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ABSTRACT OF THE THESIS

The Impact of Shared E-Scooters on Travel Behavior in Campus:

A Case Study of UCLA

by

Kailong Ji

Master of Science in Civil and Environmental Engineering

University of California, Los Angeles, 2024

Professor Tierra Suzan Bills, Chair

The rapid expansion of shared e-scooters has transformed campus transportation, offering an

efficient and eco-friendly travel option. This study explores the factors influencing e-scooter

usage at UCLA, examining demographic characteristics, user motivations, and the impact of

infrastructure interventions. The key challenges include disorderly parking and safety
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concerns, prompting the need for better planning and management solutions. To address these,

we conducted a comprehensive survey and developed nested logit models to analyze travel

behavior, focusing on the effects of designated e-scooter parking zones.

Our findings indicate that proper parking management significantly enhances e-scooter

acceptance, reduces parking issues, and contributes to better campus transportation efficiency.

The study reveals notable differences in travel choices influenced by income, race, and

attitudinal factors such as cost consciousness and environmental awareness. Ultimately, our

research provides valuable insights for campus administrators and urban planners seeking to

optimize micromobility solutions and achieve more inclusive and sustainable urban mobility.
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1. Introduction

1.1 Research Background

Since their introduction in the late 19th century, automobiles have become the preferred

mode of transportation (Raphael & Rice, 2002). However, as global urbanization accelerates,

issues such as traffic congestion and environmental pollution have worsened, driving the

development of the micromobility concept (McKenzie, 2020). Shared electric scooters

(e-scooters), as an emerging form of micromobility, have rapidly gained popularity in cities

worldwide, especially in the United States (Bozzi & Aguilera, 2021). They offer an

economical, eco-friendly, and convenient short-distance travel option, particularly in

enclosed environments like university campuses where demand and usage have been steadily

increasing (Fearnley et al., 2020).

In California, particularly in Los Angeles, the government has actively promoted shared

e-scooters through policies such as the Dockless Vehicle Pilot Program and the "Vision Zero"

initiative, which allocated $38.5 million for street safety, including micromobility

infrastructure, in the 2022-23 fiscal year (Fonseca, 2022). These policies aim to increase the

use of micromobility tools, including e-scooters, while reducing traffic congestion and carbon

emissions (E-Scooter Trends and Statistics You Should Know, 2024). UCLA, as a large urban

university with complex transportation needs both on and around campus, has become an

ideal setting for shared e-scooter usage.
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However, despite the growing use of e-scooters on university campuses, there is a notable

lack of attention in transportation and planning literature focusing on campus environments

(McKenzie, 2019). Our research aims to explore the factors that influence the use of

e-scooters and other modes of transportation through model designs, particularly how proper

parking management and route planning can optimize the user experience and mitigate

negative impacts, areas that need further exploration (Hollingsworth et al., 2019).

1.2 Research Objectives

The primary objective of this research is to develop a comprehensive understanding of

e-scooter usage patterns and user preferences within the UCLA campus community. Through

analyzing user behavior, attitudes, and responses to infrastructure changes, this study aims to

evaluate the effectiveness of current micromobility policies and identify opportunities for

improvement. Specifically, we seek to explore how planning and management measures can

optimize e-scooter integration into the campus transportation system, address parking

management challenges, enhance safety, and maximize environmental benefits while

improving overall campus mobility efficiency.

1.3 Research Questions

This study investigates travel preferences of e-scooter users, using the UCLA Campus

community as a case study. By examining travel behavior in this controlled university

environment, we seek to gain valuable insights that can inform micromobility implementation
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in broader urban contexts. The study addresses the following key questions:

 What are the socio-demographic characteristics and usage patterns of micromobility

users on the UCLA campus?

 What are the primary motivations for users choosing e-scooters and other modes of

transportation? For example, travel time, cost conscious, or racial influences.

 What impact has the implementation of designated e-scooter parking zones had on user

behavior, attitudes, and overall campus mobility patterns?

By answering these questions, this research will not only provide scientific evidence for

campus administrators to optimize e-scooter user experiences and formulate effective

management strategies but will also offer broader insights for transportation planners by

using university settings as a testing ground for policies and interventions that can be applied

to other urban environments.

1.4 Significance of the Study

As shared mobility models continue to evolve, university campuses serve as ideal

micro-environments to study and test these models. Research has shown that lessons learned

from campus settings, such as the integration of e-scooters and designated parking zones, can

be effectively applied to broader urban contexts, enhancing transportation systems in cities

(Bozzi & Aguilera, 2021). This study holds significant practical relevance for transportation

policymakers, campus administrators, and urban planners. It provides data to support better



4

promotion and management of e-scooters on campuses. By exploring the potential impacts of

e-scooters on student travel behavior, this research will contribute to the development of a

more sustainable and eco-friendly campus transportation system. Understanding the usage

patterns of e-scooters can help UCLA better plan campus infrastructure, such as determining

the optimal locations for designated parking zones, thereby improving students' commuting

experiences. Moreover, the scenario model comparison results can offer policymakers

effective strategy recommendations to achieve rational allocation and management of

transportation tools, reducing congestion and pollution.

In the subsequent chapters, this study systematically examines the following content: Chapter

2 provides a comprehensive literature review of micromobility concepts and their evolution,

along with an in-depth analysis of current research on campus micromobility. Chapter 3

employs statistical methodologies to conduct quantitative analyses of survey data,

investigating usage preferences and patterns of various transportation modes across different

demographic groups, including race, gender, and income levels. Chapter 4 develops Nested

Logit (NL) models to analyze how factors such as racial characteristics and cost

consciousness influence campus transportation mode choices, while also evaluating the

effectiveness of e-scooter parking zone implementation. The final chapter synthesizes the

research findings and proposes policy recommendations for improving the management and

utilization of campus e-scooter systems.
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2. The Growing Significance of Micromobility: Literature

Review

2.1 Overview of Micromobility

To address the increasingly severe issues of traffic congestion, environmental pollution, and

the need for sustainable transportation solutions in urban areas, Horace Dediu first introduced

the concept of micromobility in 2017. Micromobility refers to lightweight, human-powered

or electric-powered transportation for short distances, with common examples including

e-scooters, bicycles, and e-bikes (Dediu, 2019). As an alternative to traditional transportation

modes, micromobility has garnered significant attention globally. The US micromobility

market shows significant growth, with shared micromobility trips reaching 133 million in

2023. This represents a year-on-year recovery following Covid-19, nearing the pre-pandemic

peak of 136 million trips in 2019. In California, particularly Los Angeles, e-scooters are

increasingly prevalent, with the city recording over 5 million shared e-scooter trips in 2023,

making it one of the largest shared e-scooter markets in North America (NACTO, 2024).

Shared e-scooters have become one of the most popular micromobility tools in cities due to

their convenience and environmental benefits, with many cities around the world quickly

adopting this mode of transportation (Bozzi & Aguilera, 2021).

Research shows that micromobility, especially e-scooters, plays an increasingly important

role in transforming traditional transportation models. E-scooters offer cities an eco-friendly

alternative to cars, reducing reliance on fossil fuels and lowering carbon emissions
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(Hollingsworth et al., 2019). In densely populated urban areas, e-scooters provide a flexible

"Last-Mile" transportation solution, which has also been widely integrated with public

transportation systems, allowing users to seamlessly connect to public transit hubs (Shaheen

& Cohen, 2020). Additionally, several studies have analyzed the demographics of e-scooter

users, revealing that the primary users are aged between 18 and 35. These users choose

e-scooters mainly for their convenience, low cost, and sustainability (James et al., 2019;

McKenzie, 2019; Sanders et al., 2020).

2.2 Current Research on Campus Micromobility

As the use of e-scooters continues to grow on university campuses, research on

micromobility in campus settings is gaining more attention. University campuses, with their

high density of people and short-distance travel needs, serve as ideal environments for the

promotion of micromobility. Studies have shown that e-scooters provide students and faculty

with a convenient, efficient means of travel, reducing reliance on personal vehicles for short

trips both on and off-campus (Jafarzadehfadaki & Sisiopiku, 2024).

Numerous campus studies have explored the relationship between shared e-scooters and

pedestrian safety, focusing on issues such as improper parking, unsafe riding behavior, and

the risks posed to pedestrians on campus (Bozzi & Aguilera, 2021). Some universities have

implemented designated parking areas and safety education campaigns to reduce accidents

and encourage responsible riding. Studies indicate that the effectiveness of these

interventions varies, with some schools reporting improved compliance and fewer accidents,
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while others still face challenges related to improper usage and insufficient infrastructure (A.

Brown et al., 2020; Fang et al., 2018; Glenn et al., 2020).

Additionally, e-scooters have a broader impact on campus transportation systems. Research

has found that the popularity of shared e-scooters can encourage students to forgo private

vehicles, thereby reducing campus traffic congestion and parking demand (Shaheen & Cohen,

2020). E-scooters have also been found to complement public transit, providing students with

a convenient transportation link (Fearnley et al., 2020). However, many campuses still

struggle with managing the demand for e-scooters, integrating them into existing

transportation networks, and addressing safety and accessibility challenges.

2.3 Research Gaps (Data, Methods, and Insights)

Although the literature on micromobility is increasing, there are still some gaps in research in

university campus environments. First, detailed travel activity data on e-scooter usage in

campuses remain limited. While many studies in urban environments have revealed usage

patterns, data on user’s activities patterns (trip chaining), how this is connected to broader

travel-related attitudes, and motivations in university settings are relatively scarce

(Hollingsworth et al., 2019). Understanding the socioeconomic background and demographic

characteristics of users is essential for optimizing the integration of micromobility on

campuses.

In particular, important group characteristics and attitudes, such as racial indicators and
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cost-consciousness, and how these connect to e-scooter usage patterns on campuses, remains

unexplored. Understanding how these variables influence students’ transportation choices can

help campus planners develop more targeted strategies to increase e-scooter usage while

supporting fairness in transportation access among different groups (McKenzie, 2020).

Furthermore, although some schools have implemented designated parking zones and safety

education campaigns, the effectiveness of these policies varies across campuses, highlighting

the need for further research on how such policies can be customized to the unique

characteristics of each university.

Moreover, there is still insufficient research on how micromobility solutions can be

integrated into broader campus planning efforts. While some universities have experimented

with e-scooter policies, few have conducted long-term evaluations of infrastructure

interventions such as dedicated lanes or charging stations. Shaheen and Cohen (2020)

emphasize the importance of conducting these evaluations to ensure micromobility is

effectively managed and can achieve sustainable development.

These research gaps present opportunities for further studies, particularly in the application of

quantitative models and the collection of detailed behavioral data. Addressing these gaps will

not only provide support for campus-level solutions but also offer broader insights for

applying micromobility to urban transportation planning.
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3. Race, Status, and Attitudes in E-scooter Mode Choice

3.1 Overview of Data Collection Methods

In Spring 2023, we designed and distributed a survey using Qualtrics to provide new and

meaningful insights into the rapidly developing field of micromobility. The survey was

conducted within and around the UCLA campus by distributing research posters and

collecting relevant data. The survey questionnaire consisted of six key sections: demographic

information, stated preferences and attitudes, scenarios, and travel mode choices. Each

section was carefully designed to capture respondents' behavior and offer detailed insights.

As shown in Figure 1, the recruitment flyer included a QR code linked to the survey. The

flyers were posted in high-traffic areas on and off campus, such as dormitory lobbies,

elevators, off-campus apartments, bike and scooter parking areas, and bulletin boards. To

encourage participation, UCLA community members had the chance to enter a raffle to win

one of ten $75 Amazon gift cards. Additionally, the flyers were distributed via email and

UCLA’s internal communication channels, utilizing a snowball sampling method by

encouraging colleagues to share the survey within their networks. During the first three

weeks, we received the highest number of responses, likely due to greater student exposure in

the middle of the term. Later, as students became occupied with final exams, the response

rate declined (Figure 2). In total, we received 395 survey responses, of which 243 were used

for analysis.
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Figure 1: Flyer Figure 2: Survey Responses

The survey results (Table 1) show that the on-campus status distribution of respondents

aligns with the overall composition of UCLA's undergraduate and graduate populations.

Furthermore, the racial and gender distribution recorded in the survey is generally consistent

with the demographics of the student body. This indicates that the sample is representative

and reflects the travel modes and e-scooter usage patterns of different groups within the

UCLA campus, providing a reliable foundation for further data analysis.
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Table 1: Demographic Comparison between UCLA Population and Survey Sample

Population Sample

Number % Number %

Gender Male 19,382 41.5% 114 46.9%

Female 26,438 56.6% 120 49.4%

Other 858 1.8% 9 3.7%

On-campus Status Undergraduate Students 33,040 63.4% 151 62.1%

Graduate Students 13,636 26.2% 59 24.3%

Administrators/Faculty/Staff 5,464 10.5% 33 13.6%

Race Black/African Descent 3,026 7.5% 14 5.9%

Asian 14,432 35.8% 82 34.3%
White 11,955 29.6% 69 28.9%

Hispanic 9,111 22.6% 52 21.8%

Other 1,807 4.5% 22 9.2%

3.2 Demographic Characteristics

To gain a deeper understanding of usage patterns, we conducted a weighted average analysis

of travel mode usage frequency (as shown in Equation 1) based on the preferences of

demographic groups. This comprehensive approach allowed us to explore the relationship

between respondents’ characteristics and their travel mode choices, offering insights into

different groups' preferences for various transportation options. Table 2 details the weighted

usage frequency of different groups.

푊푒��ℎ�퐴푣푒���푒 =
0 × � + 2 × � + 5 × � + 7 × �

� + � + �+ �

α = Number of “less than once per week”

β = Number of “1-3 times per week”

γ = Number of “4-6 times per week”

δ = Number of “7 times or more per week”

Equation 1
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Table 2:Modal Transportation Usage Frequency Weights

Categorization Travel Mode e-Scooter Automobile Bus Walking Bike

Gender

Male 1.905 1.402 1.315 5.455 0.720
Female 1.477 1.825 1.560 4.905 0.531
Other 0.444 1.444 3.000 5.778 0.667

On-campus Status

Undergraduate Students 2.302 0.832 1.034 5.766 0.624
Graduate Students 0.857 2.339 2.807 4.310 0.776

Administrators/Faculty/Staff 0.000 3.848 1.310 4.219 0.333
Income

High Income 1.447 1.465 1.328 5.409 0.576
Low Income 1.959 1.691 1.823 5.051 0.705
Middle Income 1.952 1.818 1.350 4.810 0.842
Cost Conscious

High Cost-Conscious 1.678 1.282 1.647 5.311 0.650
Low Cost-Conscious 1.789 2.952 0.632 5.300 0.429
Middle Cost-Conscious 1.300 2.667 0.947 4.429 0.895
Environmentalist

High Environmentalist 1.539 1.556 1.633 5.297 0.619
Low Environmentalist 1.625 2.185 1.320 5.120 1.360
Middle Environmentalist 2.167 1.279 1.122 5.047 0.310

Races

Black/African Descent 1.154 0.929 2.615 5.000 1.385
East Asian 1.674 1.250 1.729 4.938 0.511

Hispanic/Latinx (non-white) 1.200 2.188 1.226 4.906 0.194
Hispanic/Latinx (white) 2.750 1.450 0.947 5.222 0.722

Southeast Asian 3.161 0.971 1.412 5.939 0.333
White 1.092 2.014 1.422 5.328 0.773
Other 0.842 2.045 1.636 4.591 0.800
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Figure 3: Primary Transportation Mode Choice Distribution by Gender (N=243)

In this small but representative sample, we observe meaningful differences in the use of

e-scooters among demographic groups. As shown in Figure 3, male respondents reported a

4.5% higher e-scooter usage rate than females, suggesting that men may be more open to

adopting and trying this new micromobility option. This finding aligns with previous research

indicating that men are more likely to adopt innovative transportation modes. Similar patterns

have been observed in other studies. For example, Jennifer Dill’s analysis in Portland found

that men are more frequent e-scooter users, with men riding more often and perceiving them

as a fast and reliable transportation option. Women, on the other hand, expressed greater

concern about safety and were more likely to ride in environments with less traffic interaction,

such as bike lanes or trails, highlighting infrastructure’s role in usage decisions (Dill, 2019).

In contrast, women showed a stronger preference for cars (24.2%) and had higher public
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transit usage (17.5%). Studies on public transit safety indicate that women’s preference for

cars and public transportation can be linked to safety concerns and the need for more secure

travel environments, which influences their lower adoption of newer transportation modes

like e-scooters (Ouali et al., 2020).

Figure 4: Primary Transportation Mode Choice Distribution by On-Campus Status (N=243)

Educational status also plays a key role in transportation mode choice. As shown in Figure 4,

27.8% of undergraduates chose e-scooters as their primary mode of transportation, while

graduate students had a lower e-scooter usage rate (10.2%). This suggests that e-scooters are

more widely accepted among younger students. Graduate students showed a stronger

preference for cars (27.1%) and buses (47.5%), with their weighted usage frequencies being

significantly higher than those of undergraduates (Automobile: 2.339 vs. 0.832; Bus: 2.807 vs.

1.034). This difference may also be tied to residential location patterns and travel complexity.
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Among graduate students, 86.4% live off-campus, compared to only 32.5% of

undergraduates, who mostly reside on-campus (67.5%). Faculty and staff, who all live

off-campus, reported no e-scooter usage (0%) and predominantly relied on private cars

(69.7%). These patterns suggest that off-campus living, with potentially longer commutes and

more complex travel needs, influences transportation choices.

Figure 5: Primary Transportation Mode Choice Distribution by Races (N=239)

Our results suggest that race also plays an important role in travel mode choice. As shown in

Figure 5, East Asian and Southeast Asian respondents had relatively high e-scooter usage

rates, at 25% and 35.3%, respectively. African American respondents reported an e-scooter

usage rate of 14.3% but were more likely to walk (64.3%). Among Latinos (excluding White

Latinos), 37.5% primarily used cars, with their frequency of car use being higher than other
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racial groups (2.188), indicating a greater reliance on private vehicles. These findings

highlight significant differences in transportation resource usage among racial groups.

3.3 Usage Patterns and Motivations

Figure 6: Primary Transportation Mode Choice Distribution by Income (N=232)

Among low-income groups, 21% reported using e-scooters, suggesting that the relative

affordability of e-scooters makes them a viable option for these groups. High-income

respondents had a slightly lower e-scooter usage rate (17.8%) but were much more likely to

walk (44.2%) compared to low-income groups (27.2%). This may reflect the fact that

higher-income individuals tend to live within walking distance of UCLA, given the high

housing costs in the area. The e-scooter usage rate among economically neutral groups was

relatively high (31.8%), possibly reflecting their preference for flexible and environmentally
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friendly travel modes.

Figure 7: Primary Transportation Mode Choice Distribution by Cost Conscious (N=230)

The analysis suggests a layered interaction between standard demographic variables—such as

income, education, and race—and attitudinal variables, such as environmental awareness and

cost sensitivity. Cost awareness plays a notable role in transportation mode choice, as shown

in Figure 7, 20.2% of cost-conscious respondents used e-scooters, compared to 23.8% of

those indifferent to costs. However, 42.9% of the cost-indifferent group preferred cars, far

higher than the 14.9% among cost-conscious individuals, indicating that financial

considerations heavily influence transportation preferences.
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Figure 8: Primary Transportation Mode Choice Distribution by Environmentalist (N=233)

Environmental awareness further influences transportation decisions. As shown in Figure 8,

among respondents with strong environmental values, 17.3% used e-scooters and 22.8%

relied on public transit, reflecting a preference for sustainable travel modes. In contrast,

respondents with weaker environmental awareness had higher car usage rates (28.6%) and

minimal reliance on public transit (3.6%). These patterns highlight how environmental and

financial attitudes shape not only e-scooter adoption but also the broader choice between

public and private transportation.

By integrating both demographic and attitudinal variables, this analysis provides a more

comprehensive understanding of travel behaviors. While traditional studies often focus on

income, education, or race, including factors like environmental and cost awareness offers

new insights into how transportation preferences evolve among different student and
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community groups.

3.4 The Impact of E-Scooters Parking Policy on Travel Behavior and Next

Steps

The survey results indicate that the introduction of e-scooters has significantly shaped travel

behavior at UCLA. E-scooters are especially effective for “last-mile” travel, providing

seamless connections to public transit stops. Additionally, they have reduced dependence on

private vehicles, alleviating traffic congestion, and easing parking demand. Differences in

transportation choices highlight the influence of economic status, race, and environmental

awareness on mobility preferences.

However, the growing number of e-scooters has led to parking challenges, disrupting campus

order, posing safety risks, and making it more difficult for users to locate available devices.

To mitigate these issues, establishing designated parking zones has been proposed as a

solution. Research indicates that parking zones help organize micromobility devices,

reducing sidewalk obstructions and safety hazards. However, while such zones improve order,

they may also limit the flexibility and convenience that users value, potentially discouraging

shared e-scooter use (Shaheen, 2019).

Micromobility policies on campuses show that integrating infrastructure such as scooter

parking corrals can address clutter and enhance compliance (Shaheen, 2019). These

interventions promote proper parking through both digital tools (e.g., geofencing) and
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physical infrastructure (e.g., street corrals) (Parking & Street Design – Shared Micromobility

Playbook, n.d.). However, urban and campus environments must achieve an equilibrium

between accessibility and regulation to ensure the sustainable adoption of micromobility

solutions.

To evaluate the potential impact of designated parking zones, we employ a two-stage

modeling approach. In the first stage, we develop a baseline Nested Logit (NL) model to

capture current campus travel preferences and mode choice behavior. This base model is

progressively enhanced by incorporating factors such as cost consciousness and racial

characteristics to identify key determinants of transportation choices across different user

groups, ultimately selecting the most robust model specification. In the second stage, we

extend the optimal model to include parking zone scenarios, examining how these baseline

preferences might shift in response to the new infrastructure. Through comparing these

models, we can systematically assess how the implementation of designated parking areas

influences user behavior, mode choice decisions, and overall campus mobility patterns.
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4. Race and Status Indicators in Campus Travel Behavior

Models

4.1 Methods

To investigate travel behavior patterns among UCLA community members and understand

how these patterns vary across racial groups and attitudinal factors, we developed a series of

unordered discrete choice models. In transportation behavior modeling, both ordered and

unordered discrete choice methods are commonly used, with Multinomial Logit (MNL) and

Nested Logit (NL) models gaining popularity for their analytical flexibility and long-term

applicability.

Bhat and Pulugurta (1998) found that NL models outperform MNL models in predictive

accuracy and goodness of fit. NL models are particularly effective at managing complex

hierarchical decisions, making them suitable for analyzing behavioral patterns across income

levels in transportation choices (Train, 2002). Sabouri et al. (2021) further emphasized that

NL models provide higher adaptability when modeling complex, multi-layered transportation

decisions. Based on these findings, this study employs NL models to evaluate the impact of

designated e-scooter parking zones on travel behavior.

For transportation mode choices, we included only Walk, Bike, e-Scooter, and Drive. Due to

data limitations in the original survey, where key bus attributes such as transfers and waiting

times were not captured, bus transportation was classified under the "other" category.
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To ensure methodological robustness, we evaluated both MNL model and NL model

specifications. Initial testing revealed that the MNL model's key parameters lacked statistical

significance, suggesting its inadequacy in capturing the complex travel behavior patterns in

our study context. Subsequently, we implemented a two-nest structure (illustrated in Figure

9), which proved effective in accounting for unobserved heterogeneity in traveler preferences

——an aspect that the MNL model specification failed to capture.

4.1.1 Utility Function of the Nested Logit (NL) Model

A nested logit model is appropriate when the set of alternatives faced by a decision-maker

can be partitioned into subsets, called “nests”, in such a way that the following properties

hold. (1) For any two alternatives that are in the same nest, the ratio of probabilities is

independent of the attributes or existence of all other alternatives. That is, independence of

irrelevant alternatives (IIA) holds within each nest. (2) For any two alternatives in different

nests, the ratio of probabilities can depend on the attributes of other alternatives in the two

nests. IIA does not hold in general for alternatives in different nests.

Without loss of generality, the observed component of utility can be decomposed into two

parts: (1) a part labeled W that is constant for all alternatives within a nest, and (2) a part

labeled Y that varies over alternatives within a nest. Utility is written as:

�푛� =푊푛� +�푛� + �푛�

Equation 2
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For j∈Bk, where:

Wnk depends only on variables that describe nest k. These variables differ over nests but not

over alternatives within each nest.

Ynj depends on variables that describe alternative j. These variables vary over alternatives

within nest k.

WhereWnj is the observable component of the utility, typically expressed in linear form as:

푊푛� = �0 + �1�1푛� + �2�2푛� +…… + ����푛�

Equation 3

In this formula, βn represents the parameters to be estimated, and Xmnj denotes the variables

associated with individual n’s choice of alternative k, such as travel cost, time, and racial

background. εnk is the random error term, capturing unobserved factors and individual

heterogeneity.

For this transportation mode choice model, let Unj represent the utility of individual i

choosing alternative j, where j=1 represents choosing Walk as the primary mode of

transportation, j=2 represents Bike, j=3 represents e-Scooter, and j=4 represents Drive.

4.1.2 Choice Probability in the Nested Logit Model

The NL model divides the choice set into multiple nests Bm, where each alternative belongs to

a specific nest B(J). The choice probability Pj can be decomposed into two parts: the
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conditional probability of selecting an option within a given nest B(J) and the probability of

choosing the nest B(J) itself.

B(J) = {Bm: j ∈ Bm, m = 1, 2, ...M}

Equation 4

For this transportation mode choice model, Figure 9 illustrates a potential nested structure.

The number of nests is M = 2. The respondents are categorized by income level into two

nests:

Active Modes Nest: BActive Modes = {Walk, Bike}

Motorized Modes Nest: BMotorized Modes = {e-Scooter, Drive}.

Figure 9: Nesting structure for models

With this decomposition of utility, the nested logit probability can be written as the product

of two standard logit probabilities. Let the probability of choosing alternative i∈Bk be
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expressed as the product of two probabilities, namely: the probability that an alternative

within nest Bk is chosen and the probability that the alternative i is chosen given that an

alternative in Bk is chosen. This is denoted as

�푛� = �푛�|�� ∗�푛��

Equation 5

The term �푛�|�� represents the conditional probability of selecting a specific option j within

a given nest Bk. This probability follows the structure of the classic MNL model.

�푛�|�� =
푒�푛�/��

�∈��
푒�푛�/���

Equation 6

In this context, λk is the dissimilarity parameter, which measures the degree of similarity

among options within the same nest. A smaller λk indicates that the options within the nest are

more similar. Louviere et al. (2000) reframe this parameter as μm=1/τm.

The choice probability among nests also �푛�� follows the structure of the MNL model:

�푛�� =
푒푊푛�+���푛�

�=1
� 푒푊푛�+���푛��

Equation 7

Where Ink represents the inclusive value of nest Bk. It corresponds to the expected utility that

individual i derives from the alternatives within nest k, serving as an aggregate measure of the
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attractiveness of all options in that nest.

�푛� = �푛
�∈��

푒�푛�/���

Equation 8

The inclusive value reflects the overall attractiveness of all alternatives within the nest and is

used to model the choice between nests.

�푛� = �푛�|�� ∗�푛��

(Equation 5)

�푛� =
푒�푛�/��

�∈��
푒�푛�/���

∗
푒푊푛�+���푛�

�=1
� 푒푊푛�+���푛��

Equation 9

�푛� =
푒�푛�/��( �∈��

푒�푛�/��� )��−1

�=1
� (� �∈��

푒�푛�/��� )��

Equation 10

The nested logit model demonstrates significant advantages in capturing correlations among

unobserved factors influencing travelers' mode choices. Through its hierarchical structure of

grouping similar alternatives, the model offers enhanced flexibility in addressing complex

choice scenarios with highly correlated options. This methodological approach is particularly

well-suited for understanding the inherent interdependencies in transportation behavior (Train,

2002).
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4.1.3 Model Evaluation

The baseline model serves as a foundation for subsequent model development, enabling clear

comparisons of how different factors influence individual mode choice behavior. Building

upon this foundation, we incorporated additional variables, including cost consciousness and

racial characteristics, to examine their moderating effects on transportation mode choices.

To assess the information gain from incorporating racial and cost consciousness indicators

into the campus micromobility model, we analyzed model fit statistics and conducted

likelihood ratio tests between models using the formula LR = −2(L1−L2), as shown in Table

6. Here, L1 represents the maximum likelihood value of the more parameterized model, while

L2 denotes the maximum likelihood value of the less parameterized model.

4.2. Model Specifications

Table 3 presents the details of various variables used for calculation and analysis in the

model. Variables and attributes are categorized into three major categories: travel scenario

variables, race and ethnicity indicators, and scale factors between nested structures. In

addition, we have introduced individual behavioral preference variables to delve deeper into

the impact of respondents' subjective preferences on travel mode choice.



28

Table 3: Definitions of variables



29

4.3 Results

4.3.1 Comparison of Results for Different Models of Campus Travel Modes

To delve deeper into the influencing factors of campus micromobility, we constructed four

different nested logit specifications and perform a series of integrative comparisons. These

models are estimated using Python Biogeme (Bierlaire, 2023). The choice set includes

alternatives such as Walk, Bike, e-Scooter, and Drive. Due to the relatively small number of

individuals choosing cycling as their preferred mode of transportation, we set cycling as the

base option. Positive parameter estimates indicate a positive influence of a factor on a

specific travel mode, while negative parameter estimates suggest a negative influence,

meaning that the higher the value, the lower the probability of choosing that mode. The

model specifications are shown in Figure 10. The estimated results are shown Table 4.

We conducted likelihood ratio tests (LRT) to compare the goodness-of-fit across the model

specifications. The results are shown in Table 6. Overall, the LRT results indicate that the

composite model (including indicators of race and cost consciousness) offers higher

explanatory power, beyond the comparison modes (A-C). These are discussed in more detail

in 4.3.2. Evaluation of Models.

Figure 10:Models Flow Chart
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Table 4: Estimation Results of Campus Micromobility Model

Note: t-statistic in parentheses; NA = not applicable; “—" = coefficients are insignificant at
90% confidence interval

The baseline Model A is an attributes-only specification; with alternative specific constants

(ASC), and travel time and travel cost. The constants for walking, e-scooter, and drive

alternatives are all positive, indicating that these modes are generally preferred relative to

bike. The coefficients for travel time and cost are both negative and significant, as expected,

indicating that the attractiveness of these modes decreases as travel time and cost increase.
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This is consistent with the theory of behavioral economics, which suggests that people tend to

weigh time and economic costs when choosing transportation modes to seek the optimal

travel experience (Thaler & Sunstein, 2008).

In Chapter 3, our descriptive analysis found that cost consciousness has a significant impact

on transportation mode choice, and this is tested inModel B. The results for Model B suggest

high cost-consciousness have a positive relationship with low- cost travel modes. The

coefficients for walking and cycling are 1.535 and 1.101, respectively. These positive

parameter values indicate that travelers who are very cost conscious are more likely to choose

these low-cost or free modes of transportation. For the low-cost conscious travelers, their

coefficients for e-scooters and private cars are 1.591 and 1.615, respectively. These positive

parameter values indicate that despite the higher cost of these modes of transportation, low

cost-consciousness groups may place more emphasis on convenience than economic cost.

Model C introduces racial characteristics, with African Americans serving as the reference

group, to analyze differences in transportation mode choice among different racial groups.

The results suggest that African Americans and Hispanic whites are significantly less likely

to use e-scooters and drive, relative to other groups. May be due to a combination of factors

such as inadequate community infrastructure, concerns about traffic safety, cultural habits,

and economic conditions (C. T. Brown & Sinclair, 2017; Lee et al., 2017). When formulating

policies, it is necessary to pay attention to the practical difficulties faced by African

Americans and provide them with safer and more convenient bicycle infrastructure and
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support (Golub et al., 2016). Further, the results suggest, East Asian and Southeast Asian

groups have a strong and positive preference for e-scooters. White travelers seem to have a

higher relative preference for driving and a negative preference for e-scooters. This result

may reflect their uniqueness in travel mode: white groups may live more in suburbs or

low-density communities, leading to a greater reliance on cars (Taylor & Ong, 1994), while

e-scooters are less applicable in these areas. Hispanic non-whites only show a significant

negative preference for cars (-0.536). This group lives more in high-density urban areas,

where walking, cycling, or public transportation may be more convenient than cars (Taylor &

Ong, 1994).

Model D is a comprehensive model that combines cost consciousness, racial characteristics,

and other individual characteristics as independent factors. The results show that both cost

consciousness and racial characteristics maintain significant effects on mode choice in this

integrated model, though their preference parameters have changed, reflecting the complex

nature of mode choice behavior. For example, individuals with low cost-consciousness

consistently prefer e-scooters and driving, while the bicycle preference among high

cost-consciousness individuals appears weaker in Model D. These findings suggest potential

underlying relationships between socioeconomic characteristics in influencing mode choice.

Future research could explore interaction effects between racial characteristics and cost

consciousness to better understand how these factors might jointly influence transportation

mode decisions.
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The analysis of Model D highlights the complex interplay between multiple factors and

shows how these factors collectively shape individual travel choice behavior. By considering

the combined impact of multiple variables, the study reveals deeper driving factors behind

mode choice. For example, individuals with high cost-consciousness may experience changes

in their choice preferences when faced with the interactive effects of racial characteristics,

further illustrating the multidimensionality of travel choice and the underlying socioeconomic

complexity.

4.3.2 Probability of campus travel models

As shown in Table 5, through the analysis of four progressive models, we found that the

probability of choosing a mode of transportation changed significantly as new variables were

gradually introduced into the model. Comparing these model predictions with the true

observed probabilities provides insights into each model's predictive accuracy and the

importance of different variables

Table 5: Probability of campus travel models

P_Walk P_Bike P_eScooter P_Drive
True Probability 42.79% 7.96% 23.88% 25.37%
Model A 50.96% 5.19% 23.81% 20.04%
Model B 44.35% 4.93% 27.46% 23.26%
Model C 49.84% 17.12% 24.94% 8.10%
Model D 46.33% 10.05% 24.69% 18.93%

The true observed probabilities show that walking accounts for 42.79% of transportation

choices, followed by driving (25.37%), e-scooters (23.88%), and biking (7.96%). The base
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model (Model A) predicts a 50.96% probability of walking, showing some overestimation,

while its predictions for e-scooters (23.81%) align remarkably well with the observed value

(23.88%). However, it underestimates both biking (5.19% vs. true 7.96%) and driving

(20.04% vs. true 25.37%). These differences suggest that basic travel time and cost factors

alone, while capturing some fundamental patterns, cannot fully explain the complexity of

mode choice behavior, particularly for modes requiring more specific infrastructure or

involving unique user preferences.

Model B demonstrates notable improvements compared to Model A in its predictive

capabilities. The probability prediction for walking decreased from 50.96% to 44.35%,

aligning more closely with the observed value of 42.79%, indicating that the newly

incorporated cost-conscious variable effectively captures pedestrian mode choice factors.

Similarly, the driving prediction improved from 20.04% to 23.26%, approaching the actual

value of 25.37%. However, certain predictive discrepancies persist, bicycle usage prediction

slightly decreased from 5.19% to 4.93%, showing significant underestimation compared to

the observed 7.96%, suggesting that some critical factors influencing bicycle choice remain

insufficiently addressed in the model. Notably, the e-scooter usage prediction increased from

23.81% to 27.46%, deviating from the observed value of 23.88%, indicating potential

over-emphasis of certain variables affecting micro-mobility choices. While Model B exhibits

improved predictions for major competing modes, the persistent underestimation of bicycle

use and decreased accuracy in e-scooter predictions suggest the need for further optimization

in variable weighting and model specification.
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After incorporating racial factors in Model C, we observe notable shifts in predicted

probabilities. The walking share increases to 49.84%, moving away from the true value,

while bicycle use rises substantially to 17.12%, considerably higher than the observed 7.96%.

This overestimation of bicycle use might reflect the model capturing strong preferences for

cycling among certain demographic groups but not fully accounting for practical constraints

like bicycle availability or infrastructure. The e-scooter prediction (24.94%) remains

relatively close to the actual share, suggesting that racial factors have less impact on e-scooter

choices. However, the driving prediction drops significantly to 8.10%, far below the true

value of 25.37%, indicating that the model might be overemphasizing the role of racial

preferences in driving choices while underestimating other important factors like residential

location or cost conscious.

When considering all variables simultaneously in Model D, we see some improvement in

overall predictions. The walking probability (46.33%) remains somewhat elevated but closer

to the true value than Model C, suggesting that the combination of variables helps balance out

some of the overestimation effects. The bicycle share (10.05%) and driving share (18.93%),

while still not perfectly aligned with observed values, show improvement compared to Model

C's extreme predictions. The e-scooter prediction (24.69%) maintains its accuracy near the

true share, demonstrating remarkable stability across model specifications. These results

suggest that while incorporating multiple factors helps capture various influences on mode

choice, the relationship between these factors is complex and may require more sophisticated

modeling approaches to achieve better predictive accuracy. The consistent accuracy in
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e-scooter predictions across models might indicate that e-scooter choice behavior is more

straightforward to model, possibly because it's less influenced by complex socioeconomic

factors.

It is particularly noteworthy that the impact of walking time. In all models, the negative

coefficient of walking time (ranging from -0.034 to -0.045) is consistently greater than the

negative coefficient of general travel time (-0.022). This difference suggests that people are

more sensitive to the time spent walking than other modes of transportation. In other words,

the same increase in time, if it is an increase in walking time, will lead to a greater reduction

in people's likelihood of choosing that mode of transportation.

4.3.2. Evaluation of Models

To compare the information gain introduced by incorporating race and cost-consciousness

indicators in the campus micromobility model, we analyzed the model's goodness-of-fit

statistics and calculated a series of likelihood ratio tests (as shown in Table 6). These

comparisons are based on the model's adjusted Rho-Squared to balance the differences in the

number of parameters. Based on these results, each extension of Model A improved the

goodness-of-fit.

According to these statistics and considering the chi-square (χ²) distribution with

corresponding degrees of freedom, Models B, C, and D show statistically significant

improvements over Model A. Furthermore, Model D demonstrates significant superiority
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over Models B and C, which individually incorporate only racial or cost consciousness

variables. These findings suggest that the sequential model expansion from Model A to

Model D significantly enhances the explanatory power for transportation mode choice

behavior.

Table 6: Likelihood-ratio Test for the four Models

Models compared LR1 P-value Df2

B vs. A 79.43 <0.001 4
C vs. A 18.13 0.797 24
D vs. A 94.884 <0.001 28
D vs. B 15.454 0.907 24
D vs. C 76.754 <0.001 4

1. LR = Chi-Squared likelihood ratio test statistic: -2*[LLalt - LLbase].
2. df = degrees of freedom for the χ2 statistic defined as the difference.

While the improvements in some models after incorporating racial variables were not

statistically significant (P-value > 0.05), this does not mean that race has no potential impact

on mode of transportation choice. Certain trends can still be observed from the model results:

for example, East Asian and Southeast Asian populations are more likely to choose e-scooters,

while their white counterparts prefer driving. Although these trends did not reach statistical

significance, it is still necessary to design more targeted transportation policies for different

racial groups in practical applications. This will help to consider the travel needs of different

groups more comprehensively and achieve more inclusive and equitable transportation

planning.
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4.4 Impact of Establishing e-Scooter Parking Zones

4.4.1 Impact of e-Scooter Parking Zones on Campus Micromobility Model Estimation

Results

Based on the composite model from the previous section, we conducted a comparative

analysis of the impact of establishing dedicated e-scooter parking zones on travel mode

choice, as shown in Table 7. This analysis involves two scenarios: Scenario 1 (without

e-scooter parking zones) and Scenario 2 (with e-scooter parking zones), focusing on

comparing the travel mode preferences, time and cost sensitivity, and the impact of individual

characteristics on transportation choices for different groups in these two scenarios.

Additionally, the model incorporates individual-level cost awareness and racial-ethnic group

preferences for travel mode choices.
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Table 7: E-scooter Parking Area Impact on Mode Choice Parameters

Note: t-statistic in parentheses; NA = not applicable; “—" = coefficients are insignificant at
90% confidence interval

Model estimation results show that the establishment of e-scooter parking areas has a

significant impact on campus micromobility behavior. Changes in the alternative specific
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constants reflect the impact of parking area setup on the basic utility of various modes of

transportation. The basic utility of Walk, e-Scooter, and Drive all increased, decreasing from

1.053, 1.848, and 1.177 to 1.023, 1.457, and 1.072, respectively. This widespread reduction

in utility suggests that standardized parking facilities may alter people's basic perceptions of

various modes of transportation. It is particularly noteworthy that after the establishment of

parking areas, the negative effect of shared e-scooters was significantly weakened, with the

coefficient increasing from -1.957 to -1.048. This change indicates that the establishment of

parking areas effectively improves people's acceptance of shared e-scooters. Standardized

parking facilities not only improve street order but also enhance users' confidence in using

shared micro-mobility systems (James et al., 2019). Dedicated parking areas effectively

alleviate users' parking anxiety, thereby increasing their willingness to use shared e-scooters

(A. Brown et al., 2020).

After the establishment of e-scooter parking areas, the travel time coefficient decreased from

-0.022 to -0.012, indicating that standardized e-scooter parking facilities reduced the time

sensitivity of travelers. At the same time, cost sensitivity also decreased slightly, with the

coefficient changing from -0.016 to -0.014. Although this change is small, it is still

statistically significant. The value of time increased significantly from $43.64/hour to

$70/hour, indicating that when the infrastructure of shared e-scooter systems is improved and

effectively integrated with public transportation systems, users are more concerned with

travel convenience rather than simply travel time and transportation costs (Fearnley et al.,

2020). Fixed parking locations reduce the uncertainty of finding parking spaces, thus
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reducing travelers' concerns about time when planning their trips.

In terms of socioeconomic characteristics, the impact of parking area settings on different

groups shows significant differences. The preference for walking among high-cost-conscious

groups decreased significantly, with the coefficient decreasing from 1.501 to 0.328, and their

attitude towards bicycles even changed from positive (0.554) to negative (-0.207). Similarly,

the preference for e-scooters among low-cost-conscious groups also changed from positive

(1.328) to negative (-0.556). This significant shift in preference reflects the complex impact

of standardized parking facilities. Jafarzadehfadaki and Sisiopiku (2024) found in a

comparative study of Washington, D.C., Miami, and Los Angeles that while improvements in

micromobility infrastructure have improved management efficiency, fixed parking areas may

reduce flexibility of use, thereby affecting the willingness of different groups to use them.

These findings suggest that the improvement of parking facilities may fundamentally change

people's evaluation criteria for modes of transportation, making travel choices that were

originally based on cost considerations more complex.

The transportation choice behavior of racial groups has also changed significantly. The

attitude of African Americans towards e-scooters has shifted from no significant preference

to a strong positive preference (0.804); the preference coefficients of East Asians for various

modes of transportation have generally decreased; the preference for private cars among

white people has weakened (from 0.372 to 0.171); while the attitude of Southeast Asians

towards walking has shifted from negative preference (-0.621) to weak positive preference



42

(0.252). This trend is consistent with the findings of Jafarzadehfadaki and Sisiopiku (2024) in

three major cities, who pointed out that there are significant differences in the acceptance and

usage patterns of micromobility facilities among different racial groups. Bozzi and Aguilera

(2021) further suggest that improvements in micromobility infrastructure have a

differentiated impact on groups with different cultural backgrounds, an impact that is not only

reflected in usage frequency but also leads to a restructuring of their overall travel patterns.

These findings highlight the importance of considering a multicultural perspective when

planning micromobility facilities.

These findings have important policy implications for campus micromobility planning. The

setting of parking areas not only affects people's actual usage behavior but also changes the

basic understanding and preferences of different groups for various modes of transportation.

The complexity and multidimensionality of this impact suggest that when promoting the

construction of micromobility facilities, it is necessary to fully consider the needs and

behavioral characteristics of different groups and adopt more targeted planning strategies.

4.4.2 Changes in Mode Choice Probabilities After Designing e-scooter Parking Areas

Table 8:Modal Share Changes After e-Scooter Parking Implementation

P_Walk P_Bike P_eScooter P_Drive
True Probability 42.79% 7.96% 23.88% 25.37%
Scenario 1 46.33% 10.05% 24.69% 18.93%
Scenario 2 45.24% 13.38% 20.10% 21.28%

Table 8 demonstrates the significant impact of e-scooter parking zone implementation on
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campus transportation mode choice probabilities. Empirical analysis reveals systematic

changes in users' travel choices following the establishment of dedicated parking areas. The

predicted walking probability decreased from 46.33% (without dedicated parking) to 45.24%,

with a reduced deviation from the observed value (42.79%), indicating that Scenario 2 better

captures the influence of infrastructure improvements on pedestrian.

However, e-scooter usage patterns exhibited unexpected changes. The predicted utilization

rate decreased from 24.69% to 20.10%, falling below both Scenario 1's prediction and the

observed value (23.88%). This counter-intuitive result reveals an important phenomenon:

while dedicated parking zones reduced the time cost of finding parking spaces through

standardized parking behavior, the fixed parking locations may have diminished usage

flexibility, thereby affecting user preferences.

Regarding motorized transportation, the probability of choosing private vehicles increased

from 18.93% to 21.28%, gradually approaching the observed value (25.37%), a trend that

aligns with UCLA's unique spatial layout characteristics. The implementation of dedicated

parking zones enhanced e-scooters' function as a "last-mile" connection solution for

motorized travel, providing more efficient connectivity between parking facilities and

academic areas.

Notable changes were observed in bicycle usage rates. The predicted value increased from

10.05% to 13.38%, widening the deviation from the observed value (7.96%). This

phenomenon suggests that when e-scooter usage becomes constrained by fixed parking



44

locations, some users may shift to bicycles as an alternative for short-distance travel,

although the model may overestimate the magnitude of this substitution effect.

These findings have important implications for policy evaluation. When assessing the

potential impact of new policy measures, a more systematic approach is needed to examine

user behavioral adjustment mechanisms and improve the model framework to more

accurately capture the complex systemic effects of infrastructure changes. Specifically, a

staged prediction strategy could be adopted to reduce uncertainty accumulation in long-term

forecasting, while introducing more refined control variables to enhance the model's

predictive capability for post-intervention behavioral changes.
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5. Discussion and Conclusion

5.1 Key Findings

As transportation planners and policymakers increasingly recognize the potential of

micromobility options such as e-scooters in promoting sustainable urban mobility and

enhancing transportation equity, our analysis of mode choice behavior provides important

insights into how sociodemographic characteristics, attitudinal factors, and infrastructure

policies influence micromobility adoption across different urban contexts.

This study employs a mixed-method approach, combining descriptive statistics and travel

scenario modeling to systematically investigate the multidimensional factors influencing

users' transportation choice behavior. Compared to existing research, the innovation of this

study lies in constructing a more comprehensive demographic characteristic framework,

which not only examines basic dimensions such as gender and race but also pays special

attention to educational status as a key variable in the campus context, while incorporating

subjective preference factors such as cost consciousness and environmental awareness into

the analysis. The research findings indicate that the composite Model D, which integrates

variables such as race and cost consciousness, significantly enhanced the explanatory power

for campus micromobility preferences, demonstrating not only better overall goodness of fit

but also capturing subtle differences in user preferences, thus providing richer and deeper

insights into understanding campus micromobility choice behavior.
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The research reveals that users' demographic characteristics significantly influence their

transportation choices. Gender differences are notable, with males showing higher usage rates

of e-scooters than females and demonstrating a greater inclination to try innovative

transportation modes. The differences in educational status are particularly evident:

undergraduate students exhibit significantly higher e-scooter usage rates than graduate

students, a disparity that may stem from differences in residential location (Fearnley et al.,

2020). With 67.5% of undergraduate students living on campus compared to 86.4% of

graduate students residing off campus, the proximity of residence to campus directly

influences their transportation choices.

At the socioeconomic level, our research findings both align with and differ from existing

literature regarding e-scooter user characteristics. We found that environmentally conscious

individuals are more likely to use e-scooters, which echoes the findings of Shaheen and

Cohen (2020). However, our study reveals unique patterns in the relationship between

income and usage rates. While existing literature typically suggests higher e-scooter usage

among high-income groups (Jafarzadehfadaki & Sisiopiku, 2024), our study shows that

low-income users also demonstrate significant usage rates, comparable to their driving rates.

These findings suggest that e-scooter user characteristics in campus environments may differ

from those in general urban settings, emphasizing the need for context-specific understanding

of micromobility adoption patterns.

The impact of cost consciousness, similar to our findings about income levels, further reveals
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the core role of economic factors in individual travel decisions. While both high and

low-income groups showed significant e-scooter adoption rates, cost-conscious individuals

demonstrated distinct travel patterns regardless of their income level. In some specific travel

scenarios, such as daily commuting to school or work, individuals often need to make

trade-offs between convenience and economy. Therefore, this differentiated analysis of cost

consciousness not only provides insights into individual choices but also provides a basis for

formulating differentiated policy measures. For example, increasing the availability of shared

micromobility or reducing the cost of using shared e-scooters may effectively guide different

types of users to make more environmentally friendly and economical choices.

Introducing the impact of racial characteristics on transportation choice behavior helps to

reveal the sociocultural factors behind mode choice. These factors can have a profound

impact on the travel experience of specific groups, so it is necessary to fully consider these

sociocultural contexts in transportation planning and policy making to ensure the fair

allocation and effective utilization of transportation resources. For example, in campus areas

that primarily serve diverse populations, policies tailored to the specific needs of different

groups, such as increasing the promotion of shared scooters or improving bicycle facilities,

can effectively improve the inclusiveness and service level of the transportation system.

The impact analysis of parking zone implementation reveals systematic changes brought by

infrastructure improvements. The most significant change is the reduced sensitivity to user

travel time, with the value of time increasing from $43.64/hour to $70.00/hour. Different
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groups show varying responses to facility improvements, suggesting that infrastructure

improvements reshape users' travel decision mechanisms. Establishing dedicated e-scooter

parking areas can increase shared e-scooter usage (Bai & Jiao, 2020; James et al., 2019).

These comprehensive findings not only deepen our understanding of campus micromobility

usage patterns but also provide important guidance for future transportation planning. The

research indicates that successful micromobility systems need to simultaneously consider

demographic characteristics, socioeconomic factors, attitudinal tendencies, and infrastructure

conditions. Only by adopting such a multidimensional, comprehensive approach can truly

effective and inclusive transportation policies be formulated.

5.2 Policy Recommendations

Based on the findings, we recommend that campus micromobility policies adopt

differentiated, inclusive, and systematic strategies. Given the significant differences in user

demands for e-scooter infrastructure across different groups, infrastructure planning should

fully reflect the actual needs of users. As emphasized by Smith (2022) in the Vision Zero

plan, systematic integration of transportation is critical for improving overall travel

efficiency.
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Figure 11: Barriers to E-Scooter Ridership

The Figure 11 highlights that the high cost of shared e-scooters (32.77%) and safety

concerns (27.23%) are the primary barriers to ridership. Addressing cost concerns, we

recommend providing subsidies or discounts to low-income users (representing 33.3% of

respondents) and implementing flexible pricing strategies to better serve cost-sensitive groups.

To mitigate safety concerns, infrastructure improvements and targeted safety education

programs are essential. Notably, safety initiatives tailored for female users should be

prioritized to address the specific needs identified in the study.
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Figure 12: Potential Micromobility Safety Solutions

Regarding infrastructure development, the Figure 12 reveals that the addition of dedicated

scooter/bike lanes on campus is the most widely supported measure (54.01%). We therefore

recommend prioritizing the construction of such lanes, especially those connecting

dormitories, academic areas, and public transit hubs. Furthermore, strategically increasing the

number of e-scooter parking facilities in undergraduate-dominated areas, such as near

dormitories, and integrating clear directional signage systems will enhance user experience

and promote compliance with parking regulations.

Modern technology should also be leveraged to enhance management efficiency. The

establishment of a smart management platform could enable real-time monitoring of parking

zone usage, optimize vehicle allocation and maintenance schedules, and improve

user-friendly reservation and payment systems. Enhanced parking management, such as the



51

clarification of usage rules and continuous service quality improvements, is particularly

critical for ensuring operational effectiveness and user satisfaction.

Given the significant influence of racial and economic factors on transportation choices,

micromobility policies must promote social equity. For instance, multilingual service

interfaces and promotional materials should be developed to accommodate diverse racial

groups, thereby improving accessibility and awareness. Subsidy programs should be designed

to ensure equitable access for low-income populations. Additionally, dedicated educational

initiatives targeting female users could further enhance their confidence and safety when

using micromobility options.

The comprehensive implementation of these measures will help establish a more inclusive,

efficient, and sustainable campus transportation system. By holistically addressing

demographic characteristics, socioeconomic factors, and infrastructure conditions, these

recommendations aim to significantly improve the quality of campus micromobility services

and better meet the travel needs of diverse user groups. As these policies are implemented

and continuously refined, the campus transportation system will evolve into a more

comprehensive and inclusive service framework.

5.3 Research Limitations and Future Directions

This study has several noteworthy limitations. First, in the transportation mode choice

modeling process, we were unable to include the public transit system. This is because public
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transit involves many unique factors, such as number of transfers, waiting time, and carriage

crowding levels, which fundamentally differ from other transportation modes' characteristics

and are difficult to analyze uniformly under the existing model framework. While this

simplification improves model comparability, it also somewhat limits the study's

understanding of the overall campus transportation system. Furthermore, this study's sample

size (243 valid questionnaires) is relatively limited, with some groups particularly

underrepresented. For example, in racial analysis, the sample sizes for African Americans (14

people) and Hispanic/Latinx (white) (20 people) are small, which may affect the

representativeness and reliability of related analysis results. Additionally, samples mainly

concentrate on data collection during specific periods, potentially not fully reflecting travel

pattern changes throughout the academic year.

Based on these limitations, we suggest that future research needs to develop more complex

model frameworks, such as Joint models, to integrate public transit as an important

transportation mode. This requires incorporating more dimensional variables into the model,

such as transfer convenience, waiting time, and carriage crowding levels, to more

comprehensively reflect public transit travel characteristics. Meanwhile, the model also needs

to consider the interactive effects between these factors and other transportation mode

choices. Second, future research should expand the range of considered factors to incorporate

environmental variables into the analysis framework. For example, weather conditions (such

as precipitation, temperature) and topographical features may significantly influence

travelers' transportation mode choices. The interaction between these natural environmental
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factors and existing socioeconomic variables may reveal richer travel behavior patterns.

Furthermore, with the large-scale deployment of Veo brand shared e-bicycles around UCLA

campus beginning in Fall 2024, future research needs to incorporate this emerging

micromobility mode. This involves not only analyzing usage patterns of the new

transportation mode but also studying its competitive and complementary relationships with

existing e-scooter systems, as well as its impact on the overall campus transportation

landscape.

Future research will conduct larger-scale, longer-term data collection, both expanding sample

size to improve research representativeness and conducting longitudinal tracking studies to

capture dynamic changes in travel behavior. Particularly in the context of continuous

introduction of new transportation modes, continuous observation and analysis are especially

important for understanding campus transportation system evolution trends. These

improvements will help build more comprehensive and accurate campus transportation

behavior models, providing more reliable theoretical foundations for future policymaking.

Meanwhile, these studies may also provide valuable references for other similar campus

environments.
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