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Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum anti-
bacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and
bacteria has been reported, and improved second-generation metronidazole analogues are needed. The
copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new
libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles)

have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting
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Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was
observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most
potent Mtz-triazoles, the activity remained in a therapeutically relevant window.

© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For over 50 years the 5-nitroimidazole antibiotic metronidazole
1 has been in clinical use as a broad-spectrum agent for treatment
of Gram-positive and Gram-negative anaerobic bacterial infections
as well as parasitic infections [1]. Reduction of the nitro group to
the nitro radical anion by electron carriers in an anaerobic envi-
ronment leads to decomposition to form toxic metabolites, which
cause DNA damage and nonspecific macromolecular damage
leading to cell death [2]. However, metronidazole resistance has
been observed in both parasites [3,4] and anaerobic bacteria [5,6].
Over the last ten years metronidazole has also been extensively
used to treat Clostridium difficile infection (CDI), an intestinal
infection that causes life-threatening severe diarrhea, abdominal

Abbreviations: MIC, minimum inhibition concentration; Mtz, metronidazole;
MtzS, metronidazole sensitive; MtzR, metronidazole resistant.
* Corresponding author.
E-mail address: m.cooper@ug.edu.au (M.A. Cooper).
T Current address: Progen Pharmaceuticals Limited, Darra, Queensland, 4076,
Australia.

http://dx.doi.org/10.1016/j.ejmech.2015.06.019

pain and fever [7]. The spores produced by C. difficile are resistant to
heat and alcohol based disinfectants, complicating eradication and
promoting hospital-based outbreaks. Metronidazole is one of three
antibiotics routinely prescribed to treat the disease [8]. Metroni-
dazole is effective against mild to moderate C. difficile infection, but,
while not wide-spread, resistance has been observed in clinical
isolates [9]. To this end, the development of next generation
metronidazole analogues that can overcome resistance is thera-
peutically important.

Beena et al. previously reported the synthesis of metronidazole-
triazole conjugates (Mtz-triazoles) with potent activity (reported as
IC5¢ values 0.06—0.35 pg/mL) against the facultative anaerobic
bacteria Staphylococcus aureus, Staphylococcus epidermis, Escher-
ichia coli and Pseudomonas aeruginosa [10]. Metronidazole is
generally not active against Gram-negative and Gram-positive
facultative anaerobic bacteria, so the potent activities of Mtz-
triazoles observed by Beena et al. are suggestive of a different
mode of action to metronidazole. Given that the active 5-
nitroimidazole core (“warhead”) in metronidazole is maintained
in Mtz-triazoles, and that the hydroxyl group of metronidazole is
amenable to modification [11] (Fig. 1), we reasoned that this class

0223-5234/© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Metronidazole contains the 5-nitroimidazole warhead and a hydroxyl group
amenable to modification.

might also exhibit potent activity against the anaerobic bacteria
and parasites for which metronidazole is used as a treatment.
Therefore, we believed Mtz-triazoles warranted further investiga-
tion for both antimicrobial and antiparasitic activity under anaer-
obic conditions.

Independently, during the course of this work, Miyamoto et al.
[12] reported a similar approach to Mtz-triazoles, prepared by re-
action of six different 5-nitroimidazole azides with a library of al-
kynes. The compounds were prepared for testing by dilution of the
crude reaction mixtures (>85% purity by LCMS) with dimethyl
sulfoxide. This methodology bypassed the bottleneck of compound
purification and characterization and allowed for the rapid
assessment of activity. The solutions of crude material were tested
against the parasites Giardia lamblia and Trichomonas vaginalis, the
microaerophilic bacteria Helicobacter pylori, the anaerobes
C. difficile and Bacteroides fragilis and the facultative anaerobic
bacteria E. coli. It is possible that the crude mixtures contained
unreacted starting azide 3, which we have shown in this study
retains activity, and may influence the reported crude compound
potency. A key finding by Miyamoto was that Mtz-triazoles were
often active against metronidazole resistant (MtzR) strains of
T. vaginalis (47% of compounds) and G. lamblia (100% of com-
pounds), but not against H. pylori frxA and rdxA double mutant (1.4%
of compounds) [12]. From this result, we hypothesized that Mtz-
triazoles may possess activity against metronidazole resistant C.
difficile. More recently Beena et al. described the activity of Mtz-
triazoles against the anaerobic protozoan Entamoeba histolytica
[13]. They tested a library of 10 Mtz-triazoles and found 4a, 4h, 4p
and 4q to have potent activity (ICso = 0.008—2.36 uM) against
E. histolytica HM1: IMSS [13].

We now report an expansion and advancement of these ap-
proaches with the synthesis of a small library of purified Mtz-
triazoles 4a-t (>95% purity, Scheme 1), including ten novel de-
rivatives (4b, 4c, 4f, 4g, 4i, 4j, 41, 40, 4s and 4t). We also explore the
antimicrobial and antiparasitic properties of the set of Mtz-
triazoles and the parent azide 3 (>95% purity) and determine
their activity against additional microbial targets that have not
previously been examined. We evaluated the activity of Mtz-
triazoles against the parasites E. histolytica and G. lamblia, multi-
ple pathogenic strains of the anaerobe C. difficile, the micro-
aerophile H. pylori and the facultative anaerobic bacterial ESKAPE
pathogens E. coli, methicillin resistant S. aureus (MRSA), Klebsiella
pneumoniae, Acinetobacter baumanni and P. aeruginosa. The anti-
bacterial activity was measured against a stable MtzR C. difficile
strain (CD26A54_R), the parent C. difficile strain with elevated
metronidazole minimum inhibitory concentration (MIC)
(CD26A54_S) and MtzR H. pylori clinical isolates, while cytotoxicity
of the compounds was evaluated against mammalian liver (HepG2)
and kidney (HEK293) cell lines.

2. Materials and methods
2.1. Synthesis of Mtz-triazole library

Mtz-triazoles were synthesized from metronidazole via an azide
intermediate by activation of the hydroxyl group with meth-
anesulfonyl chloride (Scheme 1). Displacement of methanesulfo-
nate 2 with sodium azide provided the desired azide 3 by
nucleophilic substitution. The azide substituent was then reacted
with a library of alkynes to give 4a-t by copper-catalysed Huisgen
1,3-dipolar cycloaddition with copper sulfate and sodium ascorbate
in methanol, with heating to 45 °C and/or additional reagents
added if monitoring indicated the reaction was incomplete. All al-
kynes utilized were commercially available with the exception of
pyrazole alkyne 6. Pyrazole alkyne 6 was prepared by reacting
pyrazole 5 with propargyl bromide in the presence of potassium
carbonate and t-butylammonium bromide as a phase transfer
catalyst (Scheme 1) [14]. All compounds were characterized by 'H
and 3C NMR, LCMS and HRMS and detailed experimental pro-
cedures and characterization are provided in the supplementary
information.

2.2. MIC assays

All compounds were tested for activity against a set of anaerobic
C. difficile bacteria (630 ATCC BAA-1382, NAP1/027 M7404, NAP1/
027 ATCC BAA-1803, VPI10463 ATCC 43255, CD26A54_S and
CD26A54_R) and representative ESKAPE pathogens S. aureus
(MRSA ATCC 43300), E. coli (ATCC 25922), K. pneumoniae (ATCC
700603), A. baumannii (ATCC 19606) and P. aeruginosa (ATCC
27853) using a standard broth microdilution assay. Selected com-
pounds were tested for activity against H. pylori strains (26695, and
clinical isolates MtzS 13/25, MtzR 98/285 and MtzR 13/61) using
agar plate dilution, and for antimicrobial activity against twelve
Gram-positive bacterial strains: Enterococcus faecalis (VanA clinical
isolate), Enterococcus faecium (MDR VanA ATCC 51559), Strepto-
coccus pneumoniae (MDR ATCC 700677), S. aureus (MRSA ATCC
43300, MRSA clinical isolate, MRSA/DRSA clinical isolate, GISA
NARSA NRS 1, GISA NARSA NRS 17, VRSA NARSA VRS1, VRSA NARSA
VRS4 and VRSA NARSA VRS10) using broth microdilution. C. difficile
strains were grown at 37 °C in a COY anaerobic chamber (5% H3, 10%
COy,, 85% Ny). H. pylori strains were grown at 37 °C under a
microaerobic atmosphere (5% O, 10% CO5). All facultative anaerobic
bacteria were grown at 37 °C with normal atmospheric oxygen
levels. All experiments were performed in duplicate with metro-
nidazole, vancomycin, linezolid or colistin as positive controls for
relevant strains (see Table 1). Positive growth control of bacteria
and DMSO as well as a negative control of only media were
included for every plate. Full assay details are provided in the
supplementary information.

2.3. Antiparasitic assays

Compounds were tested for antiparasitic activity against
E. histolytica (HM1:1MSS strain) and G. lamblia (WB, BRIS/87/HEPU/
713 (713) [15], BRIS/83/HEPU/106 (106) [16] and the metronidazole
resistant syngeneic line 713-M3 [15,16]) wusing an ATP-
bioluminescence based screen for cell growth and survival [17,18].
Assay plates were inoculated with trophozoites (5 x 103 parasites/
well) and incubated in the GasPak™ EZ Anaerobe Gas Generating
Pouch Systems (VWR, West Chester, PA) to maintain anaerobic
conditions throughout the incubation period. The assays were
performed in triplicate using the CellTiter-Glo Luminescent Cell
Viability Assay [17]. Metronidazole was used as a positive control.
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Scheme 1. Synthesis of metronidazole-triazole conjugate library. i) MsCl, TEA, DCM, 2 °C to rt, 80 min, 85% yield ii) NaN3, DMF, 50 °C, 21 h, quant. yield iii) CuSO4, sodium ascorbate,
MeOH, 1t or 45 °C, 20 min—48 h, 9-97% iv) propargyl bromide (80% w/v in toluene), K,CO3, TBAB, rt, 3 days, 16%.

2.4. Cytotoxicity

Compounds were tested for cytotoxicity against mammalian
HepG2 and HEK293 cell lines, as detailed in the supplementary
information.

3. Results and discussion
3.1. Design of metronidazole-triazole conjugate library

The Mtz-triazole library was designed to contain a variety of
structural groups with some compounds identical to those reported
by Beena et al. (4a, 4h, 4p and 4q) [10]. Initial results against
C. difficile showed that hydrophobic 4a (R = phenyl) maintained
activity relative to metronidazole 1 while more hydrophilic 4p
(R = hydroxyethyl) and 4q (R = hydroxymethyl) lost activity.
Therefore the subsequent library was biased towards exploring
variance of the aromatic ring substitutions, extension of the posi-
tion of the aromatic ring relative to the triazole core and replace-
ment of the phenyl group with various heterocycles, with several of
the latter selected due to their rating in terms of medicinal chem-
istry ‘developability’ [19]. Amine 4t, and acids 4r and 4s were
included to explore the structure activity relationships of non-
aromatic ionisable groups. Compounds 4a, 4d, 4e, 4h, 4k, 4m, 4n,

4q and 4r were reported by Miyamoto [12], but 4a, 4h and 4q were
not tested against C. difficile. Compounds 4b, 4c, 4f, 4g, 4i, 4j, 41, 40,
4s and 4t are described for the first time.

3.2. Antimicrobial and antiparasitic activity of metronidazole-
triazole conjugates

The antimicrobial and antiparasitic spectrum of action of Mtz-
triazoles was assessed against the anaerobic bacteria C. difficile
and the anaerobic parasites E. histolytica and G. lamblia (Table 1).
Variations to the phenyl group of 4a were well tolerated and ac-
tivity of 4b-e was maintained against C. difficile, E. histolytica and
G. lamblia (Table 1). Phenyl derivatives 4a-e were several fold more
active against G. lamblia than metronidazole. Pyridine 4h and
thiophene 4n heterocycles also possessed broad-spectrum activity
against C. difficile, E. histolytica and G. lamblia. However, we found
that 4h was not as potent compared to metronidazole in the ATP-
bioluminescence parasite assay in contrast to the eosin-stain
method used by Beena et al. [13] The pyrazole 4g and pyrimidine
4i-j maintained activity against C. difficile within one to two 2-fold
dilutions of metronidazole. Compounds 4g and 4i-j were still active
against G. lamblia compared to metronidazole, but were several
fold less potent than the phenyl derivatives 4a-e. The pyrazole 4g
and pyrimidines 4i-j did not inhibit E. histolytica at 25 puM, showing
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Table 1
Activity of Mtz-triazoles against C. difficile, ESKAPE bacteria, E. histolytica and G. lamblia.

Compound MIC (pg/mL) ECs0 (uM)

C. difficile® ESKAPE bacteria" E. histolytica G. lamblia

630° VPI 10463¢ NAP1/027¢ NAP1/027¢ NAP1/027f NAP1/0278 HM1:IMSS WB

MtzS MtzS MtzS MtzS MtzS MtzR MtzS MtzS
1 metronidazole 0.5 0.5 0.5 0.5 1 4 >32 5 7.9

azide 1 0.5 0.5 0.5 2 8 >32 2.1 1.5

4a phenyl 0.5 0.25-0.5 0.5 0.5 1 2 >32 4.2 0.25
4b p-OMe-phenyl 0.5 0.25-0.5 0.5 0.5 1 4 >32 4.8 0.27
4c p-Cl-phenyl 0.5 0.25 0.25 0.25 2 16 >32 3.6 0.20
4d p.m-Cl-phenyl 0.5 0.5-1 1 1 1 8-16 >32 5.2 0.39
4e p-Me-phenyl 0.5 0.25 0.5 0.5 1 2 >32 3.7 0.18
4f methyl ester 1 1 1 1 2 4 >32 >25 3.0
4g pyrazole 1 1 1 1 2 4 >32 >25 49
4h pyridine 0.5 0.5 0.5 0.5 1 4 >32 4.6 0.74
4i 5-pyrimidine 1 1 0.5-1 1 1 4 >32 >25 33
4j 2-pyrimidine 2 2 2 2 2-4 4 >32 >25 1.7
4k benzyl 0.5 0.25-0.5 0.5 0.5 1 4 >32 1.9 0.70
41 CHOH-phenyl 1 0.5 1 0.5-1 2 4 >32 >25 44
4m CH,;NMe-benzyl 2 1-2 1 2 2 8 >32 4.6 1.6
4n thiophene 0.5 0.25-0.5 0.5 0.5 1 2 >32 3.8 0.37
40 thiomorpholine >64 >64 >64 >64 >64 >64 >32 >25 >25
4p CH,CH,0H 8 8 16 8 8 16 >32 >25 >25
4q CH,OH 16 16 16-32 16 16-32 16 >32 >25 >25
4r CH,CH,COOH >64 >64 >64 >64 >64 >64 >32 >25 >25
4s COOH 64 64 64 64 >64 >64 >32 >25 >25
4t CH,;NH, >64 >64 >64 >64 >64 >64 >32 >25 >25

2 MIC results determined against CD26A54_S and CD26A54_R after 48 h growth, all other C. difficile strain MIC results determined at 24 h. See Supplementary Table 1 for MIC
at 24 h for CD26A54_S and CD26A54_R and at 48 h for ATCC BAA-1803. C. difficile MICs are the median of at least n = 4, except for CD26A54_R where n = 8. ESKAPE pathogen
MICs were performed in a single concentration screen with n = 3. ECso results n = 3PATCC BAA-1382°ATCC 43255.9M7404.°ATCC BAA-
1803.f[cD26A54_S.8CD26A54_R."S. aureus MRSA (ATCC 43300), E. coli (ATCC 25922), K. pneumoniae (ATCC 700603), A. baumannii (ATCC 19606) and P. aeruginosa (ATCC 27853).

that the R group can be used as a handle to tune the selectivity of
this class towards different organisms. Compound 4k (benzyl) and
4m (CH,NMe-benzyl) maintained broad-spectrum activity but 41
(CHOH-phenyl) was inactive against E. histolytica at 25 pM.

Several compounds were inactive, or weakly active, against all
three microorganisms at the highest concentration tested. These
included the non-aromatic thiomorpholine dioxide 40, amine 4t
and the carboxylic acids 4r and 4s. The methyl hydroxyl 4q and
ethyl hydroxyl 4p were inactive against E. histolytica and G. lamblia
and weakly potent against C. difficile, continuing the trend of
reduced activity with more polar substituents.

We also demonstrate that the parent azide 3 possesses potent
activity against C. difficile, E. histolytica and G. lamblia. Therefore,
when assessing combinatorial-like libraries of crude material for
biological activity, the activity of any unreacted parent compounds
is an important consideration, particularly when the compound
warhead is maintained.

The MICs of 1, 3 and 4a-t were >32 pg/mL against the repre-
sentative ESKAPE pathogens (MRSA, E. coli, K. pneumoniae,
A. baumannii and P. aeruginosa) tested under aerobic conditions. In
addition, the MIC values of a subset of compounds (metronidazole
1, azide 3, 4a (phenyl) and 4q (CH,0H)) were all >64 pg/mL against
a panel of 8 additional drug resistant S. aureus strains, vancomycin
resistant E. faecalis, vancomycin resistant E. faecium and multidrug
resistant S. pneumoniae. This lack of activity is contrary to Beena's
report, but consistent with the reported inactivity of 378 Mtz-
triazoles against E. coli in Miyamoto's study, and the inactivity of
metronidazole against facultative anaerobic bacteria.

3.3. Activity of metronidazole-triazole conjugates against C. difficile
strain panel

The activity of the Mtz-triazoles did not vary significantly
against multiple strains of C difficile, including two major

pathogenic strains of NAP1/027 and a VPI10463 strain associated
with epidemics (Table 1). The MICs of individual compounds typi-
cally remained within one 2-fold dilution against the four strains of
C. difficile tested. This is important, as viable drug candidates must
possess appropriate broad strain coverage. A review of antibiotic
drug candidates in development found that activity against multi-
ple strains of C. difficile could vary substantially [20]. This can be
explained since C. difficile has a highly mobile, mosaic genome and
there is wide strain diversity between isolates [21,22]. Isolates can
be divided across five main phylogenetic clades, multiple ribotypes
and toxinotypes [23]. Recently, genomic epidemiology studies
examining and tracking C. difficile outbreaks in Europe found that a
high proportion of strains causing infection were not related to
prior infectious strains [22]. Therefore, there is a large pool of
genetically diverse strains in the community and selection and
spread of intrinsically resistant strains could occur. However, the
broad-strain activity of Mtz-triazoles against C. difficile in this study
encourages further development of this class.

3.4. Activity of metronidazole-triazole conjugates against
metronidazole resistant C. difficile

While metronidazole resistance has been reported in the clinic
[9,24], performing antimicrobial susceptibility testing against
resistant C. difficile isolates is problematic since the resistance
phenotype is unstable and often reported to be lost on freeze thaw
cycles or on passaging of the isolates [5]. However, Lynch et al. have
reported a stable metronidazole resistant (MtzR) C. difficile clone
[25]. The activity of Mtz-triazoles was assessed against this stable
MtzR strain of C. difficile (CD26A54_R) and the parent metronida-
zole sensitive (MtzS) (CD26A54_S) strain, which lost the metroni-
dazole resistance on freeze thawing, but still retained a slightly
elevated MIC value to metronidazole compared to the control MtzS
NAP1/027 strain. The MIC to metronidazole in BHIS broth at 48 h
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was lower than the metronidazole MIC determined by E-test on
BAKHS (4 pg/mL vs 48 ug/mL), similar to values reported by Chong
et al. (8 ug/mL vs > 32 pg/mL) [26].

The resistance to metronidazole became more apparent on in-
cubation in broth for 48 h (MIC = 2 ug/mL after 24 h incubation vs
MIC = 4 pg/mL after 48 h) (Supplementary Table 1). In contrast,
MICs against the control MtzS NAP1/027 strain ATCC 1803 did not
change significantly between 24 h and 48 h (Supplementary
Table 1). Although several compounds (4a, 4e and 4n) were
active against MtzR C. difficile at 1 dilution lower than metronida-
zole (MIC = 2 pg/mL vs 4 ug/mL), none of the Mtz-triazoles were
active against MtzR C. difficile at levels comparable to the activity of
metronidazole against MtzS strains (MIC = 0.5 pg/mL). Reduced
activity against the parent C. difficile strain CD26A54_S with inter-
mediary metronidazole susceptibility was also observed.

3.5. Activity of metronidazole-triazole conjugates against
additional G. lamblia strains including metronidazole resistant G.
lamblia

Selected compounds (4a-f, 4h, 4k-n) were tested against two
additional strains of MtzS G. lamblia (106 and 713) and one MtzR
strain (713-M3) derived from the parent MtzS strain 713 (Table 2).
The Mtz-triazoles displayed similar activity against the additional
MtzS strains (106 and 713) compared to G. lamblia strain WB.
Encouragingly, the Mtz-triazoles were all more potent than
metronidazole against MtzR G. lamblia 713-M3. However, with the
exception of 4d, all of the Mtz-triazoles lost activity against the
MtzR G. lamblia 713-M3 when compared to the parent MtzS strain
713, similar to the loss of activity against MtzR C. difficile. Mtz-
triazoles of scaffold 4 were also all observed by Miyamoto et al.
to lose activity against MtzR G. lamblia 713-M3 and 106-2ID10.
However, while activity diminished against the MtzR 713M strain,
the Mtz-triazoles were often still much more potent than metro-
nidazole itself, meaning that the ECs9 remained within a thera-
peutically meaningful window.

The activities of purified Mtz-triazoles (>95% purity) against
G. lamblia strains 106, 713 and 713M were compared with the
literature activities [12] determined with crude reaction mixtures
(Supplementary Table 3). The activities were generally in close
agreement, supporting the methodology used by Miyamoto [12],
although a 3.7—8 fold difference was observed for Mtz-triazoles 4d,
4e and 4m against 1 strain of G. lamblia.

Table 2
ECso of selected Mtz-triazoles against G. lamblia strains. The ECso values for
G. lamblia WB strain are shown from Table 3 for comparison.

Compound ECs0 (M)

G. lamblia

WB 106 713 713M

MtzS MtzS MtzS MtzR
1 metronidazole 7.9 2.8 23 17
4a phenyl 0.25 0.28 0.16 23
4b p-OMe-phenyl 0.27 0.64 0.64 1.0
4c p-Cl-phenyl 0.20 0.89 1.2 3.5
4ad p,m-Cl-phenyl 0.39 1.1 2.5 1.2
4e p-Me-phenyl 0.18 0.29 0.29 1.0
af methyl ester 3.0 2.0 1.8 3.1
4h pyridine 0.74 0.38 0.28 0.95
4k benzyl 0.70 0.51 0.32 1.1
41 CHOH-phenyl 44 22 24 3.0
4m CH;NMe-benzyl 1.6 1.1 0.71 2.2
4n thiophene 0.37 0.34 0.18 0.9

3.6. Activity of metronidazole-triazole conjugates against
metronidazole resistant H. pylori

Selected compounds (4f-h, 4m and 4s) were tested against a
panel of H. pylori strains using the CLSI agar dilution susceptibility
method (Table 3) [27]. These strains included the reference strain
26695 and three clinical isolates 13/25 (metronidazole E-test
MIC = 2 pg/mL), 98/285 (E-test MIC = 24 pg/mL) and 13/61 (E-test
MIC = 256 pug/mL) with a range of resistance levels to metronida-
zole determined by the E-test. The susceptibilities of the strains to
metronidazole determined by the agar dilution method differed
from the susceptibilities obtained from the E-test as has been
described previously [28]. The methyl ester 4f was weakly active
against H. pylori, while the carboxylic acid 4s was inactive against
all H. pylori strains as observed with E. histolytica and G. lamblia as
well. Compounds 4g, 4h and 4m were more active than metroni-
dazole against the MtzS strains (26695 and clinical isolate 13/25)
and 1-2 dilutions more active than metronidazole against the MtzR
strains (clinical isolates 98/285 and 13/61) but they could not
completely overcome metronidazole resistance, similar to the loss
of activity against metronidazole resistant C. difficile.

3.7. Cytotoxicity

All compounds, including metronidazole 1, azide 3, and 4a-t
showed no cytotoxicity against HepG2 and HEK293 cells at con-
centrations up to 100 pM (CCsp). This is consistent with the findings
by Miyamoto et al. which did not observe cytotoxicity against HeLa
cells at 50 uM [12].

3.8. Relationship of compound activity with compound properties

In order to understand the relationship between compound
properties and activity, compound properties including logP (or
logD at pH = 7.4), molecular weight, topological polar surface area
(tPSA), and predicted solubility (logS) were examined for correla-
tion with activity against MtzS strains of C. difficile, E. histolytica and
G. lamblia, with the activity expressed as pMIC (-log1oMIC) or pECsg
(-log10ECsp)) (Supplementary Table 4). Inactive compounds were
included in the analysis at the highest concentration of compound
tested. A correlation can be observed between the logD values and
the activity against G. lamblia (with R? (linear regression) = 0.84,
Supplementary Fig. 1) (Fig. 2). The logD of the most potent com-
pounds (4a-e, 4h, 4k and 4n) against G. lamblia is between 1.5 and
3.0, with activity decreasing with lower logD. In contrast, only a
mild correlation could be detected between logD and the activity
against C. difficile (R*> = 0.68, Supplementary Fig. 1) and no corre-
lation for activity against E. histolytica (R?> = 0.48, Supplementary
Fig. 1). This might explain why the compounds with aromatic

Table 3
MIC of selected Mtz-triazoles against H. pylori strains.
Compound MIC (pg/mL)
H. pylori
26695 13/25% 98/285* 13/61°
MtzS MtzS MtzR MtzR
1 metronidazole 8 4-8 64 32-64
af methyl ester 32-64 32-64 64->64 64->64
4g pyrazole 2-4 2 16-32 16-32
4h pyridine 2 1 32 16
4m CH,;NMe-benzyl 4 2 16->64 16
4s COOH >64 >64 >64 >64

2 clinical isolate.
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Fig. 2. Correlation of activity against G. lamblia, E. histolytica and C. difficile with logD.
Compounds with activity against parasites (ECso < 25 uM) and C. difficile (MIC < 8 pg/
mL) have pEC50 or pMIC > 5.0.

phenyl, thiophene and pyridine groups were more potent against
G. lamblia than E. histolytica and C. difficile. Increasing the hydro-
phobicity (logD) of compounds to improve potency is generally
considered undesirable in drug development due to the tendency
for increased metabolism [29] and increased promiscuity [30].
However, in this case the antibiotic metronidazole has a low logD to
begin with, such that the relatively higher logD of the compounds
explored in this study does not place the compounds in an unde-
sirable chemical space. On the other hand, the site of infection of
G. lamblia is the small intestine, where low (<1) or high (>3) logD
values [29], associated with reduced systemic uptake, might be
beneficial for efficacy. However, metronidazole is 100% oral
bioavailable [31] and so the importance of bioavailability for in vivo
efficacy against G. lamblia infections is unclear.

4. Conclusion

Mtz-triazoles were synthesized and assessed for activity against
the anaerobe C. difficile, microaerophile H. pylori, the parasites
E. histolytica and G. lamblia as well as facultative anaerobic Gram-
positive and Gram-negative bacteria. While no activity was
observed against the facultative anaerobic bacteria, nine com-
pounds were identified with potent broad spectrum activity against
anaerobic organisms, while having no cytotoxicity against
mammalian cell lines. Hydrophobic R groups such as the benzyl 4k,
varyingly substituted phenyl derivatives 4a-e and heterocyclic R
groups such as pyridine 4h and thiophene 4n were well tolerated
and favored broad spectrum anaerobic activity. In contrast, polar R
groups including pyrimidines 4i-j, carboxylic acids 4p and 4r and
methyl amine 4t either resulted in loss of broad spectrum activity
or were inactive against all organisms tested.

While active Mtz-triazoles displayed a narrow MIC range
against multiple strains of C. difficile and G. lamblia, there was
metronidazole cross resistance against the stable MtzR C. difficile
strain CD26A54_R, MtzR G. lamblia strain 713M and clinical isolates
of MtzR H. pylori. Mtz-triazoles 4a-t generally lost activity against
MtzR C. difficile, MtzR G. lamblia and MtzR H. pylori. However, since
the Mtz-triazoles were often much more potent than metronida-
zole against G. lamblia, the EC5p remained within a therapeutically
meaningful window. It is possible that surveying a more diverse
chemical space of R group substituents or using alternative 5-
nitroimidazole scaffolds could provide access to Mtz-triazoles
that are even more potent and therefore active against MtzR

strains of C. difficile and G. lamblia. Future work will focus on
identifying such compounds and explore their in vivo efficacy
against anaerobic pathogens.
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