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Early path dominance as a principle for neurodevelopment
Rostam M. Razbana ID , Jonathan Asher Pachtera,b , Ken A. Dilla,b,c,1 ID , and Lilianne R. Mujica-Parodia,b,d,e,f,1 ID

Contributed by Ken A. Dill; received October 26, 2022; accepted March 15, 2023; reviewed by Michael Breakspear, Marcus Kaiser, and Amina Qutub

We perform targeted attack, a systematic computational unlinking of the network,
to analyze its effects on global communication across the brain network through its
giant cluster. Across diffusion magnetic resonance images from individuals in the UK
Biobank, Adolescent Brain Cognitive Development Study and Developing Human
Connectome Project, we find that targeted attack procedures on increasing white
matter tract lengths and densities are remarkably invariant to aging and disease. Time-
reversing the attack computation suggests a mechanism for how brains develop, for
which we derive an analytical equation using percolation theory. Based on a close
match between theory and experiment, our results demonstrate that tracts are limited
to emanate from regions already in the giant cluster and tracts that appear earliest in
neurodevelopment are those that become the longest and densest.

percolation theory | dMRI | connectomics | statistical mechanics | network neuroscience

Brains are networks of neuronal regions (nodes) that are linked together by bundles of
axons (edges). Much more is known about static topologies of brain networks than of
the dynamics of how topologies emerge through neurodevelopment. Known topological
properties include their degree distributions, path lengths, clustering coefficients, and
rich-club coefficients (1–9). These graph-theoretic features can be captured by modeling
and compared to other known types of networks. For example, the high average clustering
coefficients and low average path lengths in brains are similar to what is found in a lattice
of sites with introduced random connections, called small-world networks (1, 5).

However, these topological properties of brains are often considered as snapshots at
a given time (10). Our interest here is in the developmental trajectories through which
brains come to have its unique topology. There are no publicly available datasets yet
rich enough to give the full trajectories of topologies of developing brains*. Thus, as an
alternative, we use data to construct a generative model of a quasidynamical sequence of
events of developing brain networks. We do this using statistical mechanical percolation
theory with a procedure called targeted attack (13–15).

Targeted Attack Analysis of Brain Data

Targeted attack is a computational procedure that can be performed on any network
having a known topology. Targeted attack entails sequential removal in silico of nodes
or edges based on the rank order of some node or edge property (13, 14, 16), followed
by analysis of how the network changes step-by-step throughout the decimation of the
net by the attack. Consider the metaphor of a city’s roads. One metric is road lengths:
You might remove them in order of shortest to longest, for example. By a different
metric, you might remove links in order of how many cities they connect. The nature
of how a network topology diminishes throughout the attack can give insights about
the network beyond what single network measures can give. In particular, we focus on
the giant cluster (the largest group of connected nodes) because it is a proxy for global
communication. We compute the probability P that an arbitrary node in the network is
in the giant cluster. If P = 1, then any arbitrary region can communicate with any other
region (17, 18).

Various targeted attack analyses have previously been performed on brain network
data (2, 19–24). It has been found that when attack sequences are based on
correlations of functional connectivities, e.g., functional MRI (fMRI) signals between
regions, the brain does not decimate in the same way as random or scale-free
graphs (2). The attack procedure has also been applied to structural connectivities,
e.g., diffusion MRI (dMRI), which measures the topology of large bundles of axons
known as white matter tracts (25). This study removed nodes based on their degrees
(26), motivated by the logic that their targeted attack procedure directly simulates

*Recent brain scans of fetuses in the womb are promising but not yet publicly accessible (11, 12).
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Fig. 1. The targeted attack procedure on increasing tract lengths. By starting with all edges present on the Left, we sequentially remove those edges whose
length (listed above the edge) are currently shortest (colored in red). P is the probability a node is in the giant cluster; 〈k〉 is the average degree.

neurodegeneration, which is more likely to be located in
metabolically costly hubs (27).

Here, we seek insights through the following aspects: 1) two
new decimation strategies: tract lengths and densities; and 2) an
analytical theory for time-reversing targeted attack, which can
shed light on how the brain network builds up in this process.
The logic is that time-reversal of the decimation process gives a
plausible hypothesis for how brain structure emerges through
early development, which we validate on N=35,731 human
dMRI scans of increasing targeted attack of tract length and
density acquired from the UK Biobank (28), the Adolescent Brain
Cognitive Development (ABCD) Study (29) and the Developing
Human Connectome Project (dHCP) (30). We compare brain
results to alternative graph theoretical structures, such as random,
scale-free, and small-world graphs, as well as a graph constrained
by brain volume. And, to confirm that our conclusions are not
specific to the dMRI data or human brains, we replicate our
results on mouse viral tracing experiments (31).

The Computational Procedure of Targeted Attack. At a given
step of decimation, the various nodes of the remaining graph will
have different degrees of connectivity (numbers of other nodes
to which it connects). At that stage of decimation, the graph’s
average connectivity will be 〈k〉. The calculation we make here
is of P = P(〈k〉). For example, node c in Fig. 1 initially has a
degree (k) of 2 in the left-most realization of the graph “abcd.”
〈k〉 is the average over all nodes’ degrees. P is calculated by the
number of nodes in the giant cluster divided by the total number
of nodes. The left-most realization of the graph “abcd” first has
P = 4/4, then sequential attack from small to large tract lengths
results in P = 4/4, P = 3/4, and P = 2/4 (Fig. 1).

We run a targeted attack procedure on two main outputs
from a generic dMRI data analysis: tract length and tract density
(Fig. 1). Tract density, also known as streamline count, is the
number of tracts connecting two gray matter regions; tract
length is the average length of those connections (Methods).
Since we can remove edges in increasing (smallest to largest)
or decreasing (largest to smallest) order, each physical property
has two possible P curves. Fig. 2 demonstrates that the removal
of increasing tract lengths and tract densities yield P curves
qualitatively different from those corresponding to random
graphs. In contrast, decreasing tract density removal results in
a poorly resolved curve because a high proportion of edges have a
tract density of 1 (SI Appendix, Fig. S1, Right). Decreasing tract
length removal results in a P curve qualitatively similar to that
of random graphs (SI Appendix, Fig. S1, Left), consistent with
previous results (26). Here, we analyze the shapes of the curves
of P(〈k〉) from increasing tract length and tract density–targeted
attack and compare to other known types of networks.

Analytical Theory for Brain Network Formation. The attack
procedure describes the P curve from right to left, by a
breakdown process. Instead, looking at the same P curve now
from left to right describes a hypothetical build-up process that
provides a growth trajectory on network development from
early to late. One well-known trajectory in percolation theory
is a random network. Given in terms of the Lambert W function
(15), an analytical solution is known for P(〈k〉) in the limit of
infinite numbers of nodes (15, 32).

P(〈k〉) = 1 +
W (−〈k〉e−〈k〉)

〈k〉
. [1]

We are not aware of any other known networks for which
P(〈k〉) is fully derived†. Here, we analytically characterize
a mechanism for growth of the giant cluster by restricting
secondary cluster formation, based on experimental evidence
discussed in the next section. Secondary clusters are defined
as other clusters besides the giant cluster of size greater than
one. We compute the trajectory P(〈k〉) of what we call the
Giant Cluster Self Preference network over its full range of 〈k〉,
as (derived in Methods):

P(〈k〉) = 1 +
(

1
1− 2/α

)
W

[(
2
α
− 1

)
e−(1−2/α)e−〈k〉/α

]
.

[2]

Eq. 2 contains only one parameter, α, which we fit to the
experimental data. The parameter reflects how many times more
likely a new link lands in the giant cluster, relative to landing in
a newly formed isolated node during the process of brain growth
in early development.

Results

Attack Trajectories Depend on Tract Lengths and Densities.
Fig. 2 demonstrates that for both tract length and tract density,
random graph theory is not consistent with the experimental data.
Experiments show that P(〈k〉) changes much more gradually all
the way down to 〈k〉 = 0 at the left end of the figure. In one
perspective, this might be surprising. Percolation behaviors often
have steep cliffs: no global communication below a certain critical
threshold, then a jump to a finite value of communication above
it (14, 15). These two curves are for one adult individual; SI
Appendix, Fig. S2 shows that other adult brains have similar
features.

We then probe more deeply into the difference of the brain
network vs. random graphs. At 〈k〉 = 1, the giant component
†Limits are known for many graphs such as scale-free and lattices; however, the full
trajectory from small to large 〈k〉 remains analytically unsolved (14, 15).
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Fig. 2. Attack curves, P(〈k〉), theory vs. experiments. (Red points) dMRI data collected by the UK Biobank for one arbitrarily chosen human individual (subject
ID: 6025360) (33) under the Talairach atlas (34). (Blue line) The presented Giant Cluster Self Preference theory. (Orange line) Prediction from random graph
theory. The Inset zooms in on the first four equidistant sampled experimental points to highlight the lack of a sharp transition.

in the brain is essentially the only cluster; nodes not in the giant
cluster are isolated and do not form secondary clusters. In contrast
for the random graph at 〈k〉 = 1, the giant cluster is just one
of many nonnegligible clusters present (SI Appendix, Fig. S3).
The lack of secondary clusters in the brain network holds across
different values of 〈k〉 (SI Appendix, Fig. S4). We conclude that
in this particular computational attack, the brain’s giant cluster
continuously degrades one node at a time, rather than by sharp
fragmentation into secondary clusters from one large cluster. This
lack of fragmentation explains the lack of a critical point in the
P curves. We encode this mechanism into our Giant Cluster
Self Preference theory (Eq. 2) and find good agreement of the
full attack curves P(〈k〉), for both tract length and tract density
attack variables (Fig. 2).

To rule out other potential mechanisms, we perform simula-
tions of a network build-up by preferential attachment (35). We
find a match with experimental P curves at a coarser parcellation
(SI Appendix, Fig. S5). Scale-free networks built by preferential
attachment are known to lack critical points during random
attack (14, 16, 19). However, the match fails to extend to
finer parcellations (SI Appendix, Fig. S6) even when considering
general preferential attachment models where edge addition is
not simply linear in nodes’ degrees (SI Appendix, Fig. S7). The
Giant Cluster Self Preference theory better captures trends across
different parcellations (Fig. 2 and SI Appendix, Fig. S8).

Rather than building up graphs, we also create final networks
and perform targeted attack to test whether corresponding P
curves match those of real brains. Two models we consider are
small-world networks (1) and random edges with distances based
on the center of mass coordinates of regions in the parcellation.
Both are limited to tract distance; they provide no information
on tract lengths nor on tract densities. Neither model exhibits a
match with the corresponding experimental data for increasing
targeted attack on tract distance at either a coarse or fine
parcellation (SI Appendix, Figs. S9 and S10). In the case of small-
world networks, this is not unexpected because it is essentially a
2-dimensional ring lattice and lattices are known to have critical
points (14, 15).

� as a Universal Property of Brains. The Giant Cluster Self
Preference theory uses a fit parameter α, which measures the
relative rates of a new network edge landing inside the giant
cluster versus landing outside the giant cluster (Methods). Does

α reflect some universal feature of brains or depend on different
brain states? We test whether α depends on the age or mental
health status of adults based on the biometric properties in the
UK Biobank dataset. We find no strong systematic changes in
α as a function of age (Fig. 3)‡. We also find that α values are
indistinguishable by gender (SI Appendix, Fig. S11). In addition,
no differences are found in α for individuals diagnosed with
diabetes compared to healthy individuals (SI Appendix, Fig. S12)
or for individuals diagnosed with bipolar disorder or depression
compared to healthy individuals (SI Appendix, Fig. S13). The
shape of the attack/trajectory curves and the α values for each of
them appear to be a relatively universal feature of human adult
brains.

To extend our results to younger subjects, we analyzed dMRI
data from the ABCD Study (29), which contains individuals aged
9 through 13 y. We find α values for the corresponding tract
density and length–targeted attack remarkably similar to those
of adults studied in the UK Biobank and relatively insensitive to
age, although more sensitive than those of the UK Biobank (Fig.
3). Given the widespread presence of synaptic pruning during
adolescence (36–38), our results indicate that synaptic pruning
plays a minor role in affecting percolation because there are
many edges responsible for maintaining P = 1. Furthermore,
we analyze dMRI data from dHCP (30) for recently conceived
newborns and reach the same conclusion, although the similarity
with adultα values is not as high. Fig. 3 illustrates the similarity in
P curves across individuals of different ages. Taken together, these
results imply thatα does not reflect postnatal human white matter
development and is more consistent with prenatal development.

To check that our results are not an artifact of the dMRI
data modality, we studied viral tracing data of mice from the
Allen Institute (31); SI Appendix, Fig. S14. Again, the present
Giant Cluster Self Preference theory gives excellent fits to the
attack curves, but now with larger-than-human values of α for
distance-based attacks and smaller-than-human for density-based
attacks§.

‡Although the Spearman correlation coefficient between � and age is highly significant for
those � values corresponding to tract density with a P value ∼10−15 , the effect size is low
with a Spearman correlation coefficient of −0.06. The Spearman correlation coefficient
between � and age is not significant for those � values corresponding to tract length.
§These differences in details could be attributed to a combination of factors, such as the
particular parcellation of the mouse brain into regions and viral tracing being limited to
distances (see SI Appendix, Fig. S14’s caption). Nonetheless, these results suggest that the
P curves reflect a generic developmental signal that extends across different species.
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Fig. 3. Attack curves for different human subjects of different ages. P(〈k〉) is remarkably similar across different ages within and across different datasets. To
concisely capture the behavior of all P curves, we show fitted � parameters as a function of age in the Bottom two rows of plots. Binned data are presented with
a line connecting means, and error bars correspond to SD. The variable � corresponds to the Spearman correlation coefficient calculated over all individuals
between age and �, with P value in parentheses. The variable N corresponds to the total number of individuals from the respective dataset included in the
analysis. An arbitrarily chosen sample of subjects are shown in the top row for subjects of age 36 wk (Developing Human Connectome Project, subject ID:
CC00063AN06, �length=12.7, �density=11.9), 10 y (Adolescent Brain Cognitive Development Study, subject ID: NDARINVNVF8N71U, �length=13.1, �density=10.8),
51 and 80 y old (UK Biobank, subject IDs: 6025360 and 4482035, �length=15.3, �density=11.0 and �length=14.2, �density=10.4, respectively).

Our claim that such a targeted attack approach can provide
insights into prenatal development is not without precedent.
It has direct support at the neuronal scale of mice (39–41)¶.
Taken together, our results across humans of different ages and
mental health diagnoses, as well as on mice using a different

¶Notably, results qualitatively differ from ours, in that a critical point in their P curves
is observed. It is not clear whether the neuronal scale, the in vitro sample, and/or the
presence of neuronal activity are responsible for differences found compared to our
results. Nonetheless, this study showed that P = 1 near the expected birth of the fetal
mouse (40). In addition, P curves of neurons initially derived from adult mice and fetal
mice were similar, indicating that P curves reflect a developmental signature that persists
throughout organisms’ lifetimes (39, 40).

data modality, support the claim that reversing the respective
targeted attack procedure provides a hypothesis for how brains
develop.

DuringNeurodevelopment, theEarliest TractsBecomeDensest
and Longest. One observation that the Giant Cluster Self
Preference theory does not address is that targeted attack
yields nonrandom P curves when attacking edges based on
increasing tract lengths and densities. Results from the previous
subsection indicate that the P curves reflect a special tract
formation order during fetal development in which the brain
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A

B

Fig. 4. Early Path Dominance Model: Proposed sequence of topological growth in brain development. (A) New edges, marked in red, start off short and thin
(less dense) and become longer and wider (more dense) with each growth step. Figure created with biorender.com. (B) Simulations of the model are consistent
with theory for the same � parameter. Violin plots represent 1,000 independent runs of a graph with 727 nodes, the same number as in the Talairach atlas.

is rapidly growing (36, 42). In Fig. 4A, we propose a model,
Early Path Dominance, that supplements the Giant Cluster Self
Preference theory by accounting for concurrent brain growth as
the giant cluster increases in size. As the fetal brain is emerging,
initial edges are short with small tract densities; however, as
the brain grows in size and new regions appear, those same
edges lengthen and become more dense. Tract lengthening has
been called scaling and found to be present in the nervous
system development of C. elegans (9, 43–45). In the context
of dMRI, there are multiple reasons that tracts can appear more
dense. These include both fasciculation (increasing fiber count)
(42, 46, 47) as well increasing myelination (25).

We perform a simulation of the Early Path Dominance model,
incorporating scaling and fasciculation/myelination alongside the
critical constraint that edges only add between regions where at
least one region is already in the giant cluster (Giant Cluster
Self Preference theory). Physical growth is encoded by randomly
assigning coordinates to nodes within a unit sphere and assuming
existing coordinates uniformly increase by a fixed constant every
time an edge is added (Methods). Fig. 4B demonstrates that the
P curves from the Early Path Dominance model agree well with
the Giant Cluster Self Preference theory, which itself showed
good agreement with experiments (Fig. 2). The Giant Cluster
Self Preference theory (Eq. 2) makes no specific reference to tract
length and density in so much that edge addition (increasing
〈k〉) reflects the corresponding tract order formation (further
discussed in Methods).

An important feature seen in brain data is higher average
clustering coefficients but similar average path lengths to random
graph networks (6, 48–50). The Early Path Dominance model
captures this feature to a certain extent (SI Appendix, Fig.
S16), despite not being specifically designed to do so#. Small-
world networks are capable of achieving the higher clustering
coefficients seen in brain data at finer resolutions (1). For the same
adult individual as in Fig. 2 under the Talairach atlas, we find that
the average clustering coefficient is 0.60, while a random graph
with the same average degree of 29.9 has an average clustering
coefficient of 0.04. However, it is unclear whether highly elevated
average clustering coefficients at fine parcellations are artifacts of
the edge sparsity (51, 52).

Wider Perspectives

The relative invariance of the P curves implicates that this
percolation mechanism may matter for brain function and that
it may be a relatively universal mechanism of brain growth.
Moreover, fitting brain data require values of α > 1, meaning
new neurons have greater propensity to connect inside the giant
cluster than outside it. Taken together, these points lead us to the
following speculations. First, perhaps the preference of neurons to

#Note that we only need the Giant Cluster Self Preference theory aspect of the Early
Path Dominance model to achieve these results since clustering coefficient is a graph
theoretical property and edge addition does not depend on growth mechanism in our
model.
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link to the giant cluster is because of a “Hebbian principle” (53),
where neurons have greater recruitment and growth into regions
of higher neuronal activity, which, in this case, may be associated
with larger clusters. Future work will test this speculation with
activity data of neuronal regions from functional MRI. Second,
this mechanism has the efficiency advantage to the organism
of “no neuron left behind”. That is, neurons mostly link to
clusters that are active and connected. And third, this mechanism
is opportunistic, generating new connections stochastically that
lead to different brain wirings in detail, even while constrained
by a common principle.

Conclusions and Discussion

We have analyzed human brain network topologies by per-
forming an attack analysis, systematically removing links in the
computer, and watching how it changes the probability of being
in the giant cluster, P(〈k〉) as a function of the average degree 〈k〉
of the network at that stage. We use two different attack variables:
tract length and density. These curve shapes under increasing
targeted attack are universal across postnatal age and disease, and
in mice, but are very different than for random networks. We
hypothesize that time-reversing the attack procedure may mimic
the physical neuronal development of fetal brains. On that basis,
we derive an analytical equation that grows the brain network
and provides two fundamental insights into white matter tract
development. First, tracts form primarily from regions already in
the giant cluster. Second, on average, the first tracts constructed
become longest and densest.

Materials and Methods
Calculating the Connectivity Matrix. Connectivity matrices are calculated
using the Diffusion Imaging in Python (DIPY) software (54). Alongside the
already preprocessed dMRI images from the respective dataset (discussed in
SI Appendix), we input a brain atlas that distinguishes between white and gray
matter, as well as parcellates the gray matter into an arbitrary number of regions.
In the Results, we use the Talairach atlas (34), however, we also show results
for the Harvard-Oxford (55) and the modified Desikan–Killiany atlases (54, 56)
in SI Appendix, Fig. S8. Nodes found to form zero edges when calculating the
connectivity matrix are removed from consideration such that P = 1 when all
edges are considered.

We perform a deterministic tracking method in DIPY to generate the
connectivity matrix (54). Reconstruction of the orientation distribution function
is done using Constant Solid Angle (Q-Ball) with a spherical harmonic order of 6
(57). The relative peak threshold is set to 0.8 with a minimum separation angle
of 45◦. We only seed voxels in the white matter and count tracts that ended in
the gray matter. Minimum step size of tracts is 0.5 mm. Our protocol to obtain
connectivity matrices closely follows a DIPY tutorial found on their website under
streamline tools. We tried a different parameter (spherical harmonic order = 8)
and reconstruction method (diffusion tensor imaging) to calculate connectivity
matrices and found similarP curves as those shown in the main text (SIAppendix,
Fig. S17). Results are also robust to variations in number of nodes or average
degrees seen across individuals’ brain networks (SI Appendix, Fig. S18).

Tractography outputs the number of tracts that connects two gray matter
regions, which we call the tract density, and the individual lengths of each tract.
Because each tract can have its own unique length, we take the average over all
lengths to represent a given connection between two gray matter regions and
call that the tract length.

The Giant Cluster Self Preference Theory. We seek a network with specific
characteristics which quantitatively displays agreement with the wealth of
percolation curves generated from targeted attack on dMRI data. In this section,
we derive an analytical expression for P(〈k〉)—the fraction of nodes residing in
the giant cluster as a function of the average degree 〈k〉—for this network.

In the first subsection of the Results, we observed that brain networks under
increasing tract length and density–targeted attack display the peculiar feature
of essentially never having secondary clusters; there is just the one giant cluster
and then either isolated nodes (nodes that form no other edges) or very small
clusters (SI Appendix, Figs. S3 and S4). To develop our analytical theory, we take
this to the extreme and approximate brain networks as having only one cluster.
For a growing brain network, we even expect no isolates. When performing the
targeted attack in order to generate percolation curves, sometimes removing a
link causes a node to become isolated, like an island that has been set free from
a mainland, and those are the isolates we see in the deconstructed network.
In our theory, we consider the reverse of targeted attack, i.e., the growth and
development of the network over time. From this perspective, there is always
just one cluster, and the appearance of a new node coincides with a new link
that emerges from a random node in the cluster (nodes e and f in Fig. 4A).

Now consider a growing brain network currently containing n nodes, all in
one cluster, with E edges. Each growth step corresponds to the addition of exactly
one new edge—the only question is, will this new edge reside in the existing
cluster, providing more direct connections for the nodes already there, or will it
branch outward into a new node? Here, we introduce the factors defining our
analytical theory of brain networks.

There are n(n − 1)/2 − E available edge spots within the cluster. If a new
node forms with some probability 1/α, then there are N − n possible new
nodes that can connect to any of the n nodes in the cluster.N corresponds to the
final number of nodes in the full-sized network. Theα parameter captures brain
growth with respect to parcellation. Although growth rates change throughout
early development (58), α is simply taken to be a constant and fitted to the
data||. An alternative yet equivalent interpretation is that an added edge is α
times more likely to show up in one of the available spots within the giant cluster
versus those connecting to a new region.

With the complete number of possible edges tabulated, we can calculate the
probability p(n→ n + 1|E→ E + 1) that we add a new node to the cluster
during this growth step:

p(n→ n + 1|E→ E + 1) =
1
α n(N− n)

1
2n(n− 1)− E + 1

α n(N− n)
. [3]

Since there are only two options at each growth step, the probability to place the
new edge within the existing cluster rather than creating a new node is simply
p(n→ n|E→ E + 1) = 1− p(n→ n + 1|E→ E + 1).

We can now use these expressions for the transition probabilities to study
how the probability p(n|E) of having n nodes evolves as more edges are added
to grow the network:

p(n|E + 1) = p(n|E) p(n→ n|E→ E + 1)
+ p(n− 1|E) p(n− 1→ n|E→ E + 1)

= p(n|E) [1− p(n→ n + 1|E→ E + 1)]
+ p(n− 1|E) p(n− 1→ n|E→ E + 1). [4]

Rearranging slightly and plugging in the expression from Eq. 3 yields a
discrete master equation:

p(n|E + 1)− p(n|E)
= p(n− 1|E) p(n− 1→ n|E→ E + 1)
− p(n|E) p(n→ n + 1|E→ E + 1)

= p(n− 1|E)
1
α (n− 1)(N− n + 1)

1
2 (n− 1)(n− 2)− E + 1

α (n− 1)(N− n + 1)

− p(n|E)
1
α n(N− n)

1
2n(n− 1)− E + 1

α n(N− n)
. [5]

||Coarser parcellations yield smaller values of � (SI Appendix, Fig. S8); this makes sense
since all that is needed to connect a new large region into a network is for one of the many
subregions of that region to get connected, whereas with finer parcellations, it is harder
to bring a new region into the network because it is like throwing a dart at a smaller target.
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This difference equation can be solved numerically for any value of N to give
the full evolution of p(n|E), using the initial condition p(n|0) = δn=1. The
function δ corresponds to the Kronecker delta; δn=1 takes a value of 1 when
n = 1 and is 0 elsewhere.

We now consider the limit asN→∞, where both n and E also go to infinity
but the ratios ρ = n/N and κ = 2E/N remain finite**. In this limit, defining
p(ρ|κ) = limN→∞ Np(n = ρN|E = κN/2) we can rewrite Eq. 5:

∂p(ρ|κ)
∂κ

= −
∂

∂ρ

{
1− ρ

2− (2− α)ρ
p(ρ|κ)

}
. [6]

With initial condition p(ρ|0) = δ(ρ), the full solution of this partial
differential equations is (using, for example, the method of characteristics)
p(ρ|κ) = δ[ρ − f(κ)], where the function f(κ) satisfies:

f ′(κ) =
1− f(κ)

2− (2− α)f(κ)
, [7]

and f(0) = 0. The solution of this now ordinary differential equation is

f(κ) = 1 +

(
1

1− 2/α

)
W

[(
2
α
− 1

)
e−(1−2/α)e−κ/α

]
. [8]

In this limit, the stochasticity in p(ρ|κ) is lost and the network size actually
grows deterministically with growing edge density ratio κ , satisfying ρ =
f(κ). Recognizing that κ—the edge density ratio in the growth perspective—
corresponds to the average degree 〈k〉 in the targeted attack perspective†† and
thatρ(κ)—the fractional size of the network compared to its full size as a function
of κ in the growth perspective—corresponds to the probability P(〈k〉) to be in
the giant cluster as a function of 〈k〉 in the targeted attack perspective, we arrive
at Eq. 2, which we reproduce here for ease of reading:

P(〈k〉) = 1 +

(
1

1− 2/α

)
W

[(
2
α
− 1

)
e−(1−2/α)e−〈k〉/α

]
. [9]

Although this form bears some resemblance to the analogous expression for
a random graph (Eq. 1), including the appearance of the Lambert W function,
it produces significantly different features, particularly P(〈k〉) approaching 1
much more gradually with increasing 〈k〉. Eq. 9matches the numerical solution
of Eq. 5, validating our large N approximations (SI Appendix, Fig. S19).

This form matches targeted attack data on increasing tract density and length
remarkably well, when fitted with an optimal α value (Fig. 2). This further
validates the main assumptions: brain networks have a single connected cluster
throughout development, and internal connections are added continuously
during growth, whereas the network only branches out and creates new nodes
every so often. These aspects constitute our theory of developing brain networks,
which we call Giant Cluster Self Preference. The name encapsulates the central
idea that internal connections are shored up before the cluster branches out and
connects with new nodes.

One limitation is that the Giant Cluster Self Preference theory does not
include any reference to tract length or tract density. Future work will extend
the current theory by assigning weights to each edge corresponding to these
quantities and explain differences in fitted α values between tract density and
length-derived P curves. Tract length and density are known to anticorrelate
(6, 59, 60) (SI Appendix, Fig. S20). However, the anticorrelation does not
underlie results because increasing tract length– and tract density–targeted
attack produce qualitatively similar results rather than length/density increasing
and density/length decreasing (Fig. 2 and SI Appendix, Fig. S1). Furthermore,
future work could build on the foundations here to explore other graph-
theoretic aspects of networks governed by the Giant Cluster Self Preference

**Requiring � to remain finite corresponds to an early stage from the growth and
development perspective and to sparsely populated edge spots from the targeted attack
perspective. In either case, in the opposite limit—at late stages of growth or when most of
the edges are still there in targeted attack, we get the expected result that the connected
cluster spans the whole possible network. This approximation is critical to obtaining an
analytical expression because it allows us to neglect the � term in the denominator of the
transition probability.
††The average degree 〈k〉g when normalized by the number of nodes present in the
growth perspective is equal to �/�.

theory, such as degree distributions, and how these quantities evolve over
time.

Simulating the Early Path Dominance Model. In Fig. 4B, we demonstrate
that corresponding P curves for simulations of the Early Path Dominance
model match the Giant Cluster Self Preference theory and, thus, are consistent
with experimental P curves (Fig. 2). In principle, there are numerous ways of
implementing the Early Path Dominance model according to the rules outlined
in Fig. 4A. Here, we constrain nodes to originate randomly within a sphere
centered at the origin of radius 1. Nodes’ Cartesian coordinates are rescaled
by 1.0001 each time an edge is added to the network, causing existing edges
to lengthen by a factor of 1.0001. New edges are initially given a density of 1
that increases by a factor of 1.001 each time an edge is added to the network,
causing existing edges to become more dense. Edges are added according to
the Giant Cluster Self Preference theory with α = 11. Simulations are run with
727 nodes, the same number as in the Talairach atlas, and a final average degree
of 100 to ensure that at the conclusion of the simulation, all graphs have P = 1.
Note that the additional randomness of coordinate placement seems to result
in the distance-targeted attack P curve requiring a higher α value (α ≈ 13) to
capture the simulation (Fig. 4B).

Data, Materials, and Software Availability. Scripts necessary to reproduce
figures and conclusions reached in the text can be found at http://github.
com/rrazban/percolating_brain. Please refer to the respective publicly available
diffusion MRI dataset to access previously published data (UK Biobank, ABCD
Study and dHCP) (28–31).
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