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ABSTRACT
Pathogen surveillance must be part of any 
population supplementation or reintroduction 
program for the conservation of threatened and 
endangered species. The unintended transmission 
of pathogens can have devastating effects on 
these already at-risk populations or the natural 
ecosystem at large. In the San Francisco Estuary 
(estuary), abundance of the endemic Delta 
Smelt (Hypomesus transpacificus) has declined 
to the point where regulatory managers are 
preparing to augment the wild population using 
fish propagated in a hatchery to prevent species 
extinction. Although disease is not an overt 
cause of population decline, comprehensive 
pathogen presence and prevalence data are 

lacking. Here, we performed a pilot study that 
applied molecular assays originally developed in 
salmonids to assess the presence of a wide variety 
of pathogens in the gill tissue of cultured and wild 
Delta Smelt—as well as cultured fish—deployed 
in enclosures in the estuary. We found the assays 
to be highly sensitive, and observed positive 
detections of a single pathogen, Ichthyophthirius 
multifiliis, in 13% of cultured Delta Smelt. We also 
detected ten other pathogens at very low levels 
in cultured, enclosure-deployed, and wild Delta 
Smelt that likely represent the ambient pathogen 
composition in the estuary (as opposed to actual 
infection). Our results corroborate previous work 
that cultured Delta Smelt do not appear to present 
a high risk for pathogen transmission during 
population supplementation or reintroduction. 
However, the molecular pathogen screening 
assays tested here have great utility as an early 
warning system indicator of when further 
diagnostic testing might be necessary to limit the 
extent and frequency of disease outbreaks; their 
utility will be further increased once they are 
customized for Delta Smelt.

KEY WORDS
Delta Smelt, pathogen, San Francisco Estuary, 
supplementation, Ichthyophthirius multifiliis
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INTRODUCTION
Pathogen screening is an integral component of 
any population supplementation or reintroduction 
program (Viggers et al. 1993; Leighton 2002; 
Kock et al. 2010). Before release into the wild, 
source individuals must be tested to confirm 
that they do not carry infectious pathogens 
which may be transmitted into naïve recipient 
populations or to other susceptible sympatric 
taxa. Conversely, released individuals may 
also be vulnerable to pathogens in the wild 
environment; native populations and putative 
release sites should also be screened to prevent 
population supplementation or reintroduction 
failure due to disease. Pathogen screening paired 
with the collection of baseline health status data 
from source and recipient populations can help 
minimize risk and contribute to risk assessments 
of these high-profile conservation and 
management actions (Leighton 2002; Mathews et 
al. 2006; Muths and McCallum 2016). 

Disease-causing agents may be bacteria, 
viruses, fungi, or parasites; and the nature 
and type of test required for their detection is 
species- and ecosystem-dependent. Common 
screening methods for these pathogens include 
microbial culture, microscopy, histology and 
immunohistochemistry, serology, and molecular 
methods such as Polymerase Chain Reaction 
(PCR) (Adams and Thompson 2011). Despite the 
breadth of methods, there are many inherent 
challenges associated with pathogen surveillance 
in wild populations: the species of interest may 
be rare and difficult to locate; the habitat may be 
vast or inaccessible to humans; invasive or lethal 
sample collection (e.g., liver, lung, or heart tissue) 
of threatened and endangered species may not be 
permissible under state and federal Endangered 
Species Acts; and collection of samples in the field 
setting may introduce contamination or cause 
degradation. Additionally, pathogen screening 
tests may not capture novel or emerging 
pathogens. For these reasons, instances of disease 
in wild populations are often under-reported 
or may rely on anecdotal evidence (Naish et al. 
2007; Kock et al. 2010), but with supplementation 
and reintroduction the potential for pathogen 

transmission to wild populations should not be 
underestimated. 

In fish, individuals used for population 
supplementation and reintroduction are often 
propagated in a hatchery. History has repeatedly 
shown that a lack of pathogen knowledge and 
inadequate pathogen surveillance can have dire 
consequences when cultured fish are released into 
the wild. The release of hatchery trout infected 
with the myxosporean parasite Myxobolus 
cerebralis, which causes whirling disease in 
salmonids, is believed to have contributed to wild 
trout population declines throughout the United 
States (Hedrick et al. 1998; Bartholomew and Reno 
2002). Several mass mortalities of wild Pilchard 
(Sardinops sagax) in Australia were preliminarily 
traced to herpesvirus-infected Pilchard feedlots 
introduced into the marine environment as 
part of Tuna (Thunnus maccoyii) aquaculture 
(Gaughan 2002). Threatened and endangered 
wild fish populations are at even greater risk of 
adverse outcomes with unintentional pathogen 
transfer from cultured fish because of small 
population size, potentially low genetic diversity, 
and concomitant reduced ability to respond to 
stochastic pressures (Lively et al. 1990; Frankham 
2003). Conservation aquaculture programs 
therefore routinely monitor for pathogens 
perform pathogen surveillance, and the results 
of these tests direct the treatment, release, and 
adaptive management actions for hatchery fish, 
such as in Silvery Minnow (Woodland 2009) and 
numerous salmonid species (Brenkman et al. 
2008; Barry et al. 2014; Hardiman et al. 2017).

In the San Francisco Estuary (hereafter 
“estuary”), the endemic osmerid, Delta Smelt 
(Hypomesus transpacificus) is a state (CDFW 2021) 
and federal (USFWS 1993) Endangered Species 
Act listed species that needs more monitoring 
for pathogens. Delta Smelt were once ubiquitous 
in the estuary, but anthropogenic ecosystem 
change has caused a precipitous decline in the 
wild population (Moyle et al. 2016, 2018). Many 
are concerned that wild Delta Smelt are now so 
rare that the species may soon become extinct 
(Baumsteiger and Moyle 2017; Hobbs et al. 2017). 
To prevent extinction, regulatory agencies are 
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planning experimental release and subsequent 
population supplementation of Delta Smelt 
using hatchery fish reared at the University of 
California Davis Fish Conservation and Culture 
Laboratory (FCCL; Byron, CA) (Lessard et al. 2018; 
USFWS 2019, 2020; CDFW 2020); to date, only very 
small numbers of cultured Delta Smelt have been 
released in the estuary for special studies (Castillo 
et al. 2012) and not for the purpose of reinforcing 
the wild population. 

Overt signs of widespread disease have not 
been observed in wild Delta Smelt, and disease 
is therefore not known to be a driving factor 
of population decline (USFWS 1993); however, 
comprehensive baseline disease status data is 
lacking (Teh 2007; Miller et al. 2012; Teh et al. 
2020). Cultured Delta Smelt reared at the FCCL 
are routinely screened for pathogens by a US Fish 
and Wildlife Service pathologist at the California–
Nevada Fish Health Center (Anderson, CA) before 
fish are transferred to the back-up facility at 
the Livingston Stone National Fish Hatchery 
(Shasta Lake, CA). Current regulations only 
require screening for six pathogens according 
to the standard US Fish and Wildlife Service 
protocol for salmonids: Aeromonas salmonicida 
(bacterium), Yersinia ruckeri (bacterium), 
infectious hematopoietic necrosis virus, 
infectious pancreatic necrosis virus, Oncorhynchus 
masou virus, and viral hemorrhagic septicemia 
virus; a screen for Mycobacterium spp. (bacterium) 
is also performed occasionally, upon request. 
Previous studies have documented sporadic 
infections of Mycobacterium (Antonio et al. 2000) 
and Ichthyophthirius multifiliis (Ich; ectoparasite) 
(Frank et al. 2017) in Delta Smelt propagated at 
the FCCL; Mycobacterium and helminth parasites 
were also detected in wild Delta Smelt (Foott and 
Bigelow 2010; Baxa et al. 2015). Chronic infection 
with Mycobacterium is typically well-tolerated in 
Delta Smelt but can cause reduced swimming 
performance (Swanson et al. 2002), whereas 
infection with Ich if left untreated may result 
in gill and skin defects, behavioral changes, or 
mortality (Frank et al. 2017). In preparation for 
population supplementation and reintroduction, 
it will be necessary, in following best scientific 
practices, to expand the scope of pathogen testing 

and to understand the potential for pathogen 
transmission between the wild and hatchery 
environments.

Here, we conducted a pilot study using high-
throughput microfluidic quantitative PCR (qPCR) 
with assays originally developed for salmonid 
pathogen testing (Miller et al. 2016; Teffer et al. 
2017) to assess differences in pathogen presence 
between Delta Smelt reared at the FCCL and 
in the estuary. In the absence of a Delta Smelt-
specific pathogen panel, this pathogen panel 
is an appropriate proxy because salmonids, 
specifically Rainbow Trout (O. mykiss) and 
Chinook Salmon (O. tshawytscha), are found in 
the estuary, and some pathogens may infect both 
salmonid and smelt species; it is not possible to 
know definitively whether the pathogens on the 
panel can infect and cause disease in Delta Smelt 
without extensive pathogenicity studies. The 
assays are specific to 47 pathogens (Table A1), 
including Ich, significantly increasing the range 
of pathogen testing that has been performed in on 
Delta Smelt in the past. Four of the six pathogens 
tested for by the California–Nevada Fish Health 
Center (A. salmonicida, Y. ruckeri, infectious 
hematopoietic necrosis virus, and O. masou 
virus) are represented on the Miller et al. (2016) 
panel; an assay for Mycobacterium spp. was not 
developed and validated as part of this original 
panel, but given its relevance to cultured Delta 
Smelt, should be in the future. Molecular assays 
are well-suited for pathogen screening in rare, 
listed species because they are highly sensitive, 
require minimal starting material (e.g., such 
as what could be obtained with a mucus swab 
for some pathogens), can be fully customized 
to accommodate novel or emerging pathogens, 
and can be used to detect pathogens in the 
environment (e.g., environmental DNA [eDNA] in 
water and soil samples). Despite their benefits, 
molecular methods are most appropriately 
and powerfully used as a complement to 
standard disease diagnostic tests rather than 
as a replacement. DNA-based molecular assays, 
such as in Miller et al. (2016), can only confirm 
pathogen presence and relative quantities. A 
positive detection does not necessarily mean that 
a pathogen is infective or that there is an active 
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infection. Instead, molecular pathogen screening 
assays can be performed routinely and serve 
as an early warning system that signals when 
other, “gold standard” diagnostic tests should be 
conducted to confirm a disease outbreak. Also, as 
with any molecular test, assays in the Miller et al. 
(2016) panel can only be used to the detect specific 
pathogens for which they were designed, which 
may limit the scope of information gleaned and 
conclusions drawn from any analyses. 

In this exploratory study, our specific objectives 
were to identify pathogens in (1) cultured Delta 
Smelt reared at the FCCL, (2) cultured Delta 
Smelt that originated from the FCCL deployed in 
enclosures in the Estuary, and (3) the wild Delta 
Smelt population using the molecular assays 
developed by Miller et al. (2016) and to (4) evaluate 
the utility of these assays for pathogen screening 
in future population supplementation and 
reintroduction.

MATERIALS AND METHODS
In July 2018, we collected gill tissue (lethally) 
from 60 cultured pre-spawning adult Delta Smelt 
produced and held at the FCCL from across 
multiple tanks that had been stored at – 20 °C. 
Hatchery staff observed signs of disease in some 
of these fish at the time of collection, but they did 
not communicate this information to us before 
our laboratory analyses. In January 2019, Delta 
Smelt (243 dph) propagated at the FCCL from 
the same cohort (but reared in an unconnected 
culture system) were deployed in enclosures for 4 
weeks in the natural estuary environment at Rio 
Vista, CA for a separate feeding and survival study 
(see Baerwald et al., forthcoming). The authors 
chose the Rio Vista site and deployment time of 
year because typical environmental conditions 
are favorable for the survival of adult Delta 
Smelt, and the Enhanced Delta Smelt Monitoring 
program is still able to occasionally capture wild 
fish in this area (USFWS 2021). Baerwald et al. 
measured several environmental parameters 
during the deployment period, including 
temperature (range: 8.40 to 11.80 °C), turbidity 
(range: 13.90 to 99.63 FNU), and dissolved oxygen 
(range: 8.45 to 10.90 mg L-1) which were in range of 

what is expected for preferred Delta Smelt habitat 
(Sommer and Mejia 2013). Upon completion of 
the study, we opportunistically took gill tissue 
(lethally) from 60 of these fish. We also obtained 
gill tissue from 60 archived wild individuals 
collected between June 2011 and December 
2016 that had been stored at – 80 °C, which were 
provided by the California Department of Fish 
and Wildlife (Table 1); we selected samples that 
represented a wide geographic range throughout 
the estuary. The sample number of 60 is derived 
from a 5% assumed pathogen prevalence level 
(APPL) in a population with greater than 100,000 
individuals (USFWS and AFS–FHS 2014) and is 
what is used for diagnostic disease testing at 
the California–Nevada Fish Health Center. We 
selected gill tissue for this analysis because, as a 
filtering organ, the gill is a first contact site and 
thus has a high chance of detection for many 
pathogens of interest, and because it was the only 
tissue available to us in all cultured, enclosure-
deployed, and archived wild Delta Smelt samples. 

We extracted DNA from tissue samples with 
DNeasy Blood and Tissue kits (Qiagen, Venlo, 
Netherlands), using a QiaCube robotic liquid 
handler (Qiagen) following the manufacturer’s 
protocols. For pathogen screening of all 
samples, we conducted high-throughput qPCR 
on a BioMark HD system (96.96 dynamic array; 
Fluidigm Corp., South San Francisco, CA) 

Table 1  Location, number, and date of collection of archived wild Delta 
Smelt samples. n = number of samples.

Location n Year Month

Sherman Lake/ 
Sacramento River

2 2011 June

10 2012 October

Decker Island/ 
Sacramento River

9 2016 December

Lindsey Slough/ 
Cache Slough

3 2011 June

9 2012 March

7 2012 May

Prospect Island/ 
Deep Water Ship Channel

4 2012 May

16 2014 June
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according to the methods described by Teffer 
et al. (2017). In brief, we used a 96.96 Dynamic 
Array IFC for Gene Expression (Fluidigm) 
with primer sets for 47 pathogens (Table A1) 
developed by Miller et al. (2016); we ran each 
sample in duplicate. We included positive controls 
consisting of pooled gBlock synthetic DNA of all 
pathogens in the panel, and negative controls 
consisting of suspension buffer both in duplicate 
alongside our samples for each assay during pre-
amplification and qPCR cycling. For each positive 
control, to estimate relative assay efficiency 
and approximate pathogen concentration per 
sample, we prepared 5-fold serial dilutions with 
concentrations that ranged from 2.0x104 to 
32 DNA molecules/μl. To ensure qPCR suitability 
for these assays, we calculated individual assay 
qPCR efficiencies separately for each assay 
on each plate. We analyzed qPCR results with 
Fluidigm Real-Time PCR Analysis Software v 
4.5.2. 

In qPCR, a fluorescent reporter dye is released 
when a target sequence (here, specific to 
a particular pathogen) is identified by a 
complementary oligonucleotide primer and 
amplified via DNA polymerase. If the target 
sequence is present, the resulting fluorescent 
signal will increase and accumulate with each 
PCR amplification cycle. The PCR cycle number 
at which the fluorescent signal surpasses the 
background fluorescence of the negative control 
is known as the cycle threshold (Ct). The amount 
of the target sequence in the sample is therefore 
inversely proportional to the Ct value. For 
all samples, we averaged the Ct values of the 
duplicates; we discarded data from samples in 
which only one of the two duplicates amplified. 
The limit of detection (LOD) for each assay 
was the Ct of the lowest dilution of the positive 
control, or 32 DNA molecules μl-1 (see “Results”). 
The sensitivity of the BioMark instrument is as 
low as one DNA molecule, which corresponds to a 
Ct value of 27 to 28 (Fluidigm Corp). We therefore 
categorized a sample as “negative” (meaning 
the pathogen was not detected) if the Ct was (1) 
greater than that of the lowest concentration 
of the positive control, (2) greater than 27, or 
(3) if there was no detectable fluorescence. For 

three assays, we obtained Ct values greater than 
27 at the lowest dilution of 32 DNA molecules 
μl-1, meaning beyond the sensitivity of the 
BioMark instrument. However, we consistently 
obtained a Ct value less than 27 for each assay’s 
positive control at a concentration of 160 DNA 
molecules/μl and all other concentrations. 
We subsequently considered a detection to be 
“marginal” if the Ct value was greater than that 
of the 160 DNA molecules μl-1 concentration 
of the positive control, but less than that of 
the 32 DNA molecules μl-1 concentration of 
the positive control or 27. We conservatively 
labeled samples with Ct values less than that 
of the 160 DNA molecules μl-1 positive control 
concentrations as “positive” detections. 

RESULTS
Each pathogen assay amplified the positive 
control samples across all dilutions, including 
the lowest concentration tested (32 DNA 
molecules/μl). All qPCR efficiencies ranged 
between 80 and 120%, except for the Moritella 
viscosa assay from plate 1, which had a qPCR 
efficiency of 74.4% (Figure A1). Most assays (57 
of 94, or 61%) had an efficiency between 90% 
and 110%, or the desirable target efficiency 
level for quantitative assays (Bustin et al. 2009). 
Because we used these assays to detect pathogen 
presence alone and only quantified relative 
levels of pathogen concentrations based on serial 
dilutions, efficiencies outside of the ideal range 
(i.e., between 80% to 90% and 110% to 120%) 
are acceptable, and likely caused by primer 
competition and low binding affinity as a result of 
the complex (i.e., 47 pathogens) multiplex reaction 
in the Fluidigm pre-amplification reaction step. 

There were robust positive detections of Ich in 
13% of Delta Smelt reared and held at the FCCL 
(Figure 1). There were also marginal detections 
of 10 pathogens, including Ich, among the three 
fish groupings, namely: Ceratonova shasta, 
Flavobacterium psychrophilum, Kudoa thyrsites, M. 
viscosa, O. masou virus, Parvicapsula minibicornis, 
Piscichlamydia salmonis, infectious salmon anemia 
virus, and viral encephalopathy and retinopathy 
(Figure 1, Table A2); the assay and detection 
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system used is highly sensitive, and the Ct values 
of these samples were near the LOD for the assays 
and the sensitivity of the BioMark instrument, 
and therefore should be interpreted with caution. 

DISCUSSION
When releasing captively bred individuals into 
natural ecosystems, the potential for disease 
transmission must not be overlooked. Here, we 
report the results of the first effort to conduct 
pathogen screening of cultured and wild Delta 
Smelt using high-throughput qPCR and assays 
developed for salmonid pathogen screening 
by Miller at al. (2016). Based upon our control 
data, we found the assays to be highly sensitive, 
with detectable amplification at the lowest DNA 
concentration tested, consistent with Miller 
et al. (2016). Our most notable finding was the 
detection of Ich in 13% of Delta Smelt tested, 
which originated from and were held at the 
FCCL. As a ciliate protozoan, Ich infiltrates 

epithelial tissue and rapidly causes the formation 
of trophonts (visible as white spot disease) that 
can be particularly damaging to gill tissue and 
prevent proper osmoregulation and gas exchange 
(Ewing et al. 1994; Tumbol et al. 2001). Ich is 
common in hatcheries, including the FCCL, and 
if treated early should not cause lasting damage 
(2021 email communication between T-C Hung 
and DG, unreferenced, see “Notes”). It is not 
surprising that we found Ich in FCCL fish in this 
study, given that this pathogen is ubiquitous 
in the estuary (Lehman et al. 2020), appears 
following thermal stress (Frank et al. 2017), and 
hatchery staff noted disease in some tanks at the 
time of fish collection. Our positive results are 
therefore congruent with this data and suggest 
that the assays of Miller et al. (2016) can be used 
to accurately detect the presence of pathogens 
in Delta Smelt; further histological examination 
of skin and gill tissue would be required to 
definitively diagnose disease in these specimens. 
Another important outcome of this study was 

Figure 1  Average Ct values obtained from Delta Smelt gill tissue using Miller et al. (2016) qPCR assays corresponding to positive and marginal pathogen 
detections. The gray shading denotes Ct values above 27, or the sensitivity of the BioMark instrument. The average Ct value of positive control duplicate 
samples at concentrations of 32 and 160 DNA molecules μl-1 are shown as diamonds and cross-marks, respectively. Positive detections are samples with Ct 
values less than that of the positive control at a concentration of 160 DNA molecules/μl. Marginal detections are samples with Ct values greater than that 
of the positive control at a concentration of 160 DNA molecules μl-1 but less than that of the positive control at a concentration of 32 DNA molecules μl-1 
or 27. Marginal detections are considered unreliable but presented for transparency on system limitations. Archived = amples from archived wild-caught 
fish provided by CDFW (n = 60); FCCL = samples from fish produced and held at the FCCL (n = 60); Rio Vista = samples from fish propagated at the FCCL 
and deployed in enclosures at Rio Vista (n = 60). Ce_shasta = Ceratonova shasta; Fl_psy = Flavobacterium psychrophilum; Ic_mul = Ichthyophthirius 
multifiliis; Ku_thy = Kudoa thyrsites; Mo_vis = Moritella viscosa; OMV = salmonid herpesvirus/Oncorhynchus masou herpes virus; Pa_min = Parvicapsula 
minibicornis; Pch_sal = Piscichlamydia salmonis; ISAV8 = infectious salmon anemia virus; VER = viral encephalopathy and retinopathy virus.
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the absence of positive pathogen detections in 
fish deployed in enclosures at Rio Vista or in 
archived wild fish. This finding corroborates 
previous, albeit limited, work on the presence 
and prevalence of pathogens in Delta Smelt Delta 
Smelt pathogen presence and prevalence, and 
points to a low pathogen burden in wild fish and 
the estuary, at least for pathogens that affect 
salmonids; to expand upon this conclusion, the 
screening of other tissues that are specific targets 
of certain pathogens would be useful. 

Although close to the LOD of our assays or the 
sensitivity of the qPCR instrument, we obtained 
marginal detections of 10 pathogens (Table A2). 
The greatest number of marginal detections were 
for Ich and K. thyrsites. We posit that marginal 
detections of Ich in FCCL fish could represent one 
of the many stages of the Ich life cycle present 
in the FCCL environment, or potentially low-
level infection. The large, single-celled parasitic 
trophonts that are visible on infected fish 
eventually fall off the host, at which point they 
are called tomonts. When a tomont settles on 
a substrate, it undergoes reproduction (binary 
fission) and becomes a tomocyst containing as 
many as 1,000 tomites (McCartney et al. 1985; 
Wei et al. 2013). The tomites then break through 
the tomocyst as free-swimming, infective 
theronts (Dickerson and Clark 1998). Given the 
extreme sensitivity of our pathogen assays and 
Ich outbreak at the time of fish collection when 
fish were collected from the FCCL, it is not 
unreasonable to suppose that marginal detections 
of Ich could be of individual tomonts, or theronts, 
or multicellular tomocysts that have been filtered 
by gill tissue or that are merely present in the 
water and environment. Marginal detections of 
Ich in our study could also denote early infection 
with just a few established trophonts. A similar 
justification could be made for the marginal 
detection of Ich in an archived wild Delta Smelt, 
especially because Ich is pervasive in the estuary 
(Lehman et al. 2020). Detection of K. thyrsites 
was puzzling and unexpected because these 
myxosporean parasites are typically found in 
marine host species, although they can infect 
anadromous fishes such as salmonids that move 
through estuaries (Whipps and Kent 2006; Eiras 

et al. 2014). It is possible that the highly sensitive 
molecular screening approach is detecting 
DNA contamination sourced from other fish 
species (Burger and Adlard 2011) because this 
microparasite has not been reported in the Delta; 
further investigation is warranted. 

The remaining eight pathogens (Table A2) 
with marginal detections were in enclosure-
deployed or archived wild Delta Smelt only. 
Given the high Ct values, incidence in only 
one or two individuals, and specificity of 
the pathogens to salmonids, it is likely that 
these marginal detections reflect the ambient 
pathogen community of the estuary rather than 
infection in Delta Smelt. However, subclinical, or 
asymptomatic infection in which an individual 
is infected but does not show overt signs of 
disease cannot be ruled out without conventional 
diagnostic testing. F. psychrophilum is endemic 
to California, including the estuary, and causes 
bacterial coldwater disease in salmonids, namely 
Rainbow Trout, as well as in other non-salmonid 
fishes (reviewed in Starliper 2011; Sebastião et 
al. 2020). Similarly, C. shasta and P. minibicornis 
are myxosporean parasites of the digestive tract 
and kidneys, respectively, that are known to be 
present and infect salmonids throughout the 
estuary and its tributaries year-round (Lehman 
et al. 2020). The other five pathogens with 
marginal detections in enclosure-deployed or 
archived Delta Smelt are found globally but have 
not been associated with large-scale infection or 
mortalities in California, and so are unlikely to 
represent true infection. Yet, it is important to 
note that not all pathogens are equal and affect 
hosts in the same way, and some could be highly 
virulent even at very low concentrations. 

This pilot study showed that the assays developed 
by Miller et al. (2016) could successfully detect 
pathogens in Delta Smelt gill tissue, but further 
validation and customization will be necessary 
for the assays to be informative about the 
presence and load of pathogens in Delta Smelt. 
An immediate next step would be to sequence the 
PCR amplicons of positive or marginal detections 
and confirm that the resultant sequence matches 
that of the expected pathogen and not a closely 
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related pathogen or an analogous region of the 
Delta Smelt genome; this step should be repeated 
for every pathogen at first detection. Another 
important experiment to ensure applicability 
for use in an endangered species would be to 
evaluate and confirm the success of these assays 
in detecting pathogens on non-invasive samples 
such as a mucus swab (applicable for select 
pathogens). It would also be prudent to expand 
the temporal range of archived wild Delta Smelt 
samples to span at least a 5- to 10-year period, 
as well as numbers of samples per year, to gain 
a more comprehensive understanding of the 
scope of the presence of pathogens and potential 
differences among water year types (e.g., wet 
versus dry) or other environmental conditions in 
the estuary. Similarly, collecting samples from 
Delta Smelt across seasons could inform seasonal 
trends in the presence of pathogens in wild or 
hatchery fish. Using these same assays, distinct 
changes in pathogen profiles have been observed 
in Chinook Salmon in the Fraser River among 
seasons (Tucker et al. 2018). Increasing the spatial 
range of wild Delta Smelt samples collected to 
be from throughout the estuary could improve 
our understanding of whether some pathogens 
are localized or widespread. Pathogens that 
affect Delta Smelt which the Miller et al. (2016) 
assays do not cover could be identified through 
an RNA-seq, metagenomics, or multi-locus 
sequence typing approach, using multiple tissues 
from wild, cultured, and enclosure-deployed 
fish (Urwin and Maiden 2003; Houldcroft et 
al. 2017; Fu et al. 2019). Since the BioMark HD 
system is fully customizable, once Delta Smelt-
specific pathogens are identified, developed, 
and validated, they can be screened alongside 
those from Miller et al. (2016). The addition 
of an assay for Mycobacterium spp. would be 
particularly beneficial because this pathogen has 
been reported in wild and hatchery Delta Smelt 
previously (Antonio et al. 2000; Swanson et al. 
2002; Foott and Bigelow 2010). Finally, although 
qPCR can be used to assess relative pathogen load 
per fish (only presence was considered here), it 
does not necessarily predict pathogenicity. Gene 
expression assessments in conjunction with 
histopathology can confirm disease progression, 

which could be correlated with pathogen load 
(Connon et al. 2012; Teffer et al. 2017). 

Once pathogen screening assays have been 
honed for Delta Smelt, they can be applied in 
the health management of cultured Delta Smelt. 
Knowing that disease outbreaks are not out of the 
ordinary in hatcheries and that we detected Ich 
in Delta Smelt at the FCCL, pathogen prevention 
measures are equally if not more important 
than pathogen monitoring, and the two can be 
coupled to help ensure the healthiest possible 
cultured stock for population supplementation 
or reintroduction. The first line of defense 
against pathogen contamination at the FCCL is 
sand filtration and ultraviolet (UV) irradiation of 
water pumped in from the Clifton Court Forebay 
reservoir. In sand filtration, water percolates 
through a column of sand particles that is 
enriched with microorganisms. Mechanical 
and biological processes in the column, such 
as biofilm formation, result in adherence to 
and removal of bacteria, viruses, and parasites 
(Maurya et al. 2020). UV irradiation causes 
the formation of thymine and uracil dimers 
and prevents replication of DNA and RNA, 
respectively, in all waterborne pathogens but to 
varying degrees (Harris et al. 1987; reviewed in 
Hijnen et al. 2006). Next, the recirculating systems 
at the FCCL are bleached before fish are brought 
in, and maintenance equipment is disinfected 
daily with high concentrations of brine and 
iodine. Additionally, wild broodstock are kept 
in a separate holding area at the FCCL (never 
integrated with the refuge population), treated 
with antibiotics for 3 consecutive days (4 h per 
day) after capture (2022 email communication 
between T-C Hung and DG, unreferenced, see 
“Notes”); FCCL staff are trained to recognize the 
onset of potential infections and disease. Despite 
these rigorous pathogen prevention procedures, 
some potential routes for pathogen introduction 
cannot be controlled. The FCCL is a large-scale 
hatchery and, as such, requires more water 
than can be sourced from a well, which would 
pose a much lower risk of harboring pathogens 
(Yanong and Erlacher–Reid 2012). Sand filtration 
and UV irradiation are not infallible, and some 
pathogens are resistant to these methods. Even 
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with regular maintenance and exchange, UV 
bulbs become less potent and reliable with age. 
Lastly, pathogen dispersal is always possible 
by bringing in wild broodstock and live feed or 
excretion by birds (e.g., Arsan and Bartholomew 
2009). Periodic screening of water before and after 
sand filtration and UV irradiation, scrapings of 
water samples from across tanks, or mucus swabs 
of wild broodstock for some pathogens using the 
molecular assays described above could help 
anticipate and limit the spread of any disease 
outbreaks. 

Pathogen screening using the Miller et al. 
(2016) assays, especially with species-specific 
modifications, would be invaluable in guiding 
cultured Delta Smelt population supplementation 
and reintroduction efforts. A recent health 
evaluation performed by fish pathologists at the 
California–Nevada Fish Health Center indicated 
that cultured Delta Smelt were at a “low health 
risk” based upon the findings of previous disease 
studies mentioned earlier (Teh 2007; Foott and 
Bigelow 2010; Baxa et al. 2015) and the absence 
of viral disease in all fish tested from the FCCL 
since 2005 (2022 email communication between 
S. Foott and DG, unreferenced, see “Notes”).
However, movement or release associated with
population supplementation and reintroduction
could be restricted by an unexplained large die-
off or if a significant pathogen is detected in the
cultured population (2022 email communication
between S. Foott and DG, unreferenced, see
“Notes”). A pathogen is considered significant
if it is virulent and untreatable, novel to the
estuary, or capable of causing high mortality
(2022 email communication between S. Foott
and DG, unreferenced, see “Notes”). To defend
against possible interruption or termination
of cultured Delta Smelt release for population
supplementation or reintroduction, molecular
pathogens could be screened for regularly (e.g.,
monthly or quarterly) and before release, and
serve as an early warning system for some of
these significant pathogens. As stated earlier, the
assays used for qPCR on the dynamic array can
be customized and made specific to pathogens
that are of greatest concern to fish pathologists.
Any positive detections could point to active

infection and be a trigger for fish pathologists 
to move forward with gold-standard diagnostic 
tests. Depending on the pathogen and whether 
fish pathologists believe it is significant to the 
natural population, a marginal detection may 
not necessitate additional diagnostic testing but, 
instead, increased watchfulness and possibly 
repeated molecular screening. By screening for 
molecular pathogens alongside standard health 
monitoring, the risk of unintended introduction 
of pathogens into the estuary is further reduced. 
Moreover, the collection and screening of eDNA 
or eRNA in water and soil samples from putative 
release sites before release occurs, and regularly 
throughout the year, could tell managers when 
conditions for population supplementation and 
reintroduction are not optimal because of a 
high risk for significant pathogen exposure and 
disease. More generally, pathogen screening using 
molecular assays could be conducted on any field-
collected mortalities, and as part of laboratory-
controlled experimental studies, to gain a better 
understanding of why wild fish die, as well as 
the presence and prevalence of pathogens in the 
estuary.

CONCLUSIONS
The study presented here and previous work 
indicate that the pathogen burden in cultured and 
wild Delta Smelt is low. However, to minimize 
the risk of unintended pathogen transmission, 
vigilance in pathogen monitoring of cultured 
and wild fish and environmental samples 
should continue in preparation for the release 
of cultured Delta Smelt into the estuary. Our 
principal finding was the detection of Ich in 13% 
of cultured Delta Smelt tested. If Ich infection 
were confirmed by diagnostic tests, these fish 
could be deprioritized for potential future release 
until after treatment. Given that Ich is known to 
be present in the estuary, the potential release of 
fish infected with Ich does not pose a substantial 
risk to the ecosystem, but could affect the success 
of population supplementation and reintroduction 
efforts because Ich typically elicits a stress 
response in the fish host (Frank et al. 2017). We 
also obtained marginal detections of several 
other pathogens in archived wild and enclosure-
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deployed cultured Delta Smelt (e.g., O. masou 
virus) which suggest that the ambient pathogen 
community in the estuary may not yet be fully 
understood; further investigation of assay and 
host specificity is warranted to clarify whether 
these pathogens are indeed present, and whether 
they can infect are infective to Delta Smelt. The 
assays used herein were developed for salmonid 
species but could be customized for Delta Smelt 
through conducting RNA-seq, metagenomics, or 
multi-locus sequence typing approaches using 
multiple tissue types from cultured, wild, and 
enclosure-deployed fish, along with assessments 
of confirmed infection infectivity confirmation 
assessments within laboratory-controlled studies. 
A valuable future application could be pairing of 
primers in these assays with the CRISPR-Cas13a 
platform Specific High-sensitivity Enzymatic 
Reporter unLOCKing (SHERLOCK) (Baerwald 
et al. 2020) to develop a rapid, non-lethal (e.g., 
a mucus swab) screening approach for certain 
pathogens in Delta Smelt. Molecular pathogen 
screening assays will have a critical function in 
future Delta Smelt population supplementation 
and reintroduction.
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