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ABSTRACT OF THE THESIS 

Tactical Portfolio Construction 

by 

Yue Chen 

Master of Science in Statstics 

University of California, Los Angeles, 2012 

Professor Rick Paik Schoenberg, Chair 

Modern portfolio theory says that unsystematic risk can always be diversified away. Although it 

is unrealistic to achieve perfect diversification, people developed different strategies trying to 

find an optimal portfolio. In this paper, issues of how to make a diversified portfolio are 

discussed. Six models of tactical portfolio construction strategies are used to make the optimal 

portfolios using the historical data from Jan. 2007 to Dec. 2009. From the out-of-sample test by 

market data from Jan. 2010 to Dec. 2011, the classic Markowitz portfolio has the highest wealth 

added. By comparing the portfolio evaluation parameters, Sharpe ratio suits an individual 

investor most. And Bayesian portfolio with informative prior scores highest by Sharpe ratio 

regardless its sensitivity to the accurate market prediction. The paper also demonstrates the 

application of statistical software R and the “stockPortfolio” package in the stock investment 

field. 
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Chapter 1 Introduction 

Modern portfolio theory says that the expected return for a given amount of portfolio risk can be 

maximized or equivalently the risk for a given level of expected return can be minimized by 

carefully choosing the proportions of various assets. [1] This theory is based on the research 

work of Harry Markowitz about the risk-reduction benefits of diversification in early 1950s. [2] 

Using the standard deviation of a portfolio return as the measure of risk, he pointed out that 

combining risky securities into a portfolio reduces the risk because of diversification unless the 

returns of the risky assets are perfectly positively correlated. Later in 1960s, Treynor, Sharpe, 

Mossin and Lintner independently extended this work into modern portfolio theory (MPT). [3-6] 

MPT results in equilibrium expected returns for securities and portfolios that are a linear function 

of each security’s or portfolio’s market risk, which is the risk that cannot be reduced by 

diversification. During the normal market condition periods, portfolio diversification works fine 

while during periods of market crash diversification produces less benefit because the 

correlations tend to increase in such period. 

One measure of the portfolio diversification is diversification ratio. It is calculated as the ratio of 

the risk of an equally weighted portfolio of n securities to the risk of a single security selected at 

random from the n securities. While the diversification ratio provides a quick measure of the 

potential benefits of diversification, an equally weighted portfolio is not necessarily the portfolio 

that provides the greatest reduction in risk. Besides that, Barnea and Logue argue that R2 from 

the market model regression is a measure of diversification. And a study from Cresson also 

confirms R2 is an unambiguous, objective and easily calculated measure of portfolio and mutual 

fund diversification. [7] 
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One important question in portfolio management is how many stocks make a diversified 

portfolio. Although Evans and Archer asserted 10 or 15 different assets maximize the benefits 

from naive diversification, Statman’s study shows at least 30 stocks for a borrowing investor and 

40 stocks for a lending investor must be included in a well-diversified portfolio.[8, 9] The study 

considers a stock portfolio with equal proportions and the variance of it can be expressed as 

follows. 

𝜎𝜎𝑝𝑝2 =
1
𝑛𝑛
�𝜎𝜎𝑖𝑖� 2 − 𝜎𝜎𝑖𝑖𝑖𝑖����� + 𝜎𝜎𝑖𝑖𝑖𝑖���� 

where 

𝜎𝜎𝑝𝑝2 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 𝑣𝑣𝑣𝑣𝑝𝑝𝑟𝑟𝑣𝑣𝑛𝑛𝑟𝑟 

𝑛𝑛 = 𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑟𝑟𝑝𝑝𝑜𝑜𝑣𝑣𝑠𝑠𝑟𝑟 𝑖𝑖𝑛𝑛 𝑝𝑝ℎ𝑣𝑣 𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 

𝜎𝜎𝑖𝑖� 2 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑝𝑝𝑟𝑟𝑣𝑣𝑛𝑛𝑟𝑟 𝑜𝑜𝑛𝑛 𝑟𝑟𝑝𝑝𝑜𝑜𝑣𝑣𝑠𝑠 𝑖𝑖 

𝜎𝜎𝑖𝑖𝑖𝑖���� = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣 𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣 𝑛𝑛𝑣𝑣𝑝𝑝𝑏𝑏𝑣𝑣𝑣𝑣𝑛𝑛 𝑣𝑣𝑣𝑣𝑝𝑝𝑟𝑟𝑣𝑣𝑛𝑛𝑟𝑟 𝑜𝑜𝑛𝑛 𝑟𝑟𝑝𝑝𝑜𝑜𝑣𝑣𝑠𝑠𝑟𝑟 𝑖𝑖 𝑣𝑣𝑛𝑛𝑎𝑎 𝑖𝑖 

To maximize the utility of the investor, the diversification should be increased as long as the 

marginal benefits exceed the marginal costs and will stop at a level when they are equal. Statman 

continued point out that the benefits of diversification are in risk reduction and the costs are 

transaction cost. Upon all the assumptions in the study, to use a 500-stock portfolio as 

benchmark is reasonable but to treat the cost of equally weighted portfolio identical to that of a 

value weighted portfolio is questionable. Regarding to the concept, equal-weighted portfolio has 

equal dollar amounts invested in each stock while the value-weighted portfolio has the same 

proportion of each stock as that of the security’s market capitalization proportion in the portfolio. 
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One concern with an equal-weighted index is that the weights placed on the returns of the 

securities of smaller capitalization firms are greater than their proportions of the overall market 

value of the portfolio stocks. On the other hand, a value-weighted portfolio does not need to be 

adjusted when a stock splits or pays a stock dividend because the market capitalization does not 

change, which is not the case for an equal-weighted portfolio due to a more frequently 

rebalancing. So the transaction cost of an equal-weighted portfolio is higher than that of a value-

weighted portfolio in general.  

The cost of diversification is mainly the transaction cost. Individuals in different tax brackets, 

with different income needs and having any unique circumstances should be treated specifically.  

Nevertheless, Amihud and Mendelson also consider the cost of illiquidity and point out that 

stocks with higher spread have higher trading cost and should require a higher expected return. 

[10] Furthermore, they conclude the expected return is an increasing and concave function of the 

bid-ask spread by the empirical evidence from NYSE stock returns over the 1961-80 period. But 

once the investor holds a diversified portfolio, he has little to do with the cost of illiquidity. As a 

result, the longer holding period, the lower amortized transaction cost per unit of time. Hence, 

low-spread stocks will tend to be held in equilibrium by short-term investors.  

Another argument is that leading to the efficient diversification requires the knowledge of 

accurate estimate of the risks and returns of individual stocks. And the lack of accurate 

information regarding future returns and risks of individual stocks pushes these investors toward 

naïve diversification. [11] Samuelson showed that if returns are identically distributed, buying 

equal amounts of each stock is optimal. [12] Another study by DeMiguel, Garlappi and Uppal 

indicates that among the performance of portfolio constructed by 14 optimal portfolio strategies, 

none is consistently better than the equal weighted portfolio in terms of Sharpe ratio, certainty-
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equivalent return, or turnover. And they conclude that the gain from optimal diversification is 

more than offset by out of sample estimation error. [13] Meanwhile, unless all the stocks are 

included in the portfolio, there always exists some diversifiable risk in a portfolio even in a so-

called well-diversified portfolio. 

Hence, Wit points out that instead of focusing on the number of stocks needed for a well-

diversified portfolio, the consequence of holding portfolios of given numbers of stocks is more 

practically important. [14] So the right question to ask is: what is the excess risk of a portfolio of 

20 stocks? And what excess return is required to compensate for that excess risk? According to 

his study, the required excess return of any imperfectly diversified portfolio is a function of the 

equity risk premium and the average correlation between stock returns in the portfolio. The 

average correlation coefficient determines the rate of risk reduction and the level of maximum 

risk reduction. 

There are three major steps in the portfolio management process [15]: 

1. Planning step. Analyze the investor’s risk tolerance, return objectives, time horizon, tax 

exposure, liquidity needs, income needs, and any unique circumstances or investor 

preferences. 

The analysis results in an investment policy statement (IPS) that details the investor’s 

investment objectives and constraints. I will also specify an objective benchmark against 

which the success of the portfolio management process will be measured. IPS should be 

updated periodically and anytime the investor’s objectives or constrains change 

significantly. 
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2. Execution step. Analyze the risk and return characteristics of various asset classes to 

determine how funds will be allocated to the various asset types, including cash, fixed-

income securities, publicly traded equities, hedge funds, private equity, real estate, as 

well as commodities and other real assets. Once the asset allocations are determined, 

portfolio managers may attempt to identify the most attractive security combination 

within the asset class. 

3. Feedback step. Over time, investor circumstances will change, risk and return 

characteristics of asset classes will change and the actual weights of the assets in the 

portfolio will change with asset prices. So the portfolio manager must monitor these 

changes and rebalance the portfolio periodically in response, adjusting the allocations to 

the various asset classes back to their desired percentages. The manager must also 

measure portfolio performance and evaluate it relative to the return on the benchmark 

portfolio identified in the IPS. 

In this study, I mainly focus on the stock portfolio construction using different strategies and 

compare the performance among them, which is part of the execution step. The strategies 

considered here are classic Markowitz model, single index model, multi-group model, 

equally weighted model, Bayesian portfolio selection including noninformative prior 

approach and informative prior approach. To compare the performance of these strategies, 

three measurements will be introduced and compared. Based on the historical stock return 

data, the portfolios will be constructed, the performance of which in the following years will 

be compared according to a suitable measurement.  
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Chapter 2 Portfolio Construction 

2.1 Data source 

In this research work, 25 stocks from 5 sectors are randomly chosen for the investigation 

purpose. They are: 

1) Technology sector: Apple Inc., IBM, Intel Corp., Microsoft Corp. and Advanced 

Micro Devices Inc.  

2) Basic material sector: Goldcorp Inc., Northern Dynasty Minerals Ltd., Potash Corp., 

Silver Standard Resources Inc. and Southern Copper Corp.  

3) Financial sector: Citigroup Inc., HSBC, Morgan Stanley, American Express 

Company, Bank of America Corp.  

4) Consumer/Non-cyclical sector: Coca-Cola Company, PepsiCo Inc., Kraft Foods Inc., 

Farmer Brothers Co. and Revlon Inc.  

5) Healthcare sector: Johnson & Johnson, Delcath Systems Inc., Pfizer Inc., Abbott 

Laboratories and Exelixis Inc. 

The corresponding tickers of each stock are tabulated as shown in the table 2.1.  

Table 2.1 Summary of tickers 

Sectors Tickers 

Technology AAPL IBM INTC MSFT AMD 

Basic Material GG NAK POT SSRI SCCO 

Financial C HBC MS AXP BAC 
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Consumer/Non-cyclical KO PEP KFT FARM REV 

Healthcare JNJ DCTH PFE ABT EXEL 

 

Besides these 25 stocks, S&P 500 index is used as the proxy for the market with SPY as the 

ticker. 

The stock price data is publicly available from the market. Here, “stockPortfolio” package 

[16] in R is used to get the monthly returns online from Yahoo Finance. 

Short sale is allowed in the portfolio construction, which means people can borrow the stocks 

from a third party and sell it now. [17] The risk-free rate is assumed to be 0.01%. 

2.2 Sample period 

The monthly returns of stocks over January 2007 to December 2009 period are adopted for 

the portfolio management study. So the total data size is 25 stocks by 36 months. The statistic 

summary of the data is in Table 2.2. The bottom row of the table is the performance of the 

market taking S&P500 as a proxy. 

Table 2.2 Statistic summary of data for January 2007 to December 2009 

Ticker Average Return Risk (standard deviation) 
AAPL 0.03477482 0.3933738 
IBM 0.011662064 0.3027398 
INTC 0.005383034 0.3457537 
MSFT 0.00478515 0.3242568 
AMD 0.008878985 0.5395223 
GG 0.024246635 0.3545828 
NAK 0.016087643 0.4694901 
POT 0.033242773 0.4169626 
SSRI 0.008159839 0.4999892 
SCCO 0.027776833 0.432173 
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C -0.044253577 0.5880713 
HBC -0.00251393 0.3969022 
MS -0.011851639 0.4275879 
AXP 0.005456479 0.5014196 
BAC -0.00559196 0.5639677 
KO 0.009271932 0.2855292 
PEP 0.001888528 0.2589532 
KFT -0.001404211 0.2756372 
FARM 0.004713309 0.2784546 
REV 0.047264495 0.5665698 
JNJ 0.002627083 0.2716501 
DCTH 0.028311109 0.4057474 
PFE -0.003508194 0.3054432 
ABT 0.004122694 0.1905348 
EXEL 0.007865948 0.4748137 
SPY -0.003713634 0.3366569 

 

2.3 Portfolio efficient frontier 

In Markowitz’s 1952 paper [18], he introduced the efficient frontier concept. Among all the 

combination of portfolios, the investor would like to select the portfolios that are efficient, 

which have minimum risk given return or more and maximum return given risk or less. In the 

“stockPortfolio” package, “portPossCurve” function can be used to get the portfolio 

possibilities curve. Only the part beyond the minimum risk point is the efficient frontier. All 

the portfolios that locate at right side of the curve are attainable. The efficient frontier and a 

cloud of possible portfolios are shown as follows. 
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Figure 2.1Efficient frontier and cloud of possible portfolios for January 2007 to 

December 2009 period. 

From this plot, we could see that all the individual stocks are located in the cloud of possible 

portfolios. But investing on individual stock is not wise because none of them is on the 

efficient frontier. The optimal portfolio should be on the efficient frontier. If we know the 

maximum risk that the investor can tolerant, then we could find the highest expected return 

point at this given risk on the efficient frontier. So any point on the efficient frontier is an 

optimal portfolio if people invest all money on stocks. 

In reality, people can also put their money in the bank to earn risk-free rate or borrow money 

from bank at some cost. If the risk-free borrowing and lending are combined with stock 

investment, how to make the decision of how much should be invested in risk-free rate and 
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how much should be invested in risky stock portfolio? Another concept should be introduced, 

which is capital allocation line (CAL).  

As introduced in Sharpe’s 1964 paper [19], if one invest on a risky stock portfolio and risk-

free rate, then his return and risk relationship can be expressed as a line shown below. In his 

paper, Sharpe switched the meaning of x and y axis, in which x axis means return and y axis 

means risk. As we can see P is the risk-free rate since it locates on x axis. The shadow part 

represents the cloud of attainable stock portfolio while portfolio A, B, Y and Q are all on the 

efficient frontier and portfolio X is not efficient. If one choose to invest between P and A, 

then points on the line PA are attainable if some money is loaned at the risk-free rate and the 

rest placed in A. Similarly, by borrowing at the risk-free rate and investing in A, the segment 

of AY and beyond Y can be achieved. However, portfolio A is not the optimal. Among all 

the CALs, investing along line PZ generates the highest return at the expense of the same risk. 

So line PZ is the optimal CAL and portfolio Q is the optimal portfolio. In modern portfolio 

theory, a simple assumption that investors have homogeneous expectation is made. And 

portfolio Q is also called the market portfolio since all the wise investor will only invest in 

portfolio Q.  
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Figure 2.2 Capital allocation line (CAL) 

So the task here is to use different models to find the market portfolio. Because we construct 

portfolio using the historical data and measure the performance in the next period, the key 

point is how people expect the future return and the relationship between stocks, which is the 

main underlying difference between these models. 

Assume the risk-free lending and borrowing exists with the rate 0.01% and short sales 

allowed. The following models are considered to construct the optimal portfolios. 
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2.4 Classic Markowitz model 

Markowitz is the father of modern portfolio theory. He proved the fundamental theorem of 

mean variance portfolio theory that is holding constant variance maximize expected return, 

and holding constant expected return minimize variance. The classic Markowitz model 

considers only the mean return and variance of return of a portfolio from historical data, 

ignoring the other moments such as skewness or other more realistic descriptions of the 

distribution of return. [11] The optimal portfolio lies on optimal CAL which can be 

expressed as [19] 

𝑅𝑅𝑝𝑝���� = 𝑅𝑅𝑜𝑜 + (
𝑅𝑅𝐴𝐴��� − 𝑅𝑅𝑜𝑜
𝜎𝜎𝐴𝐴

)𝜎𝜎𝑝𝑝  

The solution is to find the point of tangency of this line to the efficient frontier as shown in 

Fig. 2.2, which maximize the slope of the line 

max𝜃𝜃 =
𝑅𝑅𝑝𝑝���� − 𝑅𝑅𝑜𝑜
𝜎𝜎𝑝𝑝

 

subject to the constaint 

�𝑥𝑥𝑖𝑖 = 1 

In this model, it only considers the return distributions over a single period. In addition, the 

correlations between all pairs of assets being considered need to be estimated. One major 

problem is when it applied to multi-period the estimation of variance covariance matrix has 

uncertainty. So people developed different models to estimate the correlation coefficients as 

the input of classic Markowitz model, such as single index model and multi-group model. 
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2.5 Single index model 

This model employs a market proxy and considers all the fluctuations of stocks are correlated 

with the market while the residual fluctuations between stocks are uncorrelated. That means 

the individual stocks are related through the market. Another important characteristic of this 

model is that the number of estimates required is reduced and the accuracy of portfolio 

optimization is increased. [11] 

Using single index model [20], the return of a stock can be expressed as a linear function of 

market return. 

𝑅𝑅𝑖𝑖𝑝𝑝 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑅𝑅𝑛𝑛𝑝𝑝 + 𝜖𝜖𝑖𝑖𝑝𝑝  

where 𝑅𝑅𝑖𝑖𝑝𝑝  is the return of stock i at time t and 𝑅𝑅𝑛𝑛𝑝𝑝  is the return of the market at time t. The 

assumptions of this model is 

𝐸𝐸(𝜖𝜖𝑖𝑖) = 0, 𝑣𝑣𝑣𝑣𝑣𝑣(𝜖𝜖𝑖𝑖) = 𝜎𝜎𝜖𝜖𝑖𝑖
2 , 𝑣𝑣𝑜𝑜𝑣𝑣(𝑅𝑅𝑛𝑛 , 𝜖𝜖𝑖𝑖) = 0, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑛𝑛) = 𝜎𝜎𝑛𝑛2 ,𝐸𝐸(𝑅𝑅𝑛𝑛) = 𝑅𝑅𝑛𝑛���� 

One can estimate the variance covariance matrix using the historical data and input it to the 

classic Markowitz model. Or one can use a simple ranking algorithm developed by Elton 

[21]. 

The calculation of optimal portfolio by the simple ranking algorithm has three steps. 

1) Rank the securities based on the excess return to beta ratio 

𝑅𝑅𝑖𝑖� − 𝑅𝑅𝑜𝑜
𝛽𝛽𝑖𝑖
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2) Calculate the cut-off point C*. Those for which the excess return to beta is greater 

than the cut-off point C* will be held long. Otherwise, it will be held short. 

𝐶𝐶∗ =
𝜎𝜎𝑛𝑛2 ∑

(𝑅𝑅𝑖𝑖� − 𝑅𝑅𝑜𝑜)𝛽𝛽𝑖𝑖
𝜎𝜎𝜖𝜖𝑖𝑖2

𝑁𝑁
𝑖𝑖=1

1 + 𝜎𝜎𝑛𝑛2 ∑
𝛽𝛽𝑖𝑖

2

𝜎𝜎𝜖𝜖𝑖𝑖2
𝑁𝑁
𝑖𝑖=1

 

3) The proportion of the funds invested in each stock can be calculated by 

𝑧𝑧𝑖𝑖 =
𝛽𝛽𝑖𝑖
𝜎𝜎𝜖𝜖𝑖𝑖2

�
𝑅𝑅𝑖𝑖� − 𝑅𝑅𝑜𝑜
𝛽𝛽𝑖𝑖

− 𝐶𝐶∗� 

𝑥𝑥𝑖𝑖 =
𝑧𝑧𝑖𝑖

∑ 𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

The advantage of single index model is that it dramatically reduced the parameters needed in 

the model when the number of stocks is large, because it considers the correlation between 

any pair of stocks through the market proxy reducing the correlation need to be estimated. 

However, single index may have limited power in explaining the reality. So people explored 

multi-index model by extracting index using factor analysis or principal components analysis 

[22-25] which is out of the scope of this study. 

2.6 Multi-group model 

Elton pointed out that the main reasons why portfolio theory has not been implemented are 

the difficulty in estimating the input data necessary, the time and cost to solve the 

optimization problem, and the difficulty of educating portfolio managers. [21] He said that 

using the constant correlation between stocks can simplify the process by employing one 

number to estimate all the pair-wise correlation. However, doing this seems arbitrary since 

companies in different industries may differ so much from companies within one industry. So 
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he developed a more complex model, multi-group model, which groups companies by the 

industry they belong to. [26]. Assume the correlations for all pairs of stocks within group are 

the same 𝜌𝜌𝑖𝑖𝑖𝑖  and between groups are the same 𝜌𝜌𝑖𝑖𝑖𝑖 .  

So if use two groups and six stocks for example, the correlation matrix looks like 

𝜌𝜌 =

⎝

⎜
⎜
⎛

1 𝜌𝜌11 𝜌𝜌11
𝜌𝜌11 1 𝜌𝜌11
𝜌𝜌11 𝜌𝜌11 1

𝜌𝜌12 𝜌𝜌12 𝜌𝜌12
𝜌𝜌12 𝜌𝜌12 𝜌𝜌12
𝜌𝜌12 𝜌𝜌12 𝜌𝜌12

𝜌𝜌21 𝜌𝜌21 𝜌𝜌21
𝜌𝜌21 𝜌𝜌21 𝜌𝜌21
𝜌𝜌21 𝜌𝜌21 𝜌𝜌21

1 𝜌𝜌22 𝜌𝜌22
𝜌𝜌22 1 𝜌𝜌22
𝜌𝜌22 𝜌𝜌22 1 ⎠

⎟
⎟
⎞

 

As long as we get the variance covariance matrix estimate, we can use it as the input to solve 

the tangency to the efficient frontier using the classic Markowitz model as described in 

Section 2.4. 

Elton showed that although this model is a simplification of problem but it is efficient in both 

time and cost. 

2.7 Equally weighted model 

Victor, Lorenzo and Raman in their 2007 paper said that equally weighted portfolio 

outperforms the portfolios by 14 models in Sharpe ratio. [13] The reason for this might be the 

estimation error on the input to the model used.  

Using this strategy, the proportion of each stock is just 1
𝑁𝑁

 where N is the number of stocks 

without any optimization or estimation. Victor, Lorenzo and Raman also mentioned that this 

strategy can be thought of imposing a restriction that expected returns are proportional to 

total risk when estimating the expected return and variance covariance matrix. [13] 
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2.8 Bayesian model with noninformative prior 

All the models above do not involve the preference of the investor. If investor has his own 

prediction on the movement of stocks, then Bayesian model is preferred, in which prediction 

can be described by prior distribution. The return of stocks can be considered as multivariate 

normal distribution given expectation μ and variance covariance matrix ∑ [27].  

𝑅𝑅𝑝𝑝|𝜇𝜇, Σ ~ 𝑀𝑀𝑁𝑁(𝜇𝜇, Σ ) 

𝑝𝑝(𝑅𝑅𝑝𝑝 |𝜇𝜇, Σ ) = (2𝜋𝜋)−
𝐾𝐾
2 (det(Σ))−

1
2 exp�−

1
2

(𝑅𝑅𝑝𝑝 − 𝜇𝜇)𝑇𝑇Σ−1(𝑅𝑅𝑝𝑝 − 𝜇𝜇)� 

where t is the time spot and K is the stock number. 

If the prior distribution of μ and ∑ is given p(μ, ∑), then the posterior prediction for μ and ∑ 

is 

𝑝𝑝(𝜇𝜇, Σ |𝑅𝑅𝑝𝑝) ∝ 𝑝𝑝(𝑅𝑅𝑝𝑝|𝜇𝜇, Σ )𝑝𝑝(𝜇𝜇, Σ ) 

𝑝𝑝(𝜇𝜇, Σ |𝐷𝐷𝑝𝑝) ∝ (det(Σ))−
𝑝𝑝
2 exp�−

1
2
�(𝑅𝑅𝑖𝑖 − 𝜇𝜇)𝑇𝑇Σ−1(𝑅𝑅𝑖𝑖 − 𝜇𝜇)
𝑝𝑝

𝑖𝑖=1

�𝑝𝑝(𝜇𝜇, Σ ) 

where 𝐷𝐷𝑝𝑝 = (𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑝𝑝). So the predictive distribution of returns is given by 

𝑝𝑝(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) = �𝑝𝑝(𝑅𝑅𝑝𝑝+1, 𝜇𝜇, Σ |𝐷𝐷𝑝𝑝)𝑎𝑎𝜇𝜇𝑎𝑎Σ = �𝑝𝑝(𝑅𝑅𝑝𝑝+1|𝜇𝜇, Σ)𝑝𝑝(𝜇𝜇, Σ|𝐷𝐷𝑝𝑝)𝑎𝑎𝜇𝜇𝑎𝑎Σ 

∝ �𝑝𝑝(𝑅𝑅𝑝𝑝+1|𝜇𝜇, Σ)(det(Σ))−
𝑝𝑝
2 exp�−

1
2
�(𝑅𝑅𝑖𝑖 − 𝜇𝜇)𝑇𝑇Σ−1(𝑅𝑅𝑖𝑖 − 𝜇𝜇)
𝑝𝑝

𝑖𝑖=1

�𝑝𝑝(𝜇𝜇, Σ )𝑎𝑎𝜇𝜇𝑎𝑎Σ 

The noninformative prior can be chosen as 
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𝑝𝑝(𝜇𝜇, Σ) ∝ (det(Σ))−
𝐾𝐾+1

2  

So the predictive distribution of future returns is multivariate t with 

𝑝𝑝(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) ∝ �(𝑝𝑝 − 1)Σ� +
𝑝𝑝

𝑝𝑝 + 1
(𝑅𝑅𝑝𝑝+1 − 𝑅𝑅�)(𝑅𝑅𝑝𝑝+1 − 𝑅𝑅�)′ �

−𝐾𝐾+1
2

 

where 𝑅𝑅� = 1
𝑝𝑝
∑ 𝑅𝑅𝑖𝑖𝑝𝑝
𝑖𝑖=1  and Σ� = 1

𝑝𝑝−1
∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅�)(𝑅𝑅𝑖𝑖 − 𝑅𝑅�)′𝑝𝑝
𝑖𝑖=1 . Therefore, the expectation of the 

return is unchanged 𝐸𝐸(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) = 𝑅𝑅� and the variance covariance matrix is [28] 

Σ𝑝𝑝 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) = (1 +
1
𝑝𝑝

)
𝑝𝑝 − 1

𝑝𝑝 − 𝐾𝐾 − 2
Σ� 

Because Σ𝑝𝑝  is proportional to the standard maximum likelihood estimator Σ� and the return 

expectation is unchanged, the resulted portfolio composition is the same as the result 

obtained using the classic Markowitz model in Section 2.4.  

2.9 Bayesian model with informative prior 

Noninformative prior does not put any preference on the stocks while informative prior can 

be chosen that indicates the investor’s own prediction. Then in this hierarchical model the 

prior can be specified by the conditional structure 

𝜇𝜇|Σ ~ 𝑁𝑁(𝜇𝜇0, Σ) 

Σ ~ 𝑊𝑊𝑖𝑖𝑟𝑟ℎ𝑣𝑣𝑣𝑣𝑝𝑝−1(𝜈𝜈, 𝑆𝑆) 

The prior hyper-parameters (𝜇𝜇0, 𝜈𝜈, 𝑆𝑆) determine the portfolio manager’s strength of belief in 

the expected return and variance covariance matrix. Under this prior, the predictive expected 

return and variance covariance matrix is given by [27] 
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𝐸𝐸(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) =
(𝑝𝑝 × 𝑅𝑅� + 𝜇𝜇0)

𝑝𝑝
 

Σ𝑝𝑝 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) = 𝐶𝐶�Σ� + 𝑆𝑆 + 𝜇𝜇0𝜇𝜇0
𝑇𝑇 + 𝑝𝑝𝑅𝑅�𝑅𝑅�𝑇𝑇 − 𝑝𝑝𝐸𝐸(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝)𝐸𝐸(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝)𝑇𝑇� 

C = (1 +
1
t

)
ν + t

(ν + t − 2)(t − K − 2)
 

Then using 𝐸𝐸(𝑅𝑅𝑝𝑝+1|𝐷𝐷𝑝𝑝) and Σ𝑝𝑝 , the optimal portfolio can be found by method in Section 2.4. 

The choice of the hyper-parameters is quite subjective. If the investor has correct perfect 

prediction, then the resultant portfolio will outperform the market definitely. Otherwise, it 

depends on how well the investor can predict. In this study, two cases will be considered. 

One is to use the next period data and to predict perfectly. The other is to predict poorly, 

using identity matrix for variance covariance and historical average return as the expected 

return. And two portfolios will be compared. 

2.10 Summary of portfolio composition 

The summary of the portfolio composition using above models is shown in table 2.3. Total 

wealth is assumed to be 1. And because short sales are allowed, some of the proportions can 

be negative. From the table we can see that the classic Markowitz model generates the most 

fluctuation in the portfolio composition with the highest proportion 0.8678 and the lowest 

proportion -0.9174. As contrast, the equally weighted model generates the least fluctuation 

while other models are in between. It is because the covariance between paired stocks 

average out in the single index model and multi-group model. And in Bayesian models, the 

prior for variance covariance matrix is unlikely to have extreme values. Intuitively, it is 

unlikely to put all the money on one stock or to completely exclude one stock when people 

know little about it.  



19 
 

Table 2.3 Portfolio composition by different models 

 x_classic x_sim x_mgm x_equal x_bayes_
noninfo 

x_bayes_i
nfo_1 

x_bayes_i
nfo_2 

AAPL 0.8678 0.5672 0.5188 0.0400 0.8678 0.1780 0.4211 
IBM 0.7004 0.5947 0.5437 0.0400 0.7004 0.0579 0.5416 
INTC -0.7624 -0.0138 -0.0209 0.0400 -0.7624 0.0249 -0.0911 
MSFT 0.0756 0.0039 -0.0438 0.0400 0.0756 0.0218 -0.1662 
AMD 0.0077 -0.0147 -0.0388 0.0400 0.0077 0.0359 -0.0868 
GG 0.6657 0.1457 0.0382 0.0400 0.6657 0.1218 0.3558 
NAK -0.0652 0.0540 -0.0860 0.0400 -0.0652 0.0755 -0.0112 
POT 0.0012 0.2941 0.2415 0.0400 0.0012 0.1644 0.1125 
SSRI -0.6178 0.0004 -0.1624 0.0400 -0.6178 0.0286 -0.3932 
SCCO 0.1666 0.3333 0.1980 0.0400 0.1666 0.1397 0.1089 
C -0.3812 -0.3531 -0.2784 0.0400 -0.3812 -0.2339 -0.2834 
HBC -0.5110 -0.2224 -0.1470 0.0400 -0.5110 -0.0195 -0.3330 
MS -0.4445 -0.2624 -0.2761 0.0400 -0.4445 -0.0709 -0.3027 
AXP 0.1534 -0.0627 -0.0055 0.0400 0.1534 0.0203 0.2408 
BAC 0.2354 -0.1194 -0.0792 0.0400 0.2354 -0.0293 0.1793 
KO 0.0140 0.5199 0.6206 0.0400 0.0140 0.0464 0.5753 
PEP -0.9174 -0.0896 0.0787 0.0400 -0.9174 0.0079 -0.7339 
KFT 0.5265 -0.2421 -0.1380 0.0400 0.5265 -0.0097 0.1943 
FARM 0.0198 0.0394 0.1152 0.0400 0.0198 0.0248 0.0097 
REV -0.0329 0.0806 0.1098 0.0400 -0.0329 0.2276 -0.0276 
JNJ -0.3101 -0.0963 -0.0076 0.0400 -0.3101 0.0115 -0.3581 
DCTH 0.1776 0.1325 0.1296 0.0400 0.1776 0.1410 0.0925 
PFE 0.4325 -0.4977 -0.4109 0.0400 0.4325 -0.0202 0.0725 
ABT 0.6072 0.2084 0.1160 0.0400 0.6072 0.0205 0.7356 
EXEL 0.3912 0.0003 -0.0155 0.0400 0.3912 0.0349 0.1473 

 

Fig. 2.3 illustrates all the portfolios on the return-risk plot. Only the classic Markowitz 

portfolio locates on the efficient frontier. It is because the efficient frontier is constructed 

using the historical data that exactly used as input by classic Markowitz model. Some 

assumptions made by other models drive the expected return or variance covariance matrix 

as inputs away from the historical value, which makes the portfolio away from the tangency 
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of the efficient frontier. But this does not mean the portfolios are not efficient. Whether the 

model is useful or not should be judged using out-of-sample data and by some other 

parameters discussed in Chapter 3.  

 

Figure 2.3 Illustration of all the constructed portfolios on return-risk plot 

The expected return and portfolio risk as standard deviation is shown in table 2.4. 
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Table 2.4 Expected return and risk of portfolios 

 risk return 
classic 0.0617873 0.0768051 
sim 0.1291018 0.0846229 
mgm 0.1101773 0.0691142 
equal 0.0808054 0.0086957 
bayes_noninfo 0.0617873 0.0768051 
bayes_info_1 0.1211359 0.0484694 
bayes_info_2 0.053708 0.0562133 

 

So far we have construct 7 portfolios, in which the composition of the classic Markowitz 

portfolio and the Bayesian noninformative prior portfolio are exactly the same. So we will 

ignore the Bayesian noninformative prior portfolio in the following chapter. In the next 

chapter, we will take out-of-sample data to test which portfolio gives better performace. 
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Chapter 3 Out-of-Sample Study 

3.1 Study objective 

Out-of-sample study has been performed to compare the risk-adjusted returns of portfolios 

constructed in Chapter 2. The study is conducted by employing monthly return data from 

January 2010 to December 2011. The purpose of the study is to investigate which portfolio 

construction strategy outperforms others and whether it is useful for tactical asset allocation. 

The statistic summary of the data in this period can be found in Table 3.1. 

Table 3.1 Statistic summary of data for January 2010 to December 2011 

Ticker Average Return Risk (standard deviation) 
AAPL 0.02971956 0.2759133 
IBM 0.016622104 0.2025124 
INTC 0.012459457 0.2796206 
MSFT -0.002451406 0.3008658 
AMD -0.014620128 0.4519047 
GG 0.010352792 0.2327229 
NAK 0.012097976 0.5648561 
POT 0.013352818 0.3182764 
SSRI -0.007615403 0.4082401 
SCCO 0.008694919 0.4130049 
C -0.004166464 0.3921553 
HBC -0.011724494 0.2968206 
MS -0.020152666 0.4235802 
AXP 0.010201432 0.3019058 
BAC -0.034652186 0.3754697 
KO 0.01176165 0.1864108 
PEP 0.00690118 0.1824112 
KFT 0.016995595 0.183904 
FARM -0.028279946 0.3159098 
REV 0.005654706 0.4145067 
JNJ 0.004473482 0.1790721 
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DCTH 0.019769931 0.5413247 
PFE 0.01222696 0.2242739 
ABT 0.005505359 0.1921184 
EXEL 0.006703688 0.5521267 
SPY 0.007656358 0.2894599 

 

3.2 Portfolio performance measurement methods 

To measure the performance of portfolio, people usually have three sets of tools. They are 

Treynor ratio, Sharpe ratio and Jensen’s alpha [29]. All these methods combine the risk and 

return into a single value to judge the overall performance besides each is slightly different 

from the other. 

Treynor ratio considers the excess return regarding the relative risk of the portfolio to the 

market. The formula is 

𝑇𝑇𝑣𝑣𝑣𝑣𝑇𝑇𝑛𝑛𝑜𝑜𝑣𝑣 𝑅𝑅𝑣𝑣𝑝𝑝𝑖𝑖𝑜𝑜 =
𝑅𝑅𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 − 𝑅𝑅𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣

𝛽𝛽𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜
 

The higher the Treynor ratio, the better the performance is. However, because this measure 

only uses systematic risk, it pre-assumes that the investor already has an adequately 

diversified portfolio and unsystematic risk is not considered. 

Sharpe ratio is similar to Treynor ratio except that the risk measure uses the absolute risk of 

the portfolio, the standard deviation. It can be expressed as 

𝑆𝑆ℎ𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣 𝑅𝑅𝑣𝑣𝑝𝑝𝑖𝑖𝑜𝑜 =
𝑅𝑅𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 − 𝑅𝑅𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣

𝜎𝜎𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜
 

As the same as Treynor ratio, the portfolio performance is better with higher Sharpe ratio. 
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Jensen’s alpha calculates the excess return that a portfolio generates over its expected return. 

It measures how much a portfolio’s return is above average return adjusted for market risk. It 

can be expressed as 

𝐽𝐽𝑣𝑣𝑛𝑛𝑟𝑟𝑣𝑣𝑛𝑛′𝑟𝑟 𝐴𝐴𝑝𝑝𝑝𝑝ℎ𝑣𝑣 = 𝑅𝑅𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 − 𝑅𝑅𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 − 𝛽𝛽𝑝𝑝𝑜𝑜𝑣𝑣𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜 × �𝑅𝑅𝑛𝑛𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑝𝑝 − 𝑅𝑅𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 � 

The higher the value, the better the risk adjusted return is. Like the Treynor ratio, Jensen’s 

alpha uses beta, a systematic risk, and thus assumes the portfolio is already adequately 

diversified. 

The three performance measures may yield substantially different performance rankings. So 

it really depends if we want to find an optimal measurement to evaluate portfolio 

performance. Generally speaking, to evaluate an entire portfolio held by an investor, the 

Sharpe ratio is appropriate. To evaluate securities or portfolios for possible inclusion in a 

broader or "master" portfolio, either the Treynor ratio or Jensen's alpha is appropriate. The 

Treynor ratio and Jensen's alpha are really very similar; the only difference being that the 

Treynor ratio standardizes everything, including any excess return, relative to beta. 

3.3 Portfolio performance 

During out-of-sample study period January 2010 to December 2011, the monthly returns of 

the constructed portfolios are shown in Fig. 3.1. The S&P500 monthly return is also plotted 

on the figure to represent the market return. 
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Figure 3.1 Monthly return of portfolios for January 2010 to December 2011 period 

The portfolio return is quite fluctuated with the market that we cannot tell which one has 

higher return. If a two-year holding period is assumed, we could exam how much wealth will 

be built up for these portfolios. The relative wealth added as a percentage of initial wealth is 

calculated and illustrated in Fig. 3.2. 
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Figure 3.2 Relative wealth added as percentage of initial wealth 

Although the wealth fluctuates, the overall trend is wealth increasing during this period. If 

one want to invest following the market, his wealth will only increase 17% of the initial 

wealth. The equally weighted portfolio performs even worse. It only increases 2% of the 

initial wealth. The highest wealth added is from classic Markowitz portfolio, which adds 3 

times more wealth to the initial. Bayesian informative prior model 2 adds 2 times wealth. The 

next tier is SIM portfolio and Multi-group portfolio with 1.7 and 1.5 times wealth added 

respectively. Following is Bayesian informative prior model 1 adding 43% wealth to the 

initial. 

Fig. 3.3, Fig. 3.4 and Fig. 3.5 shows the distribution for Treynor Ratio, Sharpe Ratio and 

Jensen’s Alpha respectively. 
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Figure 3.3 Distribution of Treynor Ratio 

As we can see from Treynor ratio, the classic Markowitz portfolio has the highest mean value 

and the multi-group portfolio has the lowest value. And there exists extreme values in multi-

group portfolio. One possible reason is the portfolio is not well diversified as required by the 

valid usage of Treynor ratio. 
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Figure 3.4 Distribution of Sharpe Ratio 

By Sharpe ratio, the portfolio by Bayesian model with informative prior 2 gives highest value 

and the equally weighted portfolio has the lowest value. The mean values and ranges 

between different portfolios seem comparable and not extremely large or extremely small.  
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Figure 3.5 Distribution of Jensen’s Alpha 

Using Jensen’s Alpha, we got similar ranking as that with Treynor ratio. It is because both of 

them use systematic risk as the compensation factor. But multi-group portfolio now is not the 

lowest ranking. It is because the beta of multi-group portfolio is almost zero which will 

enlarge the effect in the ratio form. And because Jensen’s Alpha is measured by excess return 

form, not the ratio form, it has little extreme values.  

3.4 Performance comparison 

As an individual investor, one should look at Sharpe ratio to evaluate the best portfolio. 

According to the average Sharpe ratio for these portfolios, the ascending rank order is  
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Table 3.2 Sharpe ratio rank for different model portfolios 

Bayesian 

informative 

prior model 

2 

Classic 

Markowitz 

model 

Bayesian 

noninfomative 

model 

Multi-

group 

model 

SIM Bayesian 

informative 

prior model 

1 

Equally 

weighted 

model 

0.945664 0.613759 0.613759 0.504530 0.453411 0.205229 0.044914 

 

Hence, the Bayesian model with informative prior performs best and equally weighted model 

performs worst.   
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Chapter 4 Discussion and Conclusion 

In this study, we first introduced and discussed different points of view of modern portfolio 

theory. Main issue is focused on how to judge a diversified portfolio. One group of people 

believes that there exists an optimal stock number making the marginal benefit equal the 

marginal cost of diversification. However, due to the different diversification strategies, the cost 

varies case by case. Thus, it is hard to achieve a universal consensus on the number of stocks that 

should be included. On the other hand, another group of people argue that instead of seeking the 

optimal stock number, one should ask the excess return to the current diversification level. And a 

good strategy is to maximize this excess return or to minimize the risk at a certain diversification 

level. Then we reviewed the portfolio management process and decided to focus on the 

execution step to construct portfolios by six strategies, which are classic Markowitz model, 

single index model, multi-group model, equally weighted model, Bayesian portfolio selection 

including noninformative prior approach and informative prior approach. The details of each 

strategy can be found in Chapter 2. Monthly return data from yahoo finance online are used. 

“stockPortfolio” package in R is used for construct the portfolios employing different models. As 

to the measurement of the portfolio performance, three parameters are defined, which are 

Treynor Ratio, Sharpe Ratio and Jensen’s Alpha. Among these parameters, Treynor Ratio and 

Jensen’s Alpha are using Beta as the risk measurement by assuming an already diversified 

portfolio and are suitable for evaluating mutual funds, portfolio manager and inclusion or 

exclusion of stock to the existing portfolio. Sharpe Ratio is suitable for individual investor since 

the standard deviation is used for the measurement of risk. Then assuming as an individual 
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investor, according to the Sharpe Ratio measurement, portfolio constructed by Bayesian model 

with informative prior outperforms others, while equally weighted portfolio performs worst.  

Although five industries are included, the choice of individual stock is random as a naïve 

investor. One can include more industries to future diversify the portfolio. Or one can vary the 

stock number based on one’s own transaction cost consideration. The dataset is from monthly 

stock return. To include more information, one can instead use daily return data. One 

shortcoming of the study is that we did not consider a continuous rollover portfolio performance, 

which means the rebalance period and cost are not considered. But as long as we can get specific 

transaction cost, it can be easily included. The performance measurement is on a two-year period 

because after two years, the correlation and return information are usually changed and should be 

re-estimated. Moreover, based on IPS (investment purpose statement), the investment object and 

constraints should be updated which may cause the re-construct of the portfolio. In order to get 

outperformed portfolio, the estimate of expected return and variance covariance matrix is very 

important for Bayesian model with informative prior. In this study, we demonstrate the usage of 

different models in the portfolio construction and get the conclusion that Bayesian model with 

informative prior which is the accurate prediction of the future outperforms others. But this does 

not mean other models are useless. Obviously we could see all the portfolios outperform the 

market from relative wealth added. But because of the complexity and the ability to access the 

accurate data, people may choose different models by its own limitation. 
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