C Silicon Fabrication Trends

In this section we look at silicon fabrication trends that enable special

purpose hardware for software safety checks and error prevention. These trends

also suggest future programming models will need to be multi-threaded cognizant,

6

as multiprocessors become the dominant means of improving performance.

Understanding the future trend of microprocessors comes in part from

looking at the recent silicon semiconductor trends, and looking at the likely tech-

nology available to designers and manufacturers in that future time frame. His-

toric transistor scaling has caused the number of transistors per chip to increase at

an exponential rate for the past three decades, doubling every 18 to 24 months,

which famously is known as “Moore’s law”. Intel’s microprocessors roadmap

demonstrates this trend and is provided in Figure I.1. Gordon Moore, with visi-

bility into the technology at Intel, has stated in 2005 that this trend will definitely

continue for at least two more process generations but perhaps as long as twenty

more years until silicon lithography reach limits when dimensions are the size of

individual atoms [22]. While there are many barriers to further progress with

transistor scaling, the historic trend is that the technologists have managed to

find solutions, allowing Moore’s Law to continue. This history is recorded in

past International Technology Roadmap for Semiconductors (ITRS) [42] for fu-

ture design and manufacturing direction. All previous ITRS “red bricks” where

no technology is known to solve a particular problem, have been knocked off

successfully1.

While the number of transistors increases at a rapid rate and will do

so into the future, translating that to performance has hit several obstacles. Mi-

croprocessor designers have historically found that performance could be derived

from microarchitectural improvements and from frequency improvements. But

taking Intel’s roadmap as example, since 2004 this model has not kept us with the

earlier 1.5 to 1.7X performance increase per processor generation. Microarchitec-

tural improvements through instruction level parallel techniques has reached the

1Photolithographic technology limitations is perhaps the most famous of these “red-bricks”. One example
occurred at the 248nm wavelength of deep ultraviolet that the industry thought would limit feature sizes
at around 0.25µ. Engineers succeeded in using optical correction techniques, and later introduced 193nm
wavelength lithographic tools previously thought impractical, to overcome this limitation.

7

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1975 1980 1985 1990 1995 2000 2005 2010
Year

T
ra

ns
ito

r
C

ou
nt

transistors

Figure I.1: Moore’s Law: doubling of transistor per chip every 18-24 months on
Intel Microprocessors

point of diminishing returns [64], due to scaling limitations of hardware struc-

tures. Increasing the instruction level parallelism enlarges the size of microproces-

sor structures increasing the power consumption and propagation delay of wires

through them. For example register files, cache ports, and reorder buffers have a

quadratic area growth rate of the number inputs with at best linear improvements

in performance. There are other areas of microarchitectural improvements that

scale better such as L3 caches that reduce overall memory latency, or vector pro-

cessing units that increase parallelism without needing data bypassing. A second

means to improving microarchitectural performance is to scale up the frequency

of microprocessors. Historically Intel’s microprocessor’s clock rate approximately

doubled every process generation, matching Moore’s law (hence frequency used

to be a corollary law). Of this 2X, half the increase comes from transistor scal-

ing of 1.4X per generation, while the other half comes from reducing the logic

depth per pipestage at about 1.4X [46]. However frequency speedup has encoun-

tered two barriers. First switching power overhead is proportional to frequency,

and microprocessor design hit the “power wall” [67] in dramatic fashion in 2004,

where an Intel microprocessor successor for the first time did not increase the

8

1 MHz

10 MHz

100 MHz

1000 MHz

10000 MHz

1975 1980 1985 1990 1995 2000 2005 2010

Year

F
re

qu
en

cy
frequency

Figure I.2: Frequency doubled until 2003 on Intel Microprocessors

frequency over the earlier version. This is seen in Figure I.2. Since then Intel has

not increased processor frequency beyond 3.8GHz though some smaller rate of

increase is expected in the future. The second barrier is that there is diminishing

returns as one partitions logic into more pipestages, due to clock jitter and se-

quential circuit overhead. Further frequency improvements will likely be limited

to transistor scaling effects, leavened by power concerns.

One solution to performance scaling problems is to consider multicores

on a single chip, as has been done by Intel and others. Figure I.1 graphs the

transistor count of the largest Intel general purpose processor chips of a given year,

and year 2006 already has a dual core chip. This Intel Smithfield chip has 376

million transistors using 65nm process node technology. Contrast that chip with

its ancestor, the 1997 single core Intel Klamath chip with 7.5 million transistors

at 0.35µm that already has all of the significant high-performance features like

out-of-order execution, two-level branch predictor, multiple execution units, and

multiple levels (two) of cache, of its larger relative. Intel expects to release

sometime this year, the Montecito server chip with an even larger 1.76 billion

transistors. One can see that current chip budgets already support having several

high performance general-purpose cores on a single chip, even when using larger

9

caches. Alternatively one might consider specialized functions such as security

and debug because there is such a abundance of transistors now.

Because fine grain parallelism finds diminishing returns while simultane-

ously there are many chip level procesor cores, using coarse-grain task or thread

parallelism becomes preferable. The Chip Multiprocessors (CMP) [64, 46] are

loosely coupled using cache coherence to communicate between the cores, where

each runs separate threads. Combining the threads to solve a single task re-

quires coordination between the threads that is error-prone as the Sullivan and

Chillarege data demonstrates. Also such multi-threaded programs only provide

useful speedup if the partitioned work can be done in parallel, that is work in-

dependent of one another. If data dependencies, that normally cause ordered

execution, is only present part of the time, most parallelization techniques must

be conservative and prevent potentially unsafe parallel partitioning. Our work

will later demonstrate a solution to both problems.

Duplicating cores is not the only solution. These extra transistors en-

ables specialization of functional units to improve performance in ways that gen-

eral purpose processors are not able to. This was explored in the context of

cryptographic Application-Specific-Processors by Wu et.al. [94] where certain bit

manipulations were done much more efficiently in custom hardware, and several

specialized processors were run in parallel, to assist a general purpose proces-

sor. Because of the overhead of software checks, we seek to create specialized

functional units for software security later that reduce the overhead of software

checks.

I.D Goals of Thesis

Software bugs are program behavior that are unexpected from what the

software designer intended, which malicious hackers can often exploit on Internet

10

connected computers to remotely execute code or deny services. One common

bug often exploited is called a buffer overflow. In this thesis we examine why such

a simple bug is so frequently targeted to the detriment of so many systems. We

then examine a simple but powerful software technique called bounds checking

to defeat it. It comes with performance caveats that are addressed by this work.

Buffer overflow is a kind of memory bug caused by writing or reading

beyond the bounds of allocated memory. Reading beyond the bounds may leak

information. Writing past the bounds causes memory corruptions that often

manifests itself non-deterministically because the bad data may not used hence

observed by the program till long past the point of overwrite. Bounds checking

forces non-deterministic data corruption to become deterministic, by immediately

detecting if the buffer bounds have been exceeded, and before any memory is

written. Dangling-pointers is another memory corruption bug, but less frequently

seen. It occurs when memory has been freed, but is still used, leading to two

different overlaid uses of that memory. When both write that memory, they will

corrupt each others memory image. Protecting against both bugs is considered to

be sufficient protection against the most important cases of memory corruptions

by some [5].

We improve the performance of memory checks that prevent data cor-

ruption by software optimization and hardware acceleration:

• Identifying performance overheads of software memory checks through hard-

ware performance counters and simulation. The causes of overhead are extra

instruction execution, data-copying overhead, and branch mispredictions.

• Optimizing the organization of data association with the software checks.

We found that associating the meta-data with the object rather than pointer

reduces copying costs.

• Eliminate unnecessary checks outside the scope of code needing security

11

checks for dangerous data. We developed an interprocedural type-based

analysis to discover code that touches safe and unsafe data.

• Provide a modified Instruction Set Architecture and hardware datapath to

efficiently accelerate software checks. This eliminates unnecessary meta-data

loads and reducing instruction fetch requirements.

A second trend we examine is multi-threaded programming for Chip

Multi-Processors (CMP). Semiconductor scaling provides far in excess of transis-

tors than needed for a single general purpose CPU core, consequently many CPU

design companies will provide multiple cores on a chip. These multicores could be

used to accelerate single program performance by splitting it apart into multiple

threads, and executing the threads concurrently on the CMP cores. This multi-

threaded program needs to share data across threads, requiring coordination of

the data updates to maintain the original single threaded execution behavior.

Lack of coordination amongst shared data typically results in non-deterministic

execution called a race condition, and is often considered a software bug. We

examine a technique called Transactional Memory (TM) that eliminates race

conditions yet allows for parallelism.

We propose multi-threaded execution models for multi-core systems

that avoid data-races and deadlocks by using Transactional-Memories. Mem-

ory maybe speculatively modified in parallel, but data conflicts detected between

different threads force serial execution of the threads that avoids. One of the

main limitations of prior techniques handling what happens when their specu-

lative state no longer fits in cache due capacity constraints or when the thread

must be context switched out.

• Propose a virtualized Hardware Transactional Memory model called Page-

Transactional-Memory (PTM) that enables execution on general purpose

computers, that is cached, multi-user systems. This backs the transactional

12

state in virtual memory using additional hardware assistance, allowing that

state to overflow the cache, context-switched out or saved to disk. PTM

features faster aborts and commits than all prior virtualized transaction

work, by eliminating the need to copy data.

• Provide the first performance results for an important prior Transactional

Memory technique called VTM

II

Software Check Optimization

II.A Motivation for Memory Checks

Buffer overflow attacks are still the most common internet exploit, and

if current trends hold without intervention, it will remain so into the future. The

common form of buffer overflow attack takes advantage of program bugs that

allow writes of malicious data past the allocated memory boundary, such that

the adversary can execute code of their choosing. Figure II.1 reports the number

of CERT Security Alerts caused by different software bugs for 2004, 2005 and

2006. CERT Alerts are signifcant because they represent a security danger to

the national computer infrastructure due to an exploit (e.g. worm, virus) or

the potential for one. There are many categories: Buffer-overflow accounts for

the majority at 55%, 50% and 73% for those respective years. The following

two paragraphs describe the other bugs denoted by italics. Virtually all of these

buffer overflow alert carry the warning that they allow remote code execution.

Earlier CERT Security Advisory statistics before 2004 are found in [88], and have

the same proportions of buffer overflow exploits to total, with variation year-to-

year. Despite increased industry vigilance due to worm outbreaks in 2001, buffer

overflow attacks still remain the most dangerous and common exploit.

13

14

Two other types of bugs found in the 2004-2006 CERT Alerts are im-

portant for this thesis; the rest we contrast to justify their exclusion. First

dangling-pointers have three CERT Alerts reports in 2004. These are caused by

bugs where memory is freed by one pointer, and still used by another pointer

causing memory corruption. Second there are data-race alerts reported one each

in 2005 and 2006, caused by unsynchronized memory update in multi-threaded

execution. Both have the potential for memory corruption which allows execution

of remote code.

The rest of the bugs are beyond the scope of this thesis for a number of

provided reasons. The second largest category of CERT Alert exploits is privilege

escalation (23.9%) caused by the improper use of commands, such as active X

controls, or Internet URL exploit. In some cases this enables the remote execution

of code, e.g. running a script by an external agent. Automated securing of these

bugs is difficult because of the variety of controls to consider, and because of the

likelihood of stopping a task that the programmer intended. One subcategory

distinguished separately is privilege escalation to leak private information like

passwords to the adversary. Format string exploit on buggy sprintf functions

differs from privilege escalation in that it corrupts memory, to allow remote code

execution. Fortunately sprintf is only one alert of sixty-eight total in 2004-2006;

the lack of exploits in 2005 and 2006 may potentially be due to bug fixes. Denial-

Of-Service was the third most common attack (7.0%), but arguably less severe

than remote code execution. Memory layout errors cause memory corruption,

that potentially may execute remote code. The two examples are caused by

incorrect layout of arguments to RPC function calls, or reading of raw binary file

data. These occur at such a low level of the operating system, it makes it difficult

to include in the scope of this thesis’s investigation.

15

CERT

0

2

4

6
8

10

12

14

16

2004 2005 2006

A
le

rt
s

buffer-overflow dangling-ptr data-race DOS sprintf priviledge leak layout

Figure II.1: Cert Alerts 2004-2006

II.A.1 Bounds Security Exploits

Buffer overflow may intentionally alter instruction control allowing the

remote execution of code on a computer. We first describe the most basic form

of buffer overflow on stack arrays called “Stack Smashing”, as popularized by

AlephOne [1]. Consider a fixed size buffer allocated on a stack. A buffer overflow

can occur when the application copies external data into the buffer but does not

check for the size of the input data, especially while copying strings (e.g. using

strcpy). In the string case, the end of a string is determined by checking for

the null character which maybe intentionally missing. An adversary can exploit

buffer overflows by copying executable code or malicious data into the memory

buffer. When writing to the stack array, the adversary can overwrite the return

address with his own value targeting malicious code as illustrated in Figure II.2,

and the control will jump to execute the malicious code upon return from the

function. Stack smashing has been used in CodeRed, Nimda, and Slammer just

to name a few Internet worms.

Buffer overflow remains by far the most prevalent and consequently dan-

gerous of CERT Alert bug. One reason is that it maybe exploited in so many

16

return address0xc000

0xb000

buffer
2:
1:
0:0xbf72

int0x80

jmp0x18

…

…
mov0xb,$eax

0xc000

0xb000

0xbf72

(a) Stack before attack

0xbf72

malicious
payload

Buffer boundaries

(b) Stack after attack

Beginning of Stack

Stack Pointer

Direction of Stack Growth

Jumps to 0xbf72
on return

Figure II.2: Stack Smashing example

different ways. Once a defense technique is raised against an exploit, another

variant appears circumventing the defense. A phalanx of defenses such as sen-

tinels [20], reordering of stack variables [24], better code reviews, and varying the

base of the stack, has blunted “stack smashing” exploits. However in the continu-

ing arms-race this lead to heap exploits involving manipulating malloc/free data

structures in Lea’s Unix heap memory allocator [45] and similar data structures

in Windows XP heap allocator [4]. As heap attacks do not touch the stack, stack

protection schemes do nothing for this exploit. A heap attack manipulates free

list pointers to allow the adversary to overwrite arbitrary memory locations, and

has been used on Sudo, Secure Locate, Traceroute, and Netscape browser. This

capability allows heap attacks to change function pointers, to point to malicious

code, that will then get executed when the function pointer is invoked. Because

heap exploits are flexible there are many variations. One example is the Global

Offset Table (GOT) used for locating the run-time relocation data, including

function pointers in dynamic link libraries. GOT is just an array of pointers,

initialized by the dynamic linker. An adversary can corrupt a libc function

pointer in GOT, then when the corresponding function is called, it can result in

execution of malicious code written by the adversary. Another example are C++

17

virtual methods that are invoked through function pointers.

The above description of buffer overflow exploits might imply that they

only perform malicious code execution, however data manipulation by buffer

overflow is another dangerous capability. The adversary can modify the input

strings to system calls such as “system” or “popen”, by overflowing the buffer

location adjacent to the input strings. These input strings determine the Unix

command to be executed and hence the adversary gets to execute a command

of his choice. Buffer-overflow attacks can also be used for denial-of-service by

simply corrupting data in a program that causes the program to crash such as

overwriting pointers with null values.

II.A.2 C and C++ Code Base

Much of the recent buffer overflow exploits occur in programs written

in C and C++ due to those languages unsafe features. Though there exist safe

languages protected by built-in run-time bounds checking and by full type-safety

such as Java and C#, the C and C++ languages have a large and important

installation base. For example, the Redhat 7.1 Linux distribution is composed

of the following source languages: C is 71% and C++ is 15% [90]. Virtually all

important operating system kernels such as Linux, BSD, other flavors of Unix,

and Windows are written in C or C++, as are many potentially vulnerable device

drivers. Even components of the Java and .Net virtual machine are written in

unsafe languages (C and C++). C and C++ have the largest installed base of

code as measured by open source projects. A snapshot of the FreshMeat Open

Source database on 12 January 2005 in Table II.1 lists the prevalence of the top 5

languages having a total of 85.6% of projects. Combined C and C++ have 51.4%

while Java has 18.1%.

18

Table II.1: Distribution of open source projects by languages

language % of projects

C 34.3%

Java 18.1%

C++ 17.1%

Perl 16.1%

Python 8.6%

Rest 14.4%

C,C++ 51.4%

II.B Implementation of Bounds Check

Bounds checking is performed when a pointer is dereferenced to access

an object or buffer to ensure that the access is to the intended object. Array access

is treated similarly as it can be decomposed to pointer dereference and check

on the effective address generated by the addition of the index and array base.

Bounds check is done by keeping track of low and high bounds information of the

objects and comparing them against the effective address used while dereferencing

a pointer as seen in Figure II.3(a). It is called two-branch because an inlined

implementation will have two branches assembly instructions. The base of the

allocated memory region for the object defines the low bounds. The maximum

extent of the region, that is the base plus size of the object, defines the high

bounds. Bounds checking defeats buffer overflow attacks at the point it attempts

to exceed the object’s bounds, by raising an exception or jumping to a handler,

thus preventing any out-of-bounds data from being read or written. For the

code sequences used to do bounds checking shown in Figure II.3(a), we assume

that low, and high meta-data are given by some mechanism discussed later in

section II.E.

A second form of bounds check uses the low bound and size of the

19

object, that combines the low and high bound comparisons as illustrated by

Figure II.3(b). For the high bounds check, the comparison is straightforward

where the offset of the pointer from the low bounds is compared against the size

of the object. Exceeding size results in raising error handling. For the low bound

check, it uses wrap-around property of unsigned subtract on negative numbers

(low out-of-bounds) to become a large positive number - typically larger than

size. It is possible for an extremely distant pointer and large object that wrap

around to appear in-bound, though this is exceedingly unlikely. We provide this

more efficient single-branch bounds check for comparison. Figure II.3(b) assumes

the availability of low, and size meta-data.

A third software bounds check is to call a dedicated bounds instruction

that exists in the x86 instruction set. bounds instruction is functionally identical

to case II.3(a) but clearly has fewer instruction. We compare different bounds

checks implementations in greater detail in section II.D. The bound instruction

has only two operands as shown in Figure II.3(c). The first input (ptr) speci-

fies a general purpose register containing the effective address that needs to be

bounds checked, and the second input (b ptr) is a memory operand that ref-

erences a memory location containing the low and high bounds. On execution,

the bound instruction verifies if the first-operand’s address is between the low

and high bounds. If the bounds are exceeded, it issues a bounds-checking excep-

tion. The in-memory bounds information constrains the check code-generation

because it is not possible to encode constant bounds in the compare instructions

as with Figure II.3(a) and (b) sequences. The code generator uses meta-data

given with the pointer and creates additional in-memory meta-data for arrays.

The organization of this meta-data is discussed further in section II.E.

We consider the check code sequence to help us understand some of the

performance overheads seen with bounds checking. Initially we are interested

20

start: start: start:

if(ptr >= low) then low_ok tmp=(unsigned)(ptr-low) bound ptr, b_ptr

trap if(tmp < size) then ok

low_okay: trap

if(ptr < high) then high_ok ok:

trap

high_okay:

(a) Two Branch (b) Single branch (c) x86 bound

Figure II.3: Psuedo-Code of Bound Check and minimum number of assembly
instructions. (a) Two Branch - 4 inst (b) Single Branch - 3 inst (c) Bounds - 1
inst

in how many instructions are present in a check as excess dynamic instructions

reduce performance, and the number of branches due to the cost of branch mispre-

dictions. Just for this approximate comparison we assume meta-data is directly

loaded from memory allowing the CISC architecture to fold meta-data loads into

another instruction, or converts them into a move instruction. Also a single if

statement is converted to at least two instructions - compare and conditional

jump, with potentially one or more move instruction(s) needed to marshal val-

ues to registers. Using these simple rules we find that the minimal number of

executed x86 assembly instructions are four for two-branch (a), three for single-

branch (b) and one for bound op (c) discussed next. As their descriptions imply,

the branch counts are two (a), one (b), and zero (c).

II.B.1 Representing Bounds Information

A bounds checker needs bounds information to perform its verification.

We will now describe how the bounds meta-data information is organized and

recovered when a pointer is dereferenced.

We categorize the bounds checking techniques on how it manages the

bounds information. There are three approaches to associating the bounds meta-

21

��� �

�����
	�� �

������������� �

�����
	�� �

����������

������� �
�����������

��� �!	�� �

"�# ��$ # �&% 	

'� ���(�(�

)�*�+-,.*0/21(3547686'9':2;)!/<+>=.*@?�A76<BDC&?�3@E)�F�+-GH*@C>*�I�3&JLKM/@NO3&FO?

Figure II.4: Bounds Check Meta-Data representation

data to the object as shown in Figure II.4 - (a) meta-data table, (b) fat-pointer,

and (c) adjacent to the object (referenced by pointer).

• Table Lookup

The first approach maintains bounds meta-data separate from the pointer

in a table. This makes it unnecessary to change the memory layout of the

pointer, reducing the effort to port non-bounds checked applications. To

lookup the bounds meta-data for a bounds verfication, it does a lookup on

the bounds meta-data table with the pointer address as the index. The C

language complicates table lookup by allowing interior pointers that change

the addresses passed, though the same meta-data should be returned. Con-

sequently the table is not organized as a fast hash lookup that requires exact

match, but instead uses tree search with additional runtime cost that allow

ranges of addresses to return the same meta-data. Table lookup is illustrated

in Figure II.4(a).

Jones and Kelly [44], and the derivative CRED by Ruwase and Lam [76]

uses Table Lookup. CRED fixes the problem of out-of-bounds pointers found

in the earlier Jones and Kelly. By definition out-of-bound pointers violate

bounds and are forbidden by language specification, but in practice are often

found in code and ignored so long as they are not referenced. Both table-

22

lookup implementations report much higher run-time overhead than fat-

pointer based bounds checkers (10X or greater).

• Fat Pointer

Fat pointer modify the representation of a pointer to include the low and

high bounds [25, 60] meta-data. Figure II.4(b) shows that the bounds are

stored with the pointer in memory adjacent to the pointer value. Because

of the direct association, this fat pointer format can directly handle interior

pointers without any special consideration, and because no table lookups

are necessary, it is fast. As a consequence this thesis uses direct-assocation.

Austin et.al. [5] proposed a variation of the fat pointer directly assocating the

base and size representation to the pointer, to be used with single branch

bounds check as described by Figure II.3(b).

• Managed Object

Managed languages such as C# and Java name their objects without ex-

posing the pointer to the programmer, making arbitrary pointers addressing

impossible. Because the pointer always references the base of the object,

bounds information can be fixed at a given distance to the object, that is

known at compile time. Consequently lookup is fast. Managed object meta-

data supports other features like managed memory e.g. garbage collection,

dynamic typing, etc. This model is illustrated in Figure II.4(c).

For the rest of the thesis we consider only directly associated meta-data.

This is due to the performance overhead of table lookup, and the frequency of

interior pointers with C/C++ that prevent the use of managed objects.

23

II.C Software Memory Check Related Work

This section reports related work for software memory checks: We de-

scribe alternatives to fat-pointer bounds checking or other software checks to

prevent memory corruption. We describe several software optimization tech-

niques to minimize the number of checks. Because implementations exist for

software checks, we can compare their run-time performance to our software op-

timization techniques to contrast the differences of these approaches. Third we

report related hardware enhancements to reduce the performance overhead for

memory checks.

II.C.1 Bounds Checking and Their Alternatives

Bounds Checking

As mentioned in subsection II.B there are two main styles for C/C++

bounds checking based on how they associate meta-data, which is through ta-

ble lookup and directly associated meta-data in fat-pointers. Bounds checking

techniques are represented by CRED [76] for table lookup, and McGary [25] for

direct-association of the meta-data. CRED is an improvement of the earlier Jones

and Kelly table lookup bounds checker [44]. CRED also reduces the numbers of

bounds checks through an optimization limitting checks string object references.

Both table lookup mechanisms have large run-time overheads. Using our set of

benchmarks we measured an overhead of 1370% for base CRED (Jones and Kelly

is similar). We then measured CRED, where their string optimization reduces the

overhead to 120%. Recently CRED was improved by using BDD pointer anal-

ysis to filter out non-string types in their string-only optimization [7], reducing

runtime overhead to around 100%. CRED was also used to tolerate bound check

failures by safing the violation continuing, rather than raise an exception [74].

24

In this model, out-of-bound read returns back a nonsense value to prevent in-

formation leakage, while out-of-bound writes do not update memory to prevent

memory corruption.

McGary [25] and Cyclone [43] perform bounds checking with fat-pointers

meta-data. While McGary’s inlines checks and bounds updates, all other bounds

checkers we have examined invoke procedure calls to perform these tasks which

explains in part McGary’s much reduced overhead relative to them. Our mea-

surements of McGary’s reports an overhead of 72%, and in this thesis we present

optimizations to reduce this overhead even further. Austin et al. [5] does bounds

checking and dangling pointer checks using some additional meta-data state for

a complete pointer verification.

Protecting Code Pointers

An alternative to bounds checking are pointer protection techniques rep-

resented by ProPolice [24] and PointGuard [19], that provide some of the lowest

overhead of software techniques. We measured 1% performance overhead with

ProPolice on our benchmarks, by using a “canary” - a small piece of data placed

on the stack between buffers and the return address to check for buffer overflow.

Upon exiting a function, the canary is checked, and if overwritten by some over-

flow attack, the thread is terminated and the incident is reported. ProPolice also

provides variable reordering to further protect stack data. ProPolice is a refine-

ment of the earlier StackGuard [20], and both protect stacked memory but not

other memory such as heap. An improvement is PointGuard [19] that encrypts

all pointers with an XOR function providing better coverage than ProPolice. In

PointGuard, an overflow attack overwrites the encrypted pointers, which decrypt

to most likely meaningless values. While much stronger, PointGuard does not

prevent attacks that overwrite data not containing pointers, and PointGuard is

25

susceptible to information leakage during reads of out-of-bound data. PointGuard

only protects pointers.

An advantage that bounds checking has is that it prevents the buffer

from ever being overflowed, so the attack can be handled without crashing the

program. ProPolice, StackGuard and PointGuard detect overflow only after it

has been overwritten, which makes it hard to recover from an attack.

II.C.2 Compiler Optimization

There is a large body of work involving reducing redundant bounds

checking in loops and acyclic code using compiler data-flow analysis. The ear-

liest work was done by Markstein et al. [53] who proposed using a variation

of Common-Subexpression-Elimination (CSE) for bounds on acyclic code, and

Loop-Invariant Code Motion (LICM) on loops as two separate bounds redun-

dancy elimination steps. Both optimizations match and eliminate redundant

checks only if the exact same arguments are present as some earlier check. The

approach in this thesis takes includes Markstein et al. CSE and LICM redundancy

elimination. Subsequent papers improve upon the bounds redundancy by being

sensitive to ranges of addresses instead of exactly the same bound expression to

eliminate more redundant checks [49, 29, 11]. The idea here is to find an early

bounds check that more tightly specify a bounds than a later check, thus making

the later check redundant. The first of these performed this check for acyclic

code [29]. Kolte and Wolfe [49] improved the check framework by using Partial-

Redundancy-Elimination to generalize and combine acyclic and loop redundancy

elimination with this range framework. Bodik, Gupta and Sarker [11] performed

this elimination in the Java run-time, requiring an efficient graph representation

of the ranges to reduce run-time optimization overhead.

Optimization is also possible using a type system framework to prove

26

the safety of memory references, and eliminate unnecessary checks on safe ones.

CRED [76] globally applies bounds checking only to string types, observing that

buffer overflow exploits occur on pointers to strings and string arrays. CCured [60,

35] uses type information to eliminate type-safe checks. For bounds checking

they discover whether a pointer takes the result of some arithmetic operation

that might cause the pointer to go out-of-bounds. CCured eliminates checks for

completely safe pointers, while for indeterminate pointers use run-time checks,

and provably unsafe pointers are flagged at compile time. Such strong properties

has the disadvantage that CCured suffers from false errors due to un-dereferenced

out-of-bounds pointers.

Austin et al. [5] implemented bounds checking and dangling pointer

checks, claiming that using both checks provides complete pointer safety. This

paper also proposes doing run-time optimization of redundant checks by marking

a bit that indicates it is already checked, but is cleared if the arguments changes.

Bounds checks use a single branch bounds check discussed in subsection II.B and

the dangling pointer tag check described later. They use a data structure that is

a mixture of direct-association for the bounds, and table based capability tags for

the dangling pointers. Searching through the capability table and using directly

associated meta-data for bounds checking is moderately expensive. Austin et al

report an execution overhead in the range of 130% to 540%.

II.C.3 Comparison

Table II.2 summarizes a comparison of prior techniques to protect against

buffer overflow attacks on the Spec 2000 integer programs we examined. The first

column shows the slow down experienced from the technique versus no bounds

checking, where numbers labeled * are the average taken from the papers for com-

parable benchmarks, and the results for the rest of the techniques we measured

27

Table II.2: Comparison of prior techniques.

Technique slow buffer

down overflow

Flow[84],Minos[21] 1-5%* complete

Dynamic Taint[62] 5x* complete

Prog Shepherd[48] 15%* partial

ProPolice[24] 1% stack frame

PointGuard[19] 10%* pointers

CCured[60] 40%* complete

CRED[76] (base) 1370% complete

CRED[76] (string) 120% strings

McGary[25] 72% complete

bnd-array 40% complete

all-interface-write 24% interface

ourselves. The last column summarizes the type of protection provided against

buffer overflow attacks: Complete specifies overflow protection for all memory ref-

ereces, while partial specifies limited protection since memory maybe corrupted.

Stack-frame, pointers, strings protects specific types of data from corruption, but

not other data. Interface protect data modified by the interface from overflowing

buffers.

Several important properties of buffer overflow protection techniques are

summarized in Table II.2. The run-time measurements are done on an Athlon

processor. Bounds checking techniques have higher overhead (1370%) than non-

bounds checked techniques using hardware assistance (measured 1%), but as

noted earlier, the non-bounds check techniques have certain functional limitations

such as being limited to stack or being imprecise. Full bounds checking using

direct-associated meta-data (McGary 70%) is significantly lower overhead than

table lookup (CRED 1370%), and in subsequent sections direct-associated meta-

data will improve to 40%, and further 24% with optimization.

28

II.C.4 Hardware Proposals for Security

Recently several techniques have been proposed to dynamically track

all data coming from any untrusted source, and if that data gets executed, then

execution is marked as a potential attack [84, 21, 62]. Suh et al. [84] and Crandall

and Chong [21] examined using hardware support to tag each memory word with

a Taint bit indicating if the data put into memory was stored there from untrusted

sources like the network. Then if any memory address is executed with this taint

bit set a buffer overflow attack is flagged. Assuming this hardware support, they

were able to provide this protection with only a few percent slowdown. More

recently Newsome and Song [62] implemented this approach using a dynamic

binary emulation to track data from external sources. They were able to do

this without any hardware support, but with a slowdown of 5 times over native

execution (ignoring the baseline overhead of dynamic emulation system used).

Program shepherding [48] is another approach that protects key control

transfer points such as indirect jumps, and uses a binary optimization system

to detect when control flow is being transfered to data regions. This is done

efficiently by using a run-time binary rewriting tool that guard branches. It

guards against these attacks, but does not prevent code-injection attacks like

overwriting a function pointer in the global offset table.

These techniques do not protect against data overflow attacks, only

code execution attacks. An adversary may still perform data attacks such as

modifying function arguments or system calls. In comparison, the bounds check-

ing optimizations we examine in this paper provides protection for both types

of attacks, without requiring any additional hardware support, and keeping the

overhead to 24% on average.

Tuck et al. [88] proposed hardware accelerated encrypting pointers to

protect against security intrusions much like PointGuard [19]. In comparison, our

29

focus is on providing the precise reporting of check violation instead of obscuring

pointer values for bounds and dangling pointer checking.

II.C.5 Hardware Support for Debugging

Recently there has been significant interest in providing hardware sup-

port to assist debugging. Zhou et al., proposed iWatcher [97] to monitor accesses

to memory locations. The memory location that needs to be monitored and the

monitoring function that needs to be executed when a monitored memory loca-

tion ins accessed, are specified through a system call. A bit is associated with

each word in the L1 and L2 caches, so that the hardware knows which loca-

tions need to be monitored (information will be lost when a block is evicted). A

software table is used to map the addresses of monitored locations and the mon-

itoring function corresponding to them. When there is an access to a monitored

location, the software table is searched to get the monitoring function, which is

then executed.

The goal of iWatcher is to provide efficient watch points to monitor

memory locations for debugging. iWatcher can specify a range of memory to

observe if memory is overwritten for buffer overflows. It does not provide a

general framework for performing bounds checking for all pointers and array

references, which requires storing and maintaining meta-data information for the

checks that iWatcher does not do.

Witchel et al. proposed Mondrian Memory protection [92]. It protects

memory across all the user and supervisor processes, at fine granularity down

to a word using hardware support, mediated by the kernel. They demonstrate

its applicability to fine grain protection for malloc headers surrounding allocated

regions. Applying bounds checking to Mondrian Memory will have even finer

granularity protection regions and many more of them than their malloc exam-

30

ple, incurring more communication overhead through the kernel to the protected

hardware resources unlike application level only bounds checking.

In DISE [17], Corliss et al. proposed a programming interface to the

dynamic instruction macro-expansion found in modern processors. A sequence

of functions (essentially micro-ops) are associated with an instruction and are

dynamically injected into the pipeline when that instruction is executed. They

applied their technique for achieving memory fault isolation, which ensures mem-

ory access in a modules on the permitted data or code segments by doing micro-op

address checks. In their follow up work, Corliss et al. [18] used the DISE mech-

anism to efficiently implement watchpoints that will be useful for implementing

interactive debuggers. But DISE has not looked at providing complete bounds

checking and dangling pointer checks, which require mechanisms to track the

meta-data efficiently. Our research is complementary, since it would use support

like DISE to perform the micro-op expansion of the meta-data checks.

The memory subsystem can be modified to protect memory regions for

debugging. SafeMem [70] alters ECC to provide watched memory boundaries

for detecting buffer overflows and to identify infrequently accessed objects for

memory leak detection. They cite 0.7% to 29.4% overhead, which is comparable

to our hardware performance overhead. While SafeMem cleverly makes use of

existing hardware functionality, it cannot guard against all buffer overflows. Also,

the overhead of the ECC boundaries are governed by DRAM word size. Current

DRAM DIMM modules have 8 byte words, and for small objects sizes, SafeMem’s

overhead may be expensive.

AccMon [96] is based on the observation that a memory location is

typically accessed by few instructions. Hence, they capture this invariant set of

PCs accessing a given variable, and classifies any access by an outlier instruction

not present in the invariant set as a potential cause of error. AccMon does not

31

implement comprehensive checks like bounds checking or the dangling pointer

checks.

FDR [95] and BugNet [59] continuously collect a trace representing the

recent execution of the program. When the program crashes, the collected trace

is useful for debugging by deterministically replaying the last several millions of

instructions executed before the crash. ReEnact [69] is another proposal that

continuously records memory accesses in a shared memory system and when a

data race is detected based on certain heuristics, the multi-threaded program is

replayed again and again to characterize the data race.

Patil and Fischer [65] provided bounds and dangling pointers checks

using a second “shadow” processor running on a separate co-processor to accel-

erate checking. The original program runs ahead while a sliced checker process

follows the main thread, synchronizing at system calls with a combined run-time

overhead of 10%. Their solution involves source to source translation to create a

completely different shadow process which needs to be executed concurrently on

a different co-processor. The two processes need to be kept in synchronization

to ensure that they are executing along the same path in the program. When

compared to this approach, ours is very lightweight and requires less hardware

resources.

II.D Performance Analysis of Bounds Checking

Of the different bounds check sequences described in the previous sec-

tion, the directly associated meta-data bounds check provides the best perfor-

mance base. Our goal is to reduce directly-associated meta-data overhead further,

to ease adoption. We consider improving the performance of bounds checking at

the instruction level in this section, and at the data layout level in the following

section II.E. Within this section, it is divided into a description of performance

32

analysis methodology using CPU performance counters, the code generation of

the bounds checks sequences by the compiler, and the benchmarks used in this

analysis. Additional information about how bounds for the bounds checks are

generated in the compiler is available in the subsection II.D.4.

II.D.1 Performance Profiling

As there already exist bounds checking compiler tools, we want to per-

form hardware measurements to get an accurate and complete understanding of

the overheads involved. To dig deeper, we desire microarchitectural data to iden-

tify the source of overhead when these instructions are executing. Fortunately

performance analysis hardware is built into many CPU’s, with the most common

being counters that record microarchitectural events such as instruction count,

cycle count, branch misprediction count, cache misses count, etc. By comparing

the performance counters of the bounds checked binary against one without, we

can see the performance change due to the bounds checking.

We use Mikael Petterson’s Linux kernel patch [66] that instruments

Linux to record these counters. Pettersson’s tool provides application level access

to these low level hardware performance counters and handles operating system

details such as saving and restoring state during context switches. Over this we

build an analysis application to access the counters we are interested in while it

runs a target program.

For each result, we execute the program three times to factor out ran-

dom system effects (e.g. disk IO) while executing on a real processor. Our

primary results are based on the AMD Athlon 2400+ XP (K7), including all of

our hardware performance counter numbers.

33

II.D.2 Bounds Tools

Our compiler is based on the Greg McGary’s bounds checker [25], that

patches the 2.96 GCC compiler, and generates bounds check using directly-

associated meta-data (fat-pointer) and the branch sequence check in Figure II.3(a).

We made several general modifications for bounds code generation and compati-

bility: First we extend bounds check code inlining to support single branch and

x86 bounds, described in Figure II.3(b) and (c). Second we wrote bounds checking

wrappers for many library functions. Third we modified the GCC value num-

bering optimization to recognize the bound instruction to eliminate redundant

bounds corresponding in an acyclic region, and to perform simple loop hoisting of

bounds checks. These optimizations were first done in Markstein et.al. [53]. Last,

we modified the compiler to let us do inter-procedural analysis and optimization

described later in Section II.F.

As our goal was to reduce the overhead of bounds checking while main-

taining the security coverage that it provides, we needed to measure both perfor-

mance and security. We used the SPEC 2000 Integer performance benchmarks

running on AMD Athlon hardware using performance counters. We provide run-

time results for all seven of the C SPEC 2000 Integer programs that compile and

run correctly with our baseline McGary gcc compiler. The remaining four (gcc,

perl, gap and vortex) failed to compile with the baseline McGary compiler we

started with. All are compiled using GCC with the -O3 option.

We also verified the security of our bounds checking against several real

program bugs from the AccMon benchmark suite in [96] and Wilander bench-

mark [91]. Accmon researchers found buffer overflow bugs in open source pro-

grams, occurring for example at the command line parsing or strcpy. In each case

our compiler detected the buffer overflow as described in Table II.3. Wilander’s

benchmark tests for 18 different malicious code injection buffer overflow attacks.

34

Table II.3: Coverage for UIUC AccMon benchmarks

Benchmark Bug

AccMon

bc 1.06 string parsing overflow

gzip 1.2.4 strcpy overflow

man 1.5h1 cmd line parsing overflow

ncompress 4.2.4 cmd line strcpy overflow

polymorph 0.4.0 cmd line strcpy overflow

This includes varying stack and heap memory, attacking return address, or a data

structure function pointer, etc. Our modified compiler passed all 18 tests.

II.D.3 Bounds Code-Generation for Directly-Asssociated Meta-Data

As x86 bound instruction promises to reduce dynamic instruction count

and branch mispredictions, we modified the GCC code generation to emit this

instruction as described earlier in section II.B. The bound instruction has two

operands as shown in Figure II.3(c). The first input (ptr) is a register containing

the effective address to be bounds checked, and the second input (b ptr) is a

memory operand referencing memory with the low and high bounds. We also

modified the compiler to generate the single branch bounds check (see subsec-

tion II.B)

We would like to use the bound instruction for all bounds checks, but

an issue arises when we try to do bounds checking for global and stack arrays,

as they are referenced in C and C++ without pointers. To allow the bound

instruction to be used in this case, we allocate memory adjacent to statically

declared arrays to hold the meta-data bound information, which will be created

and initialized when the arrays are created. Since the bound information for the

global and local arrays are now located adjacent to the object data memory, the

bound instruction can take in the corresponding memory location as its second

35

operand to do bounds checking for these arrays. This memory location is located

at a fixed offset from the base of the array. Setting bounds meta-data in memory

requires changes to the compiler data structure layout module as well as the

code generator. Out of the techniques we examined, we found this method to

provide the best performance for bounds checking array references, and we call

this configuration bnd-array.

Also we want to understand to what extent one can reduce the bounds

checking overhead, if one implements the bound instruction as efficiently as pos-

sible in a processor. To do this, we generate a binary like bnd-array, except we

remove all the bound instructions, while keeping all the meta-data and instruc-

tions to maintaining meta-data. We call this configuration bnd-ideal. bnd-ideal

will still have overhead from generating and maintaining the bounds information

in memory, and from copying the fat-pointer caused pointer assignments or with

pointers passed through function parameters.

II.D.4 Generating Bounds Information from Type Information and

Code Generation

Bounds checker need bounds information to perform its verification.

Bounds information of static objects is determined completely by the compiler,

while bounds information of dynamic objects is determined partially at run-time

if its statically sized or completely at run-time otherwise. Bounds information is

generated using the size and memory location. Type information provides the size

when the object is statically sized. The low bounds of any object is determined by

its memory allocation location. Completely static objects such as global variables

are placed in fixed memory and have low bounds set at compile-time. Statically

sized objects in dynamic memory such as stack variables, have low bounds set

at run-time when the address of the object base is determined. Dynamically

36

sized objects generate bounds differently, as type information is insufficient. C

provides heap and stack dynamic memory allocation routines that take size as

an input. These routines are modified to generate bounds from the supplied size,

and from the low bounds obtained through the allocated object pointer. High

bounds information is simply derived from the low bounds and size whenever

both become known, by adding the size to the low bounds.

A bounds check obtains the bounds information through pointer or ob-

ject meta-data or from constants generated at compile time. As noted earlier in

subsection II.D.2, McGary’s pointers are actually fat-pointers with the bounds

meta-data directly associated with it. Fat-pointers are generated either from

dynamic memory allocation routines or from a address operator (e.g. &). The

address operator uses size information (from type) and low bounds information

to construct the fat-pointer. Completely static objects have its bounds infor-

mation placed in constants, as they lack fat-pointers. As we will see later in

section II.E sometimes it makes sense to force these bounds to either pointer or

object meta-data.

McGary’s compiler (hence ours) generates bounds checks whenever C

pointer dereference operators (e.g. *ptr) or array subscripting operator (e.g.

base[index]) are seen in the program. Depending on the compiler, some of

these checks maybe found redundant, and eliminated by optimization. Direct-

Association of meta-data compilers converts pointers to fat-pointer representa-

tion. These too maybe optimized back to regular pointers along with any bounds

check. Type-optimizations are discussed in section II.F.

II.D.5 Performance Analysis

We now examine the performance of the different implementations of

bounds checking described in Section II.A. The two-branch bounds check (GM)

37

implementation is used by the baseline McGary compiler [25]. It has a compare-

branch-compare-branch sequence. The single branch (1BR) uses one (unsigned)

subtract-compare-branch-trap sequence [5]. We compare this to a single instruc-

tion bounds check by using the bound instruction with our bound array opti-

mization for the bnd-array results. Reported numbers are run-time overheads

in comparison to the baseline without any bounds checking, by normalizing the

bounds results against the baseline. All three code combinations are shown in

Figure II.3.

Figure II.5 shows the percent slowdown for running the compiled pro-

grams with the different bounds implementations on an AMD Athlon. The first

observation of our comparison is that bounds checking using McGary’s (GM)

compiler results in overheads of 71% on average. The second observation is that

using the single branch compare implementation 1BR reduces the average perfor-

mance overhead from 72% down to 48% on the Athlon. The third observation is

that the x86 bound instruction overhead (bnd-array) provides the lowest bounds

checking overhead when compared to these two techniques with an average slow-

down of 40% on Athlon. Ideal bounds bnd-ideal has an average 28% slowdown,

by eliminating all check overhead, but not meta-data copying overhead. This

demonstrates headroom to eliminate check execution overhead as demonstrated

by the 12% difference, and the copying overhead is even more significant with

28% overhead remaining.

The difference in overhead comes from several sources. The most im-

portant component overhead comes from dynamic instruction count as seen in

Figure II.6. As expected there is significant 149% instruction overhead for GM,

which is reduced to 121% for 1BR, and roughly half of that 65% for bnd-array.

Of this 65% as reported by bnd-ideal, 78% are support memory instructions not

directly part of the check, and the remaining 22% are bounds instructions. We

38

0%

20%

40%

60%

80%

100%

120%

140%

160%

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

Cra
fty

19
7.

pa
rs

er

25
6.

bz
ip2

30
0.

tw
olf

av
g

%
 S

lo
w

do
w

n

GM
1br
bnd-array
bnd-ideal

Figure II.5: Run-time overhead of bounds checking (AMD Athlon).

0%

50%

100%

150%

200%

250%

300%

350%

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

Cra
fty

19
7.

pa
rs

er

25
6.

bz
ip2

30
0.

tw
olf

av
g

%
 In

cr
ea

se
d

D
yn

am
ic

 In
st

ru
ct

io
ns GM

1br
bnd-array
bnd-ideal

Figure II.6: Increased dynamic instructions due to bounds checking

39

also examined the branch misprediction and L1 data cache as provided in Fig-

ure II.7 and Figure II.8 respectively. The benefit of the bound instruction relative

to the single or two branch bounds implementations can be partly attributed to

the effect on branch misprediction rates on the Athlon. We can see in Figure II.7

that two-branch GM (256%) has much higher branch misprediction rate than

bnd-array (11.5%) or the one branch version 1BR (105%). The additional first

level data cache miss effects due to additional meta-data and memory accesses

is in Figure II.8, which is usually similar across different bounds checks. Array

dominated programs fares equally for most programs (e.g. 300.twolf), but in one

case is hurt by extra object meta data in bnd-array (e.g. 186.crafty). Pointer

dominated programs like 197.parser that is sensitive to hit rate in L1 data-cache,

suffered the most with additional meta-data induced cache capacity misses.

The bnd-array result demonstrates a significant improvement going from

baseline 72% to 40%, by reducing dynamic instruction count and eliminating

branch misprediction overheads. Looking over the performance data, we see

that further improvements are contingent on either eliminating bounds checks or

reducing copying overhead.

II.E Data Layout

In this section we focus on fat-pointer meta-data for C and C++ pro-

grams. We examine storing this meta-data either along with the pointer or with

the object, having seen fat-pointers and manged object meta-data previously.

Figure II.9(a) generalizes these two approaches as Pointer Meta-Data (PMD)

and Object Meta-Data (OMD). For some checks, where to store the meta-data

is an implementation option, whereas for other checks the information needs to

be stored as either PMD or OMD. We use bounds checking and dangling pointer

checks to demonstrate this.

40

0%

100%

200%

300%

400%

500%

600%

16
4.g

zip

17
5.v

pr

18
1.m

cf

18
6.C

ra
fty

19
7.p

ar
se

r

25
6.b

zip
2

30
0.t

wolf

av
g

%
 In

cr
ea

se
d

M
is

pr
ed

ic
te

d
B

ra
nc

he
s GM

1br

bnd-array

bnd-ideal

Figure II.7: Increased branch misprediction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

Cra
fty

19
7.

pa
rs

er

25
6.

bz
ip2

30
0.

tw
olf

av
g

%
 In

cr
ea

se
d

L1
 D

at
a

C
ac

he
 M

is
se

s GM
1br
bnd-array
bnd-ideal

Figure II.8: Increased Level One Data cache misses

41

PTR low high

(b) Pointer Meta-Data (PMD)
for Bound Checking

(d) PMD and OMD for Dangling-
Pointer check

OBJ

PTR link ptrtag

OBJ objtag

(c) Object Meta-Data (OMD)
for Bounds Checking

PTR link

OBJ low high

POINTER pointer meta data

OBJECT object meta data

(a) Meta-Data Locations

Figure II.9: Meta-data Representations. An arrow indicates a pointer to data
associated with the object. Highlighted blocks are meta-data.

For bounds checking, the high and low bounds are typically stored ad-

jacent to the pointer as PMD shown in Figure II.9(b) in the fat-pointer configu-

ration. Alternatively, we propose that the meta-data for bounds checking could

be stored with the referent object as OMD shown in Figure II.9(c). For this

option, a link is stored adjacent to the pointer, which will provide the address

to the location where the object meta-data is stored. The link handles interior

and out-of-bounds pointer problem mentioned in subsection II.B.1. For dangling

pointer checks, the meta-data is a pointer tag stored as PMD and an object tag

stored as OMD. This is shown in Figure II.9(d). Just as with the OMD bounds

checking, a link is required as part of the PMD to find the object tag stored as

part of the object meta-data [5, 65].

Depending on where the meta-data is stored, as a PMD or OMD, the

performance overhead will vary. This is because, the two representations will

have different cache spatial locality. In this section we examine this trade-off,

considering whether alternative meta-data storage is preferable to those currently

proposed.

The differences between storing the bounds meta-data as OMD vs PMD

are:

• Sharing of Meta-Data - Storing the meta-data with the object will allow the

42

meta-data to be shared across several pointers to the same object.

• Number of Pointers vs Number of Objects - Related to the above point is

that some programs have many more pointers than objects. For example,

programs like mcf and parser have N pointers for each object. For these

programs, storing the bounds as PMD requires significantly more storage

(and data cache usage) than storing them with the object. Storing meta-

data with the object enables sharing them between pointers pointing to the

same object.

• Reducing the PMD to 1 Word - Moving the meta-data to the object reduces

the PMD from 2 words down to 1 word, and this is the link word to the

object meta-data.

• Overhead of Extra Link Load - The OMD approach has the additional over-

head of loading the link register. Note, that the link register overhead for

the OMD case can actually be fairly small. This is because the link register

can be hoisted to occur at the same time as the pointer load. If these both

overlap, then the cost of the link load can be minimal.

II.E.1 Methodology

To better understand sources of delays in the processor pipeline, we

modified SimpleScalar to classify every cycle in terms of generic delay sources.

It also provides a larger data-cache configuration than current CPU’s, suitable

for modeling future designs. We used SimpleScalar 4.0 x86 Tool Set [12] for

simulating our x86 binaries. The configuration is given in Table II.4 and based

loosely on an AMD Athlon processor, as this represents a widely deployed modern

desktop system, and a reasonable pipeline to emulate. If a delay prevents useful

instruction execution for that cycle, then that cycle is categorized by that delay

43

type, otherwise that cycle is counted towards execution ex. A cycle is attributed

to execution in this case, even if some other delay event is occurring, because

the out-of-order pipeline is still doing useful work. Data-cache misses often stall

data-dependent instructions, completely starving the pipeline, and are classified

as dc. Because we want to know when data-cache misses occur, even though

useful instructions are being executed, we classify cycles when this combination

is occurring as dc/ex. Front-end pipeline starving events are caused by either

branch misprediction brm, or by other front-end stalls such as instruction cache

miss fe.

Table II.4: Simulation model based on the AMD Athlon.
Simulation Configuration

Fetch Width 4 inst

Issue Width 4 inst

Func Units 4-ialu, 1-imult, 2-mem, 3fpalu, 1-fpmult

Reorder buf RUU: 32, LSQ: 32

L1D 16KB, 2 way, 64B Block, 3 cycle latency

L1I 16KB, 2 way, 64B Block, 3 cycle latency

L2 Unified 2MB, 16 way, 64B Block, 20 cycle latency

DTLB 128 entry, 30 cycle miss penalty

ITLB 64, 30 cycle miss penalty

Memory 275 cycle latency

Branch Pred 16K meta chooser between gshare (8K entry)

and bimodal table (8k entry); 16 Return

Address Stack; 512 BTB; 10 cycle misprediction penalty

II.E.2 Meta-Data Overhead

To examine this trade-off, we ran experiments allocating different num-

ber of PMD and OMD words for all pointers and allocated objects in the Spec2000

benchmarks described in section II.D.2. At each pointer reference we make sure to

44

access the last meta-data word, but without performing any software check. For

these results we broke the execution time into the percent of execution time (cy-

cles) that was stalled due to microarchitectural effects described in the previous

section. In Figure II.10, we compiled the programs so that there was 1 (1pmd), 2

(2pmd), 3 (3pmd) or 5 (5pmd) extra words associated with the pointer represent-

ing the effects of having PMD of that size. The additional overhead occurs from

two sources with PMD. The first overhead comes from copying the meta-data.

Every pointer assignment during execution has to also copy the pointer meta-

data to the new pointer. The increase due to this can be seen in twolf as the

number of execution cycles went up. The more dominant increase in overhead

comes from the increase in data cache misses (dc) from the pointers with PMD.

This effect is seen for the data cache sensitive benchmarks like (mcf, parser and

twolf).

In Figure II.11, we experiment with varying OMD sizes. We store 2

(2omd), 3 (3omd), 6 (6omd), and 9 (9omd) extra words along with each allocated

object. In addition, each pointer has 1 extra word, which provides the link from

the pointer to the OMD as shown in Figure II.9(c). Irrespective of the size of

OMD, the overhead has a fixed cost of copying just the link word on every pointer

assignment as opposed to copying all the meta-data in the case of PMD. The size

of the pointer is also a constant two words (one word for the pointer itself and

another for the link). The graph shows a nearly flat trend even as larger object

meta-data sizes are allocated.

II.E.3 Storing Meta-Data for Bounds and Dangling Pointer Checks

We now examine the overheads of implementing bounds checking and

dangling pointer checks and show how these overheads differ based on the layout

used for storing meta-data.

45

0

0.5

1

1.5

2

2.5

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

ba
se

lin
e

1p
m

d
2p

m
d

3p
m

d
5p

m
d

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 256.bzip2 300.twolf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

fe

brm

dc

dc/ex

ex

Figure II.10: Demonstrates the performance overhead for maintaining pointer
meta-data and object meta-data of various sizes

0

0.5

1

1.5

2

2.5

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

2o
m

d
3o

m
d

6o
m

d
9o

m
d

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 256.bzip2300.twolf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

fe
brm
dc
dc/ex
ex

Figure II.11: Performance Overhead due to Object Meta-Data

46

bound ptr_reg, [base_reg+4] mov [base_reg+4], link_reg mov [base_reg+4], link_reg

... mov [link_reg], objtag_reg

... mov [base_reg+8], ptrtag_reg

bound ptr_reg, [link_reg] cmp objtag_reg, ptrtag_reg

jeq done

trap

(a) PMD x86 Bound Instruction (b) OMD x86 Bound Instruction (c) Dangling Pointer Check

Figure II.12: x86 implementation of the bound instruction storing the meta-data
with the pointer (a), and storing the meta-data with the object (b). (c) shows
the pseudo code for performing the dangling pointer check where the link register
and pointer tag are stored as pointer meta-data and the object tag is stored as
object meta-data.

Bounds Checking

Bounds checking uses the low and high boundary information associated

with each memory object to determine if an out-of-bounds pointer reference has

occurred. This is done for each source code pointer dereference or array reference,

using the x86 bound instruction as shown in Figure II.12(a) and (b). The code

example assumes that the pointer is stored in register ptr reg and the base

address for the two words stored the high and low bounds is the second parameter.

Figure II.12(a) assumes the meta-data is stored as PMD as in Figure II.9(b).

The other option would be to store the bounds as OMD as in Figure II.9(c), and

Figure II.12(b) shows the code for this. In this case, the link pointer is loaded,

and then passed to the bound instruction.

Dangling Pointer Checks

Dangling pointer check determines if a referenced object has been freed

and potentially reallocated, but incorrectly accessed afterward with the old pointer.

47

bound ptr_reg, [base_reg+4]

load [base_reg+4], low_reg

cmplt_trap ptr_reg, low_reg

load [base_reg+8], high_reg

cmpgt_trap ptr_reg, high_reg

Figure II.13: The baseline micro-op expansion of the x86 Bound Instruction.

It does this by associating a tag with the pointer and a second tag with the object,

with the property that they must match. At object creation, a unique tag id is

assigned to both the pointer, and object tags. When the object is freed, the ob-

ject tag field is cleared. A pointer dereference to the object performs a tag check.

If they mismatch then the pointer must point to an object that’s been either

freed or reallocated. The x86 pseudo-code for implementing a dangling pointer

check is shown in Figure II.12(c). The meta-data for the dangling pointer needs

to be stored as in Figure II.9(d), where there is a link and pointer tag stored as

pointer meta-data, and the object tag is stored as object meta-data.

II.E.4 Meta-Data Checking Overhead

When using bounds checking or dangling pointer checking, the checks

occur at pointer dereferences, which can create large run-time overhead. Fig-

ure II.14 shows the overhead for using the bounds checking instruction in Fig-

ure II.12(a), where it is translated into the micro-op sequence in Figure II.13

when executed in the pipeline. The second bar in Figure II.14 shows the results

for storing the bounds as PMD as in Figure II.12(a). The first bar shows the

results for storing the bounds as OMD as in Figure II.12(b). The overhead of

bounds checking is 81% on average when the bounds are stored in PMD but is

48.4% when the bounds are stored in OMD. The overhead comes from increased

48

0

0.5

1

1.5

2

2.5

3

3.5

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

bn
d-

om
d

bn
d-

pm
d

bn
d-

om
d-

dn
g

bn
d-

pm
d-

dn
g

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 256.bzip2 300.twolf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

fe
brm
dc
dc/ex
ex

Figure II.14: Bounds and combined Dangling Pointer and Bounds check overhead

number of instructions from having to copy the pointer meta-data, the additional

micro-ops to perform the check, and the increase number of cache misses.

As part of this study, we also want to examine the effect of performing

multiple safety meta-checks on a pointer at the same time. In addition, looking

farther into the future having multiple forms of meta-data stored with an object

can potentially even aid hardware optimizations.

To examine the effect of performing multiple safety checks, we also pro-

vide results in Figure II.14 for performing both bounds checking and dangling

pointer checks for pointers at the same time. This is equivalent to executing the

code in Figure II.12(a) and (c) at the pointer dereference when the bounds are

stored as PMD, or executing the code in Figure II.12(b) and (c) at the pointer

dereference when the bounds are stored as OMD.

To perform the combined check for PMD, the pointer-meta data is now

4 words wide since it contains the high and low bounds, a link to the object meta-

data, and the dangling pointer tag. Then the object meta-data contains just the

dangling object tag. To perform the combined check for OMD, the pointer-meta

data is only 2 words wide since it contains only a link to the object meta-data,

49

and the dangling pointer tag. Then the object meta-data contains 3 words, which

includes the low and high bounds and the dangling object tag.

The fourth bar in Figure II.14 shows results for bounds plus dangling

checks where the bounds information is associated with PMD. The third bar

shows results for doing both the checks, but for these bounds information is

associated with OMD. The performance overhead increases greatly due to the

wider pointer-meta data as we saw in our earlier results in Figure II.10.

II.F Eliminating Unneeded Checks by Taint-Based Anal-

ysis

Bounds checking verifies all pointer and array accesses. While this pro-

vides complete protection against all kinds of buffer overflow exploits, it has

significant performance overhead. In this section, we present a technique to limit

the scope of bounds checking to only those objects that are vulnerable during a

buffer overflow exploit. The goal of this optimization is to filter away those bounds

checks that are not necessary to guarantee security against buffer overflow ex-

ploits. We focus on only bounds checking data that is passed to an application

from the external interfaces.

II.F.1 Interface Analysis Example

Figure II.15 shows a contrived code example to illustrate what would

be labeled as TAINTED when performing our analysis. In the example, the ar-

ray tainted args gets its value from the command line argument argv and the

pointer tainted alias gets its value as a result of pass by reference to the library

call gets. Both tainted args and tainted alias are of type TAINTED and ac-

cesses to them will have to be bounds checked. The array indirect has an assign-

ment from tainted alias and hence accesses to indirect also need to be bounds

50

checked. In addition, tainted gets will also be assigned to type TAINTED be-

cause it is an alias to the object referred by the pointer tainted alias (line

5), and any references to tainted gets later in the program would need to be

bounds checked.

Note, even if all the accesses inside the library call gets are bounds

checked, we still need to bounds check the arrays tainted gets and indirect

in the application code. This is because the data in the buffer populated by

gets comes from the outside the program and could contain an exploit. That

buffer can still be copied to other buffers inside the program, which might create

a security problem if not bounds checked at the other buffer references. For

example, the size of indirect array is less than the size of tainted gets, which

can cause a buffer overflow of indirect and expose a possible write-attack.

II.F.2 Interface Analysis Algorithm

Buffer overflow exploits are launched by an adversary by providing ma-

licious input through the external interfaces to the application. External sources

of malicious inputs to the program include, the return values from the library

calls such as gets, and the command line argument argv. In order to protect

against buffer overflow exploits, it should be sufficient to bounds check accesses

to only those objects that get their values from the external input. We call such

objects and their pointer aliases as TAINTED and all the other objects as SAFE.

A TAINTED object can get assigned to external input either directly from the

external interfaces or indirectly from another TAINTED object. Figure II.15

shows a simple code example to illustrate what would be labeled as TAINTED

when performing our analysis, which we will go through in this section.

Limiting bounds checking to only TAINTED objects can decrease bounds

checking overhead but at the same time provide a high level of security against

51

1. char* gets(char* s);

2. int main(int argc, char** argv)

3. {

4. char tainted_args[128], tainted_gets[128],

indirect[64]; // TAINTED and FAT

// Pointer alias to object

5. char *tainted_alias = tainted_gets;

// source of malicious input: argv

6. strcpy(tainted_args, argv[1]);

// source of malicious input: return value of gets()

7. gets(tainted_alias);

8. for(i=0; (tainted_alias[i] != ’\0’) ; i++)

{ // indirect is TAINTED because it ’uses’

// tainted_alias

9 indirect[i] = tainted_alias[i];

}

// safe_array is SAFE and THIN

10. char safe_array[128] = "I am not tainted";

// foobar never passes safe_array to external

// interfaces nor assigns it tainted data

11. foobar(safe_array);

...

}

Figure II.15: Accesses through the pointers and arrays named tainted args, tainted gets,

tainted alias and indirect need to be bounds checked. The array and pointer tainted args and

tainted alias get their values directly from the external interfaces - argv and the library call gets

respectively. Hence, they are of type TAINTED. The object indirect’s value is defined by a use

of tainted alias pointer and hence it is also of type TAINTED. All pointer aliases to TAINTED

objects are fat pointers. Also, the fat pointer tainted alias will propagate TAINTED to the array

tainted gets on line 5. Finally, safe array is determined to be SAFE because it is passed to a func-

tion foobar, which does not pass safe array to external interfaces and does not assign safe array

data from an external interface.

52

buffer overflow exploits. Reduction in the performance overhead can result from

the following two factors. First, we can eliminate the bounds checks for accesses

to SAFE objects. Hence, we will be able to reduce the number of instructions ex-

ecuted to perform bounds checking. Second, we do not have to maintain bounds

information for all the pointers. This is because the pointers to the SAFE ob-

jects need to be only normal pointers instead of being fat pointers. We call the

type of normal pointers as THIN and the type of fat pointers as FAT. Reducing

the number of FAT pointers would lower the initialization overhead in creating

them and copying overhead from passing those pointers as parameters to func-

tions. More importantly, our optimization can reduce the memory footprint of

the application and hence we can improve the cache performance.

Figure II.16 shows the steps used for the Interface Analysis algorithm.

The goal of the Interface Analysis is to find all the objects and their aliases that

should be classified as TAINTED in order to perform bounds checking on their

dereferences. As described earlier, a TAINTED object is one that gets assigned

with external data either directly from an external interface or from another

TAINTED object.

Our algorithm processes the type properties using interprocedural data-

flow, and points-to information: The data-flow graph models the assignments

of scalar and pointer values. The points-to graph represents the relationship

between the pointer and its referenced object. These graphs operate on arrays,

scalars and pointers objects with other types reduced to these basic types. The

TAINTED and SAFE properties apply to all objects, while FAT and THIN apply

to only pointers.

The first step of the Interface Analysis is to construct the assignment

data-flow graph, and to discover the initial points-to information from the pointer

initialization. Address operators and dynamic memory allocator functions per-

53

Tainted Analysis

1. Construct the inter-procedural data-flow graph, and

initial pointer aliasing information for points-to.

2. We forward propagate the points-to alias

relationships [82, 3] though the data-flow

pointer assignment network, generating additional

aliases.

3. All objects (including pointers) are initialized to type

SAFE. All pointers are also initialized to type THIN.

4. Apply the TAINTED type qualifier to the pointers

and objects that are either (i) assigned to the return values

of the external interface functions, (ii) are passed as reference

to external interface functions, or (iii) get assigned to the

command line parameter ARGV.

5. Using the data-flow graph propagate TAINTED forward

along scalar dependencies and mark them as TAINTED.

6. Add bounds checking to all pointers and array

dereferences that are marked as TAINTED.

7. All pointers that are bounds checked are assigned to be

type FAT.

8. Backwards propagate FATNESS through the pointer

assignment network.

Figure II.16: Algorithm for interface optimization

54

form this initialization, returning the reference of an object to a pointer. Next

we propagate the pointer alias relationship, building up our points-to database.

We describe properties of the points-to maintained at this step in the following

section II.F.3. Third, we initialize all the pointer and object types to SAFE.

The fourth step in our algorithm is to classify those pointers and objects that

are assigned to the command line parameter argv and the return value of library

calls as TAINTED. If this is a pointer, then the object referenced is TAINTED.

Also, those objects whose value can be modified by library calls (pass by refer-

ence) are classified as TAINTED. In our example, in Figure II.15, the objects

tainted args and tainted gets will be classified as TAINTED after this step.

In step five, we propagate the TAINTED type information forwarded along the

scalar data-flow graph dependencies, including values from array references. We

assume that operations other than copy (e.g. arithmetic) will destroy the taint-

edness of the scalar assignment. In addition, we use the points-to analysis to

mark any pointers that reference a TAINTED object as TAINTED. This step

iterates until the TAINTED no longer propages. In doing this propagation, ad-

ditional objects may be marked as TAINTED. After this propagation, the array

indirect will get classified as TAINTED in our example code through forward

propagation, and the array tainted gets will be classified as TAINTED through

points-to analysis. In step six, add bounds checks to all dereferences of pointers

and arrays that are marked as TAINTED. In seven, all pointers that are bounds

checked will be marked as FAT, and the rest will be marked as THIN. In step

eight we backwards propagate FAT through the pointer assignment network to

initialization, ensuring bounds information can reach the check.

55

II.F.3 Aliasing Properties

We use points-to analysis to determine which objects a pointer aliases [82,

3, 79] for two different applications. The first use is to allow pointers to deter-

mine if they reference a TAINTED object for which we use Andersen’s analy-

sis [3] to distinguish multiple aliased objects. From object aliasing we determine

if the pointer references a TAINTED or SAFE object, consequently whether the

pointer must be designated FAT or THIN. The second use fuses the multiple

pointer-to-pointer aliases into a single class, as fusing simplifies how we use the

alias information. This version of points-to helps us recognize nested pointers,

and prevent conflicting pointer representations. Steensgaard [82] analysis does

this fused points-to analysis for us. Consider as an example the type char **,

which is a pointer to a char pointer char *. Variables that assign to or are as-

signed from the char * must have all of the same label, which is either THIN

or FAT. TAINTED is similarly made consistent. Both points-to analysis use the

pointer propagation data-flow to discover additional aliases.

Consider the following example of data-flow and alias analysis in Fig-

ure II.17 and II.18. We propagate TAINTED forward through scalars to correctly

mark the array x, where getchar() is an external interface that may attempt to in-

ject malicious code. Dataflow discovers pointer assignment z=y; meaning z shares

y aliases, and points-to analysis would discover that pointers y and z aliases x.

The pointer y and z become FAT, and remain FAT even if they reference a SAFE

object.

II.F.4 Memory Writer Algorithm

In addition to the above interface optimization, we also perform another

optimization which we call the memory-writer optimization. Buffer overflow ex-

ploits for remote execution of malicious code are launched by writing beyond the

56

char x[100]; int c, i=0;

char *y=x,*z;

while ((c = getchar()) != EOF) {

x[i++]=c;

}

z=y;

Figure II.17: TAINTED flow code for Figure II.18

Figure II.18: TAINTED flow via scalar assignment and aliasing

boundaries of a buffer, which implies that we have to do bounds checking only

for memory accesses that are writes in order to guard against memory corrupting

exploits. Write attacks are the most common form of buffer overflow exploit, and

probably the most serious due to the possibility of its use in injecting malicious

code. We now summarize the memory writer algorithm when used by itself, and

then when used with the interface optimization.

Mem-Write Only - The first step is to mark all writes to array and pointer

dereferences as being bounds checked. These are left hand side of assignments

through array and pointer dereferences. All of these pointers are marked as FAT.

The next step is to find any pointer that will directly or indirectly (through data-

flow) define these writes, so that they will also be marked as FAT. They need to

be FAT, since they need to also maintain bounds meta-data information for the

bounds check. For this we start from the FAT writes and propagate the type FAT

backwards, along the edges of the data-flow graph through pointer assignments,

to find all pointers that define the value of any FAT pointer.

Mem-Write with Interface Optimization - For this approach, we first per-

57

form the interface algorithm in Figure II.16. The only modification is step 6,

where we only add bounds checking for arrays or pointers to buffers that are

written as described above and marked as TAINTED.

II.F.5 Implementation Details

To build our optimizations, we need an implementation that can ap-

propriately assign type qualifiers to all variables. The very first problem in this

analysis is completely identifying all variables that we want to optimize, and to

provide a name to each pointer level of the variable. By this, we mean that a vari-

able can have multiple nesting of pointer types, and each level of nesting needs

to be assigned the same type of FAT or THIN pointer. For example char ** has

two levels of references. To create a name for each of these variable nesting levels

for our analysis, we start with the name of the variable. We then distinguish each

pointer nesting level by pre-pending a label indicating the reference depth to the

base name. A two level reference would have “p p ”, “p ”, and “” (empty string)

pre-pended for each level. Each of these levels can then be assigned a type of FAT

or THIN. For this analysis, C structures are flattened such that each individual

field is treated as a distinct variable, and the fields name are concatenated with

the structure name making it unique. Overall, this naming scheme is similar to

the one used by Austin et al. [5].

We build a graph representing assignments of data-flow information,

derived from program assignment statements, address operators, function pa-

rameters and return values. After building our data-flow graph on a per function

level, we merge the graphs to create a global inter-procedural graph. Our type-

based data-flow analysis is path-insensitive; a qualifier that is computed for a

variable holds throughout the entire program. Assignments that cause a pointer

to become FAT affect the representation seen by the entire program, not just the

58

path it was assigned along. Similarly, type information passed through procedure

calls to other functions must be consistent across all the call sites as we permit

only one representation (no specialization) of that parameter inside of the func-

tion. For example, if a pointer parameter becomes FAT at one call site, then that

same parameter will be labeled as FAT for all other call sites to that function. In

other words, our inter-procedural analysis is context insensitive. Both path and

context insensitivity greatly simplify the analysis. In addition, indirect function

calls are also treated conservatively, where all possible function definitions that

might match an indirect call site will have their parameters assigned with the

same FAT or THIN label.

II.F.6 Network External Interface Results

Our analysis and the pruning of bounds checking can be applied to all

external interfaces to an application, which would include disk, keyboard, mouse,

cross-process communication, network traffic, etc. Or it could be applied to just

a subset of these interfaces.

The current systems based upon dynamic taint analysis only focus on

tainting network traffic [84, 21, 62], since this is how a worm attack occurs. In

doing this, our approach will only need to bounds check buffers that are passed

to the network system calls, and any of the data in the program that is tainted

by it with the above analysis.

To analyze this effect, we performed our bounds checking analysis on the

benchmark ATPhttpd-0.4b, which is a small web server, with a buffer overflow

vulnerability [62]. In applying our external interface only guarding against write

attacks as described above, we achieve a 6% slowdown over no bounds checking.

We also verified that the vulnerability was caught using our taint-based bounds

checking approach.

59

II.F.7 All External Interface Results

Since the SPEC integer benchmark suite does not have any network

traffic, the amount of bounds checking is zero, which is not that interesting of a

result to analyze. Therefore, we also examined applying our interface optimiza-

tion for all system call interfaces to the program. For the SPEC benchmarks,

we are bounds checking data from the operating system interface, command line

ARGV parameter and anything tainted by it as described with the above analysis.

We will analyze the advantages of our two optimizations, interface and

memory-writer, in this subsection. The binaries that we use for this analysis

are generated using the x86 bound check instruction, with the code generation

features given with bnd-array binaries as described in subsection II.D.3. We

conducted this experiment on our AMD Athlon processor using the methodogy

from subsection II.D.2.

Figure II.19 shows the performance advantage of our optimizations. The

result labeled as bnd-interface-only corresponds to implementing only the inter-

face optimization, the result corresponding to the label bnd-mem-write refers to

our memory-writer only optimization, and bnd-interface+mem-write stands for

the implementation where we applied both of the optimizations.

When each of the two optimizations are applied individually, the in-

terface optimization reduces the overhead to 29%, whereas the memory-writer

optimization reduces the overhead down to 28%. When both of the optimiza-

tions are applied together we find that the average overhead is reduced to 24%,

which is a significant reduction when compared to our previous best result of

40% that we achieved using the bnd array implementation. The bnd-interface-

only represents performing bounds checks and maintaining fat pointers for all

tainted data coming from external interfaces. This provides protection against

both write and read buffer overflow exploits. Since write buffer overflow exploits

60

are the most harmful, bnd-interface+mem-write provides protection for all writes

that write data from external interfaces.

Both memory-writer and interface contributes some of portion of the

overhead reduction with an overhead of 29% (memory-writer) and 28% (inter-

face). 181.mcf benefits significantly from interface-only as its pointer intensive

data-structure was filled with internally generated data. These data-structures do

not need to be bounds checked, nor turned into fat-pointers. Interface optimiza-

tion converts these pointers back to regular pointers in the mcf data-structure

as seen in 181.mcf in Figure II.21 where the heap overhead reduction from the

baseline is dramatic. Contrast this with the smaller gains writer-only has on

256.bzip2 for example, which fills its compression matching array from external

data, hence does not benefit from interface, and spends most of its time reading

the array. Consequently, the execution time of 256.bzip2 benefits from bounds

check elimination as seen in Figure II.20. All other benchmarks have a similar

bounds check reduction from writer-only. From the figures we can see that both

interface and writer optimizations can be combined, obtaining an overhead of

24%.

To analyze the main source of reduction in the performance overhead, in

Figure II.20 we show the number of static bounds check instructions that remain

in the binary after applying our optimizations. We can see that the bnd-array

implementation, where we bounds check all of the memory accesses through point-

ers, contains 2203 x86 bound instructions on average. Our interface optimization

which eliminates the bounds checks to the SAFE objects is able to remove 660

bounds checks from the binary to 1573 on average. The memory-writer optimiza-

tion eliminates the bounds check to all the load memory operations. Hence, it

significantly reduces the number of checks to 581 on average. When both the

optimizations are combined together there are about 495 bounds checks left in

61

0%

20%

40%

60%

80%

100%

120%

140%

160%

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

Cra
fty

19
7.

pa
rs

er

25
6.

bz
ip2

30
0.

tw
olf

av
g

%
 S

lo
w

do
w

n

bnd-array
bnd-interface-only
bnd-mem-write
bnd-interface+mem-write

Figure II.19: Performance advantage of interface and memory-writer optimiza-

tions.

0

1000

2000

3000

4000

5000

6000

7000

16
4.g

zip

17
5.v

pr

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
6.b

zip
2

30
0.t

wolf

av
g

 B
ou

nd
 A

sm
 C

ou
nt

bnd-array
bnd-interface-only
bnd-mem-write
bnd-interface-mem

Figure II.20: Reduction in the number of static bound instruction in the binary.

the binary on average.

The performance savings shown in Figure II.19 are proportional to the

number of bounds checks that we managed to eliminate. We would like to high-

light the result for our pointer intensive application mcf. For mcf, we see signifi-

cant performance reduction for interface only optimization. The reason for this is

that the there was a decent size reduction in the heap memory used as a result of

our interface optimization as it managed to classify 50% of the pointers as THIN

pointers.

62

0.E+00

5.E+04

1.E+05

2.E+05

2.E+05

3.E+05

16
4.g

zip

17
5.v

pr

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
6.b

zip
2

30
0.t

wolf

H
ea

p
M

em
or

y
(K

B
)

bnd-array
bnd-interface-only
bnd-mem-write
bnd-interface+mem-write
no-bounds

Figure II.21: Comparison of heap size overhead in KB

II.G Hardware Acceleration

In this section we examine the Meta-Data Checking (MDC) architecture

hardware extensions to reduce the overhead of meta-data checks. The architec-

ture extensions include, extending the x86 ISA with a new instruction, called the

meta-check instruction and the necessary hardware support to implement and

use it.

II.G.1 Motivation for Meta Checker Instruction

We make the following observations that identify the sources of over-

heads for doing meta-data checks for our two example applications - bounds

checks and dangling pointer checks. The special meta-check instruction that will

be explained later is designed to target these observations.

• Extra Instructions in Binary to Perform Check - As shown in Figure II.12 the

dangling pointer check executes about five x86 instructions for each check

(around 7 micro-ops expanding out the address generation). This can add

pressure to the execution window and fetch bandwidth, which can adversely

63

affect the performance. A generic meta-data instruction could be used to

concisely represent this check.

• Flexible Meta Data Representation and Efficient Cache Usage - As we noted

in the prior section, how the meta-data is laid out and how it is associated

with PMD or OMD can affect the data cache miss rate. So having the flexi-

bility to associate the meta-data as either PMD or OMD (wherever appropri-

ate) would be important for adding customized instructions for performing

safety checks.

II.G.2 Overview of Meta Data Check Architecture Extensions

We propose extending the ISA with a special instruction called the

meta-check instruction to perform the memory safety verification. A sequence

of meta-check instructions perform the bounds and/or dangling pointer check

functionality. One can view each meta-check as an assumption or rule that a

pointer value must obey. Each meta-check instruction specifies the sources for

meta-data, which can be either from PMD or OMD meta-data or a pointer reg-

ister. It also specifies the check to be performed on that meta-data (e.g.: less

than comparison, greater than comparison, equal to comparison, etc.). The meta-

check instruction is associated with a specific virtual register, and whenever that

register is used during execution, the meta-check will be performed.

The meta-check instructions program a Meta-Data Check Table(MDCT),

which is a finite sized buffer to hold all of the information needed to perform the

meta-data checks associated with a given architecture register. A meta-check

instruction is assigned an entry in the MDCT. Once updated with a sequence of

meta-data checks, the MDCT determines during renaming for all register uses if

there is a corresponding check for that register. If so, micro-op instructions are

inserted to automatically load the meta-data and to perform the check.

64

The meta-checks are bound to a triggering register, and are decoded

when a memory operation uses it. This register is any of the general purpose

registers, and contains a pointer value dereferenced by a load or store memory

operation. Then when triggered, the MDCT sequence is read out, the correspond-

ing micro-ops for the checks are inserted before the triggering memory operation.

The micro-op expansion for the meta-check instruction could be provided from

mechanisms such as DISE [17]. By generating the micro-ops to perform the safety

check when the pointer register is used, we avoid the need to explicitly insert those

checks in the binary. The format and the implementation of meta-check instruc-

tions are flexible enough to support different types of meta-data layouts, as well

as potentially different uses.

II.G.3 Meta-Check Instruction

Meta-check instructions specify an instruction template filled in when

the check sequence is bound to a pointer target register. The following is the

format of the meta-check instruction we modeled:

meta-check ptr_reg, slot, offset(ptr_base), meta-operand-1, meta-operand-2, cond

The definition of the fields for the instruction are itemized below:

• ptr reg - is the virtual register that contains the pointer value that the

compiler wants to monitor. The pointer would have been loaded before

executing the meta-check instruction.

• slot - To bound the size of the MDCT, we must limit each virtual register

to at most N meta-check instructions. For this study, we use a limit of 4.

Therefore, the slot bits represent which of the N meta-check instructions is

being defined for the specified ptr reg.

65

• offset(ptr base) - ptr base is the register used to load the virtual ptr reg.

An offset from this ptr base address, is where we find the PMD, and from the

PMD we can get access to the OMD as described in the previous section II.E.

This ptr base plus offset is saved to MD base.

• meta-operand-1 and operand-2 - Source operands of the of check opera-

tion, are summarized as the following four options:

O(OMD_Mask)|P(PMD_Mask)|ptr|const

These formats are either:

– N-bit PMD Mask - this indicates which pointer meta-data word(s) should

be used in this meta-data check. This could be implemented as an offset

instead of a Mask.

– N-bit OMD Mask - this indicates which object meta-data word(s) should

be used in this meta-data check. This could be implemented as an offset

instead of a Mask.

– ptr - Pointer register that triggered the check (same reg as ptr reg).

– const - A small N-bit constant. Unspecified more significant bits are

treated as zeros.

• cond - this determines the type of check to perform using the meta-data.

The supported traditional types of checks could be: EQ, NEQ, GT, GTE,

LT, and LTE.

The meta-check instruction allows the comparison of two items using the

condition specified. The two items could be both meta-data, or the comparison

could be between one meta-data and the value in ptr reg. They also could be

both from the PMD or both from the OMD. The order in which the expression

66

is evaluated is from left to right in terms of the ptr reg and meta-data words

specified in the PMD and OMD being compared.

When there is the load (definition) of the pointer register ptr reg, this

load indicates to the hardware to (a) save the meta-data base value MD base, and

(b) associate with the ptr reg register with the specified check operation. (a)

means we allocate a physical register to save the meta-data MD base pointer

computed from the address containing pointer plus a fixed one pointer-word

offset- (offset(ptr base)). This MD base pointer contains the address of the

1st word of the PMD meta-data and if OMD is present that address is instead

the link pointer to the OMD. From base pointer we obtain all PMD addresses

by adding the PMD mask offset, and from link pointer we obtain all OMD by

adding OMD mask offset. The masks mark use of a single word within the vector

of PMD or OMD meta-data corresponding to a single set bit within the mask.

By mask offset, we mean the address offset to access that word. Also at this

load, we bind the register containing the pointer to the checks. Thus, whenever

ptr reg register is used by a load or store memory operation, the corresponding

checks will be inserted into the pipeline. The hardware support to enable this is

described in more detail below.

The reason for going with the above fairly generic meta-check instruction

description is to not make an assumption about where data is located in the

PMD and OMD for the type of checks that might want to be performed. The

only assumption is that when there is a link, the first word of the PMD is the

link to the OMD.

II.G.4 Using the Meta-Check Instruction

To better understand the meta-check instruction, lets look at using it

to perform bounds checking and dangling pointer checks. In the example in

67

(1) meta-check ptr_reg, 00, off(ptr_base), P(0100), O(1000), NEQ // Dangling Pointer Check

(2) meta-check ptr_reg, 00, off(ptr_base), P(1000), ptr, GT // PMD Bounds Check Lower Bounds

meta-check ptr_reg, 01, off(ptr_base), P(0100), ptr, LT // PMD Bounds Check Upper Bounds

(3) meta-check ptr_reg, 00, off(ptr_base), O(1000), ptr, GT // OMD Bounds Check Lower Bounds

meta-check ptr_reg, 01, off(ptr_base), O(0100), ptr, LT // OMD Bounds Check Upper Bounds

(4) meta-check ptr_reg, 00, off(ptr_base), O(1000), ptr, GT // OMD Bounds Check Lower Bounds

meta-check ptr_reg, 01, off(ptr_base), O(0100), ptr, LT // OMD Bounds Check Upper Bounds

meta-check ptr_reg, 10, off(ptr_base), O(0010), P(0100), NEQ // Dangling Pointer Check

Figure II.22: Example meta-check instructions for dangling pointer and bounds

checking. P stands for meta-check data being from the PMD, and O stands for it

being from the OMD.

Figure II.22, (1) corresponds to the dangling pointer check in Figure II.9(d), (2)

corresponds to the PMD bounds checking in Figure II.9(b), (3) corresponds to

the OMD layout of bounds checking in Figure II.9(c), and (4) corresponds to

performing both OMD bounds checking and the dangling pointer check on the

same pointer. In this last case, the object tag is the third word of the object

meta-data.

In Figure II.22(1), the first meta-check instruction is for specifying a

dangling pointer check. As explained in Section II.E.3, to perform a dangling

pointer check, the tag stored in the pointer PMD is compared against the tag

stored in the OMD. Because it uses OMD, the first word after the pointer (in the

PMD) is the pointer to the OMD. The second word in the PMD is the pointer tag

and the first word in OMD is the object tag. These are specified by the bit masks

PMD mask and OMD mask. These source operands for the NEQ check operation will

cause a trap if they are not equal. Note, the example shows just 4-bits for the

masks, but the masks can be longer based on how many bits are available in the

instruction encoding. In addition, to allow access to larger meta-data structures,

an offset into the meta-data could be used instead of a mask.

68

Figure II.22(2) shows using the meta-check instructions for bounds check-

ing using the layout where the bounds information is stored in the PMD, as shown

in the Figure II.9(b). One check instruction is for comparing the ptr reg ad-

dress, when it is used in a later instruction, with the lower bound stored in the

first word of PMD and the other one compares the ptr reg address with the

higher bound stored in the second word of PMD. As bounds check uses multiple

meta-check instructions, we enumerate and order the different instructions by the

slot number.

After the meta-check is registered for a given ptr reg, any instruction

that uses that register (before it is redefined) for an address calculation has the

corresponding checks inserted into the instruction stream. The architecture to

support this is described later. The checks are inserted directly after the address

generation and before any remaining operations for that instruction.

To give an example of how the checks are inserted automatically into

the instruction stream, assume we insert the bounds checks in Figure II.22 (2)

into the binary after a load of a pointer to virtual register r1. Then before r1

is redefined, we see a use of it in the instruction sub offset(r1), immediate.

Below is the micro-op sequence generated for the x86 subtract instruction along

with the two meta-checks for bounds checking and their meta-data access loads

that are inserted right after the address generation.

// Original x86 instruction

sub offset(r1), immediate

// micro-op expended of subtract

1. agen tmpAddrReg = r1 + offset // address generation

2. agen lowaddr = P(1000)+tmpLink // meta-check uOp insertion - generate low bound address

3. load low = M[lowaddr] // meta-check uOp insertion - low bound loaded from PMD base

4. cmp_gt_trap low, tmpAddrReg // meta-check uOp insertion - compare the low bound

5. agen highaddr = P(0100)+tmpLink // meta-check uOp insertion - generate high bound address

6. load high = M[highaddr] // meta-check uOp insertion - high bound loaded from PMD base

7. cmp_lt_trap high, tmpAddrReg // meta-check uOp insertion - compare the high bound

8. load tmpReg = M[tmpAddrReg] // load the current value

9. sub tmpReg = temReg - immediate // perform the subtract

10. store M[tmpAddrReg] = tmpReg // store the result back in the address

One advantage of doing the above, is that if a trap occurs, it will be

69

caught before the store commits and the PC that will be set to sub instruction to

re-execute it if necessary. This allows an exception handler or debugger to know

exactly the instruction that violated the safety check. In comparison, when a

bound instruction is used, the PC of the bound instruction would be marked as

having the exception.

II.G.5 Hardware support for Meta-Check Instruction

Meta-check instructions are buffered in the Meta-Data Check Table as

noted above. Currently we specify its capacity to be four entries for each register

capable of referencing a pointer, and for x86 this is eight registers times four for

thirty-two entries. When a meta-check instruction is decoded, it is placed into

the MDCT table and it is assigns a physical register to hold the base pointer to

the PMD meta-data. The base pointer is stored in a second table- the Meta-Data

Register Map table. This has an entry for each general purpose register, meaning

eight map entries. Both the MDCT and MDRM can be directly written and read

from to enable context switching.

On executing a memory operation the MDCT table is consulted to deter-

mine if a check sequence is bound to its pointer-register. If so, check instructions

corresponding to that pointer-register are micro-op expanded and issued forth

to register renaming from decode. The MDCT table, shown in the Table II.5,

contains the following fields. The first field holds the virtual register that will

hold the pointer we want to check, the second is the slot identifier, the next two

fields hold the first and the second meta-check operand bits, and the last field

holds the condition to evaluate the check expression. The table is direct-mapped

indexed first by the virtual register and then by the slot number. Similar to the

register rename map, the MDCT keeps track of only the most recent definition

for each virtual register, and must be restored on a branch misprediction.

70

Table II.5: Meta-Data Check Table (MDCT)

Pointer Slot 1st 2nd Operation

Virtual Operand Operand

reg reg reg

r1 0 O(1000) ptr GT

r1 1 O(0100) ptr LT

r1 2 O(0010) P(0100) NEQ

r1 3

We also maintain a mapping between each possible general purpose

register containing pointer to be used in a meta-data check and a physical register

containing a pointer to the meta-data, as described in Table II.6. If this field is

empty then no meta-check has been assigned.

Table II.6: Meta-Data Register Map (MDRM)

Pointer Meta data

Virtual physical

reg MD base

r1 p20

r2 p2

r3 -

We now describe what happens when a meta-check is fetched, and when

the pointer register we are watching is used for an address generation.

Expanding a Meta-Check Sequence- Take for example the three meta-

check instructions in Figure II.22(4). After executing those three meta-check

instructions, the state of the MDCT table will be as shown in Table II.5 and

MDRM table in Table II.6. The virtual register r1 is the pointer register to

be checked (the register into which the pointer would have been loaded). On

executing the first meta-check instruction, a physical register p20 is allocated to

71

address of the start of the PMD. This is the MD base, and it is shared among

meta-checks for the same virtual register definition.

Then the micro-code engine automatically inserts into the instruction

stream instructions to perform the check comparisons in the table. First we need

to obtain the meta-data. We can derive from MD base the link pointer, which

for a given sequence, is generated only once at the beginning of the sequence.

The micro-op expansion accomplishes this by checking a sequence of meta-check

instructions for OMD operands, allocating a physical register to hold the link

value, and issuing out the load. Subsequent instructions may use the link register.

In this example it allocates p8 as the link register. Next expansion generates the

load operations for the meta-data, using as the base register: for PMD meta-data

the base is the MD base register p20, and for OMD meta-data the base is the link

register p8. An agen address generation instruction then sums up the pointer

and the mask offsets into a temporary register. The temporary is consumed by

the load to obtain the value of the meta-data, which are then used by check

comparison instructions.

For the above example, it would insert the following four address-generation

and four loads, three compare and trap instructions that would perform bounds

and dangling pointer check.

load p8 = [p20]

agen p25 = O(1010) + p8

load p2 = [p25]

cmp_gt_trap p2, p10

agen p26 = O(0100) + p8

load p4 = [p26]

cmp_lt_trap p4, p10

agen p27 = O(0010) + p8

load p8 = [p27]

agen p28 = P(0100) + p20

load p5 = [p28]

72

cmp_neq_trap p16, p5

As described earlier for the store example, these checks will be inserted

in the instruction stream between the address generation and the rest of the

instruction’s execution that is being checked.

Freeing MDCT and MDRM Table Entries and their Physical Registers

- When a virtual register is redefined by an instruction, the MDCT and MDRM

entries corresponding to that register are removed, since the virtual register has

been redefined. However, the physical base register allocated to those entries

is not freed until the instruction that is redefining the virtual register commits.

When a new register definition occurs, if there are hits in the MDCT, we (1)

remove the entries from the MDCT, and (2) remove the base pointer register

mapping from MDRM. When this new instruction commits, we know that we can

then free the base pointer physical register. This is similar to the conventional

algorithm used to manage freeing physical registers in current architectures.

Even though multiple definitions of a virtual register can be alive at a

time, the MDCT and MDRM table needs to only hold the check instructions and

base meta-data mapping corresponding to the latest definitions of the virtual

registers. This is because decoding and renaming are done in-order, and the

tables are used to just generate the micro operations in-order during the decode

stage.

Branch Mispredictions, Context Switches and Exceptions - Branch

mispeculations are handled in modern architectures by checkpointing the register

rename table. To support our extensions, the physical register mapping of the

MDCT is checkpointed as with any other renamed register set. Upon recovering

from a misprediction, the check-point map is restored.

73

Context imposes additional burdens, as the MDCT and MDRM state

must be saved to software memory (kernel stack). We want to narrowly expose the

MDCT architecture to enable efficient saving and restoring of MDCT state but

no more. MDCT saved state are the original meta-check opcode encoding. When

we store an entry from the MDCT to memory, it recovers the original meta-check

representation, which is stored in the MDCT. We also save and restore the value of

the base pointer register from the MDRM, as each general purpose register maps

to a meta-checked pointer physical-register that containing the address of the base

of the PMD meta-data. Upon restoring the meta-check instruction along with

the base value, we re-execute the meta-check to regenerate the MDCT state. As

there are up to 32 meta-check instruction entries and eight base pointer entries,

the context switcher checks if the register is used for meta-check instructions,

spilling them only if necessary. We keep track of the use status in a bit vector

indexed by virtual register number. Upon restore we walk through the bit vector,

and reload the corresponding previously used MDCT table entries and the base

register.

Because meta-check instructions only raise exceptions as a side effect,

they maybe re-executed without harm. This simplifies exception handling as

temporary state generated during micro-code expansion does not need be saved.

Upon exception caused by the checks or by some external event, the PC is placed

on the the triggering instruction allowing control flow to returns back after han-

dling exception. The ability to re-execute is useful if we want to tolerate check

violation by repairing incorrect pointer values as proposed by Rinard et al. [74].

A violation raises an exception before any state is modified, intercepted by a

handler, which then nullifies or safes the load so it does not fail a second time,

then re-executes.

74

Impact on Physical Registers - Supporting the meta-check instructions has

an impact on the required number of physical registers for the machine. Each

MDCT entry, in the worst case needs a physical register. We assumed for our

implementation that the number of physical registers is 64.

II.G.6 Performance Result

In this section we will discuss the benefit of Meta-Data Checking (MDC)

architecture. First we will discuss the results for doing just the bounds checking

and then discuss results for doing both bounds and dangling pointer checks.

Performance of Bounds Checking In the subsection II.E.4 we discussed the

overheads of bounds checking implementations. There we did not assume any ar-

chitectural support but instead implemented bounds checking using existing x86

assembly instructions. Those results are shown again in the Figure II.23. The

result labeled as bnd-pmd shows the overhead of bounds checking using PMD

layout (shown in the Figure II.9(b)) and the one labeled as bnd-omd shows the

bounds checking overhead when we use OMD layout (shown in the Figure II.9(c)).

In addition, Figure II.23 shows the overhead of bounds checking when we imple-

ment it using the meta-check instruction described earlier. This result is labeled

as bnd-omd-MDC. For all the results we again break the execution time between

fetch stall (fe), branch misprediction (brm), data cache misses (dc), overlapped

data cache miss with execution (dc/ex), and execution (ex) where there were no

stalls as described in subsection II.E.1.

We see that the average overhead is 81% when the bounds are stored

with the PMD but we incur only 48% overhead when the bounds are stored with

the OMD. This improvement can be attributed to the improvement in cache

miss rates as we now share the bounds information for an object across the all

the pointers to that object.

75

0

0.5

1

1.5

2

2.5

3

3.5

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

ba
se

lin
e

bn
d-

om
d-

m
dc

bn
d-

om
d

bn
d-

pm
d

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 256.bzip2 300.twolf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

fe

brm

dc

dc/ex

ex

Figure II.23: Performance Overhead of Bounds Checking using meta-check in-
struction and MDC hardware

Using the MDC architecture the average overhead of bounds checking

is reduced significantly to 21%. These savings can be attributed to the reduction

in time spent in execution (represented by ex and dc/ex in the Figure). Time

spent due to ex and dc/ex is consistently reduced across all the benchmarks.

Especially for programs like bzip, the performance improvement is significantly

reduced from 43.7% to 8.3%.

For programs like mcf, we do not see appreciable gains. The reason

is that mcf is memory bounded and a greater proportion of the execution time

is spent servicing cache misses. The MDC architecture, though it optimizes

the number of instructions fetched and executed, the overhead due to increased

memory footprint to store the meta-data information still remains. But, note

that the stalls due to data cache misses is significantly reduced in OMD layout

(bnd-omd) as compared to PMD layout (bnd-pmd).

To summarize, our meta-data layout coupled with meta-check instruc-

tion reduce the average overhead of bounds checking to 21% slowdown which

is a significant reduction when compared to 81% incurred by current software

implementations when providing complete bounds checking.

76

0

0.5

1

1.5

2

2.5

3

3.5

b
a

se
lin

e
b

n
d

-o
m

d
-d

n
g

-m
d

c+
cm

p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g
b

n
d

-p
m

d
-d

n
g

b
a

se
lin

e

b
n

d
-o

m
d

-d
n

g
-m

d
c+

cm
p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g
b

n
d

-p
m

d
-d

n
g

b
a

se
lin

e
b

n
d

-o
m

d
-d

n
g

-m
d

c+
cm

p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g

b
n

d
-p

m
d

-d
n

g

b
a

se
lin

e
b

n
d

-o
m

d
-d

n
g

-m
d

c+
cm

p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g
b

n
d

-p
m

d
-d

n
g

b
a

se
lin

e

b
n

d
-o

m
d

-d
n

g
-m

d
c+

cm
p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g
b

n
d

-p
m

d
-d

n
g

b
a

se
lin

e
b

n
d

-o
m

d
-d

n
g

-m
d

c+
cm

p

b
n

d
-o

m
d

-d
n

g
-m

d
c

b
n

d
-o

m
d

-d
n

g

b
n

d
-p

m
d

-d
n

g

b
a

se
lin

e
b

n
d

-o
m

d
-d

n
g

-m
d

c+
cm

p
b

n
d

-o
m

d
-d

n
g

-m
d

c

b
n

d
-o

m
d

-d
n

g
b

n
d

-p
m

d
-d

n
g

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 256.bzip2 300.twolf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

fe

brm

dc

dc/ex

ex

Figure II.24: Performance Overhead of Dangling-Pointer Checking using meta-
check instruction and MDC hardware

Performance of Dangling Pointer Check Figure II.24 shows the overhead

for performing dangling pointer checks on top of bounds checks. The two results

from Figure II.11, bnd-pmd-dng and bnd-omd-dng are reproduced here for com-

parison. The bounds check and the dangling pointer check are implemented for

these two results using only x86 instructions.

Before discussing the results, here is a quick summary on how the meta-

data is laid out. For bnd-pmd-dng, the bounds information is associated with

PMD. There will be four PMD words: two for bounds, one for link address and

another for pointer tag needed for the dangling check. In addition, there will be

one OMD word to hold the object tag needed for dangling pointer check. For the

bnd-omd-dng results, bounds information is associated with OMD, which means

there will be just two PMD words (one for link address and another for pointer

tag) but three OMD words (high, low bounds and one more word for object tag).

The overhead of these implementations are pretty steep. The overhead

for bnd-pmd-dng configuration is 148%, which is what we expected as it uses four

PMD words. Since the dangling pointer check needs a link address it is definitely

better to store bounds in OMD. In doing this, we see a significant reduction in

77

the average overhead to 63.9% (corresponding to bnd-omd-dng).

The bnd-omd-dng-MDC result in the Figure II.10(b) corresponds to the

implementation that assumes the MDC architecture. The average overhead re-

duces to 29.8% from 63.9% when we apply MDC architecture optimizations. We

achieve this reduction in performance overhead by reducing the number of in-

structions inserted into the binary to perform the check. This can be noted by

comparing the reduction in ex and dc/ex components.

Finally, we can compress the link address and the pointer tag into one

PMD word. The result corresponding to this optimization is labeled as bnd-omd-

dng-MDC+Comp. This compression reduces the increase in memory footprint

and as a result yields better cache performance. On average, the overhead reduces

to 21.2%, which is only a slight increase in overhead for adding dangling pointer

checks on top of bounds checking. This shows that our approach scales well and

that as long as we can avoid increasing the PMD size we can keep the performance

degradation within tolerable limits.

II.H Summary

Automatic run-time pointer checking can detect memory bugs, provide

security, and help software developers isolate and find memory bugs efficiently. As

programs get ever larger, and the cost of bugs in dollars and security adversaries

becomes painfully expensive, these techniques become increasingly important.

Computer architecture needs to play a role in lowering the overhead

of these software checks. Bounds checks protect against over half of the CERT

exploits, providing reasonable coverage with reasonable run-time cost. We first

considered optimizating the code sequence of software bounds checks to use the

x86 bounds, having realized that dynamic instruction count and branch mispre-

diction accounts for much of the execution overhead. This lowers overhead on

78

two-branch bounds check from 70% to 40% using bnd-array, when measured on

an AMD Athlon processor. Next we propose a check redundancy elimination

technique to eliminate unneeded software checks when protecting against secu-

rity exploits. By focussing checks only on memory buffers that write external

data, we can further reduce this run-time overhead to 24%.

Next, we provided a detailed analysis of the trade-offs for where to store

the meta-data, with the pointer or with the object. The results show that storing

the meta-data with the object instead of the pointer provides better results,

especially for programs like mcf and parser where there are many more pointers

stored in memory than objects (each object has several pointers). In addition,

as many more different checks are done on a pointer, storing the required meta-

data with the object scales better in terms of performance. To obtain further

coverage, the meta-data checks we examine in this analysis are dangling pointer

and bounds software checks.

Incorporating both bounds and dangling pointer checks using OMD

data layout approach results in an average simulated slowdown of 63.9%. This

slowdown is still too large for the checks to be used in released software. We

therefore propose an ISA and CPU extension using the meta-check instruction.

The meta-check loads the bounds and stores them into physical registers, and

associates with a pointer register a set of micro-ops to be inserted to perform

the dynamic check whenever that register is used to generate an address. This

resulted in an average slowdown of 21.2%.

II.I Acknowledgement

Section II.F contains materials to appear in “Bounds Checking with

Taint-Based Analysis”, in 2007 International Conference on High Performance

Embedded Architectures and Compilers (HiPEAC 2007), W. Chuang, S. Narayanasamy,

79

R. Jhala and B Calder. The dissertation author was the primary investigator and

author of this paper.

III

Transactional Memory

III.A Introduction to Transactional Memory

Effective utilization of multi-core processors is stymied by the difficulty

of programming multi-threaded programs. Failure to obey data dependencies

between threads results in race conditions where variables are modified in patterns

not possible if the program were executed by a single thread, and often modified

nondeterministically. This results in bugs that are extremely hard to detect,

understand and replicate. Many serious bugs are attributed to race conditions.

The 14 August 2003 blackout of large parts of North America was caused in part

by a race condition in widely-deployed electrical monitoring software [68]. After

the blackout, even though the engineers knew which software module failed, it

still took eight weeks of searching through millions lines of code to find the root

cause of the race condition. The Therac-25 radiation machine mentioned earlier

was another example of a race condition in its control software, that killed at

least five patients [51].

Race-conditions causes unexpected results from concurrently executing

threads due to different interleavings or rates of execution of instructions. Dif-

ferent rates of execution are caused by non-determinism inherent in any general

80

81

purpose system like disk access, network traffic, etc. Shared variables communi-

cated between the threads are often timing dependent, and will result in different

values forwarded hence different non-repeatable results generated. Programmers

often find these unexpected results to be wrong.

Most parallel programs use locks and other synchronization primitives

to impose an order between threads that use shared memory to communicate.

Poor lock usage results in incorrect code and performance penalties [73, 40]. Too

coarse-grain a lock results in threads inefficiently waiting when they could other-

wise be executed in parallel. Too fine a granularity adds programming complexity

and increases the likelihood of deadlock or other incorrect behavior. Of course

this assumes the programmer correctly knows where to place the synchronization

primitives.

Thread priorities introduced for scheduling real-time tasks, compounds

problems with locking. A low priority thread may acquire and lock a resource. If a

high priority thread requests the resource, it has to wait on the low priority thread

to complete ownership, thus essentially inverting the priority of the threads. In

the worst case the high priority thread might pre-empted the high priority thread,

never allowing it to release ownership of the resource, thus causing lack of forward

progress and deadlock.

We want to consider a multi-threaded programming model that allows

the program to avoid data-races called Transactional-Memories, by providing the

appearance to any external viewer of memory, atomic execution of code regions.

Threads concurrently execute Transactional-Memory (TM) regions speculatively

and any memory access that aliases with another thread’s TM memory access is

detected, undone by speculation recovery, and the threads’ execution serialized to

prevent data-races. If no conflict is detected, then the concurrent threads execute

freely. This conflict-free execution provides atomicity guarantee for the transac-

82

tion’s execution. A further specification of Transactional-Memory called Ordered

TM can provide completely deterministic control flow. Determinism is desirable

for debugging, or for applications that need a specific execution sequence.

Multi-threaded programming models using speculative memory, must

perform two tasks- detect conflicts and recover from these conflicts. Doing them

efficiently under all conceivable operating conditions is a significant challenge.

We focus on Hardware Transactional Memories (HTM) [40], which provide these

features while maintaining good performance. HTM general characteristics are

that it facilitates conflict detection and recovery through the cache hardware

commonly found in processors, using cache coherence to detect conflicts and

cache block versioning to maintain speculative and non-speculative state. If a

conflict is detected from coherence, the hardware can quickly abort, discarding the

speculative memory modifications, and recovering to the non-speculative version

held in cache. Details of the HTM baseline will be discussed later in section III.C

on related work.

One critical issue with HTM is what to do when a program’s transac-

tional working set exceeds the cache capacity, or when the cache contents must be

evicted due to a context switch. We say a Transactional Memory is unbounded

when its capacity is not limited by processor buffering capacity e.g. cache or

write buffer. We also describe a Transactional Memory as virtual when it stores

transactional state in virtual memory allowing context switching. The implies

that an unlimited number of TM threads can exist and that these threads can

share managed resources like the CPU or IO. With both capabilities, unbounded

and virtual transactional threads are treated like any other thread but addi-

tional safety guarantees. Several recently proposals have been made (LogTM,

TCC, VTM, LTM, UTM, Hy-TM), but each are limited either (or combined) by

having bounded capacity, being unable to context-switch, or having poor per-

83

formance. We propose a Paged Transactional Memory (PTM) approach that at

once resolves the generality and performance issues troubling HTM by using pag-

ing features already present in modern processors. Essentially we use a second

shadow page plus the original home page to store the non-speculative and specu-

lative state. We also use conflict detection hardware organized by blocks in pages

that map neatly into bits in a bit-vectors. There is one set per page per transac-

tion, simplifying organization. Because the technique does not copy data during

transaction commits and aborts, it is faster than prior techniques. We contrast

PTM to a prior technique that supports unbounded and virtual Transactional

Memory called VTM.

In this chapter we will discuss how our PTM version of Hardware

Transactional-Memory can simplify multi-threaded programming by eliminating

data-races. First, in this section III.A, we define the race-condition problem,

and the solution to guard critical sections by locks and transactions. In sec-

tion III.B, we introduce and contrast the programming models for TM and TLS.

Next we ground the work in this chapter by understanding earlier publications on

Hardware-Transactional-Memory (HTM), Software-Transactional-Memory (STM),

Thread-Level-Speculation (TLS), and databases, in section III.C. Most prior

HTM, and TLS depend on the cache to hold speculative memory updates. We

introduce the Page-Transactional-Memory (PTM) technique transactional data

in virtual main memory, allowing virtualization of transactional state and un-

bounded state size. This is discussed in section III.D. We compare PTM’s

performance to VTM and Lock synchronization. There are limitations common

to all cache based HTM including our Page-Transactional-Memory, due to cache

line false conflicts that cause extra aborts hence reduce performance. We intro-

duce a technique to eliminate false-conflicts. PTM performance is discussed in

section III.E.

84

III.A.1 Race-Conditions

Concurrent execution often allows interleaving of reads and updates to

shared variables that causing different results due to different ordering of the

reads and updates. The different orderings are in turn caused by external events

such as paging or context switches. Whether or not this non-determinism in

outcomes is a bug depends largely on whether the application can tolerate non-

determinism. One example is a credit-card account that accepts atomic deposits

and purchases in parallel. If the credit-card account can tolerate negative and

positive balances, then reordering a sequence of deposits and purchases is asso-

ciative hence results in the same final balance. This property is useful if we want

to do parallel updates concurrently, where different executions of threads will

result in different sequences of updates, yet compute the same final result. If the

credit-card account must always remain above a certain negative limit to prevent

overlimit, then order does matter, as a purchase before a deposit may create

a negative balance that is not allowed. In this situation the non-deterministic

execution is not desirable because it can result in a negative overlimit balance

in some sequences of execution. Non-determinism caused by concurrent execu-

tion is called a race-condition and many parallel programming styles attempt to

avoid it. If non-determinism results in a bug, the random outcomes generated by

race-conditions often makes the bug hard to replicate, isolate and remove.

There are two types of race-conditions called general-race and data-

race, both resulting in non-deterministic execution of concurrent threads that

may not be intended by the programmer. Race-conditions as defined by Netzer

and Miller [61] are caused by concurrent data-access to a shared memory with-

out synchronization. General-races in concurrent execution occur in programs

meant to have deterministic execution but do not. What is meant by determin-

istic execution is that the threads update memory in some order. The previous

85

non-negative balance credit-card account is one example of a general-race caused

by non-associative operations. Another example is maintaining proper ordering

of data-dependencies. Data-races are different in that the programs are consid-

ered non-deterministic but lack atomic memory update by concurrently executing

threads. Atomic execution of a section of code means that the outcome of the

section depends only upon the initial state and the operations of that thread,

and not upon any other thread. A critical-section is one that depends on atomic

execution to behave correctly. From the credit-card account example even when

we allow negative balances, if the the deposit code was not atomic, we could find

sequences of execution that would compute the incorrect final results. We observe

that deposit and purchases typically occur in two memory accesses on modern

processors- a read followed by a write. If two threads are trying to make a de-

posit for each thread, one possible interleaving might read the same credit-card

account at the same time, and then add the deposit, and then write the shared

variable one after another, causing one of the deposits to be lost. This is obvi-

ously different than if the deposits execute serially one after another. We refer

the reader to Netzer and Miller [61] for a formal definition of these properties.

III.A.2 Lock Synchronization and Transaction

We can guarantee atomic execution of critical sections through two dif-

ferent techniques. The first depends on synchronization primitives like locks to

prevent concurrent access of the critical section. The second uses speculative

execution to transactionally execute the critical section, allowing concurrent exe-

cution of critical section if there are no conflicts, but preventing concurrent access

to shared hence conflicting variables.

86

Locks Synchronization

Synchronization primitives such as locks and barriers modify control

flow to regulate concurrency. It can prevent concurrent execution in a critical

section as in the case of locks, or to enforce a schedule of execution as in barriers.

Locks enforce atomic execution of a critical section by allowing only one thread

to acquire the lock, leaving other threads attempting to obtain the lock to block

on the lock until the acquiring thread releases the lock value by writing a value

denoting its availability. Subsequently the remaining threads compete for the

lock, where one thread acquires the lock by successfully writing the lock variable,

and the process repeats. When a thread blocks, the thread spin-waits or sleeps

at the lock until the lock is released, and effectively blocks execution at the

lock. Because blocking creates the possibility of deadlock, or issues with priority

inversion which is a problem in real-time systems, there many proposals to avoid

locks.

Barriers synchronize the execution of multiple threads such that threads

block at the barrier until a given number of threads arrive, and then all are

released. Barriers block using the same methods as locks. There are other types

of synchronization primitives such as semaphores, and conditional variables not

further discussed as they are not needed in later discussion.

One problem with lock based synchronization is deadlock that prevents

forward progress when the thread is unable to obtain the lock. This will block the

thread by spin-waiting forever or switching out the thread but never returning.

Deadlock occurs when there is circular request dependency between the owner

of a lock and another requester. This might occur due to lock variable manage-

ment, where taking care of the status of multiple, concurrent variables indirectly

representing control flow may be confusing to the programmer. More precisely

deadlock occurs under four “Coffman conditions” [16]: (1) mutual exclusion- a

87

resource is either given to one thread or not at all, (2) hold and wait condition-

a thread may request new resources when it already has another resource, (3) no

preemption condition- only that thread may release the resources it owns, (4) cir-

cular wait condition- two or more threads form a circular chain of request, where

each thread waits on another thread for a resource. One technique to break dead-

lock is by preemption and rollback, that is stopping one of the threads, forcing it

to give up its lock, and restarting it after the other threads complete their critical

sections. However if occurs too many times to the losing thread, preemption may

result in livelock.

Livelock also results in a lack of progress, however threads in livelock

do not have a circular request dependency. Livelock threads can even complete

instructions, albeit so slowly that its often not perceived. It is caused by frequent

preemption, or restart on the thread such that the thread is “starved” of forward

progress.

Figure III.1 illustrates an example of lock synchronization primitives for

the credit-card account example.

We guard the critical sections of deposit and purchase with lock syn-

chronization as we intend concurrent execution. If locks were missing we can see

that there could be interleaving of the read and write operations that would not

be replicated by a serial execution equivalent. This leaves the account balance

inconsistent. We have taken into consideration what happens when there is a

credit overlimit condition in the account when there is insufficient credit that as

a result makes a call to overlimit. Lets re-examine the example with a definition

of overlimit in Figure III.2.

We can see that depending on the global flag, global debug that it may

execute a signal or may redeposit back the money withdrawn. If we deposit, while

within a purchase, then the lock account lock is unavailable, causing deadlock.

88

lock_t acount_lock;

int acount_balance;

int account_overlimit;

void deposit(int amount)

{

int sum;

lock(account_lock);

sum = acount_balance + amount;

acount_balance = sum;

unlock(account_lock);

}

int purchase(int amount)

{

int diff;

int given;

lock(account_lock);

diff = acount_balance - amount;

acount_balance = diff;

given = amount;

if(acount_balance < account_overlimit) {

overlimit(amount); // maybe raise exception?

given = 0;

}

unlock(account_lock);

return given;

}

Figure III.1: Pseudo-code illustrating Lock Synchronization

void overlimit(int amount)

{

if(global_debug) {

raise(SIGUSR1); // signal SIGUSR1 interrupt

}

else {

deposit(amount);

}

}

Figure III.2: Pseudo-code for overlimit that illustrates deadlock

89

One reason why such cases maybe difficult to find is that say the program was

debugged using the “raise” system call to handle overlimit error. For production

they used deposit thinking that silent behavior was better, masking the deadlock

until then.

Transactions

Transactional Memories solves the deadlocks problem seen with lock

based synchronization by using speculative execution and rollback if something

violates the transactional properties derived from databases. Database transac-

tions maintain ACID properties- atomicity, consistency, isolation and durabil-

ity [28]. These properties allow a database to run reliably even in the presence of

concurrency and unreliability of components. We describe the ACID properties

next:

• Atomicity guarantees that the updates will either be applied completely or

not applied at all.

• Consistency refers to the properties applying at all transactional sections

and throughout executing the transaction. If any atomicity violation occurs

then the transaction must back out the action to maintain consistency.

• Isolation refers to whether activity in the transaction is visible to an exter-

nal observer.

• Durability species that state is persistent even after soft failure e.g. power

outage.

Transactions [40, 41] also have a linearizability property that states

transaction appear to execute serially. Steps of one transactions never inter-

leave with another transaction, as they execute atomically. This property also

90

implies that there exists an ordering of transactions executed on a single thread

that will have the same result as the concurrent execution.

Transactional Memory only takes a subset of this- atomicity, consis-

tency and isolation. Transactional memories do not need state durability as this

is unnecessary for general computation that enables non-blocking, concurrent ex-

ecution. Transactional memories maintain ACI property by using transactions

or speculative execution that can be rolled back upon conflict. Transactional

memories will be discussed further in the next section.

III.B Transaction Software Model

Parallel programming models help the programmer express how to parti-

tion the program to minimize the cost of concurrent execution. Hardware support

influences these models, and in this section we will examine some of the proper-

ties tied to hardware that distinguish parallel execution models. Principally we

are interested in the programming models’ ability to eliminate race-conditions,

and to use transactional threads like any other thread (generality) except with

additional safety guarantees.

Transactional Memory (TM) programming model has several advan-

tages over prior concurrent models: (1) Transactional Memory’s provides atomic

execution, that protects critical sections of code against data-races, without dead-

lock because transactional memories provide non-blocking execution. This guar-

antee is particularly attractive when protecting fine-grain or nested lock regions

that are prone to deadlocks. We believe that such regions will become more

prevalent as programmers try to eke out greater parallel performance. (2) An-

other advantage is the simplicity of transactional memories programming where

it just needs simple begin and end instructions markers. (3) Transactional memo-

ries enable greater performance over locked based execution, by allowing parallel

91

execution of critical sections so long as there are no run-time data conflicts,

that otherwise would have to execute serially. There are additional variations

of transactional memories ranging up to Thread-Level-Speculation that enables

more powerful programming models that ease multi-threaded programming, and

provide full virtualization and unbounded memory support. In this section,

first we describe how to program transactional memories and how the execu-

tion model works, and second we contrast variations on the basic transactional

memory model.

III.B.1 Transactional Memories Programming Model

Programming with transactional memories is easy. The programmer

places at the entry(s) of the atomic region a TM start instruction, and at the

exit(s) of the region a TM end, enclosing the region. Executing transactional

regions is similarly easy to reason about as we summarize next. When TM start

executes, the system stores a checkpoint at that instruction, then continues exe-

cution. If transactional code has no data conflicts, they can execute in parallel. If

there is a data conflict that could cause a data-race due to accessed shared vari-

ables between two or more threads, all but one thread stops execution by either

stalling until the conflict is resolved, or performing abort that restores the check-

point and re-executes the region. This allows the winning thread to complete

the region, while preventing inconsistencies in memory. When TM end executes,

speculation stops and the transaction commits. Commit releases the checkpoint,

and makes the speculative state into non-speculative that is now exposed to other

threads. We now examine the policy level features of transactional execution in

detail. Mechanisms for transactional memory are discussed in section III.D in

the context of our proposed PTM transactional memory system.

92

Recovery (Abort/Stall)

In order to recover from atomicity violation, we need a safe state given

by a checkpoint and recovery policy to restore that checkpoint. Conceptually

checkpointing stores the entire state at the TM start instruction, whose state is

non-speculative. Registers are typically fully copied and stored this way. However

checkpointing the entire memory state including state unmodified by the trans-

action is expensive, so we only checkpoint memory updates and maintain the

last update to a given location. Execution afterward, within the transaction, is

speculative. Updates within the transaction modify speculative state but not the

checkpointed state, hence doing abort restores the checkpointed state as found at

the TM start. Abort is assumed to be handled atomically by some mechanism to

be discussed later. Speculative state will co-exist with the checkpointed state at

a given location by versioning memory into two “copies”- one speculative and one

non-speculative although not necessarily at the same level in the memory hierar-

chy. To do a complete and general checkpoint, all speculative state throughout

the memory hierarchy- at register, cache, main physical memory, and virtual

paged-out memory is monitored and saved as necessary. Similarly recovery must

function at all levels of the memory hierarchy. In fact general recovery has been

an area of recent interest including that of this thesis because of the complexity

and difficulty; earlier transactional memory implementations limit the recovery

scope to registers and cache.

An alternative approach for recovery is stalling the thread [57], instead

of aborting and re-executing. The system arbitrates as before. At the point of

conflict detection, the system reverses the effect of the losing conflicting instruc-

tion and stalls that thread, until the winning thread completes the transaction.

While functionally this has the same result as doing the abort, it eliminates the re-

execution overhead from the losing threads, potentially increasing performance.

93

Also stalling can be used for recovery on losing non-transactional threads, which

otherwise cannot abort. Unfortunately stalling does not work for all cases. If

a transaction updated (wrote) a location previously, but loses arbitration then

stalling does not help recover the state before the write. In this case abort is

necessary.

Arbitration

Once a conflict is detected, the transactional memory system must fig-

ure out which threads need to recover, and which single thread may complete

execution of the transaction. The system uses a process called arbitration [72]

to decide the “winner” and “losers”, by considering properties that guarantees

forward progress and possibly other programmer specified requirements. One

general strategy is to use an aging property that selects the oldest running trans-

action to be the winner, and allows losers to re-execute until eventually they

become the oldest transaction. One variation assumes a global clock that pro-

vides a time-stamp at the initial transaction starts, which is retained even after

restart from abort [2]. Maintaining a global clock accurately across a distributed

system may pose difficulties as it it may not scale efficiently. Another variation

uses a distributed clock based on communicating a local clock through conflict

messages to loosely synchronize. After a successful commit, it increments the

local clock, and takes the maximum of the sent clocks and local clock to dis-

cover the new clock [72]. Programmer specified properties are discussed latter in

subsection III.B.2, in the context of commit ordering. Arbitration can be done

centrally or locally depending on the trade-offs of simplicity versus distributed-

system scaling.

Without arbitration providing the non-blocking execution, conflicts can

cause transactions to deadlock when transactions have cross dependencies that

94

causes mutual restarts. Long running transactions may also be livelocked as they

eventually get preempted by shorter running but conflicting transaction. Un-

fortunately early Transactional Memory proposals did not include arbitration so

lack guarantee of forward progress. Current proposals including our own provide

arbitration and a stronger guarantees of at least obstruction free execution. De-

pending on conditions of the code to be transactified, this may result in wait-free

or lock-free code.

Commit

Once execution reaches the end of the transaction, it finishes with a com-

mit. There maybe an arbitration check to order the commit before ending, which

is discussed later. If the check is successful or not necessary, the commit discards

the checkpointed state, and makes the speculative state non-transactional. If not

it aborts. Commits are atomic operations.

How abort and commit actually manage copying state depends on upon

two properties [57]. First one must select where the recovery copying cost must

occur. In creating the speculative and non-speculative memory versions, typically

one is copied from the other and leaving the original in place. If one selects spec-

ulative data to be the in place location, then abort must copy non-speculative

checkpoint data, and commit leaves memory in place making commit fast. Alter-

natively if one selects non-speculative data to be in place, then commit must copy

and abort keeps data in place. This makes abort fast. Second any data copying

during commit or abort may be eager or lazy. Eager commit or abort completes

any copying before letting anything else execute. Lazy will allow the thread to

execute before all the copying is done, to reduce the performance impact, while

remaining copying continues in the background until completed. This appears

atomic as long as any memory access does not observe the inconsistent state, so

95

loads and stores attempting to access uncopied state must stall.

Conflict Detection

Transactional atomicity maybe violated anytime an external memory

access causes the thread to calculate a different result than if it was not execut-

ing concurrently, or anytime a transactional write to shared memory is observed

by a read before the completion of the transaction. The essential process of vio-

lation detection then becomes detecting if there is a shared memory between two

or more threads, one of which is a transaction, upon which a write occurs in one

thread, and a read or write occurs in another thread. Thus violation detection

keeps track of transactional reads and writes for a given thread, and observes

subsequent external threads’ reads and writes to see if there is an aliasing mem-

ory access. We can describe these aliases in terms of dependencies by a pair

of threads as Read-After-Write (RAW), Write-After-Write (WAW), Write-After-

Read (WAR), and Read-After-Read (RAR). The temporal ordering on current

memory operations is precise because the memory system will serialize simul-

taneous multiple memory operations to same location. The system then filters

out dependencies that would not cause atomicity or isolation violation, mean-

ing all RAR. This leaves RAW, WAW, and WAR dependencies to trigger abort

and recovery. Isolation maybe weakened such that they only apply to other

transactional threads (weak atomicity) [10] as opposed to all threads including

non-transactional (strong atomicity) [14]. Other models such as Thread-Level-

Speculation allow forwarding of speculative data, meaning that RAW dependen-

cies can be resolved without abort and recovery.

Conflict detection may occur at the point of the memory access where

it is termed eager [57], or it maybe delayed after the memory access where it

is termed lazy. Eager conflict detection reduces the amount of wasted work

96

before calling recovery, however lazy conflict detection when done just prior to

ending ordered transactions filters away false dependencies (WAW and WAR)

from causing recovery. While most transactional memories are eager including

ours, TCC [73] makes use of lazy conflict detection to recover only on true RAW

dependencies violations as discussed later.

III.B.2 Details of Transactional Memory Programming Model

This subsection describes additional features of programming with trans-

actional memories in regards to safe programming. These issues are forward

progress guarantees, composition due to nesting, system calls, and commit order-

ing.

Non-blocking Execution

Transactional synchronization is notable for providing some guarantee

of forward progress even when another thread is in conflict. Any programs that

guarantees completing some operation under conflict and does not block (wait)

is considered having non-blocking execution, a broad term for forward progress.

Because it does not allow blocking, these programs do not have locks. Unfortu-

nately being free of locks does not eliminate deadlock because it is still possible

to create two block-free transactional threads in a mutual memory-dependency

cycle with control-flow that enters spin-waits. These threads wait for each other

to complete its transaction, but never does so [10]. Livelock may still afflict non-

blocking programs. To provide more guarantees, there are three more restrictive

definitions of forward progress- obstruction-free, lock-free, and wait-free- going

from least to most [37, 72, 38]. All of these definitions assume the threads do not

crash.

97

• Obstruction-free execution guarantees that some operation will complete

when the thread runs in isolation meaning by itself, without any conflict from

any other thread. Livelock and deadlock may still occur on programs that

are obstruction-free. All obstruction-free programs are also non-blocking

programs.

• Lock-free execution guarantees that some useful operation completes after a

finite amount of time on some thread. Under this guarantee in the worst

case, only one thread needs to make forward progress in the system yet be

considered lock-free. This does protect lock-free programs from deadlock,

but not necessarily livelock. In the forward progress hierarchy, all lock-free

programs are also obstruction-free.

• Wait-free execution guarantees that all threads will make forward progress

executing useful instructions after a finite amount of time. By being starvation-

free it is free from both deadlock and livelock. In the forward progress

hierarchy, all wait-free programs are also lock-free.

Programs with transactional memory are generally obstruction-free. How-

ever with the use of arbitration and restrictions on control-flow in the critical

sections, one can create lock-free or wait-free programs.

Nesting

Placing additional start and ends within a transactional region will nest

the transaction, meaning a transaction scope can be enclose another. Nesting

transactions creates scopes out of matching start and end transaction instruc-

tions. Nesting transactions composes into another transaction, meaning that

the atomicity guarantee applied to the components also applies to the composed

whole. Function calls inside transactions whose encapsulation hides control flow,

98

increases the likelihood of nesting even if undesired, hence all proposed trans-

actional systems provide some support for nesting. Checkpointing capabilities

governs the recovery of nested transactional memory regions as they either re-

cover to the outermost scope or the nearest enclosing scope. Doing this at the

outermost enclosing region only needs to save one checkpoint, but will cause re-

covery to restart from a larger distance than from the nearest enclosing start [34],

thereby flattening the nest. This is the most basic form of nesting support al-

lowed but still provides correct recovery execution, and has the least state and

implementation cost. A more efficient recovery implementation will recover from

the innermost enclosing nest [14, 58], but has greater state storage requirements

as a checkpoint is made at each enclosing transaction start, and greater imple-

mentation costs as abort must pick the right checkpoint to recover from. The

implementation must also recover an abort or perform a commit to speculative

state, when processing a nested region, which was not previously required. For

the work in this thesis we consider only flattening nested transactions as it is

orthogonal to nesting, but note this is an area of intense research.

System Effects

Handling system effects such as virtualization is an area of great inter-

est recently to researchers due to the many difficulties it poses. System calls,

interrupts and exception handling potentially swap out the current thread’s exe-

cution state and installs another through context switching. If this occurs either

the transactional memory must be virtual, or the system must assume context

switching does not happen [40]. Virtual Transactional Memory means all transac-

tional state can be saved and later restored, thus allowing multiple transactional

contexts to co-exist [73]. Our work uses the virtual TM policy, as the latter for

many systems is an unrealistic assumption. Virtualization introduces another

99

problem: Memory updates to a context-switched out thread requires the system

to also perform conflict detection on all threads in addition to those running, and

perform recovery if necessary when that thread is restored. A different problem

is system calls within transactions may have side-effects that cannot get undone

by abort, such as IO to network or file-system access. The common solution [30]

is to serialize execution of system calls by pre-validating one thread that will

definitely commit, while all other threads abort or stall. We assume this ap-

proach subsequently. Not very much research progress has occurred in this area,

largely we feel because of the great difficulties, however its importance should

spark interest [99].

Mixing Transactional Code with Non-Transactional Code

For many programs transactions are placed around only the critical sec-

tions of code leaving the rest non-transactional. In this programming style there

will be a mix of transactional and non-transactional code that interacts, with

the complication that arbitration may not know the age of the non-transactional

code and that non-transactional code cannot abort if recovery is necessary. One

solution is to treat the non-transactional current instruction as a transaction and

aborting that instruction is effectively stalling as described before. This also

provides an aging mechanism thus solving both problems.

Hardware vs. Software Transactional Memories

The underlying infrastructure for transactional memory maybe hard-

ware or software, or some hybrid in between. Hardware Transactional Memory

(HTM) was first proposed by Herlihy and Moss [40], and uses hardware structures

such as the cache to provide fast checkpointing and conflict detection but limits

the HTM memory capacity. Shavit and Touitou shortly thereafter proposed Soft-

100

ware Transactional Memory (STM) [80] that performs checkpointing and conflict

detection through software. Because the transactions are layered over the native

virtual memory system, this makes STM transactions portable, unbounded in

capacity, and can have multiple contexts. However STM is slower than hardware

since every speculatively updated memory must be tracked and checked for con-

flicts by using some software verification method. Kumar et al. [50] measured

STM to be 2-7X slower than HTM. Commit and recovery is similarly slowed by

software execution. STM also requires explicit programmer-written function or

language level support to perform the conflict detection and any recovery, whereas

HTM offers a simpler programming model described earlier. Efforts by several

groups [2, 73, 57] have focused on making HTM virtualizable and unbounded by

storing contexts to virtual memory, though at some runtime penalty. Our work

in this thesis continues the effort by further minimizing the virtualization and

unboundedness overhead.

Ordering Constraints

Execution ordering affects the correctness, the starvation-free execution,

and the performance of the transactional memory. Ordering refers to schedul-

ing imposed on transactional threads’ execution at arbitration when a conflict

is detected as described earlier or when the transaction ends. Adding arbitra-

tion at transaction end allows the system to schedule commits, enforcing data-

dependency between the threads because that is when data becomes exposed to

other threads. Threads win and lose commit ordering, just like conflict arbi-

tration, where there is one winner allowed to execute and the remaining losers

perform recovery. For example, using the credit card example to show the safety

derived from ordering, we might specify an order on all deposits to execute be-

fore purchases. This prevents a temporary negative balance that was previously

101

disallowed. As noted earlier, the forward progress guarantee is necessary because

unconstrained abort and recovery may pathologically prevent some threads from

ever moving past that transaction, causing starvation. A model that still lacks

any other ordering other than forward-progress, is called unordered TM. Ordered

TM at commit use some other age metric usually specified by the programmer

to verify that no “older” transaction is executing, performing recovery until all

older transactions commit. Ordering commits eliminate non-determinism in the

execution order as repeated execution of the program provides the same commit

order, eliminating general-races, yet ordered TM still allows concurrent execu-

tion of non-conflicting transactions. It simplifies the debugability of the parallel

code, because commit order is now deterministic. The disadvantages of Ordered

TM are that the constraints reduces opportunities for parallel execution, and it

requires all concurrent execution be transactional.

Ordering age information maybe passed to the transactional system

by using phase-numbers [34], integer numbers whose values imply an ordering.

Typically smaller value implies “younger” when compared against several phase

numbers. When the phase numbers are equal, then the no ordering is implied

and conflict resolution is only dependent on forward progress requirements. This

enables phase-numbers TM to implement both ordered and unordered conflict

resolution.

We might order commits according to the execution order found in a

single-thread execution giving us the Sequential TM. Sequential execution order

for conflict resolution has the advantages and disadvantages of Ordered TM. It

further simplifies debugging because the programmer is able to follow the single

thread execution order more easily when looking at the source code. Further any

partitioning error that causes a data conflict hence recovery, simply falls back

to serial order. However Sequential TM has the disadvantage that it requires

102

a constrained parallel partitioning and ordering that will serialize to a feasible

control flow in the original sequential program.

Providing a determined order of execution over the entire program exe-

cution requires that all concurrent execution be transactional. This allows com-

mit arbitration to totally determine ordering over concurrent execution thus en-

abling the total ordering. Mixing non-transactional and transactional code weak-

ens the ordering, as transactions executing with non-transactional code allows

the transaction to complete out-of-order with respect to previous and subse-

quent transactions on the non-transactional thread. Ordered TM and Sequential

TM requires total ordering to maintain its semantics hence must be completely

transactional during parallel execution. Current ordered TM proposals require

executing transaction all the time [34], while unordered TM may mix transaction

and non-transactional code [40]. However we conjecture that it maybe possible to

integrate the ordered and unordered TM code by separating them with a barrier,

though a thorough exploration has yet to be done.

III.B.3 Related Model: Thread-Level-Speculation (TLS)

Thread-Level-Speculation whose modern form was first proposed by Sohi,

Breach and Vijaykumar [81] takes a sequential (non-concurrent) program, and

speculatively creates and executes concurrent threads. It maintains a non-speculative

primary thread that the speculative thread can fall back upon due to data mis-

speculation, or from any other recovery. The speculative threads attempt to

perform useful work which the non-speculative thread can then avoid, thereby

increasing the run-time performance. Like TM it may nest regions, but unlike

TM each nest represents a distinct forked thread, that when joined will commit

that region. Also like transactional memories TLS speculates memories by using

memory versioning, but unlike TM, it may have multiple speculative versions

103

corresponding to the nested speculative threads. TLS also speculatively forwards

results from older threads to the younger. This causes TLS to look for memory

conflicts like Transactional Memories but differs in that it is looking for data

mis-speculation that occurs when data has been forwarded but is redefined in

the older thread. Other data-conflicts such as WAW, and WAR are hidden by

memory versioning. TLS has several advantages that are offset by its steeper

implementation cost. TLS is easier to program and debug because it has the

appearance of a single-threaded program. TLS also performs automatic parallel

partitions of the program through hardware or software without the interven-

tion of the programmer. We provide TLS and the previously described Lock-

synchronized parallel programming models as a counterpoint to Transactional

Memories.

III.B.4 Transactified Examples

With transactional memories defined, we return to the potentially dead-

locked credit card account example, to see how transactional memories can solve

that problem in figure III.3. When written as transactional memory, the path

through the code that goes through purchase, overlimit, and deposit no longer

deadlocks. It does create a nesting of transactions though that composes properly

and does not deadlock.

Transactional memories can also protect against other types of mem-

ory bugs. Take for example the loop in Figure III.4 partitioned for concurrent

execution. As it has loop carried dependence between a[i] and a[i-1], clearly

the order of the loop iterations matter, and a naive parallel execution will often

result in incorrect results due the race-condition. However such errors are not

apparent to automatic parallel partitioning such as OpenMP compilers, that will

generate code regardless [54]. Using transactions all the time in such cases will

104

int acount_balance; int account_overlimit;

void deposit(int amount)

{

int sum;

tm_start; // transaction start

sum = acount_balance + amount;

acount_balance = sum;

tm_end; // transaction end

}

int purchase(int amount)

{

int diff;

int given;

tm_start; // transaction start

diff = acount_balance - amount;

acount_balance = diff;

given = amount;

if(acount_balance < account_overlimit) {

overlimit(amount); // maybe raise exception?

given = 0;

}

tm_end; // transaction end

return given;

}

void overlimit(int amount)

{

if(global_debug) {

raise(SIGUSR1); // signal SIGUSR1 interrupt

}

else {

deposit(amount); // previously could cause deadlock

}

}

Figure III.3: Pseudo-code of credit card example using transactions synchroniza-
tion

105

int loop(int slice, int width, int order)

{

int i;

// each slice maybe executed in parallel

tm_start(order);

for(i=slice;i<(slice+width);i++) {

a[i]=0.5*a[i]+0.5*a[i-1];

}

tm_end(order); // if conflict, commit in order

}

Figure III.4: Transactified loop example- Ordered transactions protect against
loop carried dependency

detect the dependency and sequential ordered will correctly serialize execution of

thread that will obey the loop-carried-dependency.

III.B.5 Programming Models Comparison

We categorize the properties of the different hardware transactional

memory programming models in terms of their ability to eliminate race con-

ditions, and their different hardware requirements. We distinguish several Trans-

actional Memory models based on ordering constraints- unordered, ordered, se-

quential ordered, and phase-number ordered TM. Though our work does not

mandate ordering, ordering complements PTM by providing additional safety

guarantees. On the other side of the coin our PTM work enables ordered TM

models as they can execute on unbounded and virtualized TM hardware.

Later in some comparisons we also lump together Transactional Mem-

ory except TCC TM [30] as “TM”, as the various proposals share the described

characteristics. We similarly lump together the many published Thread-Level-

Speculation as “TLS”. Later in related work III.C, we distinguish several trans-

actional memory models based on its virtualizability and unboundedness- HTM,

STM, and VTM that enables general transactional memories.

106

Table III.1: Comparing Safety and Convenience of Transactional Memory Pro-
gramming Models

introduces ordering total TM

deadlock

Lock yes no* -

Unordered TM [40] no no no

Ordered TM no yes yes

Sequential TM no sequential yes

Phase-Number TM [34] no either yes

TLS [81] no sequential yes

Comparing Ordering

We summarize the ordering capabilities of the different parallel program-

ming models, comparing their ability to eliminate race-conditions in Table III.1.

Introduces deadlock indicates whether that programming model’s construct to

maintain atomicity in a critical section via lock or transactions will induce dead-

lock. As discussed earlier locks will deadlock with other locks trivially. Our

abstract transaction models will not introduce deadlocks as they are all defined

to provide forward-progress guarantees. However other control flow such as spin-

waits already present in critical section may cause the transaction to block, so we

do not provide a systemic guarantee about forward progress beyond describing

these TM’s as non-blocking and obstruction-free. Ordering provide deterministic

execution eliminating general-races. For lock-based synchronization, the aster-

isk (*) indicates that additional “conditional-variable” synchronization construct

can provides ordering though lock synchronization by themselves cannot. Phase-

Number TM allows the ordering to be specified by the programmer who may pick

Ordered, Sequential or Unordered TM. Sequential TM and TLS allow sequential

ordering that has the same commit order and effect as if there was a single thread

of execution, a stronger requirement than ordering. Total TM indicates whether

107

the entire concurrent part of the program must be guarded by either TM trans-

actions or TLS speculation. This is an indicator of programmer effort to port a

program using that model as total ordering is much more effort than guarding

only critical sections.

Conflict Detection Rules Comparison

Conflict detection is used to eliminate data-races as described earlier

in section III.A, and is an important differentiator between transactional mem-

ory models, and TLS as seen in Table III.2. Most Transactional Memory (TM)

models – Ordered, Unorderd, Sequential, HTM and STM – have the same mem-

ory conflict detection between threads, and will abort or stall on RAW, WAW,

and WAR. TCC [34] is a variation of Transactional Memories that uses Phase-

Numbering but eliminates false dependencies (WAR, WAR). Because they per-

form verification only at transaction end in preparation for the commit, TCC

is certain that no other will commit between the verification and commit. This

fixes the order of thread commits, so it only needs to consider true dependencies.

TLS differs from TM by avoiding true dependency violations by using speculative

data forwarding [81]. Lock synchronization does not perform conflict detection.

Debugging Comparison

We have already described properties that segregate the transactional

memories, so now we compare properties that further distinguish TLS and Lock

synchronization from transactional memory in Table III.3. The start and end

of the speculative execution differ between TM and TLS, where transactions

starts at TM start instruction and commits at the TM end, while TLS specula-

tion starts at the fork and commits at the join. This causes differences in the

control-flow. TM fork and join are separate from the transactional start and end,

108

Table III.2: Comparing Conflict Detection Actions of Parallel Programming Mod-
els Without and With Ordering- Read/Write conflicts with ordering are initially
detected in some execution order. Ordering may change the dependency to the
order found in the committed sequence.

detected dependency

RAW WAR WAW

conflict true false false

TM [40] recovery recovery recovery

Unordered TCC TM [34] recovery no no

detected dependency/ordered dependency

RAW/RAW RAW/WAR WAR/WAR WAR/RAW WAW

conflict true false false true false

Ordered TCC TM [34] recovery no no recovery no

TLS [81] forwarding no no recovery no

hence immediately after TM recovery we will find concurrent threads. TLS, with

its speculative fork, kills off threads for recovery. If it finds multiple conflicts or

requires serial execution, it can recover to a single thread. This single thread vs.

multiple thread of execution (in recovered state) potentially simplifies debuga-

bility of TLS vs. TM. It also implies that fork/join performance is much more

important for TLS than for TM.

As noted earlier TLS does data-forwarding between speculative threads

compared to the isolation of transactional regions. Transactional memories iso-

late updates in their regions until commit, which simplifies reasoning of data-

dependencies in those programs. Similarly Thread-Level-Speculation updates

occur sequentially at commit which is also very easy to reason.

The number of memory copies varies among techniques. Speculative

execution introduces two copies- speculative and non-speculative potentially per

thread. TM has only two copies for the entire system, while TCC and TLS

109

Table III.3: TM vs TLS and Locks- Differences in concurrency and isolation affect
how the debugger sees the program.

speculation recovery- isolation copies

start end concurrency

Lock - - - no 1

TM [40] TM start TM end concurrent yes 2

TCC TM [34] TM start TM end concurrent yes N

TLS [81] fork join single thread forwarding N

maintain as many speculative versions in their caches as there are threads to

provide for the memory renaming capabilities (described as “N” in the table).

Providing unbounded storage for baseline TM with two copies is difficult as we

will show, however we suspect that providing more storage in TCC and TLS will

prove to be a proportionately greater challenge. This later point is perhaps the

most significant reason for choosing TM over TCC or TLS.

III.C Transactional Memory Related Work

In this section we discuss related work to our Page Transactional Mem-

ories.

We build a family tree of Transactional Memories research dividing them

by major features. We start by discussing the ancestors to Transactional mem-

ories the early database systems, that perhaps unsurprisingly share many char-

acteristics with our PTM technique. Next we peruse the design space for Trans-

actional Memories that can be subdivided by implementation. This is bounded

by Hardware TM, and Software TM, and is spanned in between by hybrid hard-

ware/software TM. The latter Hybrid TM include Virtual TM systems that pro-

vides multiple contexts and unbounded state capacity through virtual memory.

110

III.C.1 Early Database Systems

Early Relational Databases Management Systems (RDMS) established

many of the precedents of transactional systems. We describe two with relevance

to PTM: the first System R [87] proposed the concept of versioning memory

called “shadow paging”, and the second CPR/801 [15] proposed fine grain conflict

detection.

System R

System R [87, 9] was an early IBM research database system with dedi-

cated software and hardware, which is considered to be the progenitor of modern

RDMS. It introduced SQL, and provided high performance for that time with full

ACID transactional property. System R used virtual memory to map pages of

memory to disk to provide durability in case of soft system failure e.g. power out-

age. It used a two step process to log and checkpoint transactional state to disk

to maintain the durability property. First System R logged committed state to

disk, occurring after the transactions executed in memory. Second to prevent the

log from growing too large, it periodically checkpointed the entire memory image

to disk. As that disk based memory image was also used for swap, it versioned

the disk swap space using “shadow paging” where there were two copies: a “new”

page containing updates and the “old” page containing the checkpointed copy.

This protected against inconsistency caused by soft failure after a checkpoint.

Later we will see that our PTM technique uses a technique similar to “shadow

paging” hence the usage of that name, but differs in that PTM does not focus on

database persistence. Another difference is that System R used locking, and per-

formed rollback only if a deadlock cycle is detected. This prevents opportunistic

concurrent execution when there are no data conflicts.

111

CPR / 801

A successor RDMS to System R was the CPR Operating System running

on the IBM 801 RISC processor [15]. Unlike System R that focused on SQL,

CPR/801 was targeted towards memory mapped IO and transaction research.

Chang et al. observed software transactional support would provide insufficient

performance and more complex programming model, and used hardware assists to

improve this. They introduced support for efficient fine-grain locks in hardware.

Each 128 byte block of memory was organized as 16 blocks per page, and had a bit

in a lock bit-vector that is associated with the page via the page table and TLB.

When a transaction read or wrote the block and depending on the semantics of

the transaction, it sets the lock bit. Memory access with other threads’ locked

shared memory caused conflicts on a block, thus raising a lock fault interrupt.

This then in turn called a handler to undo the transaction and restarted it. The

primary similarity between PTM and the IBM CPR/801 system is that PTM

also associates a bit-vector used for conflict detection with each transactionally

touched page. However, the PTM extensions are used for supporting unbounded

Transactional Memories, as opposed to persistent database transactions. PTM

also uses fine grained memory versioning recover the checkpoint, instead of the

logging.

III.C.2 Hardware Transactional Memory (HTM)

The projects listed under this section use the cache and additional hard-

ware structure as their state buffering mechanism, thus have finite storage capac-

ity. Some like SLE and TCC have a fall back mechanism that uses serial execution

to safely execute transactions without buffering support. However this eliminates

parallel execution performance gains.

112

Herlihy and Moss

Herlihy and Moss [39, 40] proposed using hardware support for transac-

tional memory as an alternative to lock-based concurrency control. In their pa-

per all accesses to shared memory regions use special load and store instructions.

Shared data accessed by transactions are kept in a fully-associative transaction

cache and excluded from the regular cache. This cache allows a transaction to

utilize the results of its previous stores without transactions on other processors

observing the stores. Conflicts between the transactional cache and updates to

memory are detected by observing writes to memory made by other processors

using minor modifications to normal memory consistency protocols (either bus-

or directory-based [39]).

Recovery with Herlihy and Moss Transactional Memory’s is less conve-

nient than all other described schemes. Conflict detection via cache coherence

maintains a consistent view of transactional memory allowing a speculate up-

date if no conflict exist otherwise aborting. However it does not automatically

restart the transaction, as that policy is left to the programmer to encode. Also

interrupts (including timer interrupts) will cause transactions to abort. This con-

straint and the limited size of the transactional cache mandate short transactions

with small working sets. Nonetheless, Herlihy and Moss effectively generalized

hardware-supported atomic memory operations to a number of words limited

only by the size of the transactional cache.

SLE and TLR

Rajwar and Goodman considers speculatively converting lock guarded

critical sections into transactions. The first proposal is Speculative Lock Eli-

sion [71] (SLE) that introduces the idea of dynamically detecting lock protected

regions surrounding critical sections, removing the lock, and speculatively exe-

113

cuting the region using the same hardware found in out-of-order machines for

branch prediction. It detects the locks by scanning for instruction sequences that

are likely to be locks with high but not complete accuracy. Data conflicts between

regions are found through cache coherence when it snoops the speculative write-

buffer. If the capacity of the write buffer is exceeded or if there is a conflict, SLE

re-executes the region with explicit locking. Speculative Lock Elision increases

performance by allowing greater concurrency than lock approaches, yet is com-

pletely safe because missed regions still will execute with lock synchronization,

and false positive regions execute transactionally.

The second proposal refines SLE in an approach called Transactional

Lock Removal [72] (TLR) that provides both greater concurrency and wait-free

execution. SLE may deadlock during lock based recovery, or livelock as cross

dependency may cause repeated recovery. TLR introduces arbitration to prevent

live-lock by ordering commits to provide forward progress. It also introduces con-

flict recovery through stalling and deferring the request by using cache coherence

NACK’s (negative acknowledgments). The deferrals can create dependencies cy-

cles that induce deadlock, so TLR introduces an instruction that break those

cycles by restarting younger nodes. The authors state that the limited storage

capacity must be managed or it will prevent full guarantee of forward progress.

Similarly unless critical section are explicitly marked so that TLR can turn the

locks into transactions, it cannot guarantee blocking-free (deadlock free) and

wait-free execution.

TCC

Transactional Coherence and Consistency (TCC) [31, 30, 34, 54] pro-

vides a novel hybrid of HTM and TLS techniques. TCC does not use existing

memory coherence protocols to detect transactional conflicts. Instead, it defines

114

a new coherence protocol for CMP’s based on transactions. TCC requires that all

instructions are executed within transactions to ensure that all memory accesses

will be coherent. Their implementation assumes that speculative updates are kept

in an L1 cache with speculative state marked for every word. Unlike the previous

proposals, the cache is not fully associative; to reduce associativity conflicts they

add a victim cache. It also stores updates to a write-buffer to gather them for

coherence message. If capacity is exceeded or system calls or IO encountered,

TCC executes the threads serially. At commit time, a processor arbitrates for

access to the bus and communicates from the write-buffer its memory updates

in one packet. At this point conflict detection detects only true RAW memory

violation. Other processors snoop the addresses and values, updating their caches

and aborting transactions as necessary. Another unique features of TCC is flex-

ible support for ordering commit operations through “Phase-Numbers”. These

can specify sequential order similar behavior to Thread-Level Speculation, and

arbitrary ordering including unordered. A certain ordering of phase numbers can

also be used as a barrier. By mandating transactions all the time, and ordering,

TCC parallel programs guarantee commit forward progress, and need not worry

about incorrect partitioning of the program that might cause a data-race. They

determine that false sharing is a problem with TCC (and true for all TM and

TLS), and experiment with different storage granularity.

As noted earlier, for a given memory location TCC supports as many

speculatively updated copies of a given memory location as there are threads,

thus making WAW conflicts unnecessary. This feature turns out to hinder virtu-

alization and unboundedness by potentially requiring overflow buffering for that

many speculative threads. For large numbers of threads this may pose a scaling

problem.

115

LTM

LTM [2] appeared in the same paper as UTM and focused on what the

authors felt was a feasible implementation. It supports reasonably large transac-

tions with the memory footprint size comparable to that of physical memory, and

uses the memory coherence protocol to detect conflicts. It uses an overflow bit

in caches to let the coherence protocol know if there is potentially a conflicting

overflowed transactional block. LTM stores all the overflowed speculative values

in a memory-based hashed data structure until the transaction commits. This

approach results in an efficient abort operation, but the commit operation can

incur high overhead as the new values need to be copied from the backup struc-

tures to their corresponding memory locations. LTM can avoid conflict-detection

overhead for non-overflowed blocks using its overflow bits, but it must do multiple

memory lookups to resolve conflicts for the overflowed blocks. LTM cannot sup-

port transactions longer than a time slice or with footprints larger than physical

memory.

LogTM

LogTM [57, 58], like LTM [2], supports reasonably large transactions

that fit in the physical memory. LogTM uses a directory-based coherence proto-

col for conflict detection, but requires that transactional state never paged out

because it maintains transactional state in the directory. It makes in-place mem-

ory updates for overflowed speculative values and stores non-speculative state in

logs stored in virtual memory. Hence abort can potentially be a high overhead

as the checkpoint is restored from its log. Also, aborts are handled in software

with LogTM, which makes them costly. To ameliorate the abort cost, LogTM

stalls the transaction whenever possible instead of aborting it. The LogTM ap-

proach does not handle thread migration, context switches and paging. LogTM

116

can also support nested transactions [58], to improve performance and better

support system calls within a transaction.

III.C.3 Software Transactional Memory (STM)

In this section we describe Transactional Memory techniques that do not

require support from hardware. Consequently they are portable and use virtual

memory that can be swapped out and have a capacity unlimited by hardware (the

exception being Shavit and Touitou). But STM must do additional work to sup-

port conflict detection and memory versioning. The most significant limitation

for all STM is run-time performance. Unfortunately the only known direct com-

parison between HTM and STM is from Kumar et al. [50](Hy-TM) where they

found STM performs worse than HTM by 2-7 X. STM proposals have thus far

been theoretical (Shavit and Toitou) or target Java (Harris and Fraser, Atomos).

It would be interesting to see if other languages such as C, which is important to

the Open Source community, can be targeted.

Shavit and Touitou

Soon after Herlihy and Moss published (Hardware) Transactional Mem-

ories, Shavit and Touitou [80] proposed implementing TM in software as the TM

was not available. There are limitations. The authors limited the scope and

capacity of the transactional operation to make it provably correct. They also

introduced versioning state directly in memory. When a transaction starts it

must provide a set of data that requires ownership, limiting that data to what

is known at compile time. Also context-switches forced their atomic swap primi-

tives (Load-Linked/Store-Conditional) to fail ownership. Its unlikely but possible

that repeated swapping could cause their transaction to block.

117

Harris and Fraser

Harris and Fraser [36] generalize the STM concept. First they observe

that Conditional Critical Regions (CCR) make a convenient program language

structure to express a transactional region. Second they implement this CCR’s

in Java, an example of a modern language, and consider language issues such

as composition like nesting and interaction with other Java constructs like lock

based synchronized regions. They eliminate the static data limitation found in

Shavit and Touitou. Memory versioning happens through heap structures that

provides a level indirection through meta-data. This extra layer provides notions

of transactional ownership for conflict detection, and speculative/non-speculative

versioning.

Atomos

Atomos is a STM proposed by Carlstrom et al. [14]. Like the earlier Har-

ris and Fraser work, this paper provides CCR constructions in the Java language.

Atomos then goes onto to add missing functional and performance language

features found in other transactional contexts. It adds strong atomicity, miss-

ing in earlier STM work, to prevent isolation problems with transactional/non-

transactional code. Atomos provides open and closed nested transactional sup-

port found in RDMS’s. Committing closed nests do not expose the transactional

state, whereas open nests does. Nesting in general reduces abort recovery cost

while open nesting allows data to be available sooner to other threads. Ato-

mos adds phase number ordering to their STM, inspired by their TCC project.

Also Atomos provide handlers for commits and aborts inspired by RMDS’s that

execute following that operation.

118

III.C.4 Hybrid Hardware/Software Transactional Memory

These techniques use Hardware Transactional Memories for the expected

common case, but fall back on software Transactional Memory (Hy-TM) or Oper-

ating System (Virtual TM) due to capacity or other consideration. VTM should

belong in this section, but has been split from this section due to its importance

in our later comparison.

UTM

UTM [2] is the first approaches to completely support unbounded trans-

actions. UTM uses its XState data structure to log all transaction-related infor-

mation. Each memory block has a “log pointer” associated to the list of trans-

actions that accessed it. All writes done inside a transaction modify the memory

in place, storing a copy of the old non-speculative value in the “XState Log”.

This approach makes abort a costly operation, though commit can be done very

efficiently. UTM requires multiple memory lookups to traverse the log pointer on

abort, since it does not cache the log entries, although it could potentially do so.

The UTM approach can support most system events, including overflows, con-

text switches, process migration, and paging. Their approach requires significant

hardware changes including globally unique virtual addressing.

Hybrid TM

Kumar et al. [50] note that STM have as much as an order of mag-

nitude slowdown versus HTM (measured 2-7 X). However STM is virtualizable

and unbounded, so the authors of Hybrid TM1 (Hy-TM) augments a STM with

a cache based Hardware Transactional Memory. They modify Herlihy’s et al. [38]

Dynamic Software Transactional Memory (DSTM) such that it can run transac-

1Note there is another “Hybrid TM” by different authors in Asplos 2006

119

tional objects either in STM or HTM mode, and provide the means to do cross

software/hardware domain conflict detection and reporting. At entry to a trans-

action the system chooses to run as HTM initially, but will select STM if it runs

into cache capacity limitations. They find that Hy-TM runs slower than HTM,

anywhere from 1 X (equivalent) to 2.6 X overhead but sometimes as much as 5.5

X slower.

III.C.5 VTM

As we compare our approach to VTM [73] we carefully describe its de-

sign. The VTM approach provides an efficient and nearly complete handling of

unbounded transactions. The key structures needed to implement VTM are an in-

cache hardware transactional memory system, and a set of hardware and software

structures to handle transactional overflow and context switching. VTM is ori-

ented towards in-cache TM with eager conflict detection, but is otherwise mostly

agnostic about the particulars of the in-cache hardware transactional memory

system.

The software structures for VTM consist of transactional state infor-

mation (XSWs), a table tracking overflowed blocks and their original values

(XADT), an overflow counter, and a counting Bloom Filter (XF). Unlike PTM,

the addresses tracked by VTM for overflowed blocks are virtual. Instances of

the software structures reside in the virtual address spaces of each transactional

application, and are shared among the threads. The hardware structures needed

for VTM are an XADT walker that performs lookups on overflowed state in the

XADT and walks the XADT on commit and abort, and a cache of meta-data for

overflowed blocks, called the XADC. The bloom filter XF is used to reduce the

frequency of having to access the XADT when doing conflict detection. A set of

counters in the XF will be incremented when a cache block is overflowed, and

120

are decremented lazily during commit or abort. A value of zero means that there

is no overflow block, and a non-zero value means that there may be an overflow

block.

The XADT log table contains the virtual addresses, transaction state,

and data of the overflowed cache lines, buffering all speculative state. VTM uses

the old value of the transaction-modified memory, also stored in the XADT, to

detect non-transactional code interaction with transactional code. Whenever a

transaction encounters a read or write miss, the XF will be consulted to determine

if the memory block being accessed may have been overflowed in the past. If so,

the corresponding entry, if any, in the XADT will be looked up to resolve the

potential conflict. VTM accesses the XADT via the XADT hardware walker.

If no blocks are currently overflowed, then conflict detection beyond the

in-cache mechanism consists only of checking the overflow counter. When there

are overflows, VTM can avoid the overhead of performing conflict-detection for

addresses that have never overflowed by filtering out queries to those addresses

using the XF, but it requires XADT look-ups to resolve conflicts for overflowed

cache blocks. VTM may cache transactional meta-data and/or transactional state

in an XADT Cache (XADC). It stores the most recently accessed evicted trans-

action blocks, and a pointer to the XADT structure for that block in memory.

The meta-data describes what transactions have read the overflowed block, and,

if the block was dirty, which transaction wrote it. When a query to the XF says

that there may be an overflowed block, we look up the block being loaded in the

XADC. If there is a hit, then we have all of the information to determine if there

is a conflict, and a pointer to the data blocks in memory to load the speculative

block if needed.

VTM stores the new speculative value in their overflow data structure

and the memory is updated on transaction commit. This allows fast aborts,

121

but results in memory-copying overhead at the time of commit. VTM can hide

some of this cost by doing a lazy commit, but the memory updates still consume

bandwidth, and all the transactions that need to access a memory block modified

by a committed transaction, but yet to be updated in memory, have to stall.

We consider a variation of VTM as proposed by Zilles and Baugh [98],

to write speculative blocks to memory when a block is evicted, and only store the

non-speculative block in the XADT structure. This will make commit fast, which

is the expected case. We provide those results in the result subsection III.E.3.

VTM virtualizes the execution of transactions across most system events,

which include cache overflows, context switches, process migration and paging.

However, they require that the cache blocks touched by the transaction be evicted

from caches and invalidated before the transaction is context-switched out. Fur-

ther, VTM needs to record virtual addresses for locally cached transactional

blocks so that it can do the reverse address translation from physical address to

virtual address. This enables VTM to evict all the cache blocks read or written

by a transaction that is being context-switched out.

III.C.6 Thread-Level-Speculation (TLS)

In this section we briefly described thread speculation techniques, pick-

ing a representative design, Multiscalar, to contrast Transactional Memories.

Other examples are Stampede [83], and Hydra [32, 33].

Multi-Scalar

The earliest TLS technique was by Sohi, Breach and Vijaykumar [81] in

the MultiScalar project. Inspired by contemporaneous out-of-order speculation

concepts, their goal was to run speculative threads ahead of the main, non-

speculative thread, and perform useful work. Multiscalar used multiple processors

122

organized as a circular queue running threads ordered youngest to oldest, with

the oldest being non-speculative. Memory forwarding happens from older threads

to the younger, managed by the Address Resolution Buffer (ARB) that also

buffers the speculative memory state. Registers are forwarded in similar fashion.

Data mis-speculation may occur when a younger thread consumes data from an

older thread that is later overwritten by the older thread (or any other older

thread). If this inconsistency is detected, Multiscalar squashes the thread and

any younger threads. Task partitioning for Multiscalar occurs in a compiler based

on heuristics. In later papers Multiscalar considered memory versioning and

forwarding through cache called the Speculative Versioning Cache [27]. Notably

TLS is not unbounded. If it runs out of memory capacity or takes an interrupts,

it squashes to single threaded execution.

III.D Paged Transactional Memory (PTM)

In this thesis we propose an efficient Transactional Memories called

Paged Transactional Memories (PTM) that unlike prior Hardware Transactional

Memories (HTM) proposals, supports multiple contexts and unbounded memory

capacity. As the name suggests it uses the virtual memory system’s to provide the

backing store for transactional state, and by doing so provides PTM the ability

handle transactional cache overflows to main memory, paging out of transactional

data, context-switches, and thread migration. We build the memory versioning

and conflict detection in hardware to make both fast. In this section, we describe

PTM’s policy decision and the mechanisms to implement it.

123

III.D.1 Structures

Transaction Cache State

For handling bounded transactions, PTM assumes hardware support

similar to the architectures proposed in prior work [73, 2]. To support bounded

transactions, we need to keep track of the read and the write transactional states

for each cache block, and use the coherence mechanism to do an eager conflict

detection [73, 2]. The eager conflict detection mechanism checks for a violation on

every cache coherence miss. If there is a violation, the oldest transaction always

wins the conflict.

In addition to augmenting the cache blocks with the transactional states

and supporting eager conflict detection, we also need a checkpoint mechanism to

abort and re-execute a transaction. Our approach assumes support for check-

pointing the register state when starting the execution of a transaction, similar

to the earlier studies [2, 73]. Apart from such basic transactional-memory support

in the processor core, PTM does not require any other significant change in the

processor core, as most of its functionalities are placed in the memory controller.

In our PTM design, we take care not to adversely impact the perfor-

mance of transactions whose working sets fit within the transactional cache. As

long as the cache blocks accessed by a transaction do not get evicted from the

transactional caches, the basic on-chip transactional memory system handles the

execution of the transaction, detecting violations, and providing support for com-

mitting and aborting of cache blocks. This is similar to how the bounded trans-

actions are handled in prior work [2, 73]. To provide this functionality, we keep

a global flag indicating if any blocks have been overflowed or not, for a set of

transactions in the same scope. If none of the transaction blocks overflow the

cache, then when a thread misses in the cache, a conflict check does not need to

be performed by PTM for the miss. The conflict check is instead handled com-

124

pletely by the on-chip transactional memory system. Only when a transactional

block (read or written by a running transaction) has been evicted does our PTM

mechanism come into play.

Home and Shadow Pages

A key difference between our approach and the prior techniques is how

we maintain the transactional information for the transaction blocks that have

been evicted from the cache. A transaction block is a block of memory accessed

by a transaction that is still executing.

For an evicted transaction block we need to maintain the following in-

formation in a data structure: (1) the speculative data for the block, if it has been

written by a transaction, and (2) a list of all the transactions that either read

from or wrote to the evicted transaction block, as required for conflict resolution.

We will now describe how we store the speculative data for a transac-

tional block when it gets evicted from the transactional cache. We observe that,

for a set of transactions that are currently executing, there can be only one trans-

actional writer to an address at any instant of time (otherwise, a conflict would be

detected and one of the two conflicting transactions would have been aborted).

Therefore, all that we need for any physical page accessed by a transaction is

an additional page that can hold a transactional version of data for the memory

blocks in the page. We call the original physical page the home page, and the

additional physical page allocated as the shadow page.

Figure III.5 shows an example of the PTM data structures used to

maintain the unbounded transactional memory. On the left side of the figure,

we show the page tables used to perform the traditional virtual to physical page

translation. We also have another structure called the Shadow Page Table (SPT),

which contains one entry for every physical page of memory, and is indexed with

125

the physical page number. In the SPT entry, we store the address of the allocated

shadow page, the home page’s address, and some additional information required

to maintain the unbounded transactional states. There is a valid bit associated

with the shadow page pointer, since not every SPT entry will have a shadow page

allocated for it. Since the SPT is indexed by the physical page number, we can

access information about the transactional memory block given its physical or

virtual address. Given a physical address, we can directly index into the SPT.

Given a virtual address, we can use the page table to get the physical address

and then access the corresponding SPT entry.

When a page is allocated, its corresponding allocated physical page entry

in the SPT is initialized and marked as valid. When a dirty transactional block

is first evicted for a page used within a transaction, PTM allocates a shadow

physical page, a pointer to it is stored in the SPT, and the shadow pointer is

marked as valid for that SPT entry. For example purposes, we show in Figure III.5

an SPT entry for a physical page address “0x0000000” containing the shadow

physical page address “0xFE03000”. The corresponding speculative transactional

block and the non-speculative block can then be kept track of in the two pages

(home and shadow). Note, the physical shadow page that was allocated does

not have a valid SPT entry. Only the home physical pages have valid SPT

entries, which are marked as valid when the home physical pages are allocated.

In addition, not all SPT entries have a valid (allocated) shadow page. If there are

transaction blocks evicted from the cache that were only read (not written), then

they may have an SPT entry without a shadow page allocated for it. In this case,

the SPT entry serves the purpose of finding the transaction access information

for the home page (what blocks were read, and by which transaction), which we

describe later .

126

...

...
...
...

...

...
...
...

...

...
...
...

487

487

487

42

42

42

42

1023

1023

X
X

...

Valid

Valid

......

Valid

Valid

...
...

X

X

Page Tables

Valid
Valid X

...
...

Trans Trans Trans

R
W X

X

X
X

X
X

X
X

X

X

State State StateRunning Committing Aborting

X
R
W

R
W

R
W

R
W

R
W

Trans Trans

TransTrans

Trans Trans

0x8F48000

0x3427000
X

XX

X

0x4321000

0xFE03000

X

Shadow
Original
Sel ...

...

Shadow
Original
Sel ...

Shadow
Original
Sel

......
...

X
0xE431000
0xB1EF000

T−State ...

...

Shadow Page Table

Swap Index Table

TAV Lists

Figure III.5: PTM structures. Physical page numbers and swap file offsets are
obtained from the page tables and used to index into the Shadow Page Table
(SPT) and the Swap Index Table (SIT) respectively. An entry in the SPT and SIT
tables for a page indicate the locations of the shadow page and contain a Selection
Vector in which each bit indicates which of the two pages contain the committed
version of a block in the page. An entry also points to a Transaction Access
Vector (TAV) List, which contain one node per transaction that has accessed the
list’s page, but was not able to keep the accessed blocks in the cache. The nodes
in a TAV list indicate the transactions in question and contain the Read and
Write Vectors to mark the accessed blocks that do not stay in the transactions’
cache. The T-State table is indexed by a transaction number and contains the
state of each transaction. An entry in the T-State table links to a list of TAV
nodes that were overflowed by the transaction.

127

Copy-PTM

Now that we have the shadow page, the question is where to store the

speculative transaction blocks that have been evicted from the cache? One could

have the policy where the speculative blocks are stored in the shadow page, and

on commit they are copied back to the home page. We originally examined this

design, but found the cost of commit to be higher than we desired. We hope

to see many more commits than aborts when using transactions and we do not

want to slow down the execution of transactions that are doing useful work. We

therefore want to optimize the performance of committing, and start running the

transactions in order if aborts are too frequent.

The first PTM approach we examine is called Copy-PTM. In this ap-

proach we copy the home block to the shadow page when a dirty transaction block

overflows, and then store the speculative block in the home page. This policy

enables fast commits, since the blocks that we want to commit are already in the

home page. It requires that we make a copy of the non-speculative block from

the home page to the shadow page when a dirty transaction block is evicted for

the first time in a transaction. Then on abort we have to pay a penalty because

we have to copy the non-speculative blocks, which were overwritten in the home

page, back from the shadow page to the home page.

Select-PTM

The more aggressive solution we examine is to allow both the home

and the shadow page to contain speculative and non-speculative blocks and use

Selection Vectors to maintain them. We call this Select-PTM.

In Select-PTM, both speculative and non-speculative blocks are allowed

to exist in either the home or the shadow page. We use a Selection Vector

to indicate which of the two pages contain the non-speculative block and the

128

speculative block. The selection bit vector is stored along with the shadow page

pointer in the SPT structure as shown in Figure III.5. Each bit in the selection

vector represents a memory block in the page. We chose the size of the memory

block to be the same as the cache block size of the outermost transactional cache

in the processor, but our design does allow for larger or smaller memory blocks

to be used.

A bit in the selection vector tells us which of the two pages, the home

or the shadow page, contains the current committed data for the memory block

for which the bit corresponds to. If a bit in the selection vector is set, then this

means that the non-speculative data for that memory block resides in the shadow

page and that the home page should be used for holding the speculative version

and vice versa.

Whenever a transaction modifies a cache block and evicts it, the block

is copied to the speculative location in memory, which is either the home or the

shadow page depending upon the state of the bit in the selection vector. Similarly,

while fetching data from memory we can determine where to find the committed

and speculative copies based on the state of the bit in the selection vector.

When a dirty transaction block is evicted, we write the block to the

speculative location. We write the speculative block to the home page if the

bit is set, or to the shadow page if the bit is clear. When a transaction aborts,

nothing needs to be done, since the bits in the selection vectors for the pages

touched by the transaction are already pointing to the non-speculative blocks.

On commit, however, we must go through the selection vectors and toggle the

bit corresponding to the overflowed memory blocks that were written by that

transaction, though hardware can accelerate this, which we describe later.

129

Trade-offs Between Copy-PTM and Select-PTM

The PTM structures required for both Copy-PTM and Select-PTM are

the same structures shown in Figure III.5, except that Copy-PTM does not need

the selection vector in each SPT entry.

In Select-PTM, the benefit of using a selection vector and allowing com-

mitted blocks to reside on either of the two pages (the home or the shadow page)

is that it does not have to copy non-speculative blocks during eviction and abort,

as described earlier for Copy-PTM. The downside to using the selection vector

is that a non-speculative block can now reside in either the home or the shadow

page, and we need to have an efficient way of finding the correct physical address

to fetch the block, given the virtual address. The policy PTM enforces is that

even when a block is fetched from a shadow page, the physical address seen by

the cache hierarchy and the TLB structures is the home page physical address

corresponding to that block. This allows Select-PTM to only have to perform

TLB translation to the home page as in a conventional design. Then Select-

PTM will monitor the block addresses at the memory controller to decide where

to fetch the correct blocks from (the home or the shadow page). How this is

done is described in Section III.D.2. Therefore, the advantage of the Copy-PTM

approach is that, since the committed blocks are always on the home page, it

does not have to deal with this address translation issue, and it does not have to

maintain the selection vectors.

Conflict Detection using Transaction Access Vectors

In addition to keeping track of the speculative data for the overflowed

cache blocks, we must also keep track of the information about the list of the

transactions that read or write to an overflowed cache block. To accomplish this

task, we maintain a Transaction Access Vector (TAV) data structure as shown

130

in Figure III.5. Each TAV node in the data structure is for a transaction and for

a page that a transaction has overflowed. The TAV contains a read vector and

a write vector for the page. Each bit in the read/write vectors corresponds to a

cache block in the page and it tells us if the cache block was read or written by

a transaction.

The read and the write bits are set when the blocks accessed within

a transaction are evicted from the cache. For example, Figure III.5 shows that

the transaction 42 read the 4th block and wrote the 2nd and 5th block in the

virtual page with the physical home address “0x0000000” and the shadow page

address “0xFE03000”. When a read or write (executed in a transaction’s code or

even in the non-transactional code) misses the cache, PTM is consulted with the

home page’s physical address checking these read and write vectors to determine

if there is a conflict. Note, we only need to check for conflicts in PTM if there is

a live transaction and if a transaction has overflowed the cache.

All the TAV nodes corresponding to a transaction are linked together

(vertical links in the Figure III.5). Given the transaction number, we can find

all the TAV nodes for that transaction. The TAV nodes corresponding to a page

are linked together (horizontal links in the Figure III.5). Thus, for a given TAV

we can find its corresponding SPT entry. The same horizontal link is also used

to find the TAV nodes of other transactions that have also accessed the same

physical page, which enables us to determine the conflicting transactions.

TAV organization: Let us summarize the TAV data structure organi-

zation. An entry in the SPT structure contains a pointer to a linked list of these

access vectors (transaction access vector (TAV) list). These are the horizontal

linked lists in the Figure III.5 and the last node in the list points back to the

SPT entry. Each node in the TAV list is for a transaction that had at least one

overflowed block for that page in the past. A node in a TAV list contains a trans-

131

action’s read and write access bit vector, where each read/write bit corresponds

to an overflowed cache block in the page and tells us if the overflowed cache block

was read or written by the transaction. In addition, each entry also contains a

transaction identifier, constructed by the TM hardware, which enables us to de-

termine the transaction to which the TAV read and write access vectors belong.

A node in a TAV list is updated when a transactional cache block is evicted, and

freed when the corresponding transaction either commits or aborts.

Conflict detection using TAV: If a read or write (executed in a

transaction or in the non-transaction code) misses the cache, and there exists

an overflowed block, PTM is consulted with the physical address to resolve any

potential conflict. PTM uses the physical address to index into the SPT structure

to get the pointer to the TAV list. Each node in the TAV list corresponds to

a transaction that has overflowed a read or write to the page, and has to be

examined to determine if there is a conflict. If the current memory operation

that triggered a miss is a read, then there is a conflict if there exists a node

in the TAV list with the write bit set for the accessed memory block and the

transaction identifier is different from the current read’s transaction identifier.

Conflict detection for a transaction write is similar, and we detect a conflict if

there exists a node in the TAV list with either the read or the write bit set for

the accessed memory block, and the transaction identifier differs.

In Section II.G, we describe how information in the TAV list can be

summarized into one vector and cached in a hardware structure to perform effi-

cient conflict detection. These summary vectors are also used with the selection

vector to determine which of the two physical pages to fetch from on a cache miss

for Select-PTM.

132

Commit and Abort

To commit or abort a transaction, we use the vertical links shown in the

Figure III.5. The head of the vertical list is maintained in the T-State structure

and it also contains the transaction identifier along with its current status, which

is atomically set to either committing or aborting before processing the TAV list.

Select-PTM: On commit, we traverse the vertical list for the com-

mitting transaction and free the nodes in the list. In addition, we update the

selection vectors as needed. This is achieved while traversing each node in the

vertical list, where we access the TAV node’s corresponding SPT entry by follow-

ing the horizontal list. We update the selection vector for that SPT entry if the

committing transaction has overflowed any dirty block for the page correspond-

ing to the SPT entry. On abort, we also have to traverse the vertical TAV list

and free the TAV nodes. But, unlike what we did for commit, we do not have to

update the selection vectors.

Copy-PTM: On commit and abort we traverse the vertical list and

free the TAV nodes. For commit, we do not need to do any additional work,

since there are no selection vectors. On abort however, we need to restore the

original non-speculative blocks to the home page, for those overflow blocks that

were written by the transaction.

Paging and the Freeing the Shadow Pages

Since the blocks representing a page are split across the home and

shadow pages, we need to correctly deal with paging those pages in and out,

as well as how to free the shadow pages.

133

Paging

To deal with the paging out of transaction pages, we actually have two

tables, the Shadow Page Table (SPT) and the Swap Index Table (SIT). The first

is indexed using the physical address (when the page is in main memory) and the

second is indexed using the swap index number (when the page is swapped out

to disk).

The swap index number is the number used by the operating system to

keep track of the pages that are swapped out. It is equivalent to the physical

page number. The difference between the two is that the swap index number

refers to a location on the disk, but the physical page number refers to a location

in the main memory. Thus, when a page is swapped out of the main memory

to a location in the disk, the swap index number corresponding to that location

is stored in place of the physical page number in the page table entry. When

an application refers to a swapped-out page, the swap index number is used to

locate the paged out data and swap the page back in to the main memory. The

new location in main memory referred by a physical page number is stored in the

page table entry.

In PTM, the shadow and the home page cannot be swapped out inde-

pendent of each other. If one of the pages is swapped out, both pages have to

be swapped out. The operating system does not consider the shadow pages to

be candidates for swap out. The operating system only makes decisions about

swapping out home pages. When a page is swapped out, if the page has a valid

SPT entry, then it has to be copied to a SIT entry. The index for the SIT entry is

the swap index number corresponding to the location in the disk that is allocated

to hold the swapped-out home page. If there is a valid shadow page for the home

page, then it is also swapped or garbage collected (see below). If swapped out,

then its SIT shadow pointer is used to point to where the shadow page is stored

134

on disk. When a transaction page is swapped back in, the SIT entry is copied to

the SPT entry corresponding to the newly allocated physical home page. If the

SPT entry has a shadow page, it is also allocated a physical page, and its shadow

pointer is updated in the home page’s SPT entry.

Freeing Shadow Pages

Copy-PTM frees a shadow page when there are no more transactions

using it, which is determined by the NULL TAV Link.

Similarly, for Select-PTM, a shadow page can be freed when there are

no more transactions using it. That is, the page has only one version (committed

version) for each memory block in the page. However, since the committed blocks

can reside in both the home and the shadow page, we need to copy the contents

from the shadow page back to the home page before we can free the shadow page.

We examined two different policies for freeing shadow pages for Select-

PTM. One approach is to merge the home and the shadow pages together when

the home page is swapped out by the operating system. To accomplish this, when

a home page is swapped out, if it has a corresponding shadow page and there

are currently no transactions using that page (determined by the NULL TAV

link), then the operating system stores the valid blocks in the shadow page to

the backing store location that is allocated for the home page. The SIT entry is

updated to indicate that the page does not have a shadow page anymore and the

selection vector is also cleared. This completes the process of freeing a shadow

page.

Another approach to free a shadow page for Select-PTM is to lazily

migrate the committed blocks to the home page. Whenever a non-speculative

dirty block is written back to main memory, we can force it to be written back to

the home page, even if the bit in the selection vector points to the shadow page.

135

After writing back the cache block, the bit in the selection vector is toggled to

indicate that the committed copy is in the home page. This allows the memory

blocks to be gradually merged back to the home page when they are read and

written. Eventually, when the selection vector is completely clear (all the blocks

are now in the home page), the shadow page can be freed.

Shared Memory Inter-Process Communication

Since the SPT entry (or SIT entry) and the TAV list are maintained for

a physical page (or a swapped out page) rather than a virtual page, conflicts be-

tween transactions executing in two different processes accessing the same phys-

ical page can be detected. Thus, PTM supports shared memory inter-process

communication.

III.D.2 Implementation

This section examines the hardware changes necessary to support PTM.

We modify caches and the cache coherence protocol similar to other Hardware

Transactional Memory proposals. Paging and swapping are changed in novel

ways that the operating system needs to be aware of, and we also add a new

Virtual Transactiona Supervisor hardware to the memory controller to cache the

transactional state. One nice property of the PTM proposal is it does not require

large changes outside of the VTS- for example converting a directory coherence

protocol requires the addition of only single bit as described later.

Checkpointing the Registers

PTM does checkpointing at all levels of the memory hiearchy, including

the registers at the transaction start. Checkpointing registers is fairly well un-

derstood because branch predictions recovers to checkpoint created at the branch

136

that has the speculation failure. For out-of-order machines, this is accomplish by

saving a snapshot of the register renaming map [2, 47] at the checkpoint, instead

of saving the entire architectural register state. Registers in the map checkpoint

are protected that are no longer references are prevented from being recycled by

the register renamer. Inorder processors, may save the entire register state in a

single “flash” copy to create the checkpoint [30].

Transactional Cache

Each processor core is largely unaware of the memory controller’s PTM

hardware. All requests for cache blocks use the home page address. Each core can

detect transaction conflicts within its cache through the existing cache coherence

mechanism, and cache block versioning to stores speculative and non-speculative

memory state [40]. Each cache line contains a valid bit, coherence state bits to

support MOESI, a Transaction ID, and bits indicating if the transaction read

(TR) or wrote (TW) the block.

When Everything Fits in the Cache

We now describe the operations of the transactional cache. Transac-

tional reads and writes maintain TR and TW bit indicating the block is trans-

actional, and overload the regular cache coherence protocol to detect transac-

tional memory conflicts upon a cache miss. By separating the TR and TW bits

from the MOESI bits, the MOESI protocol can essentially be ignorant of the

transactional behavior, simplifying the non-transactional cache coherence. On

transactional update, we perform memory versioning into a speculative and non-

speculative block. We assume the cache is at least two way associative, and

obtains a new block through the regular LRU process, making sure not to evict

the non-speculative block. If ever either versions must be evicted, then its coun-

137

terpart is evicted as well.

Transactional cache access behavior

• Cache Read When a transactional program reads from the cache, it indexes

into the cache and verifies that a valid cache block exists (non-I coherence

state and correct address). On miss while fetching the data, the system

performances a cache coherence snoop on the other processors’ caches. With

a valid block, it sets the TR bit to true, if not done already, and for cache

reads it is unnecessary to duplicate the block. The cache read returns the

data to the requesting CPU.

• Cache Write When a transactional program writes from the cache, it in-

dexes into the cache and verifies that a writeable cache block exists (M or E

coherence state and valid address). On a block miss or non-writeable coher-

ence (upgrade) miss, the system performances a cache coherence snoop on

the other processors’ caches. Once the writable permission is available, if the

TW bit has not been set already, it duplicates the block and sets the TW bit

on one of them to be true. This creates the speculative and non-speculative

versions. It then writes the data into the speculative block.

• Cache Read Snoop Performs snooping lookup on destination block. If

the block’s TW bit is marked then signal conflict. Otherwise move any dirty

copies to shared (O state), and obtain a copy of block from the owner.

• Cache Write Snoop Performs snooping lookup on destination block. If the

block has TW or TR bits marked then signal conflict detected. Otherwise,

invalidate destination block, flushing dirty data if necessary.

A transaction may complete without overflowing its cache. When a dirty

block commits and it has never overflowed the cache, no work needs to be done by

PTM. The block is just marked as non-speculative, and at that point it is treated

138

as a normal cache block. Its non-speculative counterpart will be invalidated at

commit. It will continue to reside in the processor core’s cache until the cache

sets overflow or another core requests the block. When a cache miss results in a

conflict with another block in a cache, we use a Virtual Transaction Supervisor

(VTS) to arbitrate which transaction to abort. The aborted transaction’s cached

data is invalidated in the cache.

VTS Caches

In order for PTM to provide efficient unbounded transactional memory,

we provide hardware support to make the following tasks efficient:

• Fast Conflict Detection - When a transaction scope has overflowed the

cache we need a way to quickly determine a violation when processing a

cache miss. We therefore cache in the memory controller, the summary

information for the transaction blocks that have been read and written for

recently accessed pages.

• Fast Commit and Abort - We need to have the ability to quickly com-

mit or abort a transaction, and to let future execution continue, while the

overflow data structures used by the transaction are cleaned up.

• Fast Selection Between Home and Shadow Page for Select-PTM -

We need to be able to quickly choose between the home and the shadow page

when fetching a block from memory. To achieve this, the memory controller

caches the information needed to correctly choose between the home and

shadow page for recently accessed pages.

To provide the above functionality, PTM uses a Virtual Transaction

Supervisor, which is shown in Figure III.6. The VTS is part of the memory

controller for a snoopy architecture, and part of the directory controller for a

139

TAV cacheSPT cache

supervisor processor

t rans
number

sn
o

o
p

lo
g

ic

to system
snoop busblock

address

Figure III.6: The Virtual Transaction Supervisor (VTS) has a memory backed
cache holding the SPT entries and the TAV nodes.

directory based system. VTS has two main caches. A cache of the shadow page

table entries and a cache of the current transaction access vectors. We describe

them as if they are updated on-demand, but performance improvements can be

had by prefetching data into the caches.

Transaction Access Vector (TAV) Cache

The first cache is called the Transaction Access Vector (TAV) cache and

is used to hold the nodes in the TAV lists in memory. An entry in the TAV cache

corresponds to a TAV node shown in Figure III.5. The TAV cache entry contains

the read and write transaction vectors for a page accessed by a transaction. The

TAV cache is indexed by the physical page number, and is tagged by the physical

page number and the transaction ID. This allows multiple TAV nodes for the

same physical page, corresponding to different transactions, to be stored in the

cache at the same time. Indexing by the physical page allows PTM to quickly

find all of the cached TAV nodes for that page.

The TAV cache is an important component in the PTM architecture

for providing fast conflict detection. When there is a cache miss, the resulting

memory request may need to determine exactly which transactions were prior

140

readers or which transaction was a prior writer to the block. In this case, if the

TAV nodes for the page of the block are found in the TAV cache, the read and

write vectors for the page can be quickly examined to determine the conflicting

transactions (if there are any).

When a TAV cache entry is evicted and the access vectors have been

updated (the entry is dirty), the access vectors need to be written back to their

corresponding TAV entries in memory.

Shadow Page Table (SPT) Cache

The second cache structure, called the Shadow Page Table cache, is used

to cache the entries in the SPT structure, which was described in Section III.D.1.

The SPT cache is indexed by the physical page number, and is used to quickly

determine conflicts.

When there are overflowed transactions being executed, we allocate an

SPT cache entry for every non-transactional page and home page accessed. This

is needed because non-transactional cache misses, which are executing while there

are evicted transactional blocks, still need to be checked for conflicts. For non-

transactional pages, the SPT cache entry allocated for it is used to quickly identify

this.

The contents of an SPT cache entry is shown in Figure III.7. An SPT

cache entry contains the shadow page number (if there is a valid one). In addi-

tion, it contains a write summary vector and a read summary vector. The write

summary bit vector for a page is an OR of all the transaction write access vectors

that exist in the TAV list for the page. This provides immediate identification

for a cache block that a transaction has speculatively overflowed that block. The

read summary vector is a single bit vector where each bit indicates if there has

been at least one overflow transaction read for that block.

141

original phys. address shadow phys. address select ion vector

actual physical page
address of block

block offset
in page

write summary vector read summary vector......

Figure III.7: SPT cache entry. The SPT cache entry stores the selection vector,
the write summary vector, and the read summary vector for a page.

For Select-PTM, the SPT entry also has the selection vector as shown

in Figure III.5. When an SPT cache entry is evicted, the corresponding selection

vector in memory is updated if the SPT cache’s selection vector is dirty. The SPT

cache entry for Copy-PTM is the same as Select-PTM, but without the selection

vector.

The SPT cache stores the information for the most recently accessed

pages. A miss in the SPT cache requires the VTS to lookup the shadow page

table to find the SPT entry, calculate the write and read summary vector from the

TAV list, and then update the SPT cache. While the read and write vectors are

calculated from the transaction’s read and write access vectors for that page, TAV

cache entries are created (if they do not exist) for each TAV node corresponding

to that page.

Cache Eviction

When a cache block read/written by a transaction is evicted, the VTS

takes action in response to the coherence message triggered as a result of the

eviction. The coherence message will contain the physical address of the home

page and is also piggy-backed with the transaction identifier. When a block is

evicted, we do not need to check for a violation. We only need to check for a

violation for the read or write cache miss. The following actions need to be taken

142

on eviction.

When an unmodified block is evicted in the normal MOESI protocol,

there is no need to generate a coherence message, but in our case, when a cache

block read by a transaction is evicted it has to generate a coherence message to

inform VTS to keep track of the overflow information. However, the data block

is not written back because the cache block was not modified. When the VTS

receives the coherence message for the unmodified transactional block, it will

update the read transaction access vector in the TAV cache corresponding to the

transaction that accessed the evicted cache block. Also, the read summary vector

in the SPT cache for the physical page of the cache block is also updated. Note,

when an unmodified non-transactional block is evicted, no coherence message is

sent.

When a modified transaction block is evicted, we write the transaction

access vector in the TAV cache and update the write summary vector in the SPT

cache. If a shadow page has not been allocated for the home page, then one is

allocated at this time. The modified cache block then needs to be written to

the page that is supposed to hold the speculative version. For Select-PTM, the

selection vector indicates which page (home or shadow) to write the speculative

block to, and the write is done to the speculative location. For Copy-PTM, the

block is always written to the home page. For Copy-PTM, we need to determine

when we need to copy the non-speculative block to the shadow page on eviction.

This is done by checking the write summary vector for the modified block being

evicted. If the bit is not set, then this is the first modified overflow of that block,

so we first copy the non-speculative block to the shadow page. We can then write

the evicted block to the home page and set the write summary vector bit. If the

bit is set, and there is no conflict, then we do not have to perform any copy, and

the evicted block is written to the home page.

143

When a modified non-transaction block is evicted, we always write the

block to the home page for Copy-PTM, and we do not need to do any SPT cache

lookup. For Select-PTM, we first need to perform a SPT cache lookup, and use

the selection vector to determine which page to write the block to, which is the

non-speculative location.

Cache Miss

There are two operations that need to be performed on a cache miss.

The first operation identifies from which of the two pages we need to fetch the

data to serve the cache miss. The second operation detects any potential conflict.

We initiate the fetch for the data block from memory in parallel with the conflict

resolution and hold back the coherence reply with the data until the conflict is

resolved.

Finding the Block to Fetch on a Miss

To fetch a block in Copy-PTM, we always fetch the block from the home

page.

For Select-PTM, on a miss we need to look up the selection vector and

write summary vector in the SPT cache. We XOR the bit in the write summary

vector and the bit in the selection vector for the current cache block request, and

the resulting bit value determines the page (home or shadow) we want to read

the block from. This logic is shown in Figure III.7.

Conflict detection

Read Miss: If the memory access is a read to a memory block, then

there is a conflict only if there exists an uncommitted transaction that has mod-

ified the memory block (RAW conflict). To determine this, first we examine the

144

bit in the write summary vector that corresponds to the memory block being

accessed. If the bit is not set, then there is no conflict. If the bit is set, then

there are two possible cases. Either the transaction that is currently accessing

the block has itself modified the memory block in the past, or the block has been

modified by another transaction. There exists a conflict only in the latter case.

To determine which case it is, we look up the block’s physical address with the

current transaction ID in the TAV cache. If there is a match, then we check to

see if the current transaction is the owner of the write. If so, then there is no

conflict. If not, there is a conflict and we find the conflicting transaction. If we

get a miss in the TAV cache, the VTS has to perform a hardware walk on the

TAV list, starting from the shadow page table entry, to find out the conflicting

transaction, and the TAV structures found are put into the TAV cache.

We assume MOESI protocol. In PTM, a transactional read miss re-

quest to a block that has already been overflown by a different transaction is not

granted exclusive permission even if there are no sharers in the system (that is,

no processor in the system has read permission). This is required because the

transaction that gets the block might later write to it and at that time we have

to make sure to resolve any potential conflict that may exist with that write.

However, if there are no transactional read overflows to the block and if there

are no other sharers in the system, then the read miss request can be granted

exclusive permission.

Write Miss: If the memory access is a write to a memory block, then

there is a conflict if there exists an uncommitted transaction that had read (WAR

conflict) or written the memory block (WAW conflict). An SPT cache lookup

is performed to examine the write and read summary bit vectors. If the write

summary bit is not set, and if the read summary bit is not set, then we know

there is no conflict.

145

If the write summary bit is set, we need to lookup the write access vector

in the TAV cache to see who the writer was. If the TAV write vector shows that

the same transaction was the prior overflowed writer, then there is no conflict. If

not, then we know there is a WAW conflict, and one of the transactions must be

aborted.

If the write summary bit is not set, but the read summary bit is set,

then we look through the TAV list to see who the readers are. If the current

transaction is the only reader, then there is no conflict, otherwise there is a WAR

conflict, and one of the transactions has to be aborted.

Arbitration

When conflicts are detected, the oldest transaction wins the arbitration

causing the younger conflicting transactions to abort, thereby guaranteeing for-

ward progress, as any long waiting thread eventually becomes the oldest. Unique

transaction identifiers generated sequentially at the transaction start allows us

to determine the age of the transaction. This also supports ordered transactions

described in Section III.B.5, by assigning the identifiers to match the program

defined ordering. When a transaction is aborted and restarted, it maintains the

transaction identifier that was originally assigned to it.

Commit and Abort

On commit, all of the cache blocks with the transaction ID are specified

as no longer being speculative, and the transaction ID is cleared. On abort, all

of the cache blocks with the transaction ID that are dirty are invalidated. Those

that are not dirty just have their transaction ID cleared.

To process the PTM state on commit or abort, the VTS will first atom-

ically change the status of the transaction in the T-State structure shown in the

146

Figure III.5. This is referred to as the logical commit/abort by VTM [73]. Once

the transaction has been logically committed or aborted, the thread can continue

its execution. The TAVs of the transaction are lazily freed on commit and abort.

Before freeing a TAV node, we update the read and write summary vectors in

the SPT cache as necessary. During this lazy commit, if another transaction

accesses a “not-yet-committed” memory block (in cache or in main memory) it

sees that there might be a conflict. However, while resolving the conflict, PTM

knows that the conflicting transaction ID has already committed, when it looks

up cached T-State structure in VTS. The transaction that has the outstanding

miss is made to wait until the commit for that page finishes. After the commit

for the conflicting transaction is over, the stalled transaction can continue its

execution with the committed data block. After abort or commit, if the shadow

page does not contain any committed blocks, then the shadow page is put on the

free list and the SPT entry is updated.

For Select-PTM, as the TAV structures are committed for a transac-

tion, the corresponding pages in the SPT cache and TAV cache are processed to

correctly update the selection vector in the cache (if there is an SPT cache hit)

and in memory (if there is a SPT cache miss). On abort, the selection vectors do

not need to be update.

In the case of Copy-PTM, on abort we need to restore the original cache

blocks that were overwritten by the transaction in the home page from the shadow

page. We walk the TAV list and use the write vector to determine which blocks

to restore from the shadow page to the home page. On commit, no data needs

to be copied.

147

VTS Implementation for Snoopy-based and Directory-based Systems

To implement VTS as part of a snoopy architecture we integrate VTS

into the memory controller. This is straightforward for a centralized controller,

but it is also possible if there are multiple memory controllers. For multiple

memory controllers, if the memory controllers are associated with particular re-

gions of physical memory, this means a partitioned and distributed SPT cache

and TAV cache. If instead the memory controllers are associated with particular

cores rather than memory regions, this means distributed SPT and TAV caches

with a dedicated coherence network among them.

For a directory protocol, the VTS would be distributed among the di-

rectories and implemented in the directory controller. Essentially, the SPT cache

and the TAV cache in a directory will be caching the information corresponding

to the physical pages maintained by that directory. The directory based VTS im-

plementation requires some additional hardware support to perform arbitration

to resolve conflicts. The additional support is required to ensure that all commits

and aborts will be serialized correctly to guarantee atomic commit and aborts.

Each directory entry has an overflow bit, which is set when the corresponding

memory block overflows. Cache overflow due to a cache miss triggers a coherence

request. When a cache miss coherence message reaches a directory, and if the

overflow bit is set, the VTS associated with the directory is consulted to resolve

conflicts. Thus, selecting between the home and the shadow page and resolving

the conflicts can all be done as before. In addition, the shadow page for a home

page is allocated so that they reside in the same directory controller.

Processing cache overflows and non-conflicting cache misses does not

involve the supervisor processor, unless there is a miss in the SPT cache or TAV

cache. If that is the case, then the supervisor processor needs to fill in the entries.

The only other main functionality the supervisor processor does is to perform

148

the TAV list walks on commit or abort. For snoopy and directory, we make sure

that all of the TAV entries for a transaction are to the same memory/directory

controller. An issue to keep in mind here is that the supervisor processor needs

to have low enough occupancy to not become a bottleneck.

Efficient Context Switching

Context switches can be handled by just forcing an overflow of all the

cache blocks read/written by a transaction. We assume physically indexed caches.

Prior schemes like VTM [73] require the ability to translate the physical address

to the virtual address as their overflow structures are virtually indexed. In com-

parison, PTM can update SPT entries and TAV entries using just the physical

address.

On context switches, we avoid overflowing the cache blocks by tagging

the transactional cache blocks with the transaction identifiers. In this case, the

normal cache coherency conflict detection mechanism will be able to identify

conflicts with the cache blocks that were not overflowed when the transaction

was context switched out.

When a transaction begins, PTM takes a checkpoint of the architectural

register states in the processor so that on an abort they can be restored. To

support context switches for a transaction, we save and restore the transaction’s

checkpointed register state. In PTM, the T-State, which contains an entry for

each transaction is used to save the checkpointed register state of a transaction

when it is context switched out.

III.E Evaluation

This section evaluates the performance of PTM, demonstrating that it

efficiently supports virtual transactional systems without incurring high overhead.

149

III.E.1 Simulation Platform

We modeled a CMP system using Virtutech Simics [52] based on Enter-

prise machines running RedHat Linux 7.3, and extended the model to simulate

PTM and VTM. The entire system has 4 nodes, each with two levels of private

cache. The L1 cache is 16KB direct-mapped with a 1-cycle latency, while the L2

cache is 256 KB 4-way set associative with 6-cycle latency. Coherency is main-

tained at the L2 cache using a snoopy-based MOESI protocol. The augmented

L2 cache blocks contain transactional read and write bits that are used to track

transactional read and write accesses similar to prior work [33, 57]. In addition,

each cache block contains a transaction ID, a valid bit and the bits to implement

MOESI protocol. Each node in the system is a single-issue in-order pipeline. We

simulate a 512 entry fully associative TLB where each page is of size 4 KB.

We added features to Simics to support a transactional memory system.

In particular, we modified the Simics instruction decoder to recognize the instruc-

tions Begin and End, which are used in the program to specify the begin and end

of the transactions respectively. Our simulation of PTM and VTM assumes that

the processor has a fast register checkpointing mechanism.

The Chip-Multiprocessor (CMP) memory hierarchy is supported by a

high speed on-chip bus and a low speed main memory bus. We simulate a high

speed on-chip bus connecting the four CPUs and the on-chip memory controller

with a minimum round-trip latency of 20 cycles. The memory controller contains

the PTM caches and the ancillary hardware. In the MOESI protocol that we

model, a cache miss request can be sourced from other caches containing a valid

copy instead of having to access the much slower external memory. We assume

access to main memory has a minimum latency of 200 cycles, but up to three

requests can be pipelined simultaneously.

150

PTM Modeling

The PTM hardware in the memory controller handles transactional co-

herence requests using the SPT cache and TAV cache to speed up the process.

We simulate a 512 entry SPT cache and 2048 entry TAV cache. Both are fully

associative. A miss requires that we access the shadow page table in memory.

From the shadow page table we can get access to all of the TAV structures for

that page. To ensure fairness, in our simulation of VTM, we use an XADC [73]

of capacity equal to the combined capacities of the SPT and TAV cache. The

victim cache, and the hardware resources to implement it, are used only for the

Victim-VTM results. Those extra hardware resources not used by PTM.

VTM Modeling

In order to evaluate the performance of PTM, we constructed a VTM

model based on the description in [73]. We use the same in-cache hardware

transactional memory model for both PTM and VTM. This is a more optimistic

model for VTM than that featured in [73]. We assume the presence of transaction

IDs in the cache, which can be used to avoid having to flush all transactional

data on every context switch. We also assume for the VTM model that the XF

counting Bloom filter has been implemented in dedicated hardware. We model

an XF with 1.6 million entries. We also assume an XADC to cache the meta-data

for the overflowed blocks.

When checking for conflicts, if all of the block’s XADT entries have

their meta-data cached in the XADC, then the conflict resolution is done in the

time it takes to do the cache lookups. If there is an XADC miss, it requires

a reconstruction of meta-data via traversal of the XADT, similar to creating a

SPT cache entry from our TAV structures for PTM. When walking the XADT

for commit or abort, we assume that each XADT entry lookup requires a single

151

main memory access, and that the number of memory accesses is equal to the

number of XADT entries traversed.

VTM, like PTM, supports a lazy commit, changing the status of a trans-

action atomically via an atomic memory operation on the transaction’s status

word XSW and updating all other data and structures lazily. However, since it

has buffered all overflowed speculative values in the XADT, VTM must actually

copy the speculative data to the original memory location on commit. This oc-

cupies bus resources, even when doing the commit lazily. As bus contention in

our memory model leads to performance degradation, we also consider adding

data buffering to the XADC to hold the speculative and non-speculative block

in addition to the meta-data. Because this secondary cache acts like a victim

cache, we refer to this variant as Victim-VTM (VC-VTM) in our results, with

the baseline VTM labeled simply as VTM. Blocks in the victim cache are marked

as being committed instantly, and later written back to memory when evicted

from the cache. Currently executing transactions can then use the blocks found

in the victim cache, instead of having to wait for them to be committed. We

found this to significantly reduce the commit delay penalty for VTM.

III.E.2 Characterizing Transactional Applications

We studied the behavior of the transactional memory regions by us-

ing Splash-2 [93] programs. We first removed all the locks from the programs.

We then parallelized each program using transactions. We made use of two in-

structions, Begin and End, which specify the begin and end of a transaction

respectively. To parallelize the code, we focused on creating critical transaction

regions similar to how the average programmer might go about doing this. We

wrapped each loop body with a transaction, so that each iteration of the loop can

be executed in parallel. If there are loop carried dependencies, we used ordered

152

Table III.4: Transactional memory execution behavior for loop regions in the
SPLASH-2 programs. The entries in the table are organized in three sets. The
first set describes the transactional behavior of the applications, the second set
describes the system behavior, and the third set provides information about the
memory footprint of the transactions.

Apps Transactions System Memory

commit abort exception context- pages pg-x-wr conservative ideal mop/

switch evict

fft 34 5 595 52 1041 551 52.9% 9.5% 87.5

lu 656 0 17754 1079 2311 2130 92.2% 3.6% 95.3

radix 70 17 615 116 771 629 81.6% 2.0% 246.3

ocean 877 282 7417 1421 14966 6769 45.2% 0.2% 15.8

transactions to enforce correct dependencies.

Various program characteristics relevant to PTM are presented in Ta-

ble III.4. The second column in the table indicates the number of committed

transactions per application, and the third column presents the number of aborted

transactions. Both these results demonstrate the significant amount of transac-

tional activity in our benchmarks. We present the results for system effects in

the fourth and fifth column of Table III.4, listing the number of exceptions and

context switches seen by the program – the fact these system effects exist is a

motivation for our proposal’s support for virtualizing unbounded transactions.

The sixth column, titled “pages”, presents the memory footprint in

terms of the number of unique pages accessed during the course of entire program

execution by both transactional code as well as non-transactional code. This does

not include the shadow pages used. The seventh column “pg-x-wr” shows the

total number of unique pages updated by just the transactional writes.

We estimate the worst case upper bound on additional pages allocated

due to allocation of the shadow pages. The upper bound is shown in column

eight with the title “conservative”. The upper bound is computed as the fraction

153

of transaction’s footprint (shown in column six) and the entire program execu-

tion’s footprint (shown in column seven). The column “ideal” shows the percent

increase in the number of pages if all of the shadow pages created for a trans-

action were instantaneously committed or garbage collected when a transaction

commits. To calculate this number we determine the average number of pages

that are live at any instant for the transactions. We treat this number to be the

additional number of shadow pages that are live at any instant and calculate the

increase in page overhead accordingly.

The last column “mop/evict” in the table describes the frequency of

cache block evictions. The results are shown in terms of how many memory

operations occur between evictions. For example, radix shows that it evicts a

block every 246 memory operations. This is one measure of how much work the

overflow transactional memory has to perform. In the worst case (ocean), we see

that a cache block is evicted for every 16 memory operations.

III.E.3 PTM Performance Comparisons

To determine the usefulness of the proposed PTM, we simulated the per-

formance of PTM comparing it against the prior technique VTM and lock-based

multi-threaded execution. Figure III.8 shows the speedup over a single thread

of execution for five SPLASH-2 benchmarks. In this and our other figures, we

abbreviate Select-PTM as Sel-PTM. We first show the speedup of using the de-

fault p-thread locks. Using fine grain locks we can achieve a speedup of 103%

on average. This approach does not have the overhead of the transactional exe-

cution, speculative aborts, and the overhead of buffering the overflowed blocks,

although lock-based execution lacks the deadlock-free execution guarantees that

transactional memories provide.

The baseline VTM shows decent speedups for three of the benchmarks,

154

but we do not see any speedup for VTM on fft and ocean, due to the overhead

of commits. In comparison, if a victim cache is used with the XADC to hold

the recently evicted transaction blocks, we achieve speedup for all benchmarks

over single threaded execution. This is because currently executing transactions

can access the overflowed but not-yet-committed blocks from the victim cache,

while those blocks are being committed. Thus, for VC-VTM we see an average

speedup of 26% reflecting the benefits of overlapping execution with physical

commit to reduce the commit cost. We also investigated performing copying on

abort, which found 24% speedup on average. Modifying VTM slightly would

obtain a significant improvement.

Our results for Copy-PTM show an average speedup of 68% and for

Select-PTM we observe 75% speedup. The difference between the two is directly

attributable to the additional overhead Copy-PTM incurs for copying blocks to

the home block on evictions and restoring them on aborts. Note that we do not

use a victim cache for the PTM results. One of the main differences between

VTM and Copy-PTM is that Copy-PTM incurs a penalty on abort, whereas

VTM incurs a penalty on commit. In the future we plan to compare against a

variant of VTM that does in-place speculative updates, so that the main penalty

is due to abort and not commit. We expect this approach to perform closer to

Copy-PTM.

Since coherence is done at the cache block granularity, there can be

false conflicts detected due to false sharing. This can lead to unnecessary aborts,

which incur extra run-time overhead [54]. It has been shown that this overhead

can be reduced by for tracking conflicts at the word granularity [34, 33].

For the results we discussed thus far, we used a cache block of size 64

bytes. Let us say a transaction read/wrote to one of the words in the 64 bytes,

and then it was followed by another transaction that tried to write to a different

155

-50%

0%

50%

100%

150%

200%

fft lu radix ocean avg

S
p

ee
d

u
p

Cm-VTM

Ab-VTM

VC-VTM

Cp-PTM

Sel-PTM

4P

Figure III.8: Comparing TM speedup for lock-based multi-threading, (base)
VTM, Victim-Cache VTM, Copy-PTM and Select-PTM. Speedup is over sin-
gle threaded execution.

0%

50%

100%

150%

200%

250%

300%

fft lu radix ocean avg

sp
ee

d
u

p

blk-only

wd:cache

wd:cache+mem

4P

Figure III.9: Advantage of conflict detection at the word granularity.

156

word in the same 64 byte cache block. Clearly, there was no conflict. However,

our conflict detection mechanism based on block sized coherence messages and

PTM data structures would detect a false conflict and unnecessarily abort one

of the transactions, because the conflict mechanism operates at the cache block

granularity.

Figure III.9 shows the performance of modeling conflicts at the word

granularity compared to Select-PTM. Results are compared against only using

block granularity blk-only, and using p-threads locks. The first approach we

examine, wd:cache, performs cache coherence at the word granularity, but still

keeps track of transactional information for overflowed blocks at the block gran-

ularity (64 bytes). As a result, this leads to more coherence traffic, which we

modeled, and also adds additional complexity to a directory system. This re-

sulted in only minor speedups, because evicting a block with multiple writers

would cause an abort, since the overflowed PTM structures would only kept

track of one writer per block.

We then examined keeping track of transactional information even for

the overflowed blocks in PTM at the word granularity, which is wd:cache+mem

in Figure III.9.For radix, this resulted in 169% speedup over single threaded

execution, which is a significant improvement over 80% speedup from tracking

all conflicts at the block level.

While the problem of false conflicts due to detection granularity is highly

benchmark dependent and not universal, it does affect programs like radix dra-

matically. Techniques explored in prior work should help reduce false conflicts,

either by changing data structure alignments [86] via the compiler, or allowing

more than one processor to own sub-partitions of the cache block [23].

157

III.F Conclusion

With the advent of multi-cores, extracting task level parallelism is going

to be crucial. To meet this goal, transactions can help common programmers to

write multi-threaded programs. Transactions Memories can eliminate introduc-

tion of deadlocks and livelocks through synchronization. Ordered transactions

can eliminate non-determinism (general-races) from multi-threaded programs.

However, support for unbounded transactions is crucial to develop a good trans-

actional programming model.

We proposed a system design called PTM that extends existing virtual

memory support to support unbounded transactions. In PTM, when a transac-

tionally modified cache block is evicted, we allocate a shadow page, which can

be used to hold the speculative block. In addition, we aggregate and maintain

all of the transactional information on a page-level granularity. The PTM struc-

tures are integrated with the virtual memory system, allowing direct access to

the transactional data for a page with both the virtual and physical address of

the page.

The first approach we examined is Copy-PTM, in which on a transac-

tional dirty block overflow, a copy of non-speculative block is first backed up

in the shadow page. On commit, the backed up copy can be discarded, but on

abort it has to be restored in the home page. This allows commits to be fast,

but aborts can be slow. We optimized this design in Select-PTM, where the two

versions of data are allowed to be spread across the home and the shadow pages.

To determine which of the two pages contain the block to be fetched, we used

a selection bit vector. Select-PTM is efficient for performing both commit and

abort operations, as it does not have to physically copy the data between the two

pages. Also, on dirty block eviction the non-speculative data need not be backed

up.

158

III.G Acknowledgement

Sections III.D, and III.E contain material to appear in “Unbounded

Page-Based Transactional Memory”, in Proceedings of 12th International Con-

ference on Architectural Support for Programming Languages and Operating Sys-

tem (ASPLOS XII), W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,

M.Van Biesbrouck, G. Pokam, O. Colavin and B. Calder. The dissertation author

was the primary investigator and author of this paper.

IV

Conclusion and Future Work

Computing historically has taken advantage of an abundance of fast

transistors. This enabled incredible growth in the speed and performance of

CPU’s, and made computers so cheap that they are pervasive and highly inter-

connected. Such a rich computational “environment” makes tempting targets for

hackers to exploit, and by using software bugs, hackers are able to take over the

computer for “fun and profit”1. The first part of our work attempts to thwart

these attacks by reducing or eliminating the vulnerability of these bugs.

We consider two well known software checks known to defeat large

classes of Internet attacks- bounds checking and dangling pointer checks. Their

primary disadvantage are their run-time performance slowdown. We study the

overheads caused by these software checks through CPU performance counters

and microarchitectural simulators. These reveal that the primary causes of the

slowdown are: (1) instructions executed to manipulate meta-data (2) cache miss

effects accessing meta-data and (3) branch misprediction effects due to reduced

capacity in the predictor. We propose a set of hardware and software techniques

to reduce this overhead.

These are:
1Comes from the title of [1] that proliferated the technique for stack overflow.

159

160

• Folding together instruction sequences into a single check instruction using

a dedicated instruction. One example is the x86 bounds instruction that

hitherto has not been investigated.

• Discovering if pointers and array references are dangerous by propagating

an externally-tainted property through the scalar and pointer assignment

network. Tainted references implies that its buffer data may possibly be

written from an external source, and therefore be considered dangerous.

These should be checked, while the rest do not need checks.

• Reduce the meta-data copying overhead of pointer-meta-data by moving it

to a shared object and accessing it through an extra level of indirection. We

use hardware to hide the cost of the indirection.

The future of computing will receive an abundance of relatively slower

transistors. In response, microprocessor designers are building multi-core Chip-

Multi-Processor (CMP) systems that minimize communication between cores,

rather than trying to scale up superscalar processors. As these CMP’s scale,

their software does not because they are stymied by conservative serialization,

deadlock or priority inversion from lock based synchronization. Transactional

Memories provides a favorable alternative. It’s obstruction-free synchronization

between transactional regions prevents data-races yet allows greater concurrency

when there is no memory aliasing. A special class of Transactional Memories

called Ordered TM can enhance the safety of concurrent programs desiring or-

dered serialization when there is a data conflict. For example OpenMP compil-

ers are oblivious to loop carried dependencies, but with transactions concurrent

loop iterations with loop carried dependencies can be made to serialize prop-

erly. Our Page-based Transactional Memory (PTM) work enhances the efficacy

of Transactional Memory by making a PTM thread like any other except that

has additional safety properties. A PTM transactional thread is unbounded in

161

speculative memory capacity and may be context switched or paged out in the

middle of a transaction. PTM modifies the virtual memory system to support

using an extra shadow page for overflowed speculative state, and the memory

controller hardware to select between the two pages and detect conflicts. We also

provide the first performance measurements of the earlier Virtual Transactional

Memory (VTM) proposal.

IV.A Future Direction

Staring into the future its interesting to observe academic interest for

both topics. While hardware enhancements for software safety is consistently ac-

tive in the research community with session on security or debug at all the recent

computer architecture conferences, transactional memory has exploded. Groups

from the programming languages and hardware community in both academia and

industry are rapidly investigating and publishing work on Transactional Mem-

ory, with many new possible research directions being explored and many new

branches being opened up all the time. There have been workshops dedicated to

Transactional Memories2, and the number of Transactional Memory papers for

2005 has increased to 27 over the previous year of 14.

Here we present some ideas for future research in both software safety

check and Transactional Memories.

IV.A.1 Software Safety Checks

While we feel the performance of our hardware acceleration of software

checks makes it very practical and deployable, the primary limitation of our

approach is its inability to check library code and system calls. Binary translation

techniques like that used for Operating system virtualization [63] suggest a way
2Synchronization and Concurrency in Object Oriented Languages (SCOOL) 2005, and Workshop on Trans-

actional System 2005

162

of providing enhanced capabilities with backwards compatibility throughout the

runtime of the program. Newsome and Song [62] used this approach to track

external Tainted sources but they found a five times slowdown. However another

faster approach might be to encrypt data through ISA hardware like what Tuck

et.al. [88] with significantly lower overhead. We would use the binary translation

to handle retrofitting encrypted pointers into existing binaries.

Another path to investigate is the well known solution of using managed

languages such as Java that eliminate explicit pointers and all the possible pointer

bugs. The main hindrance is its lack of deterministic performance, and this issue

will provide ample opportunity for research.

IV.A.2 Transactional Memory

We feel that our Page-based Transactional Memories provides a com-

plete solution to providing virtual memory support for Transactional Memory.

Of course our work already suggests some directions for improvements. First,

one should eliminate false conflicts that is a problem with PTM and any other

Transactional Memory or Thread-Level-Speculation system. Earlier we noted

that false conflicts are caused by the granularity of detection (block) being much

larger than the size of speculation (word typically). Other proposals [30, 54] have

investigated this as well, so there is basis to start from. Second, it would be

interesting to see if the PTM technique could be extended to provide more than

one speculative version of memory so as to support TCC TM [30] or TLS [81]

that requires them.

In the longer term, we feel that different programming models and per-

haps their accompanying hardware support would be a very productive area.

For example the OpenMP compiler can partition loops to execute concurrently

although not always safely. McDonald et al. [54] recognized that Transactional

163

Memories can enable safe OpenMP partitioning, though this was mentioned in

passing. A deeper more thorough investigation may turn up more possible issues

with the interaction between TM and OpenMP.

A second long term area of interest is realizing that general specula-

tive memory versioning and conflict detection hardware may allow novel memory

models along with new programming methods. We propose one of the ideas. We

can modify the conflict detection on PTM hardware with transactional ordering

to implement a completely concurrent memory model which we call Phase Up-

date Memories (PUM). Memory updates occur in phases where updates in a given

phase appear simultaneously, and once a phase completes the next phase begins.

Consequently unlike transactions each thread’s PUM phase update cannot be

serialized to create an equivalent execution on a single thread. PUM updates are

similar to incrementing a clock in hardware that simultaneously exposes state

on all sequential elements. Taking the hardware analog to software, PUM pro-

gramming model would probably appear similar to hardware CAD languages like

Verilog or VHDL, and the obvious application for PUM would be to execute those

languages more efficiently.

Bibliography

[1] Aleph One/E. Levy. Smashing the stack for fun and profit. Phrack, 7(49),
Nov. 1996.

[2] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie. Unbounded
transactional memory. In HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pages 316–327,
Washington, DC, USA, 2005. IEEE Computer Society.

[3] L. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU
report 94/19).

[4] A. Anisimov. Defeating microsoft windows xp sp2 heap protection and dep
bypass. http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf.

[5] T. Austin, S. Breach, and G. Sohi. Efficient detection of all pointer and
array access errors. In Symposium on Programming Language Design and
Implementation, pages 290–301, June 1994.

[6] Avantgarde. Time to live on the network.
http://www.avantgarde.com/xxxxttln.pdf.

[7] D. Avots, M. Dalton, V. Livshits, and M. Lam. Improving software security
with a c pointer analysis. In Proceedings of the 27th International Conference
on software Engineering, May 2005.

[8] B. Beizer. Software testing techniques. Van Nostrand Reinhold Co. New
York, NY, USA, 1990.

[9] M. Blasgen, M. Astrahan, D. Chamberlin, J. Gray, W. King, B. Lindsay,
R. Lorie, J. Mehl, T. Price, G. Putzolu, P. Sellinger, D. Slutz, H. Strong,
I. Traiger, B. Wade, R. Yost, and and. System R: an architectural overview.
IBM Systems Journal, 20(1):41–62, 1981.

164

165

[10] C. Blundell, E. Lewis, and M. Martin. Deconstructing transactional seman-
tics: The subtleties of atomicit. In 4th Annual Workshop on Duplicating,
Deconstructing and Debunking, New York, NY, USA, June 2005. ACM Press.

[11] R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks
on demand. In SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 321–333, 2000.

[12] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June
1997.

[13] G. Candea. Enemies of dependability I: Software. Stanford CS Lecture
Notes: CS444a, Fall 2003.

[14] B. Carlstrom, J. Chung, A. McDonald, H. Chafi, C. Kozyrakis, and K. Oluko-
tun. The Atomos Transactional Programming Language. ACM Conference
on Programming Language Design and Implementation, 2006.

[15] A. Chang and M. Mergen. 801 storage: Architecture and programming.
ACM Transactions on Computer Systems, 6(1):28–50, 1988.

[16] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM
Comput. Surv., 3(2):67–78, 1971.

[17] M. Corliss, E. Lewis, and A. Roth. Dise: A programmable macro engine
for customizing applications. In 30th Annual International Symposium on
Computer Architecture, San Diego, CA, June 2003.

[18] M. Corliss, E. Lewis, and A. Roth. Low-overhead debugging via flexible dy-
namic instrumentation. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture (HPCA05), San Francisco, CA,
Feb. 2005.

[19] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard: Protect-
ing pointers from buffer overflow vulnerabilities. In 12th USENIX Security
Symposium, Washington DC, August 2003.

[20] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. 7th USENIX Security
Conference, pages 63–78, Jan. 1998.

[21] J. Crandall and F. Chong. Minos: Control data attack prevention orthogonal
to memory model. In 37th International Symposium on Microarchitecture,
Dec. 2004.

166

[22] M. Dubash. Moore’s law is dead, says Gordon Moore. Techworld.com, 13
April 2005. http://www.techworld.com/opsys/index.cfm?NewsID=3477.

[23] C. Dubnicki and T. LeBlanc. Adjustable block size coherent caches. In
Proceedings of the 19th International Symposium on Computer Architecture,
Gold Coast, Australia, 1992.

[24] H. Etoh. GCC extension for protecting applications from stack-smashing
attacks (ProPolice), 2003. http://www.trl.ibm.com/projects/security/ssp/.

[25] G. McGary. Bounds Checking in C and C++ using Bounded Pointers, 2000.
http://gnu.open-mirror.com/software/gcc/projects/bp/main.html.

[26] B. Gates. We can and must do better. Microsoft Memo, January 2002.
http://news.com.com/2009-1001-817210.html.

[27] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning
cache. In Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture, Feb. 1998.

[28] J. Gray. The Transaction Concept: Virtues and Limitations. Proceedings of
VLDB, 81:144–154, 1981.

[29] R. Gupta. Optimizing array bound checks using flow analysis. ACM Letters
on Programming Languages and Systems, 2(1-4):135–150, 1993.

[30] L. Hammond, B. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis,
and K. Olukotun. Programming with transactional coherence and consis-
tency (TCC). In ASPLOS-XI: Proceedings of the 11th international con-
ference on Architectural support for programming languages and operating
systems, pages 1–13, New York, NY, USA, 2004. ACM Press.

[31] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and
K. Olukotun. Transactional coherence and consistency: Simplifying par-
allel hardware and software. Mico’s Top Picks, IEEE Micro, 24(6), nov/dec
2004.

[32] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Oluko-
tun. The Stanford Hydra microprocessor. Proceedings of the 23th Annual
International Symposium on Computer Architecture, pages 67–77, 1996.

[33] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a
chip multiprocessor. ACM SIGOPS Operating Systems Review, 32(5):58–69,
1998.

167

[34] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional memory coherence and consistency. In Proceedings of the 31st
Annual International Symposium on Computer Architecture, page 102. IEEE
Computer Society, Jun 2004.

[35] M. Harren and G. C. Necula. Lightweight wrappers for interfacing with
binary code in ccured. In Software Security Symposium (ISSS’03), Nov.
2003.

[36] T. Harris and K. Fraser. Language support for lightweight transactions. In
OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and applications, pages
388–402, New York, NY, USA, 2003. ACM Press.

[37] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[38] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III. Software transac-
tional memory for dynamic-sized data structures. Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages 92–
101, 2003.

[39] M. Herlihy and J. Moss. Transactional memory: architectural support for
lock-free data struct ures. Technical report, Digital Equipment Corporation
Cambridge Research Lab, 1992.

[40] M. Herlihy and J. Moss. Transactional memory: architectural support for
lock-free data structures. In ISCA ’93: Proceedings of the 20th annual in-
ternational symposium on Computer architecture, pages 289–300, New York,
NY, USA, 1993. ACM Press.

[41] M. HERLIHY and J. WING. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[42] Internation technology roadmap for semiconductors 2005 edition. ITRS,
2005. http://www.itrs.net/Links/2005ITRS/Home2005.htm.

[43] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of c. In USENIX Annual Technical Conference,
pages 275–288, June 2002.

[44] R. Jones and P. Kelly. Backwards-compatible bounds checking for arrays and
pointers in c programs. In Automated and Algorithmic Debugging, pages 13–
26, 1997.

168

[45] M. Kaempf. Vudo malloc tricks. Phrack, 0xB(0x39), Aug. 2001.

[46] A. Kahng. The 2001 ITRS: Roadmap for Deisgn and Shared Brick Walls.
Michigan EECS Dept Talk, March 2002.

[47] R. Kessler, E. McLellan, and D. Webb. The Alpha 21264 microprocessor
architecture. In International Conference on Computer Design, Dec. 1998.

[48] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via pro-
gram shepherding. In Proceedings of the 11th Usenix Security Symposium
(SEC02), Aug. 2002.

[49] P. Kolte and M. Wolfe. Elimination of redundant array subscript range
checks. In SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 270–278, 1995.

[50] S. Kumar, M. Chu, C. Hughes, P. Kundu, and A. Nguyen. Hybrid transac-
tional memory. Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 209–220, 2006.

[51] N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents.
Computer, 26(7):18–41, 1993.

[52] S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58, 2002.

[53] V. Markstein, J. Cocke, and P. Markstein. Optimization of range checking.
In Symposium on Compiler Construction, pages 114–119, June 1982.

[54] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. Carlstrom, L. Ham-
mond, C. Kozyrakis, and K. Olukotun. Characterization of TCC on chip-
multiprocessors. In Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques, Sept 2005.

[55] The journey to trustworthy computing: Microsoft execs report first-
year progress. Microsoft PressPass- Information for Journalist, Jan-
uary 2003. http://www.microsoft.com/presspass/features/2003/jan03/01-
15twcanniversary.mspx.

[56] D. Moore, C. Shannon, and J. Brown. Code-red: A case study on the
spread and victims of an inernet worm. In Proceedings of the Second ACM
Sigcomm Internet Measurement Workshop 2002, pages 273–284, Marseille,
France, November 2002.

169

[57] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: Log-based
transactional memory. In HPCA ’06: Proceedings of the 12th International
Symposium on High-Performance Computer Architecture, Washington, DC,
USA, 2006. IEEE Computer Society.

[58] M. Moravan, J. Bobba, K. Moore, L. Yen, M. Hill, B. Liblit, M. Swift, and
D. Wood. Supporting nested transactional memory in LogTM. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support
for programming languages and operating systems, New York, NY, USA,
October 2006. ACM Press.

[59] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording
program execution for deterministic replay debugging. In 32th Annual In-
ternational Symposium on Computer Architecture, Madison, WI, June 2005.

[60] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy code. In Symposium on Principles of Programming Languages, pages
128–139, 2002.

[61] R. Netzer and B. Miller. What Are Race Conditions? Some Issues and For-
malization. ACM Letters on Programming Languages and Systems, 1(1):74–
88, 1992.

[62] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In 12th
Annual Network and Distributed System Security Symposium, Feb. 2005.

[63] A. C. of Software and H. T. for x86 Virtualizatioin. K. adams and o. agesen.
In ASPLOS-XII: Proceedings of the 12th international conference on Ar-
chitectural support for programming languages and operating systems, New
York, NY, USA, October 2006. ACM Press.

[64] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case
for a single-chip multiprocessor. ACM SIGPLAN Notices, 31(9):2–11, 1996.

[65] M. Patil and C. Fischer. Low-cost, concurrent checking of pointer and array
accesses in c programs. Software - Practice and Experience, 27(1), Jan. 1997.

[66] M. Pettersson. Perfctr. http://user.it.uu.se/ mikpe/linux/perfctr/.

[67] F. Pollack. New Microarchitecture Challenges in the Coming Generations
of CMOS Process Technologies. Keynote speech: 32nd International Sympo-
sium on Microarchitecture, 1999.

[68] K. Poulsen. Tracking the blackout bug. Security Focus, April 2004.
http://www.securityfocus/news/8412.

170

[69] M. Prvulovic and J. Torrelas. Reenact: Using thread-level speculation mech-
anisms to debug data races in multithreaded codes. In 30th Annual Inter-
national Symposium on Computer Architecture, San Diego, CA, June 2003.

[70] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ecc-memory for detecting
memory leaks and memory corruption during production runs. In Proceed-
ings of the 11th International Symposium on High-Performance Computer
Architecture (HPCA05), Feb. 2005.

[71] R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution. Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, December, pages
01–05, 2001.

[72] R. Rajwar and J. Goodman. Transactional lock-free execution of lock-based
programs. Proceedings of the Tenth Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 5–17, October 2002.

[73] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
SIGARCH Comput. Archit. News, 33(2):494–505, 2005.

[74] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W. S. B. Jr. En-
hancing server availability and security through failure-oblivious computing.
In 6th Symposium on Operating System Design and Implementation(OSDI),
Dec. 2004.

[75] RTI. The Economic Impacts of Inadequate Infrastructure for Software Test-
ing. NIST, Research Triangle Park, NC, May 2002.

[76] O. Ruwase and M. Lam. A practical dyanmic buffer overflow detector. In
11th Annual Network and Distributed Security Symposium (NDSS 2004),
pages 159–169, San Diego, California, February 2004.

[77] S. Savage, G. Voelker, and G.Varghese. NSF CyberTrust center proposal:
Center for internet epidemiology and defenses, 2004.

[78] C. Shannon and D. Moore. The spread of the Witty worm. Security &
Privacy Magazine, IEEE, 2(4):46–50, July-August 2004.

[79] M. Shapiro II and S. Horwitz. Fast and accurate flow-insensitive points-
to analysis. In Symposium on Principles of Programming Languages, pages
1–14, 1997.

[80] N. Shavit and D. Touitou. Software transactional memory. In Symposium
on Principles of Distributed Computing, pages 204–213, 1995.

171

[81] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. Computer
Architecture, 1995. Proceedings. 22nd Annual International Symposium on,
pages 414–425, 1995.

[82] B. Steensgaard. Points-to analysis in almost linear time. In Symposium on
Principles of Programming Languages, pages 32–41, 1996.

[83] J. Steffan and T. Mowry. The potential for using thread-level data specula-
tion to facilitate automatic parallelization. Proceedings of the 4th Interna-
tional Symposium on High-Performance Computer Architecture, pages 2–13,
1998.

[84] G. Suh, J. Lee, D. Zhang, and S. Devadas. Secure program execution via
dynamic information flow tracking. In Eleventh International Conference on
Architectural Support for Programming Languages and Operating Systems,
Oct. 2004.

[85] M. Sullivan and R. Chillarege. Software defects and their impact on system
availability. In 21st International Symposium on Fault Tolerant Computing,
Montreal, 1991.

[86] J. Torrellas, M. Lam, and J. Hennessy. False sharing and spatial locality in
multiprocessor caches. IEEE Trans. Computers, 43(6):651–663, 1994.

[87] I. Traiger. Virtual memory management for database systems. ACM
SIGOPS Operating Systems Review, 16(4):26–48, 1982.

[88] N. Tuck, B. Calder, and G. Varghese. Hardware and binary modification
support for code pointer protection against buffer overflows. In 37st Inter-
national Symposium on Microarchitecture, Dec. 2004.

[89] Cops take a bite, or maybe a nibble, out of cybercrime. USA-Today, Sept.
2003. http://www.usatoday.com/money/industries/technology/2003-09-01-
blaster-cover x.htm.

[90] D. Wheeler. More than a gigabuck: Estimating gnu/linux’s size.
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

[91] J. Wilander and M. Kamkar. A comparison of publicly available tools for
dynamic buffer overflow prevention. In Proceedings of the 10th Network and
Distributed System Security Symposium, pages 149–162, February 2003.

[92] E. Witchel, J. Cates, and K. Asanović. Mondrian memory protection. In
Proceedings of ASPLOS-X, Oct 2002.

172

[93] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The splash-2 programs:
Characterization and methodological considerations. In 22nd Annual Inter-
national Symposium on Computer Architecture, pages 24–36. Association for
Computing Machinery, 1995.

[94] L. Wu, C. Weaver, and T. Austin. CryptoManiac: A Fast Flexible Architec-
ture for Secure Communication. 28th Annual International Symposium on
Computer Architecture, pages 110–119, 2001.

[95] M. Xu, R. Bodik, and M. Hill. A flight data recorder for enabling full-
system multiprocessor deterministic replay. In 30th Annual International
Symposium on Computer Architecture, San Diego, CA, 2003.

[96] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Z. S. Midkiff, and J. Torrel-
las. Accmon: Automatically detecting memory-related bugs via program
counter-based invariants. In 37st International Symposium on Microarchi-
tecture, Nov. 2004.

[97] P. Zhou, F. Qing, W. Liu, Y. Zhou, and J. Torrellas. iwatcher: Efficient
architecture support for software debugging. In 31st annual International
Symposium on Computer Architecture (ISCA’04), June 2004.

[98] C. Zilles and L. Baugh. Extending hardware transactional memory to sup-
port non-busy waiting and nontransactional actions. In TRANSACT: First
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, June 2006.

[99] C. Zilles and D. Flint. Challenges to providing performance isolation in trans-
actional memories. In 4th Annual Workshop on Duplicating, Deconstructing
and Debunking, New York, NY, USA, June 2005. ACM Press.

