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ABSTRACT OF THE DISSERTATION

Higher-Order Accurate Diffuse-Domain Methods for Partial Differential Equations with
Dirichlet Boundary Conditions in Complex, Envolving Geometries
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Fei Yu

Doctor of Philosophy in Mathematics
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Professor John Lowengrub, Chair

The diffuse-domain, or smoothed boundary, method is an attractive approach for solving

partial differential equations in complex geometries because of its simplicity and flexibility.

In this method the complex geometry is embedded into a larger, regular domain. The original

PDE is reformulated using a smoothed characteristic function of the complex domain, here

constructed from a level-set (signed distance) function, and source terms are introduced to

approximate the boundary conditions. The reformulated equation can be solved by standard

numerical methods and the same solver can be used for any domain geometry. A challenge is

making the method higher order accurate. For Dirichlet boundary conditions, which we focus

on here, current implementations demonstrate a wide range in their accuracy but generally

the methods yield at best first order accuracy in ε, the parameter that characterizes the

width of the region over which the characteristic function is smoothed. Typically, ε ∝ h, the

grid size. Here, we analyze the diffuse-domain PDEs using matched asymptotic expansions

and explain the observed behaviors. Our analysis also identifies simple modifications to the

diffuse-domain PDEs that yield higher-order accuracy in ε, e.g., O(ε2) in the L2 norm and

O(εp) with 1.5 ≤ p ≤ 2 in the L∞ norm. Our analytic results are confirmed numerically in

stationary and moving domains. Finally, we extend our results to two-phase fluid problems

and propose a diffuse domain approach to simulate two-phase flows in complex geometries.
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Chapter 1

Introduction

1.1 Background

Many problems in the physical, biological and engineering sciences involve solving partial

differential equations (PDEs) in complex geometries that change their size and shape in

time. There are two main approaches for solving such problems. In one approach, interface-

fitted meshes are used. Examples include finite element methods (e.g., [22]), boundary

integral (e.g., [30]) and boundary element (e.g., [26]) methods. Because of the challenges

associated with generating interface-fitted meshes for complex geometries, especially in three-

dimensions, and because in many applications the complex geometry evolves in time, which

would require a new mesh to be generated at each time step, embedded domain methods

have been developed as an alternative approach.

In this second approach, the complex domain is embedded in a larger regular domain and

the boundary conditions are approximated by a variety of different techniques. Examples

include the adaptive fast multipole accelerated Poisson solver (e.g., [8]), which combines

boundary and volume integral methods in the larger domain, fictitious domain methods (e.g.,
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[34, 57, 31, 62]) where Lagrange multipliers are applied in order to enforce the boundary

conditions, immersed boundary (e.g., [59, 24, 17, 75]), front-tracking (e.g., [78, 45, 74])

and arbitrary Lagrangian-Eulerian methods (e.g., [40, 9, 12, 48]) where force distributions

supported in a neighborhood of the domain boundary are introduced to approximate the

boundary conditions. In addition, immersed interface (e.g., [52, 43, 7, 54]), ghost fluid (e.g.,

[25, 50, 79, 32]), cut-cell methods (e.g., [44, 35, 61, 60]) and Voronoi interface (e.g., [72, 37])

methods modify difference stencils near the domain boundary to account for the boundary

conditions. Further, the extended finite element method (e.g., [29, 10, 20]) approximates

the boundary conditions by enriching the space of test functions. However, a disadvantage

of most of these methods is that either modifications of standard finite element and finite

difference software packages are needed or extra auxiliary equations have to be solved.

1.2 Diffuse-Domain Method

Diffuse-domain methods (DDM), also known as smoothed boundary methods, have emerged

as an attractive alternative approach because they are easy to implement. No modifications

of standard finite element or finite difference software are required and the same solver can

be used for any domain geometry. In this approach the complex geometry is embedded into a

larger, regular domain and a phase-field function is used to provide a smooth approximation

to the characteristic function of the complex domain. In this thesis, we use a level-set method

[64, 33] to generate the phase-field, or smoothed characteristic, function. A parameter ε,

typically proportional to the grid size h, is introduced that characterizes the width of the

transition region. The original PDE is reformulated with additional source terms that enforce

the boundary conditions. While uniform meshes can be used, the DDM is most efficient

when combined with adaptive mesh refinement to enable the use of small mesh sizes near

the transition region and in regions of large gradients and large mesh sizes in the extended,
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non-physical part of the regular domain.

Using rigorous mathematical theory [28, 1, 73, 16], matched asymptotic expansions and

numerical simulations (e.g., [70, 53, 76, 81, 66]), the DDMs have been shown to converge

to the original PDE and boundary conditions as the diffuse interface parameter ε tends to

zero. Further, in [51] a matched asymptotic analysis for general DDMs with Neumann and

Robin boundary conditions showed that for certain choices of the source terms, the DDMs

were second-order accurate in ε and in the grid size h, taking ε ∝ h; see [16] for a rigorous

proof.

For Dirichlet boundary conditions it is more challenging to obtain higher-order accurate

diffuse domain methods. Current implementations of DDMs demonstrate a wide range in

their accuracy but generally the methods yield at best first-order accuracy in ε [28, 81, 73,

16, 66]. For example, some schemes, including one presented in [53], achieve sub-first order

accuracy O(ε ln ε). While others, including some presented in [53, 81, 66], achieve first-order

accuracy: O(ε). Further, in [66] it was shown using asymptotic analysis that for several DDM

approximations of the diffusion equation with Dirichlet boundary conditions, that while the

order of accuracy was O(ε) the error could be significantly reduced by special choices of the

DDM parameters. However, because DDMs for Dirichlet boundary conditions derive from

introducing penalty terms in the equation, which are inherently low-order accurate, new

modifications must be introduced to achieve higher-order accuracy.

In Chapter 2 of this thesis, we analyze, using matched asymptotic expansions, several DDMs

for approximating PDEs with Dirichlet boundary conditions. Our analysis explains the wide

variation in the observed accuracy of the schemes and identifies simple modifications of the

DDMs that can yield higher-order accuracy in ε. In particular, our new schemes are O(ε2) in

the L2 norm and O(εp) in the L∞ norm, with p ranging from 1.5 to 2 depending on the range

of ε and h considered. For example, in the limit, ε → 0 and ε/h → 0 we obtain p → 1.5.

Interestingly, the schemes can be more accurate when ε ∝ h. The methods are dimension-

3



independent and easy to implement. Our analytic results are confirmed numerically in

stationary and moving domains in 1D and 2D. In the latter, we use finite-difference dis-

cretizations with a mass-conserving multigrid method on block-structured adaptive meshes

[38] to obtain a highly-efficient scheme.

1.3 Applications of Diffuse-Domain Method

The diffuse-domain method was introduced in [49] to solve diffusion equations with Neumann

(no-flux) boundary conditions using finite difference methods and later in [14, 15] using

spectral methods. The DDM was extended to simulate PDEs on surfaces in [70], to PDEs

with Robin and Dirichlet boundary conditions in [53] and to cases in which bulk and surface

equations are coupled [76]. Later, in [81] and [66] alternate derivations of smoothed boundary

methods for such problems were presented. Diffuse-domain methods have been applied to a

wide variety of problems that arise, for example, in biology (e.g., [49, 27, 3, 18, 23, 69, 67, 56,

19]), in fluid dynamics (e.g., [77, 4, 5, 6, 2]) and in materials science (e.g., [82, 67, 68, 42, 21]).

In particular, many applications of multiphase flows involve complex flow domains, inter-

facial physics and the motion of contact lines separating immiscible components at solid

boundaries. DDM has recently been coupled with two-phase fluid model to study the fluid

flows in complex geometry [4]. However, the fluid model is restricted to the case where the

density and viscosity of the two fluids have to be exactly the same. In Chapter 3 of this

thesis, we extend their results and apply the diffuse domain approach to simulate binary

flow with variable physical properties. We first present a thermodynamically consistent dif-

fuse interface model, q-NSCH, for two phase flows with different density and viscosity. We

then combine the diffuse-domain method with the q-NSCH model, namely the q-NSCH-DD

model, to simulate two-phase flows in complex geometries. We find that the q-NSCH-DD

model converges to the original q-NSCH model as the thickness of the diffuse domain inter-
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face shrinks to 0.

The outline of the thesis is as follows. In Chapter 2, we analyze DDM approximations to

the Poisson equation with Dirichlet boundary conditions and present 1D numerical results

that confirm our analysis. We also extend our analysis and simulations to time-dependent

equations on both stationary and moving domains, focusing on the heat equation with ex-

ternal forcing. Both 1D and 2D numerical simulations are presented. In Chapter 3, we

consider a thermodynamically consistent diffuse interface model for two-phase flows with

variable density and propose a DDM approximation to the model, namely q-NSCH-DD. Nu-

merical simulations for two-phase fluid motions in complex geometries are provided. Finally,

in Chapter 4, we present conclusions and discuss future work.
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Chapter 2

Diffuse-Domain methods for Poisson

and Heat Equations with Dirichlet

Boundary Conditions in Complex

Geometries

2.1 Diffuse domain method for the Poisson equation

with Dirichlet boundary conditions

Consider the Poisson equation with Dirichlet boundary condition on a complex (non-regular)

domain D:

∆u = f in D, (2.1)

u = g on ∂D. (2.2)

6



To approximate Eqs. (2.1) and (2.2), we present three DDM approximations defined in [53]

and posed on a larger, regular domain Ω:

DDM1 : ∇ · (φ∇uε)−
1

ε3
(1− φ)(uε − g) = φf, (2.3)

DDM2 : φ∆uε −
1

ε2
(1− φ)(uε − g) = φf, (2.4)

DDM3 : ∇ · (φ∇uε)−
|∇φ|
ε2

(uε − g) = φf, (2.5)

where the source terms 1
ε3

(1−φ)(uε−g), 1
ε2

(1−φ)(uε−g) and |∇φ|
ε2

(uε−g) represent different

choices for enforcing the Dirichlet boundary condition u = g. The function φ approximates

the characteristic function of D, e.g.

φ(x, t) =
1

2
(1− tanh (

3r(x, t)

ε
)), (2.6)

here ε is the interface thickness and r(x, t) is the signed-distance function to ∂D, which is

taken to be negative inside D. Note that for DDM3, since the phase field function φ and its

gradient vanish rapidly outside D, in order to prevent the equation from being ill-posed, we

use the following modified φ̂ and its gradient instead in the numerical calculation [51],

φ̂ = τ + (1− τ)φ, (2.7)

|∇φ̂| = τ + (1− τ)|∇φ|, (2.8)

where τ = 10−15. In all the DDMs we consider, we assume that the boundary function g is

defined in a small O(ε) neighborhood of ∂D using an extension off ∂D that is constant in

the normal direction and that f is similarly extended smoothly out of the domain D.
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2.1.1 Numerical results for DDM1-3

We present numerical results in 1D for the DDMs given in Sec. 2.1. We suppose the original

Poisson equation is defined in D = [−1.111, 1.111] with Dirichlet boundary conditions at

x = ±1.111, which are not grid points. We take the forcing function f = 1 and boundary

condition g = 1.1112/2 so that the exact solution to Eqs. (2.1)-(2.2) is u = x2/2. The results

from other test cases can be found in Appendix B.

We solve the DDMs in a larger domain Ω = [−2, 2] with the same Dirichlet boundary

condition as the original Poisson equation. Note that the choice for boundary condition for

the outer domain Ω should not affect the inner domain D. Therefore the distance between

∂D and ∂Ω should be large compared to ε. The equations are discretized on a uniform grid

with the standard second-order central difference scheme (adaptive mesh refinement is used

later in 2D, see Sec. 2.3). The discrete system is solved using the Thomas method [41].

The numerical solutions of DDM1-3, together with the exact solution, are shown in Fig.

2.1(a), a close-up of the solutions with x ∈ [−0.1, 0.1] is shown as an inset. Here, we have

taken ε = 0.0125 and h = ε/4. We next calculate and compare the error between the

simulated DDM solutions uε and the analytic solution u of the original PDE. We present the

errors in both the L2 and the L∞ norms, defined as

E(2)
ε =

‖φ(u− uε)‖L2(Ω)

‖φu‖L2(Ω)

, (2.9)

where ‖·‖L2 is the discrete L2 norm:

‖u‖L2 =

√∑N
i=1 u

2
i

N
, (2.10)

8



where N is the number of grid points in Ω. The error in the L∞ norm is defined as [52]

E(∞)
ε =

‖(u− uε)‖L∞(D)

‖u‖L∞(D)

, (2.11)

and ‖u‖L∞(D) = max1≤i≤M |ui| and M is the number of grid points in D . Note this is not

L∞ in Ω. The convergence rate in ε is calculated as

k =
log(

Eεi
Eεi−1

)

log( εi
εi−1

)
. (2.12)

The results are presented in Tabs. 2.1 and 2.2. We observe that DDM2 is 1st order accurate,

which is consistent with findings in [81, 66], while the convergence rates of DDM1 and DDM3

are less than 1 in both L2 and L∞ norms (see also Tabs. A.1-A.6 in Appendix B for other

test cases).

-2 -1 0 1 2
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0

0.2
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exact solution
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u

×10
-3

(a)
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exact solution
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×10
-3

(b)

Figure 2.1: (a). Numerical solutions of DDM1–3 from Eqs. (2.3)-(2.5); (b). The corre-
sponding modified diffuse domain methods mDDM1-3 from Eqs. (2.78)-(2.80); with f = 1,
g = 1.1112/2, ε = 0.0125 and h = ε/4.
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DDM1 DDM3

ε E(2) k E(∞) k E(2) k E(∞) k

2.00E-01 4.88E-01 0.00 2.12E-01 0.00 3.82E-02 0.00 4.73E-02 0.00

1.00E-01 1.12E-01 2.12 5.26E-02 2.01 9.45E-02 -1.31 4.42E-02 0.10

5.00E-02 9.88E-03 3.51 7.96E-03 2.72 8.03E-02 0.24 3.66E-02 0.27

2.50E-02 1.31E-02 -0.41 5.89E-03 0.44 5.39E-02 0.58 2.44E-02 0.59

1.25E-02 1.41E-02 -0.11 6.31E-03 -0.10 3.33E-02 0.69 1.50E-02 0.70

6.25E-03 1.04E-02 0.44 4.66E-03 0.44 1.97E-02 0.76 8.84E-03 0.76

3.13E-03 6.80E-03 0.62 3.04E-03 0.62 1.14E-02 0.79 5.09E-03 0.80

1.56E-03 4.16E-03 0.71 1.86E-03 0.71 6.42E-03 0.82 2.87E-03 0.82

Table 2.1: The L2 and L∞ errors in DDM1 and DDM3 with h = ε/4.

DDM2

ε E(2) k E(∞) k

2.00E-01 3.42E-01 0.00 1.65E-01 0.00

1.00E-01 1.70E-01 1.01 7.95E-02 1.05

5.00E-02 8.45E-02 1.01 3.88E-02 1.04

2.50E-02 4.17E-02 1.02 1.91E-02 1.02

1.25E-02 2.07E-02 1.01 9.51E-03 1.00

6.25E-03 1.03E-02 1.00 4.82E-03 0.98

3.13E-03 5.16E-03 1.00 2.40E-03 1.00

1.56E-03 2.58E-03 1.00 1.20E-03 1.01

Table 2.2: The L2 and L∞ errors in DDM2 with h = ε/4.

To understand this behavior, the scaled errors near the boundary x = 1.111 are shown in Fig.

2.2. In Fig. 2.2(a), we plot uε−u
ε

versus the stretched inner variable z = r
ε

(r = x−1.111) using

ε = 0.00625 and N = 2560, which is obtained from the grid size h = ε
4
. When z << 0 (inside

the domain), uε−u
ε

tends to a constant, C(ε). In Fig. 2.2(b), the constants C(ε) from DDM1

and DDM3 are plotted as a function of ln(ε). Linear fits give that C(ε) ≈ −0.186 ln(ε)−0.475

for DDM1 and C(ε) ≈ −0.188 ln(ε)−0.143 for DDM3, which show that the orders of accuracy
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of DDM1 and DDM3 are ε ln(ε) as ε→ 0. In Fig. 2.2(c), we plot the limit value C(ε) from

DDM2 as a function of ε. The plots suggest that C(ε) → −0.45 6= 0, which implies DDM2

is 1st order accurate.
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Figure 2.2: Comparisons of the behavior of DDM1, DDM2 and DDM3 near ∂D. (a): uε−u
ε

with ε = 0.00625, (b): C(ε)s for DDM1 and DDM3, (c): C(ε) for DDM2.
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2.1.2 Matched asymptotic analysis of DDMs

In this section, we perform a matched asymptotic analysis in 1D for DDM1-3 in order to

explain the numerical results in Sec. 2.1.1. This analysis can be easily extended to higher

dimensions. Without loss of generality, we also assume the boundary is located at x = 0

and we take the signed distance (near the boundary) to be r = x, again x < 0 denotes

the interior of D. We consider the expansion of diffuse-domain variables in powers of the

interface thickness ε in regions close to and far from the interface, which are known as inner

(û) and outer (ū) expansions, respectively. On each side of the interface, there exists an

outer expansion, here labeled ū1(x; ε) where x < 0 and φ = 1, and ū2(x; ε) where x > 0 and

φ = 0. Clearly for all three DDMs, we have

ū2 = g. (2.13)

Note that there could be multiple layers near the boundary and hence multiple inner expan-

sions may be required to match the two outer expansions.

2.1.2.1 Analysis of DDM2

We first present the matched asymptotic analysis of DDM2. In 1D, DDM2 is,

φ
d2

dx2
uε −

1

ε2
(1− φ)(uε − g) = φf, (2.14)

We assume the outer expansion ū1 satisfies,

ū1(x; ε) = ū
(0)
1 (x) + εū

(1)
1 (x) + ... (2.15)

12



Plugging into Eq. (2.14) and assuming that neither f nor g depends on ε, we have,

d2

dx2
ū

(0)
1 = f, (2.16)

d2

dx2
ū

(k)
1 = 0, k = 1, 2, ... (2.17)

Now, if ū
(0)
1 = g on ∂D so that ū

(0)
1 is the unique solution to Eqs. (2.1) and (2.2), then

DDM2 reduces to the Poisson equation with Dirichlet boundary condition at leading order.

The L2 convergence rate is then determined by the next leading order term, ū
(1)
1 . In order

to determine ū
(0)
1 and ū

(1)
1 , we need to analyze the behavior of DDM2 (Eq. (2.14)) near ∂D

using inner expansions and then match the inner and outer expansions in a region of overlap.

To get the inner equations, we first derive the following simplified form of DDM2 by substi-

tuting φ with Eq. (2.6) and dividing by φ:

d2

dx2
uε −

e6x/ε

ε2
(uε − g) = f. (2.18)

Consider Eq. (2.18) in a region K1, where x ∼ O(ε) and e6x/ε ∼ O(1) and we introduce a

stretched variable,

z1 =
x

ε
. (2.19)

In a local coordinate system near ∂D, the derivatives become

d

dx
=

1

ε

d

dz1

, (2.20)

d2

dx2
=

1

ε2
d2

dz2
1

, (2.21)

13



The inner expansion associated with the stretched variable z1 is

û1(z1; ε) = û
(0)
1 (z1) + εû

(1)
1 (z1) + ... (2.22)

To obtain the matching conditions for each outer solution ūi (i = 1, 2), we assume that there

is a region of overlap where both the inner and the outer expansions are valid. In this region,

if we evaluate the outer expansion in the inner coordinates, this must match the limits of

the inner solutions away from the interface, that is,

û1(z1; ε) ' ū1(εz1; ε), as z1 → −∞ and εz1 → 0−, (2.23)

û1(z1; ε) ' ū2(εz1; ε) = g, as z1 → +∞ and εz1 → 0+. (2.24)

Here a single inner expansion û1 is able to match both outer expansions up to O(ε) for DDM2

as shown below. As we see later in Sec. 2.1.2.2, this is not the case for DDM1 and DDM3

and an additional layer needs to be introduced. Combining Eqs. (2.13), (2.15), (2.22)-(2.24),

we have the following asymptotic matching conditions up to O(ε),

û
(0)
1 (z1) = ū

(0)
1 (0), as z1 → −∞, (2.25)

û
(1)
1 (z1) = ū

(1)
1 (0) + z1

d

dx
ū

(0)
1 (0), as z1 → −∞, (2.26)

and

û
(0)
1 (z1) = g, as z1 → +∞, (2.27)

û
(1)
1 (z1) = 0, as z1 → +∞. (2.28)

Plugging Eq. (2.22) into Eq. (2.18) and using derivatives in the local coordinate system
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(Eqs. (2.20) and (2.21)), we obtain the following equations for the inner expansion û1:

At O(ε−2),
d2

dz2
1

û
(0)
1 − e6z1(û

(0)
1 − g) = 0, (2.29)

At O(ε−1),
d2

dz2
1

û
(1)
1 − e6z1û

(1)
1 = 0. (2.30)

The solution to the following homogeneous ordinary differential equation,

y′′ − e6xy = 0, (2.31)

is given by

y = C1I0(
e3x

3
) + C2K0(

e3x

3
), (2.32)

where I0 and K0 are the modified Bessel functions of the first and second kind, respectively,

and C1 and C2 are constants. Clearly, û
(0)
1 = g is a solution to Eq. (2.29). Therefore,

û
(0)
1 (z1) = g + C1I0(

e3z1

3
) + C2K0(

e3z1

3
), (2.33)

û
(1)
1 (z1) = C3I0(

e3z1

3
) + C4K0(

e3z1

3
), (2.34)

where Ci’s are constants. The modified Bessel functions satisfy:

lim
z1→−∞

I0(
e3z1

3
) = 1, (2.35)

lim
z1→+∞

I0(
e3z1

3
) = +∞, (2.36)

lim
z1→−∞

K0(
e3z1

3
) ∼ − ln(

1

2

e3z1

3
)− γ ∼ −3z1 + ln 6− γ, (2.37)

lim
z1→+∞

K0(
e3z1

3
) = 0, (2.38)

where γ ≈ 0.5772 is the Euler−Mascheroni constant. From Eq. (2.37) and the matching
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condition (2.25) we conclude that C2 = 0. Using Eq. (2.36) and the matching conditions as

z1 → +∞ (Eqs. (2.27) and (2.28)), we have C1 = C3 = 0. Putting everything together and

using (2.26), we find

û
(0)
1 = g, (2.39)

û
(1)
1 = −A

3
K0(

e3z1

3
) ∼ Az1 +

A

3
(− ln 6 + γ), as z1 → −∞, (2.40)

where A = d
dx
ū(0)(0) is the derivative of the exact solution at the boundary. By the matching

conditions (Eqs. (2.25) and (2.26)), the two leading terms of the outer solution ū1 satisfies

ū
(0)
1 (0) = g, (2.41)

ū
(1)
1 (0) =

A

3
(− ln 6 + γ). (2.42)

Therefore, ū
(0)
1 = u, which is the exact solution of the Poisson equation with Dirichlet

boundary condition (Eqs. (2.1) and (2.2)), and DDM2 is first order accurate in ε in the L2

norm since ū1 − u ∼ O(ε) if A 6= 0. As for the L∞ norm, we also need to consider the error

at the boundary , e.g., û1(0) − g ≈ εû
(1)
1 (0) ∼ O(ε) for DDM2. Thus, DDM2 is first order

accurate in ε in the L∞ norm as well if A 6= 0. If A = 0, then the asymptotic analysis suggests

better than first-order accuracy. In fact when A = 0, DDM2 is second-order accurate in both

L2 and L∞ as shown in Appendix B.

To confirm our analysis, we compute ū
(1)
1 (0) ≈ C(ε), where C(ε) ≈ (uε − u)/ε as z1 << 0

is shown in Fig. 2.2(c). Using A = 1.111, both the asymptotic analysis and the numerical

results agree and give ū
(1)
1 ≈ −0.450 (see Tab. C.1 in Appendix C for other cases).
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2.1.2.2 Analysis of DDM1 and DDM3

We now extend the matched asymptotic analysis in Sec.2.1.2.1 to DDM1 and DDM3. In 1D,

DDM1 reads,

d

dx
(φ

d

dx
uε)−

1

ε3
(1− φ)(uε − g) = φf, (2.43)

Substituting φ from Eq. (2.6), we have,

d2

dx2
uε −

6

ε

1

1 + e−6x/ε

d

dx
uε −

e6x/ε

ε3
(uε − g) = f. (2.44)

We assume that

ū1(x; ε) = ū
(0)
1 (x) + εū

(1)
1 (x; ln ε) + o(ε). (2.45)

Note that ln ε is included in the outer expansion, which we will explain later. Plugging Eq.

(2.45) into the DDM1 (Eq. (2.43)), again we have,

d2

dx2
ū

(0)
1 = f, (2.46)

d2

dx2
ū

(k)
1 = 0, k = 1, 2, ... (2.47)

As for inner expansion, we first consider DDM1 (Eq. (2.44)) in K1, where x ∼ O(ε) and

e6x/ε ∼ O(1). We introduce the same stretched variable,

z1 =
x

ε
, (2.48)
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and the inner expansion,

û1(z1; ε) = û
(0)
1 (z1) + εû

(1)
1 (z1) + ..., (2.49)

Plugging into Eq. (2.44), we have the following equations,

At O(ε−3), e6z1(û
(0)
1 − g) = 0, (2.50)

At O(ε−2),
d2

dz2
1

û
(0)
1 −

6

1 + e−6z1

d

dz1

û
(0)
1 − e6z1û

(1)
1 = 0, (2.51)

At O(ε−1),
d2

dz2
1

û
(1)
1 −

6

1 + e−6z1

d

dz1

û
(1)
1 − e6z1û

(2)
1 = 0, (2.52)

At O(1),
d2

dz2
1

û
(2)
1 −

6

1 + e−6z1

d

dz1

û
(2)
1 − e6z1û

(3)
1 = f, (2.53)

(2.54)

It follows that

û
(0)
1 = g, (2.55)

û
(1)
1 = û

(2)
1 = 0, (2.56)

û
(3)
1 = −fe−6z1 . (2.57)

Thus,

û1(z1; ε) = g − ε3fe−6z1 + o(ε3). (2.58)

Clearly, û1 satisfies two of the matching conditions as z1 → +∞ (Eqs. (2.27) and (2.28)).

However, lim
z1→−∞

û1(z1; ε) = −∞, which implies û1 does not satisfy the other two matching

conditions (Eqs. (2.25) and (2.26)) and hence there exists another layer, namely K2 (and

another inner solution, namely û2).
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Accordingly, we introduce the layer K2 where x ∼ αε ln(ε) +O(ε). Here we choose α = 1/6

and consider the two leading terms in the inner expansions, other choices of α will result

different layers, but their inner expansions are the same up to O(ε). We consider a new

stretched variable,

z2 =
x− ε(ln ε)/6

ε
=
x

ε
− ln ε

6
(2.59)

Similar to Eq. (2.23), we derive the corresponding matching conditions in K2, that is

ū1(εz2 +
ε ln ε

6
) ' û2(z2), as z2 → −∞ and εz2 → 0−. (2.60)

It follows that

lim
z2→−∞

û
(0)
2 (z2) = ū

(0)
1 (0), (2.61)

lim
z2→−∞

û
(1)
2 (z2) = ū

(1)
1 (0) + (z2 +

ln ε

6
)
d

dx
ū

(0)
1 (0). (2.62)

As z2 → +∞, we need to match the inner solutions û2(z2) with û1(z1) from K1. This is

described below.

Plugging in the inner expansion into DDM1 (Eq. (2.44)) and using that e6x/ε = εe6z2 , we

obtain:

At O(ε−2),
d2

dz2
2

û
(0)
2 − e6z2(û

(0)
2 − g) = 0, (2.63)

At O(ε−1),
d2

dz2
2

û
(1)
2 − 6e6z2

d

dz2

û
(0)
2 − e6z2û

(1)
2 = 0. (2.64)

The general solution to Eq. (2.63) is

û
(0)
2 (z2) = g + C1I0(

e3z2

3
) + C2K0(

e3z2

3
), (2.65)
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where I0 and K0 are the modified Bessel functions of the first and second kind, respectively,

and C1, C2 are constants.

Then we need to match û
(0)
2 (z2) with the leading order of the inner solution in K1 (Eq.

(2.55)) as z2 → +∞, that is

lim
z2→+∞

û
(0)
2 (z2) = g. (2.66)

It follows that C1 = 0. From Eq. (2.61) and (2.37), we obtain C2 = 0. Thus,

û
(0)
2 (z2) = g, (2.67)

which implies

ū
(0)
1 (0) = lim

z2→−∞
û

(0)
2 (z2) = g. (2.68)

Hence, DDM1 recovers the Poisson equation with Dirichlet boundary condition at leading

order and ū
(0)
1 is the exact solution to Eqs. (2.1) and (2.2).

Plugging Eq. (2.67) into Eq. (2.64), we have

û
(1)
2 (z2) = C3I0(

e3z2

3
) + C4K0(

e3z2

3
), (2.69)

where C3 and C4 are constants. û
(1)
2 needs to match û

(1)
1 = 0 in K1 as z2 → +∞, that is

lim
z2→+∞

û
(1)
2 (z2) = 0, (2.70)

Hence, C3 = 0. On the other side where z2 → −∞, by the matching condition Eq. (2.62),
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we obtain

lim
z2→−∞

û
(1)
2 (z2) = ū

(1)
1 (0) + A(z2 +

ln ε

6
), (2.71)

where A = d
dx
ū

(0)
1 (0) is the derivative of exact solution at the boundary x = 0. Therefore,

taking the limit of Eq. (2.69) as z2 → −∞ and equating the result to Eq. (2.71), it follows

that

ū
(1)
1 (0) = −A

6
ln ε+

A

3
(− ln 6 + γ) ∼ O(ln ε) (2.72)

Hence, the convergence rate of DDM1 in the L2 norm is ε ln(ε) if A 6= 0. Although the error

at the boundary is û1(0) − g ∼ O(ε3) as seen from Eq. (2.58)), the L∞ error is dominated

by ε ln(ε).

As for DDM3, Replacing 1−φ
ε

with |∇φ|
ε2

and conducting an analogous analysis, we obtain

ū
(0)
1 (0) = g, (2.73)

ū
(1)
1 (0) = −A

6
ln ε+

A

3
(− ln(

1

2

√
2

3
) + γ) ∼ O(ln ε). (2.74)

Thus, DDM3 is also of O(ε ln ε) in both L2 and L∞ norms if A 6= 0. If A = 0, our analysis

suggests that DDM1 and DDM3 are better than first-order accurate (see Appendix B).

To validate our analysis, we plot C(ε) ≈ (uε−u)/ε versus ln(ε) as in Fig. 2.2(b) and compute

the slope through a linear fit using the numerical results in Sec. 2.1.1. For both DDM1 and

DDM3, our asymptotic analysis suggests that the slope is −A/6 ≈ −0.185 using A = 1.111.

Numerically, we obtain the slopes −0.186 and −0.188 from DDM1 and DDM3, respectively,

which agrees well with the theory (see Tab. C.2 in Appendix C for other cases).
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2.1.3 Development and analysis of higher-order, modified DDMs

In order to achieve higher order accuracy, we need to guarantee that the first order term

in the outer expansion (ū1) vanishes, that is, ū
(1)
1 = 0. From the matching condition, Eq.

(2.26), we observe that if û
(1)
1 (z1) behaves as Az1 as z1 → −∞, where A is the derivative

of the exact solution at the boundary, then ū
(1)
1 (0) must be 0 and hence ū

(1)
1 (x) = 0 since

d2ū
(1)
1 /dx2 = 0 from Eqs. (2.17) and (2.47). Therefore, if we can modify the original DDMs

in a way such the inner solution û1(z1) satisfies,

lim
z1→±∞

û
(0)
1 (z1) = g, (2.75)

lim
z1→+∞

û
(1)
1 (z1) = 0, (2.76)

lim
z1→−∞

û
(1)
1 (z1) ∼ Az1, (2.77)

we should be able to achieve higher-order accuracy based on the asymptotic analysis. Ac-

cordingly, this suggests that to achieve higher-order accuracy we may modify the DDMs

(referred to as the mDDMs) in the following way:

mDDM1 : ∇ · (φ∇uε)−
1

ε3
(1− φ)(uε − g − rn · ∇uε) = φf, (2.78)

mDDM2 : φ∆uε −
1

ε2
(1− φ)(uε − g − rn · ∇uε) = φf, (2.79)

mDDM3 : ∇ · (φ∇uε)−
|∇φ|
ε2

(uε − g − rn · ∇uε) = φf, (2.80)

where n = − ∇φ|∇φ| is the normal vector. Next, we analyze these methods in the following two

sections to determine their actual order of accuracy.
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2.1.3.1 Asymptotic analysis of mDDM1 and mDDM3

Similar to Sec. 2.1.2, we assume x = 0 is the boundary and r = x. Consider mDDM1 in 1D:

d

dx
(φ

d

dx
uε)−

1

ε3
(1− φ)(uε − g − x

d

dx
uε) = φf, (2.81)

Substituting φ with Eq. (2.6), we obtain

d2

dx2
uε −

6

ε

1

1 + e−6x/ε

d

dx
uε −

e6x/ε

ε3
(uε − g − x

d

dx
uε) = f. (2.82)

After examining possible ways of performing matched asymptotic expansions for Eq. (2.82)

and introducing multiple layers as in previous section, the simplest approach is to choose a

new inner variable z3 = x
ε1.5

and the corresponding inner solution û3(z3) in the region K3,

where x ∼ ε1.5 and e6x/ε ≈ 1. In the local coordinate system, the derivatives become

d

dx
=

1

ε1.5
d

dz3

, (2.83)

d2

dx2
=

1

ε3
d2

dz2
3

, (2.84)

Similar to Eqs. (2.23) and (2.24), we develop matching conditions for K3, that is,

û3(z3; ε) ' ū1(ε1.5z3; ε), as z3 → −∞, and ε1.5z3 → 0− (2.85)

û3(z3; ε) ' ū2(ε1.5z3; ε) = g, as z3 → +∞, and ε1.5z3 → 0+. (2.86)

Since we use the scale ε1.5, it is natural to include half powers in the outer and inner expan-
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sions:

ū1(x; ε) = ū
(0)
1 (x) + ε0.5ū

(0.5)
1 (x) + εū

(1)
1 (x) + ε1.5ū

(1.5)
1 (x)..., (2.87)

û3(z3; ε) = û
(0)
3 (z3) + ε0.5û

(0.5)
3 (z3) + εû

(1)
3 (z3) + ε1.5û

(1.5)
3 (z3).... (2.88)

Plugging into Eqs. (2.85) and (2.86), we obtain the matching conditions,

û
(0)
3 (z3) = g, as z3 → +∞, (2.89)

û
(k)
3 (z3) = 0, k = 0.5, 1, 2, ..., as z3 → +∞, (2.90)

and

û
(k)
3 (z3) = ū

(k)
1 (0), k = 0, 0.5, 1, as z3 → −∞, (2.91)

û
(1.5)
3 (z3) = ū

(1.5)
1 (0) + z3

d

dx
ū

(0)
1 (0), as z3 → −∞. (2.92)

Plugging Eq. (2.88) into Eq. (2.82) we derive the following inner equation at the leading

order O(ε−3):

d2

dz2
3

û
(0)
3 − (û

(0)
3 − g − z3

d

dz3

û
(0)
3 ) = 0, (2.93)

Clearly, û
(0)
3 = g is a solution to Eq. (2.93). The general solution to the following homoge-

neous ordinary differential equation,

y′′ + xy′ − y = 0, (2.94)

involves a linear combination of parabolic cylinder functions (D−2(x)) [11]:

y = e−x
2/4(C1D−2(x) + C2D−2(−x)), (2.95)
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where C1 and C2 are constants. Thus,

û
(0)
3 = g + e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)), (2.96)

where D−2(z3) ∼ z2
3e
−z23/4 as z3 → +∞ and D−2(z3) = −

√
2πz3e

z23/4 as z3 → −∞. By the

matching conditions (Eqs. (2.89) and (2.91)), we have

û
(0)
3 = g, (2.97)

ū
(0)
1 (0) = g. (2.98)

Hence mDDM1 recovers the Poisson equation at the leading order, e.g., ū
(0)
1 = u, the exact

solution.

At the next order O(ε−2.5) in Eq. (2.82), we have,

d2

dz2
3

û
(0.5)
3 − (û

(0.5)
3 − z3

d

dz3

û
(0.5)
3 ) = 0. (2.99)

Thus,

û
(0.5)
3 = e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)). (2.100)

Again, using the matching conditions (Eqs. (2.90) and (2.91)), we derive û
(0.5)
3 = 0. A

similar argument at O(ε−2) in Eq. (2.82) gives û
(1)
3 = 0.

At O(ε−1.5) in Eq. (2.82), we obtain,

d2

dz2
3

û
(1.5)
3 − (û

(1.5)
3 − z3

d

dz3

û
(1.5)
3 ) = 0. (2.101)
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Hence,

û
(1.5)
3 = e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)). (2.102)

Applying the matching conditions (Eqs. (2.90) and (2.92)), we get

û
(1.5)
3 = −Ae

−z23/4
√

2π
D−2(z3) ∼ Az3 as z3 → −∞, (2.103)

where A = d
dx
ū

(0)
1 (0) is the derivative of the exact solution at the boundary. Plugging into

Eq. (2.92), we conclude

ū
(1.5)
1 (0) = 0. (2.104)

Thus, the asymptotic analysis suggests that ū1(x) = ū
(0)
1 (x) + O(ε2) and mDDM1 is 2nd

order accurate in ε in the L2 norm as desired.

To analyze the error in the L∞ norm, we need to consider the error at the boundary. At

the boundary, û3(0) − g ∼ ε1.5û
(1.5)
3 (0) = −Aε1.5√

2π
. This suggests that mDDM1 is 1.5 order

accurate in ε in the L∞ norm.

This analysis can be easily extended to higher dimensions and to mDDM3 to obtain the

same conclusions. The only difference with respect to mDDM3 is that 1−φ
ε3

is replaced with

|∇φ|
ε2

, which gives û3(0)− g ∼ ε1.5û
(1.5)
3 (0) = −Aε1.5√

6π
. The errors in the L2 norm and L∞ norm

are still suggested to be 2nd and 1.5 orders, respectively.

To confirm our analysis, we compute û
(1.5)
3 (0) numerically in the following way. We plot the

values of (uε−u)/ε1.5 at the boundary (z3 = 0) versus
√
ε, where uε is the numerical solution,

and we find the y-intercept of a quadratic fit. Since A = 1.111, our asymptotic analysis gives

that the values of û
(1.5)
3 (0) are -0.443 and -0.256 for mDDM1 and mDDM3, respectively. We

obtain -0.442 and -0.257 from the numerical results of mDDM1 and mDDM3, respectively,
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which is consistent with our theory (see Tab. C.3 in Appendix C for other cases).

2.1.3.2 Asymptotic analysis of mDDM2

Even though mDDM2 is obtained using the same modification as in mDDM1 and mDDM3,

surpisingly as our analysis below suggests and numerical results confirm (see Sec. 2.1.4),

mDDM2 is only first-order accurate in both L2 and L∞. In 1D, the mDDM2 is:

φ
d2

dx2
uε −

1

ε2
(1− φ)(uε − g − x

d

dx
uε) = φf. (2.105)

Substituting φ from Eq. (2.6), we obtain

d2

dx2
uε −

e6x/ε

ε2
(uε − g − x

d

dx
uε) = f. (2.106)

Considering Eq. (2.106) in K1, we use the inner variable z1 = x
ε

to derive the following inner

equations for û1:

At O(ε−2),
d2

dz2
1

û
(0)
1 − e6z1(û

(0)
1 − g − z1

d

dz1

û
(0)
1 ) = 0, (2.107)

At O(ε−1),
d2

dz2
1

û
(1)
1 − e6z1(û

(1)
1 − z1

d

dz1

û
(1)
1 ) = 0. (2.108)

Clearly, û
(0)
1 = g is a solution to Eq. (2.107), and the general solution to the homogeneous

ordinary differential equation below,

y′′ − e6x(y − xy′) = 0, (2.109)

is given by,

y = C1x+ C2(−ee6x(1−6x)/36 − x
∫ x

0

h(t)dt), (2.110)
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where h(x) = ee
6x(1−6x)/36+6x (see Appendix D for details). It follows that

û0
1(z1) = g + C1z1 + C2(−ee6z1 (1−6z1)/36 − z1

∫ z1

0

h(t)dt), (2.111)

û1
1(z1) = C3z1 + C4(−ee6z1 (1−6z1)/36 − z1

∫ z1

0

h(t)dt), (2.112)

where the Ci are constants and

lim
z1→−∞

ee
6z1 (1−6z1)/36 = 1, (2.113)

lim
z1→+∞

ee
6z1 (1−6z1)/36 = 0, (2.114)

lim
z1→−∞

∫ z1

0

h(t)dt ≈ 0.17, (2.115)

lim
z1→+∞

∫ z1

0

h(t)dt ≈ 2.75. (2.116)

Combining with the matching conditions as z1 → ±∞ (Eqs. (2.25)-(2.28)) and solving for

the constants Ci, we obtain that

û
(0)
1 (z1) = g, (2.117)

û
(1)
1 (z1) ≈ A

2.92
(−ee6z1 (1−6z1)/36 + z1

∫ ∞
z1

h(t)dt), (2.118)

where as before A is the derivative of the exact solution at the boundary. Therefore,

lim
z1→−∞

û(1)(z1) ∼ Az1 −
A

2.92
, (2.119)

which implies

ū
(1)
1 (0) ≈ − A

2.92
6= 0, if A 6= 0. (2.120)
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This suggests mDDM2 is 1st order accurate in ε in the L2 norm when A 6= 0. Plugging

z1 = 0 into Eq. (2.118) and we have

û
(1)
1 (0) ≈ −Ae

1/36

2.92
, (2.121)

which implies that mDDM2 is also 1st order accurate in the L∞ norm.

To confirm our analysis, we compute ū
(1)
1 numerically, which is given by (uε−u)/ε as z << 0,

using the numerical solution uε in Sec. 2.1.4. In addition, we interpolate and plot the

boundary values of (uε − u)/ε at z1 = 0 versus ε, and then calculate û(1)(0) from the y-

intercept of a linear fit. Since A = 1.111, our analysis indicates that ū
(1)
1 ≈ − A

2.92
≈ −0.381

and û(1)(0) ≈ −Ae1/36

2.92
≈ −0.391. The numerical results suggest that ū

(1)
1 ≈ −0.380 and

û(1)(0) ≈ −0.391, which agrees very well with the theory (see Tab. C.4 in Appendix C for

other cases).

2.1.4 Numerical results for mDDM1-3

We adopt the same problem setup and an analogous discretization as in Sec. 2.1.1. The

results using h = ε/4 are presented in Fig. 2.1(b). Clearly mDDM3 and mDDM1 are more

accurate than DDM1-3 and mDDM2. Further, mDDM2 and DDM2 (Fig. 2.1(a)) display

similar levels of accuracy as suggested by our analysis.

To test the order of accuracy in ε predicted by theory, we take h = ε1.5/4 in order to resolve

the inner layer K3, as guided by our asymptotic analysis in Sec. 2.1.3.1. Later, in Secs. 2.2

and 2.3, we will test convergence with ε ∝ h. In Tabs. 2.3 and 2.4, we present convergence

results for mDDM1-3 for case 1 (see also Tabs. B.1-B.6 in Appendix A for other cases).

Consistent with our analysis, we observe that mDDM1 and mDDM3 are approximately 2nd

order accurate in the L2 norm but approximately 1.5 order accurate in the L∞ norm. Also
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as predicted, mDDM2 is only 1st order accurate in both norms. Therefore, we recommend

using mDDM1 or mDDM3.

In practice, taking h ∼ ε1.5 is too constraining for solving problems in 2D and 3D. Instead,

one may choose h = ε/c. Doing this, one can obtain results with orders of accuracy ranging

from 1.5 to 2 (1.5 for large c and approximately 2 for c ≈ 4; see Tabs. 2.5-2.9 in Secs. 2.2

and 2.3).

mDDM1 mDDM3

ε E(2) k E(∞) k E(2) k E(∞) k

2.00E-01 4.88E-01 0.00 2.10E-01 0.00 1.55E-01 0.00 8.23E-02 0.00

1.00E-01 1.50E-01 1.70 6.59E-02 1.67 3.77E-02 2.04 2.23E-02 1.88

5.00E-02 4.46E-02 1.75 1.98E-02 1.74 8.54E-03 2.14 5.96E-03 1.91

2.50E-02 1.26E-02 1.83 5.58E-03 1.83 1.89E-03 2.17 2.03E-03 1.55

1.25E-02 3.34E-03 1.91 1.55E-03 1.85 4.16E-04 2.19 6.15E-04 1.72

6.25E-03 8.61E-04 1.95 4.91E-04 1.65 8.74E-05 2.25 2.29E-04 1.42

Table 2.3: The L2 and L∞ errors for mDDM1 and mDDM3 with h = ε1.5/4.

mDDM2

ε E(2) k E(∞) k

2.00E-01 4.58E-01 0.00 2.19E-01 0.00

1.00E-01 2.24E-01 1.03 1.06E-01 1.05

5.00E-02 1.11E-01 1.02 5.19E-02 1.03

2.50E-02 5.47E-02 1.02 2.59E-02 1.00

1.25E-02 2.72E-02 1.01 1.29E-02 1.01

6.25E-03 1.36E-02 1.00 6.45E-03 1.00

Table 2.4: The L2 and L∞ errors for mDDM2 with h = ε1.5/4.

30



2.2 Time-dependent problems

We next extend the mDDMs to simulate time-dependent PDEs in a moving domain D(t)

with Dirichlet boundary conditions. As we discuss later, our approach and analysis holds for

much more general time-dependent equations, but we consider the diffusion equation here

for simplicity of presentation:

∂tu = ∆u+ f in D(t), (2.122)

u = g on ∂D(t). (2.123)

2.2.1 Derivation and analysis of high-order, modified DDMs for

time-dependent PDEs

To approximate Eq. (2.122), we formulate the diffuse domain model using an approximation

(mDDMt3), which is analogous to mDDM3 in Sec. 2.1.3.1:

mDDMt3: ∂t(φuε) = ∇(φ∇uε)−
1

ε2
|∇φ|(uε − g − rn · ∇uε) + φf, (2.124)

where as before r is the signed distance function, with r < 0 denoting the interior of D.

Since the domain may be time-dependent, φ may depend on time and thus φ needs to be in

the time derivative [53].

The asymptotic analysis for the time-dependent problem is very similar to that for the

Poisson equation presented in Sec. 2.1.3.1. The only difference is that now the time derivative

must be analyzed as well. Assuming the inner and outer expansions and matching conditions

hold as in Sec. 2.1.3.1, from the leading order outer equation, we find that ū
(0)
1 satisfies Eq.

(2.122).
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In the inner expansion, taking z3 = x/ε1.5, the time derivative can be written as:

∂t = − v

ε1.5
∂z3 + o(1) (2.125)

where v is the normal velocity of the domain boundary. Since ∂t is of order ε−1.5, the

time derivative will not affect the higher-order terms in the inner expansions of mDDM3.

Therefore, we can still derive û
(0)
3 = g and û

(0.5)
3 = û

(1)
3 = 0. Plugging into the inner equation

at the next leading order (O(ε−1.5)), we obtain the same solution for û
(1.5)
3 as that for the

time-independent equation. Thus, mDDMt3 should be 1.5 order accurate in ε for the time-

dependent (diffusion) equation. Similarly, the analogous time-dependent versions of mDDM1

and mDDM2 should also be 1.5 order and 1st order accurate in ε, respectively (results not

shown).

2.2.2 Numerical results using mDDMt3 for time-dependent prob-

lems

For time-dependent problems, we first assume the domain does not change in time. Then,

taking f = cos(x) cos(t)+cos(x) sin(t) and g = cos(1.111) sin(t), we obtain the exact solution

u = cos(x) sin(t) on the domain D=[-1.111,1.111]. We use central difference discretizations

in space (as in Sec. 2.1.1) and the Crank-Nicholson method discretization in time to solve

Eq. (2.124) on the larger domain Ω = [−2, 2] with φ from Eq. (2.6). We still use the Thomas

algorithm to solve the tridiagonal matrix system. We calculate the errors at t = 1 in the L2

and L∞ norms by setting dt = h where dt and h are the time step and grid size, respectively.

Here, instead of taking h ∝ ε1.5 as in the previous section, we instead take h = ε/c where c

is a constant.

Various choices of c have been tested and here we present results using c = 4, 16, 128 in Tabs.
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2.5, 2.6. We observe that mDDMt3 is 2nd order accurate in the L2 norm for all choices of

c. However, in L∞, we find that when c = 4, the schemes are roughly 2nd order accurate

in ε while if c = 128 the order of accuracy decreases to 1.5, consistent with our theory.

In Fig. 2.3, we show the numerical solutions of mDDMt3 near the boundary x = 1.111

for difference choices of c. When c = 4, the boundary layer K3 is not resolved and hence

the numerical solution is less smooth near the boundary than is the continuous solution of

mDDMt3. Nevertheless, it is actually closer to the exact solution close to the boundary of D.

As the K3 boundary layer is resolved by taking successively larger values of c, the solution is

smoother and consequently deviates more near the boundary from the exact solution, which

eventually results in errors that scale like O(ε1.5) in L∞ as predicted by theory. Outside of

D, the mDDMt3 solutions tend to the extension of the exact solution, that is constant in the

normal direction, because the boundary condition at ∂Ω is equal to the boundary condition

at ∂D. Other choices of boundary conditions at ∂Ω would yield similar errors near ∂D but

different behavior far from D (results not shown).

ε c=4 k c=16 k c=128 k

0.2 2.85E-02 0.00 2.88E-02 0.00 0.028771 0.00

0.1 7.18E-03 1.99 7.37E-03 1.97 0.0073714 1.96

0.05 1.68E-03 2.10 1.75E-03 2.08 0.0017524 2.07

0.025 4.06E-04 2.05 4.17E-04 2.07 0.00041831 2.07

0.0125 9.66E-05 2.07 1.02E-04 2.03 0.00010247 2.03

0.00625 2.46E-05 1.98 2.58E-05 1.99 0.00002586 1.99

Table 2.5: The L2 errors for simulating the time-dependent (diffusion) equation using mD-
DMt3 with h = ε/c on a fixed domain.
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ε c=4 k c=16 k c=128 k

0.2 3.87E-02 0.00 3.85E-02 0.00 4.01E-02 0.00

0.1 9.99E-03 1.95 1.09E-02 1.82 1.17E-02 1.77

0.05 2.15E-03 2.22 3.09E-03 1.82 3.45E-03 1.77

0.025 4.99E-04 2.11 1.04E-03 1.57 1.06E-03 1.70

0.0125 1.57E-04 1.67 3.17E-04 1.72 3.30E-04 1.69

0.00625 4.34E-05 1.85 8.64E-05 1.87 1.12E-04 1.56

Table 2.6: The L∞ errors for simulating the time-dependent (diffusion) equation using mD-
DMt3 with h = ε/c on a fixed domain.

Figure 2.3: Numerical solutions of mDDMt3 near the boundary x = 1.111 on the 1D sta-
tionary domain with different c. The green dashed line denotes the extension (e.g., constant
in the normal direction) of the exact solution out of the domain.

Next we assume the boundary of the domain is also moving and set xl(t) = −1.111, xr(t) =

1.111 + 0.5t, where xl(t) and xr(t) represent the left and right hand sides of the domain D,
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respectively. We take f = cos(x) cos(t) + cos(x) sin(t), g = cos(x∗) sin(t), where x∗ = xl, xr,

and the exact solution u = cos(x) sin(t).

In general, neither the signed distance function r nor the function φ are given analytically.

Because we need to use the signed distance function in the modified DDMs, we find it

convenient to apply the level-set method [64, 33] to determine both r and φ. Therefore, we

solve the following Hamilton-Jacobi equation:

∂tr + v|∇r| = 0, (2.126)

using a 5th order upwind WENO scheme [46] and a 2nd order Total Variation Diminishing

(TVD) Runge-Kutta (RK) method time discretization to obtain an accurate fully discrete

solution [36]. In order to keep |∇r| = 1, we periodically perform reinitialization [58, 71] by

solving the following equation,

∂τr = sgnh(r
0)(1− |∇r|), (2.127)

where τ is pseudo time and sgnh(r
0) is a smoothed approximation function of the sign of the

initial signed distance function [65]:

sgnh(r) =


−1 r < −h

1 r > h

r
h

+ 1
π

sin(πr
h

) else

To determine whether reinitialization is needed or not, we calculate the slope of r near

the boundaries of D(t). Then we check if the maximum difference between the absolute

value of the slope and 1 exceeds a threshold, here taken to be 0.01. If so, then we perform

reinitialization.

Once the signed distance function r(x, t) is obtained, we construct the phase field function
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φ through Eq. (2.6). Next, we solve mDDMt3 using the same numerical setup as before

and present the errors at t = 1 in the L2 and L∞ norms in Tabs. 2.7 and 2.8. The results

are very similar to the stationary domain case. We again find that mDDMt3 is 2nd order

accurate in the L2 norm and between 1.5 and 2nd order accurate in the L∞ norm, which is

consistent with our analysis.

ε c = 4 k c = 16 k c = 128 k

0.2 3.07E-02 0.00 3.07E-02 0.00 3.07E-02 0.00

0.1 7.91E-03 1.95 8.04E-03 1.93 8.05E-03 1.93

0.05 1.90E-03 2.06 1.95E-03 2.04 1.95E-03 2.04

0.025 4.73E-04 2.00 4.78E-04 2.03 4.79E-04 2.03

0.0125 1.18E-04 2.00 1.21E-04 1.99 1.21E-04 1.98

0.00625 2.97E-05 1.99 3.12E-05 1.95 3.15E-05 1.94

Table 2.7: The L2 errors for simulating the time-dependent (diffusion) equation using mD-
DMt3 with h = ε/c on a moving domain.

ε c = 4 k c = 16 k c = 128 k

0.2 4.38E-02 0.00 4.35E-02 0.00 4.51E-02 0.00

0.1 1.16E-02 1.92 1.25E-02 1.80 1.35E-02 1.75

0.05 2.57E-03 2.17 3.62E-03 1.79 4.06E-03 1.73

0.025 6.36E-04 2.01 1.23E-03 1.56 1.26E-03 1.68

0.0125 2.02E-04 1.66 3.74E-04 1.72 3.98E-04 1.67

0.00625 5.04E-05 2.00 1.02E-04 1.87 1.35E-04 1.55

Table 2.8: The L∞ errors for simulating the time-dependent (diffusion) equation using mD-
DMt3 with h = ε/c on a moving domain.
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2.3 2D numerical results

Now we consider the 2D diffusion equation Eqs. (2.122) and (2.123) on a moving 2D domain

D(t). The initial domain is enclosed by the polar curve (shown in Fig. 2.5(a)):

r(θ) = 1 + 0.1 cos(3θ) + 0.02 cos(5θ). (2.128)

We suppose the velocity of the domain v(x, t) is given by,

v = (0.2(1 + 2t) cos(3θ) + 0.12(1 + 6t) cos(5θ))(cos(θ), sin(θ)), (2.129)

and solve for the signed distance function r(x, t) using the level-set method as described

in Sec. 2.2.2. The phase field function φ is determined from the signed distance function

r via Eq. (2.6). We choose f and g such that the exact solution is u(r, θ, t) = 1
4
r2. The

initial condition is u0(r, θ) = 1
4
r2. We solve mDDMt3 (Eq. (2.124)) on the larger domain

Ω = [−2, 2] × [−2, 2] using the Crank-Nicholson method and the standard second-order

central difference scheme together with adaptive, block-structured mesh refinement [80].

The implicit equations are solved using a mass-conserving multigrid solver [38]. The L2 and

L∞ norms of the errors are calculated using 2D extensions of Eqs. (2.9) and (2.11). We

use an adaptive mesh with a maximum of three levels of refinement. The mesh is refined

according to the undivided gradient of (uεφ), e.g., if |∇ (uεφ) | ≥ 10−4/ (2h), where h is the

local grid size, then the mesh is targeted for block-structured refinement (see [80] for details).

We start with ε = 0.2 and the coarse mesh grid size hcoarse = 4/16, which gives the fine mesh

size hfine = 4/128 = 5
32
ε, and the time step dt = 0.1/128. Then, the parameters ε, hcoarse

and dt are refined at the same time while the number of levels and hfine = ε/6.4 are fixed.

Note that for the 2D numerical numerical implementation, we need to discretize n in the

following way in order for the solver to converge:
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n =

 −
∇φ
|∇φ| in D,

0 else.

The solution uε in the evolving domain is shown at t = 0.1 using ε = 0.025 in Fig. 2.4(a). In

Figs. 2.4(b), 2.4(c) and Tab. 2.9, the L2 and L∞ errors are shown at this time. The results

suggest mDDMt3 is 2nd order accurate in h, ε and dt in L2 and between 1.5 and 2nd order

in L∞, consistent with our theory and numerical results from the previous section.

In Fig. 2.5, we present a long time simulation of the dynamics using mDDMt3 (Eq. (2.124))

with ε = 0.025, hcoarse = 4/64, three levels of mesh refinement and dt = 0.1/512. We present

the solution restricted to the moving domain D(t) at different times, up to t=1.9. The point-

wise error at t = 1.9 is shown in Fig. 2.5(f) and the largest error, which is of order 10−3,

occurs near the right most finger. As can be seen from these figures, mDDMt3 is able to

accurately simulate solutions on time-dependent, highly complex non-rectangular domains.

In the next section, we apply DDM2 to a thermodynamically consistent diffuse interface

model (q-NSCH) to simulate two-phase flows in complex geometries.

ε L2 error k L∞ error k

0.2 8.89E-02 0.00 1.01E-01 0.00

0.1 2.18E-02 2.03 2.91E-02 1.80

0.05 4.91E-03 2.15 8.35E-03 1.80

0.025 1.13E-03 2.12 2.37E-03 1.82

0.0125 2.90E-04 1.96 6.78E-04 1.81

Table 2.9: The L2 and L∞ errors for simulating the 2D time-dependent diffusion equation
at t=0.1 using mDDMt3 on the moving domain D(t).
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Figure 2.4: Error analysis of the 2D diffusion equation using mDDMt3 on the moving domain
D(t), see text for details. The green curve denotes the boundary ∂D. (a): The solution at
t = 0.1 restricted on D(t) with the boundary contour (green line), (b): The L2 error at
t=0.1, (c): The L∞ error at t=0.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Solution of mDDMt3 from Eq. (2.124) at different times. The solution is
restricted to D(t) whose boundary ∂D is denoted by the green curve. See text for details.
(a): t=0, (b): t=0.5, (c): t=1.0, (d): t=1.5, (e): t=1.9. (f): The point-wise error at t=1.9.
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Chapter 3

Diffuse-Domain Methods for

Simulating Two-Phase Flows in

Complex Domains

3.1 q-NSCH model

In [39], a thermodynamically consistent diffuse interface model is presented to simulate two-

phase flows with variable density and viscosity. Considering a two-phase fluid in a domain

D, the model equations are given by

ρut + ρu ·∇u = −∇p+ ∇ · (ν∇u) +
1

3
∇(ν∇ · u) +

σ

εc
µ∇c+ ρgz, (3.1)

∇ · u = α∇ · (M(c)∇µ) + α2∇ · (M(c)∇p), (3.2)

ct + u ·∇c = ∇ ·
(
M(c)∇µ

)
+ α∇ · (M(c)∇p), (3.3)

µ = εcF
′(c)− ε2c∆c, (3.4)
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where u is the velocity, p the pressure, c the phase field variable, µ the chemical potential, g

the gravitational constant, and z the unit vector in vertical direction. The variable density

ρ and viscosity µ are defined as

ρ(c) = ρ1c+ ρ2(1− c), ν(c) = ν1c+ ν2(1− c), (3.5)

where ρi and νi are constants for the ith fluid (i = 1, 2), and α = (ρ2 − ρ1)/ρ2. The

function F (c) = c2(c − 1)2/4εc is the double well potential, where εc is a small parameter

that characterizes the interface thickness, M(c) =
√
c2 × (c− 1)2 + δ is the mobility function

with a small parameter δ, and σ is the surface tension, which is related to the physical surface

tension σ̃ through σ̃ = 3σ/
√

2. The following boundary conditions on ∂Ω are imposed:

u = ug, (no slip), (3.6)

n ·∇(µ+ αp) = 0, (no flux), (3.7)

n ·∇c =
1

εc
√

2
cos(θ)(1− c)c, (contact angle). (3.8)

Here ug = (gu, gv) is the velocity on the boundary ∂Ω and n is the outward normal vector

to D. Assuming ∂D is closed, the boundary velocity needs to satisfy
∫
∂Ω

ug ·n dS = 0. θ is

the static contact angle between the fluid-fluid interface and the physical boundary [47].

3.2 Diffuse domain reformulation: q-NSCH-DD

Now we assume the domain D is non-standard. To solve the q-NSCH model Eqs. (3.1)-(3.4)

numerically, we extend the results in [4] and use DDM2 in Chapter 2 to propose a diffuse
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domain approximation in a larger, regular domain Ω, namely q-NSCH-DD:

ρ(φu)t + ρu ·∇(φu) = −φ∇p+ φ∇ · (ν∇u) +
φ

3
∇(ν∇ · u) +

σ

εc
φµ∇c+ φρgz +BCu,

(3.9)

∇ · (φu) = ug ·∇φ+ α∇ · (M(c)φ∇µ) + α2∇ · (M(c)φ∇p) +BCµ,p,

(3.10)

(φc)t + u ·∇(φc) = ∇ ·
(
φM(c)∇µ

)
+ α∇ · (M(c)φ∇p) +BCµ,p, (3.11)

φµ = φεcF
′(c)− ε2c∇ · (φ∇c) +BCc, (3.12)

with the boundary conditions u = ug, n ·∇c = n ·∇µ = n ·∇p = 0 on ∂Ω. Here the diffuse

domain function φ, given by Eq. (2.6), is used to approximate the characteristic function

of the original domain D. r(x, t) is the signed distance to ∂D and ε is the thickness of the

diffuse domain interface. The reformulated BC∗ are used to enforce the original boundary

conditions (3.6)-(3.8) on ∂D. In particular,

BCu = −
1− φ
ε2

(u− ug), (3.13)

BCµ,p = 0, (3.14)

BCc = −
εc|∇φ|
√

2
cos(θ)(1− c)c [51]. (3.15)

In the next section, we show that the q-NSCH-DD system (3.9)-(3.12) converges to the

original q-NSCH system (3.1)-(3.4) with B.C. (3.6)-(3.8), as ε→ 0, using similar asymptotic

analysis as in Chapter 2.
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3.3 Asymptotic analysis of q-NSCH-DD

Now we consider the dimension-independent expansion of diffuse-domain variables in powers

of the interface thickness ε in regions close to and far from the boundary ∂Ω, which are

known as inner (Ŷ ) and outer expansions (Ȳ ), respectively. Y represents u, c, µ or p. Here

we assume ε << εc. The two expansions are then matched in a region where both are valid.

3.3.1 Outer expansions

On each side of the interface, there exists an outer expansion, here labelled Ȳ1(x; ε) where

r < 0 and φ = 1, and Ȳ2(x; ε) where r > 0 and φ = 0, where Ȳi represents ūi, c̄i, µ̄i or p̄i.

Clearly, ū2 = ug and n · ∇p̄2 = n · ∇µ̄2 = n · ∇c̄2 = 0. We assume the outer solution Y1

satisfy

Ȳ1(x; ε) = Ȳ
(0)

1 (x) + εȲ
(1)

1 (x) + ..., i = 1, 2 (3.16)

Plugging into Eqs. (3.9)-(3.12), we obtain

ρ
∂

∂t
ū

(0)
1 + ρū

(0)
1 ·∇ū

(0)
1 = −∇p̄

(0)
1 + ∇ · (ν∇ū

(0)
1 ) +

1

3
∇(ν∇ · ū(0)

1 ) +
σ

εc
µ̄

(0)
1 ∇c̄

(0)
1 + ρgz,

(3.17)

∇ · ū(0)
1 = α∇ · (M(c̄

(0)
1 )∇µ̄

(0)
1 ) + α2∇ · (M(c̄

(0)
1 )∇p̄

(0)
1 ), (3.18)

∂

∂t
c̄

(0)
1 + ū

(0)
1 ·∇c̄

(0)
1 = ∇ ·

(
M(c̄

(0)
1 )∇µ̄

(0)
1

)
+ α∇ ·

(
M(c̄

(0)
1 )∇p̄

(0)
1

)
, (3.19)

µ̄
(0)
1 = εcF

′(c̄
(0)
1 )− ε2c∇ · (∇c̄

(0)
1 ), (3.20)

Now, if ū
(0)
1 , p̄

(0)
1 , µ̄

(0)
1 and c̄

(0)
1 satisfy the corresponding boundary conditions on ∂Ω so that

they are the unique solutions to q-NSCH (3.1)-(3.4), then the q-NSCH-DD system recovers
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the q-NSCH model at the leading order.

3.3.2 Inner expansions

As for the inner expansions, we introduce a local coordinate system near the interface ∂Ω,

x(s, z; ε) = X(s; ε) + εzn(s; ε), (3.21)

where X(s; ε) is a parametrization of the interface, n(s; ε) is the interface normal vector

that points out of Ω, z is the stretched variable,

z =
r(x)

ε
,

and r(x) is the signed distance function to ∂Ω. Note that limz→−∞ φ = 1 and limz→+∞ φ = 0.

In the local coordinate system, the derivatives become

∇ =
1

ε
n∂z +

1

1 + εzκ
∇s, (3.22)

∆ =
1

ε2
∂zz +

1

ε

κ

1 + εzκ
∂z +

1

1 + εzκ
∇s · (

1

1 + εzκ
∇s), (3.23)

∂t = −n · u
ε

∂z + o(1), (3.24)

where κ = ∇s · n is the surface curvature. We assume that the inner expansion is given by

Ŷ (z, s; ε) = Ŷ (0)(z, s) + εŶ (1)(z, s) + ..., (3.25)
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where Ŷ represents û, ĉ, µ̂ and p̂. In the region of overlap, we have

Ȳ1(X + εzn; ε) ' Ŷ (z, s; ε), as z → −∞ (3.26)

Ȳ2(X + εzn; ε) ' Ŷ (z, s; ε), as z → +∞. (3.27)

Combining Eqs. (3.16), (3.25), (3.26) and (3.27), we have the following asymptotic matching

conditions at the first two leading orders,

lim
z→−∞

Ŷ (0)(z, s) = Ȳ
(0)

1 (s), (3.28)

lim
z→−∞

Ŷ (1)(z, s) = Ȳ
(1)

1 (s) + zn · ∇Ȳ (0)
1 , (3.29)

lim
z→+∞

Ŷ (0)(z, s) = Ȳ
(0)

2 (s), (3.30)

lim
z→+∞

Ŷ (1)(z, s) = Ȳ
(1)

2 (s) + zn · ∇Ȳ (0)
2 . (3.31)

Plugging the inner expansions into q-NSCH-DD and using the local derivatives, we derive

the following inner equations at the leading order O(ε−2):

Eq. (3.9) =⇒ 4

3
φ(ν(û(0) · n)z)z − (1− φ)(û(0) − ug) · n = 0, (3.32)

Eq. (3.9) =⇒ φ(ν(û(0) · s)z)z − (1− φ)(û(0) − ug) · s = 0, (3.33)

Eq. (3.10) =⇒ α
(
M(ĉ(0))φ(µ̂(0) + αp̂(0))z

)
z

= 0, (3.34)

Eq. (3.11) =⇒
(
M(ĉ(0))φ(µ̂(0) + αp̂(0))z

)
z

= 0, (3.35)

Eq. (3.12) =⇒ −ε2(φĉ(0)
z )z = 0, (3.36)
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Here we assume ν = 1 for simplicity and obtain

û(0) · n = ug · n + C1I0(
e3z

2
√

3
) + C2K0(

e3z

2
√

3
), (3.37)

û(0) · s = ug · s + C3I0(
e3z

3
) + C4K0(

e3z

3
), (3.38)

(µ̂(0) + αp̂(0))z = 0, (3.39)

ĉ(0) = C5, (3.40)

where C∗ are constants. I0 and K0 are the modified Bessel functions of the first and second

kinds, respectively, which satisfy Eqs. (2.35)-(2.38). Combining Eqs. (3.37) and (3.38) with

the leading order matching conditions for u (Eqs. (3.28) and (3.30)), we derive ū
(0)
1 = û(0) =

ug. At the next order of Eqs. (3.10) - (3.12), we obtain

(φn · û(0))z − ug · nφz = 0 = α
(
M(ĉ(0))φ(µ̂(1) + αp̂(1))z

)
z

+ α
(
M(ĉ(1))φ(µ̂(0) + αp̂(0))z

)
z
, (3.41)(

φM(ĉ(0))(µ̂(1) + αp̂(1))z
)
z

= −û(0) · n(φĉ(0))z + û(0) · n(φĉ(0))z = 0, (3.42)

(φĉ(1)
z )z = −

φz

εc
√

2
cos(θ)) (1− C5)C5. (3.43)

Integrating Eqs. (3.42) and (3.43) both sides from −∞ to +∞ with respect to z, we have

lim
z→−∞

(µ̂(1) + αp̂(1))z = 0, (3.44)

lim
z→−∞

ĉ(1)
z =

1

ε
√

2
cos(θ) (1− C5)C5. (3.45)

Using the matching condition (Eq. (3.29)), we obtain

n ·∇(µ̄
(0)
1 + αp̄

(0)
1 ) = 0, (3.46)

n ·∇c̄
(0)
1 =

1

ε
√

2
cos(θ) (1− C5)C5. (3.47)
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Therefore, the outer solutions ū
(0)
1 , µ̄

(0)
1 , p̄

(0)
1 and c̄

(0)
1 satisfy the original boundary conditions

Eqs. (3.6)-(3.8). Hence the q-NSCH-DD system recovers the q-NSCH model at the leading

order.

3.4 Numerical method and implementation

We now present a projection method for the q-NSCH-DD system (3.9)-(3.12) in the time-

discrete level. Let dt denote the time step, and assume, un, pn, cn and µn are the solutions

at time t = ndt. We then find that the solutions at time t = (n + 1)dt, namely un+1, pn+1,

cn+1 and µn+1, satisfy:

φn+1ρn+1ũn+1 − φnρnun

dt
+ φnρnun ·∇un = φn+1∇ ·

(
νn∇ũn+1

)
+
φn+1

3
∇
(
νn∇ · ũn+1

)
+
σ

εc
µn∇cn − (1− φn+1)

ε2
(
ũn+1 − un+1

g

)
+ φn+1ρn+1gz, (3.48)

dt∇ ·

φn+1

ρn+1
∇pn+1

 = ∇ ·
(
φn+1ũn+1

)
− un+1

g ·∇φn+1 + α∇ ·
(
φn+1M(cn+1)∇µn+1

)

+ α2∇ ·
(
φn+1M(cn+1)∇pn+1

)
− dt∇ ·

(1− φn+1)

ε2ρn+1

(
un+1 − ũn+1

)
, (3.49)

un+1 = ũn+1 − φn+1∇pn+1

φn+1ρn+1

dt
+ (1−φn+1)

ε2

, (3.50)

φn+1cn+1 − φncn

dt
+ ∇ · (φnuncn) = ∇ ·

(
φn+1M(cn+1)∇µn+1

)
+ α∇ ·

(
φn+1M(cn+1)∇pn+1

)
, (3.51)

φn+1µn+1 = φn+1εcF
′(cn+1)− ε2c∇ · (φn+1∇cn+1)−

εc|∇φn+1|
√

2
cos(θ)

(
1− cn+1

)
cn+1,

(3.52)
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with the following boundary conditions:

ũn+1|∂Ω = un+1|∂Ω = 0, n ·∇pn+1|∂Ω = n ·∇cn+1|∂Ω = n ·∇µn+1|∂Ω = 0. (3.53)

Here ũ is a temporary velocity that splits the original momentum equation Eq. (3.9). We

first solve Eqs. (3.51) and (3.52) to get cn+1 and µn+1 , we then obtain ũn+1 and pn+1 from

Eqs. (3.48) and (3.49). Finally the velocity un+1 is updated in Eq. (3.50).

At the fully discrete level, our method is solved with the finite difference method on a

staggered grid and implemented on an efficient, practical nonlinear multigrid solver. In

particular, this is comprised of a standard FAS method for the Cahn-Hilliard equations

Eqs. (3.51) and (3.52), and a method based on the Vanka-type smoothing strategy for the

Navier-Stokes equations Eqs. (3.48)-(3.50) [38].

3.5 Numerical results

3.5.1 Cavity flow

We consider a two-phase fluid flow in a driven cavity [13]. The numerical results from the

q-NSCH system (Eqs. (3.1)-(3.4)) on the physical domain D = [0, 1]2 are compared to those

from the q-NSCH-DD system (Eqs. (3.9)-(3.12)) on an extended domain Ω = [−0.25, 1.25]2.

The boundary conditions on ∂D are imposed as

u = ug, (3.54)

n ·∇(µ+ αp) = 0, (3.55)

n ·∇c = 0, (3.56)
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where ug = (gu, gv) = (gu, 0), and

gu =


max (0, 1− 4× (x− 0.5)2) if y = 1,

0 if y < 1.

(3.57)

The function φ is given by

φ =0.5

1 + tanh

3x

ε


× 0.5

1 + tanh

3(1− x)

ε




×0.5

1 + tanh

3y

ε


× 0.5

1 + tanh

3(1− y)

ε


 (3.58)

to approximate the characteristic function of D, and gu is extended to Ω as follows,

gu(x, y) =


max (0, 1− 4× (x− 0.5)2) if y ≤ 1− ε,

0 if y > 1− ε.
(3.59)

For both systems, the initial c is

c =
1

2

1− tanh

0.5− y

2
√

2εc


 , (3.60)

such that c = 0 for the fluid at bottom and c = 1 for the top fluid. In addition, we set

ρ1 = ρ2 = 1, ν1 = ν2 = 0.002, g = 0, σ = 0, θ = 90◦, and εc = 0.05.

We present the evolution of the phase field variable c obtained from the q-NSCH-DD system

in Fig. 3.1 and compare c at t = 15 with the one from the q-NSCH system at the same time

in Fig. 3.2.

50



t=0 t=3 t=6

t=9 t=12 t=15

Figure 3.1: Evolution of the phase field variable c in a cavity flow. The results are obtained
using the q-NSCH-DD system with the grid size h = 1.5/256, dt = 2.5× 10−3 and ε = 0.025
in Ω. The white box represents the physical domain D.

q-NSCH-DD q-NSCH

Figure 3.2: Comparisons between the phase field variable c obtained from the q-NSCH-DD
system and the one from the q-NSCH system at t = 15. The white box represents the
physical domain D.
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Moreover, we use the results, including the velocities u, v, and phase variable c, from q-

NSCH with the grid size h = 1/1024 and the time step dt = 3.90625 × 10−5 as the exact

solutions. For the q-NSCH-DD system, we start with h = 1.5/64, dt = 10−2 and ε = 0.1,

and refine them together. For each ε, we restrict the solutions from q-NSCH-DD to D and

compute the errors in the L2 and  L∞ norms. The errors of the velocities u, v, and phase

variable c at t = 0.1 are presented in Tables 3.1 and 3.2. We observe that our diffuse domain

approximation converges to the q-NSCH model with O(ε).

ε u k v k c k

1.00E-01 5.17E-02 2.98E-02 1.09E-02

5.00E-02 2.40E-02 1.11 1.73E-02 0.78 4.25E-03 1.36

2.50E-02 1.12E-02 1.10 8.90E-03 0.96 1.75E-03 1.28

1.25E-02 5.46E-03 1.04 4.32E-03 1.04 7.50E-04 1.22

6.25E-03 2.72E-03 1.01 2.17E-03 0.99 3.21E-04 1.22

Table 3.1: The L2 errors of the velocities u, v and phase field variable c in a cavity flow in
Sec. 3.5.1, see text for details..

ε u k v k c k

1.00E-01 2.05E-01 9.80E-02 3.65E-02

5.00E-02 1.22E-01 0.75 4.52E-02 1.12 1.47E-02 1.31

2.50E-02 6.64E-02 0.88 2.58E-02 0.81 6.13E-03 1.26

1.25E-02 3.44E-02 0.95 1.37E-02 0.91 2.66E-03 1.20

6.25E-03 1.74E-02 0.98 6.92E-03 0.99 1.15E-03 1.21

Table 3.2: The L∞ errors of the velocities u, v and phase field variable c in a cavity flow in
Sec. 3.5.1, see text for details..
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3.5.2 Droplet on cylinder

We consider a circular droplet of diameter d wetting and dewetting on a solid cylinder.

Initially, the droplet is placed on the cylinder of the same diameter d with contact angle

θ0 = 90o. With θ being the static contact angle, the contact line of the droplet recedes

if θ < θ0 or spreads if θ > θ0, and eventually reaches the equilibrium with the interface

intersecting the solid cylinder at an angle of θ. In the absence of gravity, the equilibrium

state of the droplet can be obtained analytically by carving the cylinder out the a circle

[55, 63] (see Fig. 3.3). The distance between the centers of the circle and the cylinder, dc,

and the diameter of the circle, dl, can be computed by solving

πd2/4 = (α + θ)(dl/2)− α(d/2)2 + (dld/4) sin θ, (3.61)

dl = d cos θ +
√
d2 cos2 θ − d2 + 4d2

c , (3.62)

where

α = arccos

d2 + 4d2
c − d2

l

4ddc

. (3.63)

Here we replace the term φ∇(ν∇ · u) in Eq. (3.9) with ∇(φν∇ · u) and test another

diffuse-domain approximation to the q-NSCH system, namely q-NCSH-DD-M. We solve q-

NCSH-DD-M in a larger domain Ω = [0, 2d]× [0, 2d]. The initial φ and c are given by

φ =
1

2

1 + tanh

3(rφ − 0.5d)

ε


 , and c =

1

2

1 + tanh

rc − 0.5d

2
√

2εc


× φ,

(3.64)

where rφ =
√

(x− 0.5d)2 + (y − 0.6d)2 and rc =
√

(x− 0.5d)2 + (y − 0.6d− 0.5
√

2d)2, such

that c = 1 for the droplet and c = 0 for the medium fluid. All the other parameters are set
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as the following:

ρ1 = 1000, ρ2 = 1, µ1 = µ2 = 0.1, σ = 1, g = 0, εc = ε.

In Fig. 3.3, we compare numerical solutions φc at equilibrium from the q-NSCH-DD-M

system with the analytical solutions, obtained from Eqs. (3.61)-(3.63), for various θ with

the number of grid points n = 2048 in each direction. The L2 errors, Ec, are also presented

in Tab. 3.3 by refining n and ε = εc together. We find that our q-NSCH-DD-M system

provides a first order approximation to the exact solution.

30o 90o 120o

ε n Ec rate Ec rate Ec rate

0.02 128 4.32×10−2 — 4.95×10−2 — 5.51×10−2 —

0.01 256 2.85×10−2 0.60 3.22×10−2 0.62 3.61×10−2 0.61

0.005 512 1.79×10−2 0.67 1.98×10−2 0.70 2.33×10−2 0.63

0.0025 1024 1.05×10−2 0.77 1.18×10−2 0.75 1.35×10−2 0.79

0.00125 2048 5.29×10−3 0.99 6.00×10−3 0.98 7.04×10−3 0.94

Table 3.3: The L2 errors of the phase field variable restricted on D, φc, at equilibrium with
different static contact angles, 30o, 90o and 120o.

54



30
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90
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120
o

Figure 3.3: Comparisons between the numerical results at equilibrium (solid lines) and the
analytic solutions (dashed lines) with different static contact angles, where the angles are
indicated inside the blue cylinders.

3.5.3 Penetration of a liquid droplet into porous media

We consider a two-dimensional droplet impacting on to a porous substrate consisting of three

cylinders (Ci, i=1,2,3) with different wettability, as shown in Fig. 3.4. The extended domain

Ω = [0, 1]× [0, 1] and is discretized on a uniform mesh of [1024×1024]. The original physical

domain D = Ω/(∪Ci). There are three cylinders in the domain with radii r1 = 0.1, r2 = 0.12,

r3 = 0.15, and centers (0.3, 0.6), (0.4, 0.25), (0.7, 0.5), respectively. Initially, a heavy liquid

drop with radius rd = 0.15 is placed above the cylinders with the center (0.5, 0.8). Note that

the initial φ and c can be given by a slight modification of Eq. (3.64). Again, we let c = 1

stands for the heavy fluid droplet, and c = 0 stands for the light fluid medium. All other

parameters are set as follows:

ρ1 = 1000, ρ2 = 1, µ1 = 10, µ2 = 0.1, g = 1, εc = 0.001 ε = 0.002. (3.65)

The dynamics of droplet impact is shown in Fig. 3.4 in terms of snapshots at different times.

Initially, the droplet starts moving downwards due to the gravitational forces. Dramatic

deformations are observed when the droplet comes into contact with the left and right
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cylinders, respectively. After impacting on the cylinder at the bottom, the droplet split into

several parts. In the end, it is interesting to see that there is no liquid on the cylinders with

wettability of θ = 90o and θ = 120o. All the liquid rests either on the cylinder with θ = 60o

or on the walls.

Figure 3.4: Dynamics of a two-dimensional droplet on three cylinders with different wetta-
bility. The static contact angles θ are indicated inside the corresponding cylinder. The red
stands for the heavy fluid and the blue stands for the light fluid medium.
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Chapter 4

Conclusion and Discussion

In the first part of this thesis, we have analyzed several diffuse domain methods (DDMs)

originally developed in [53] for both the Poisson equation and the diffusion equation with

Dirchlet boundary conditions on stationary and moving domains. The level-set method was

used to implicitly capture the domain movement and to construct the smoothed characteristic

function needed by the methods. Our analysis reveals why the different formulations yield

varying degrees of accuracy. Guided by our analysis, we presented new modifications of the

DDMs (mDDMs) that provide higher-order accuracy. Using a matched asymptotic analysis,

two of these methods, mDDM1 and mDDM3, were shown to be 2nd order accurate in L2,

e.g., O(ε2) where ε is the diffuse interface smoothing parameter. The analysis shows that

the errors in the L∞ norm scale as O(ε1.5). Using numerical simulations in both 1D and

2D for selected test cases, these theoretical predictions were confirmed when the grid size

h ∼ ε1.5 is used to resolve the boundary layer (e.g., K3 in Sec. 2.1.3.1). In addition,

numerical simulations revealed that in the L2 norm, mDDM1 and mDDM3 and their time-

dependent versions (mDDMt1, mDDMt3) are O(ε2) even when h ∝ ε, which is much cheaper

computationally and hence more cost-effective to use for 2D and 3D problems. In this case,

however, the L∞ errors were found to be more variable over the range of parameters tested.
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In L∞, simulations with h = ε/c show that when c ∼ 1, the schemes are roughly O(ε2).

This occurs because even though the the boundary layer (K3) is not resolved the numerical

solutions are actually closer to the exact solution near the boundary of the complex domain.

When c >> 1, the boundary layer is better resolved, the numerical solutions are smoother

and deviate more near the boundary from the exact solution, which ultimately results in

errors that scale as O(ε1.5) as predicted by theory.

In the second part, starting with a thermodynamically consistent diffuse interface model,

the q-NSCH system, we proposed a diffuse domain approximation to the model, namely

the q-NSCH-DD system, to simulate two-phase flows with variable density and viscosity in

complex geometries. We found that the q-NSCH-DD system converges to q-NSCH as the

thickness of the diffuse domain interface shrink to zero (ε → 0). The q-NSCH-DD system is

solved on a larger, regular domain using an existing finite difference multigrid solver without

any modification on a staggered grid and the numerical results confirmed our analysis. We

also observed that the q-NSCH-DD system not only allows the contact line to move on the

curved boundaries, but also makes the fluid-fluid interface to intersect the solid object at an

angle which is consistent with the prescribed contact angle.

In the future, we plan to apply the mDDMs developed in Chapter 2 on the fluid problems

in Chapter 3 to achieve higher order accuracy in ε. We also would like to give a theoretical

proof for the higher-order mDDMs.
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Appendix A

Additional numerical results of DDMs

for 1D Poisson equations

We have tested the following three DDMs using h = ε/4:

DDM1: ∇(φ∇u)− 1
ε3

(1− φ)(u− g) = φf ,

DDM2: φ∆u− 1
ε2

(1− φ)(u− g) = φf ,

DDM3: ∇(φ∇u)− 1
ε2
|∇φ|(u− g) = φf ,

on the following seven cases,

Case1: u = x2

2
;

Case2: u = (x2 − 1.111)2;

Case3: u = 1
x2+1

;

Case4: u = cos(x);
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Case5: u = (x2 + 1)2;

Case6: u = log(x2 + 1);

Case7: u =
√
x2 + 1.

The original Poisson equation with Dirichlet boundary condition is again defined on [−1.111, 1.111]

and we solve the DDMs on a larger domain [−2, 2]. Tables A.1 - A.6 show the L2 and L∞

norms of errors for the three DDMs for the seven cases. In case 3-7, the convergence orders

in both L2 and L∞ of DDM1-3 are similar to those in case 1. However in case 2, where

the derivative of the exact solution is 0 at the boundary (A = 0), we observe 2nd order

convergence in DDM2 and higher that 1st order convergence for DDM1 and DDM3. Our

analysis in Sec. 2.1.2 indicates ū
(1)
1 (0) = A

3
(− ln 6 + γ) (Eq. (2.42)), −A

6
ln ε+ A

3
(− ln 6 + γ)

(Eq. (2.72)) and −A
6

ln ε + A
3
(− ln(1

2

√
2
3
) + γ) (Eq. (2.74)) for DDM2, DDM1 and DDM3,

respectively, which all vanish when A = 0. Hence, DDMs can achieve higher than 1st or-

der accuracy when A = 0. In fact, the errors in both norms for DDM1 and DDM3 are

dominated by O(ε2(ln(ε))2). This term rises in the next order matching in K2, that is

limz2→−∞ û
(2)
2 = ū

(2)
2 (0) + (z2 + ln ε/6)2 d2

dx2
ū

(0)
1 (0) + .... Thus ū

(2)
2 (0) ∼ O((ln ε)2). In Fig.

A.1(a), we plot D(ε) = limz2→−∞(uε − u)/ε2 versus ln(ε) using the numerical solution of

DDM1 in case 1 and find that it is a quadratic function of ln(ε).
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Figure A.1: (a): D(ε) for DDM1 in case 1, (b): D(ε) for mDDM1 in case 1.
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ε case 1 k case 2 k case 3 k

2.00E-01 4.88E-01 0.00 1.55E-02 0.00 6.79E-02 0.00

1.00E-01 1.12E-01 2.12 2.75E-03 2.50 1.59E-02 2.10

5.00E-02 9.88E-03 3.51 9.39E-05 4.87 1.40E-03 3.51

2.50E-02 1.31E-02 -0.41 1.93E-04 -1.04 1.87E-03 -0.43

1.25E-02 1.41E-02 -0.11 1.15E-04 0.75 2.02E-03 -0.10

6.25E-03 1.04E-02 0.44 4.94E-05 1.22 1.49E-03 0.44

3.13E-03 6.80E-03 0.62 1.85E-05 1.41 9.70E-04 0.62

1.56E-03 4.16E-03 0.71 6.46E-06 1.52 5.94E-04 0.71

case 4 k case 5 k case 6 k case 7 k

1.25E-01 0.00 4.88E-01 0.00 3.03E-01 0.00 7.32E-02 0.00

2.95E-02 2.08 1.13E-01 2.10 6.97E-02 2.12 1.72E-02 2.09

2.63E-03 3.49 1.01E-02 3.49 6.09E-03 3.52 1.52E-03 3.50

3.52E-03 -0.42 1.33E-02 -0.40 8.11E-03 -0.41 2.03E-03 -0.42

3.80E-03 -0.11 1.44E-02 -0.11 8.72E-03 -0.10 2.19E-03 -0.11

2.81E-03 0.43 1.07E-02 0.43 6.44E-03 0.44 1.62E-03 0.43

1.83E-03 0.62 6.95E-03 0.62 4.19E-03 0.62 1.06E-03 0.62

1.12E-03 0.71 4.25E-03 0.71 2.57E-03 0.71 6.46E-04 0.71

Table A.1: The L2 errors for DDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.12E-01 0.00 1.09E-02 0.00 5.36E-02 0.00

1.00E-01 5.26E-02 2.01 1.93E-03 2.49 1.28E-02 2.07

5.00E-02 7.96E-03 2.72 8.82E-05 4.45 1.93E-03 2.73

2.50E-02 5.89E-03 0.44 1.42E-04 -0.69 1.46E-03 0.40

1.25E-02 6.31E-03 -0.10 7.86E-05 0.86 1.57E-03 -0.10

6.25E-03 4.66E-03 0.44 3.28E-05 1.26 1.16E-03 0.44

3.13E-03 3.04E-03 0.62 1.22E-05 1.43 7.53E-04 0.62

1.56E-03 1.86E-03 0.71 4.20E-06 1.53 4.60E-04 0.71

case 4 k case 5 k case 6 k case 7 k

1.04E-01 0.00 2.32E-01 0.00 1.47E-01 0.00 5.82E-02 0.00

2.57E-02 2.02 5.81E-02 2.00 3.60E-02 2.03 1.43E-02 2.02

3.88E-03 2.72 8.83E-03 2.72 5.43E-03 2.73 2.17E-03 2.72

2.91E-03 0.41 6.48E-03 0.45 4.06E-03 0.42 1.62E-03 0.42

3.14E-03 -0.11 6.96E-03 -0.10 4.35E-03 -0.10 1.74E-03 -0.10

2.32E-03 0.43 5.14E-03 0.44 3.21E-03 0.44 1.29E-03 0.44

1.51E-03 0.62 3.35E-03 0.62 2.09E-03 0.62 8.40E-04 0.62

9.26E-04 0.71 2.05E-03 0.71 1.28E-03 0.71 5.14E-04 0.71

Table A.2: The L∞ errors for DDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 3.42E-01 0.00 5.80E-02 0.00 4.44E-02 0.00

1.00E-01 1.70E-01 1.01 1.37E-02 2.09 2.28E-02 0.96

5.00E-02 8.45E-02 1.01 3.31E-03 2.04 1.16E-02 0.98

2.50E-02 4.17E-02 1.02 8.19E-04 2.02 5.84E-03 0.99

1.25E-02 2.07E-02 1.01 2.03E-04 2.01 2.93E-03 0.99

6.25E-03 1.03E-02 1.00 5.07E-05 2.00 1.47E-03 1.00

3.13E-03 5.16E-03 1.00 1.27E-05 2.00 7.35E-04 1.00

1.56E-03 2.58E-03 1.00 3.16E-06 2.00 3.68E-04 1.00

case 4 k case 5 k case 6 k case 7 k

9.27E-02 0.00 3.74E-01 0.00 1.99E-01 0.00 5.26E-02 0.00

4.54E-02 1.03 1.79E-01 1.06 1.01E-01 0.97 2.60E-02 1.02

2.25E-02 1.02 8.77E-02 1.03 5.12E-02 0.99 1.29E-02 1.01

1.12E-02 1.00 4.30E-02 1.03 2.55E-02 1.01 6.44E-03 1.01

5.59E-03 1.00 2.13E-02 1.01 1.27E-02 1.00 3.21E-03 1.00

2.79E-03 1.00 1.06E-02 1.01 6.36E-03 1.00 1.60E-03 1.00

1.39E-03 1.00 5.29E-03 1.00 3.18E-03 1.00 8.02E-04 1.00

6.97E-04 1.00 2.64E-03 1.00 1.59E-03 1.00 4.01E-04 1.00

Table A.3: The L2 errors for DDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.65E-01 0.00 3.82E-02 0.00 3.53E-02 0.00

1.00E-01 7.95E-02 1.05 9.03E-03 2.08 1.81E-02 0.96

5.00E-02 3.88E-02 1.04 2.19E-03 2.04 9.11E-03 0.99

2.50E-02 1.91E-02 1.02 5.42E-04 2.02 4.61E-03 0.98

1.25E-02 9.51E-03 1.00 1.35E-04 2.01 2.33E-03 0.98

6.25E-03 4.82E-03 0.98 3.38E-05 2.00 1.19E-03 0.97

3.13E-03 2.40E-03 1.00 8.42E-06 2.00 5.93E-04 1.00

1.56E-03 1.20E-03 1.01 2.10E-06 2.00 2.96E-04 1.00

case 4 k case 5 k case 6 k case 7 k

7.84E-02 0.00 1.94E-01 0.00 1.06E-01 0.00 4.34E-02 0.00

3.83E-02 1.03 9.08E-02 1.10 5.26E-02 1.01 2.13E-02 1.03

1.88E-02 1.03 4.36E-02 1.06 2.61E-02 1.01 1.05E-02 1.02

9.39E-03 1.00 2.13E-02 1.04 1.30E-02 1.01 5.22E-03 1.01

4.71E-03 0.99 1.06E-02 1.01 6.50E-03 1.00 2.62E-03 1.00

2.40E-03 0.97 5.34E-03 0.98 3.31E-03 0.98 1.33E-03 0.98

1.20E-03 1.00 2.66E-03 1.01 1.65E-03 1.00 6.64E-04 1.00

5.96E-04 1.01 1.32E-03 1.01 8.22E-04 1.01 3.31E-04 1.01

Table A.4: The L∞ errors for DDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 3.82E-02 0.00 1.37E-02 0.00 6.82E-03 0.00

1.00E-01 9.45E-02 -1.31 7.22E-03 0.92 1.44E-02 -1.08

5.00E-02 8.03E-02 0.24 3.12E-03 1.21 1.17E-02 0.30

2.50E-02 5.39E-02 0.58 1.19E-03 1.39 7.79E-03 0.59

1.25E-02 3.33E-02 0.69 4.18E-04 1.51 4.80E-03 0.70

6.25E-03 1.97E-02 0.76 1.40E-04 1.58 2.83E-03 0.76

3.13E-03 1.14E-02 0.79 4.49E-05 1.64 1.63E-03 0.80

1.56E-03 6.42E-03 0.82 1.43E-05 1.66 9.18E-04 0.83

case 4 k case 5 k case 6 k case 7 k

1.10E-02 0.00 3.57E-02 0.00 2.61E-02 0.00 6.36E-03 0.00

2.59E-02 -1.23 9.39E-02 -1.39 6.02E-02 -1.21 1.50E-02 -1.23

2.16E-02 0.26 8.08E-02 0.22 5.02E-02 0.26 1.25E-02 0.26

1.46E-02 0.57 5.46E-02 0.56 3.35E-02 0.58 8.39E-03 0.57

9.01E-03 0.69 3.39E-02 0.69 2.06E-02 0.70 5.19E-03 0.69

5.34E-03 0.76 2.01E-02 0.75 1.22E-02 0.76 3.07E-03 0.76

3.07E-03 0.80 1.16E-02 0.79 7.02E-03 0.80 1.77E-03 0.80

1.74E-03 0.82 6.57E-03 0.82 3.96E-03 0.82 9.99E-04 0.82

Table A.5: The L2 errors for DDM3

73



ε case 1 k case 2 k case 3 k

2.00E-01 4.73E-02 0.00 9.52E-03 0.00 1.06E-02 0.00

1.00E-01 4.42E-02 0.10 4.92E-03 0.95 1.15E-02 -0.11

5.00E-02 3.66E-02 0.27 2.08E-03 1.24 9.17E-03 0.32

2.50E-02 2.44E-02 0.59 7.82E-04 1.41 6.08E-03 0.59

1.25E-02 1.50E-02 0.70 2.72E-04 1.52 3.73E-03 0.70

6.25E-03 8.84E-03 0.76 9.04E-05 1.59 2.20E-03 0.76

3.13E-03 5.09E-03 0.80 2.89E-05 1.64 1.26E-03 0.80

1.56E-03 2.87E-03 0.82 9.14E-06 1.66 7.12E-04 0.83

case 4 k case 5 k case 6 k case 7 k

2.27E-02 0.00 5.44E-02 0.00 3.11E-02 0.00 1.26E-02 0.00

2.19E-02 0.06 4.75E-02 0.19 3.12E-02 -0.01 1.22E-02 0.04

1.80E-02 0.28 3.99E-02 0.25 2.54E-02 0.30 1.00E-02 0.28

1.21E-02 0.58 2.67E-02 0.58 1.68E-02 0.59 6.71E-03 0.58

7.45E-03 0.70 1.65E-02 0.70 1.03E-02 0.70 4.14E-03 0.70

4.40E-03 0.76 9.74E-03 0.76 6.09E-03 0.76 2.44E-03 0.76

2.53E-03 0.80 5.61E-03 0.79 3.50E-03 0.80 1.41E-03 0.80

1.43E-03 0.82 3.17E-03 0.82 1.98E-03 0.82 7.94E-04 0.82

Table A.6: The L∞ errors for DDM3
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Appendix B

Additional numerical results of

mDDMs for 1D Poisson equations

We have tested the following three mDDMs using h = ε1.5/4:

mDDM1: ∇(φ∇u)− 1
ε3

(1− φ)(u− g − rn · ∇u) = φf ,

mDDM2: φ∆u− 1
ε2

(1− φ)(u− g − rn · ∇u) = φf ,

mDDM3: ∇(φ∇u)− 1
ε2
|∇φ|(u− g − rn · ∇u) = φf ,

on the seven cases given in Appendix A. The problem setup and the numerical discretiza-

tion are analogous to those in Appendix A. In case 3-7, mDDM1-3 preform analogously

as those in case 1. However in case 2, in which A = 0, we observe similar behaviour as

those corresponding DDMs presented in Appendix A. Our analysis in Sec. 2.1.3.2 indicates

ū
(1)
1 (0) ≈ −A/2.92 (Eq. (2.120)) and û

(1)
1 (0) ≈ Ae1/36/2.92 (Eq. (2.121)) for mDDM2, which

both vanish when A = 0. Hence, mDDM2 can achieve 2nd order accuracy when A = 0. As

for mDDM1 and mDDM3, the errors are again dominated by O(ε2(ln(ε))2), whose coefficient

is not affected by our modification in the next order matching when A = 0. In Fig. A.1(b),
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we plot D(ε) = limz2→−∞(uε− u)/ε2 versus ln(ε) using the numerical solution of mDDM1 in

case 2 and find that it is a quadratic function of ln(ε).

ε case 1 k case 2 k case 3 k

2.00E-01 4.88E-01 0.00 3.11E-02 0.00 7.00E-02 0.00

1.00E-01 1.50E-01 1.70 9.11E-03 1.77 2.19E-02 1.68

5.00E-02 4.46E-02 1.75 2.64E-03 1.79 6.57E-03 1.73

2.50E-02 1.26E-02 1.83 8.14E-04 1.70 1.87E-03 1.81

1.25E-02 3.34E-03 1.91 2.69E-04 1.60 5.05E-04 1.89

6.25E-03 8.61E-04 1.95 9.25E-05 1.54 1.33E-04 1.92

case 4 k case 5 k case 6 k case 7 k

1.25E-01 0.00 4.81E-01 0.00 3.07E-01 0.00 7.37E-02 0.00

3.96E-02 1.66 1.49E-01 1.69 9.44E-02 1.70 2.31E-02 1.68

1.20E-02 1.73 4.45E-02 1.74 2.81E-02 1.75 6.94E-03 1.73

3.40E-03 1.82 1.25E-02 1.83 7.94E-03 1.82 1.97E-03 1.82

9.09E-04 1.90 3.31E-03 1.92 2.12E-03 1.90 5.25E-04 1.90

2.36E-04 1.95 8.44E-04 1.97 5.53E-04 1.94 1.36E-04 1.95

Table B.1: The L2 errors for mDDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.10E-01 0.00 2.06E-02 0.00 5.51E-02 0.00

1.00E-01 6.59E-02 1.67 5.93E-03 1.80 1.71E-02 1.69

5.00E-02 1.98E-02 1.74 1.70E-03 1.80 5.12E-03 1.74

2.50E-02 5.58E-03 1.83 5.22E-04 1.70 1.45E-03 1.82

1.25E-02 1.55E-03 1.85 1.72E-04 1.60 3.92E-04 1.89

6.25E-03 4.91E-04 1.65 5.91E-05 1.54 1.22E-04 1.68

case 4 k case 5 k case 6 k case 7 k

1.05E-01 0.00 2.26E-01 0.00 1.49E-01 0.00 5.85E-02 0.00

3.29E-02 1.67 7.11E-02 1.67 4.64E-02 1.68 1.83E-02 1.67

9.90E-03 1.73 2.14E-02 1.73 1.39E-02 1.74 5.51E-03 1.73

2.81E-03 1.82 6.01E-03 1.83 3.94E-03 1.82 1.56E-03 1.82

7.71E-04 1.86 1.70E-03 1.82 1.07E-03 1.88 4.28E-04 1.87

2.45E-04 1.65 5.42E-04 1.65 3.39E-04 1.66 1.36E-04 1.65

Table B.2: The L∞ errors for mDDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.85E-01 0.00 3.73E-02 0.00 3.75E-02 0.00

1.00E-01 1.41E-01 1.01 8.77E-03 2.09 1.92E-02 0.97

5.00E-02 6.98E-02 1.01 2.13E-03 2.04 9.70E-03 0.98

2.50E-02 3.46E-02 1.01 5.24E-04 2.02 4.88E-03 0.99

1.25E-02 1.73E-02 1.00 1.30E-04 2.01 2.45E-03 1.00

6.25E-03 8.62E-03 1.00 3.23E-05 2.01 1.23E-03 1.00

case 4 k case 5 k case 6 k case 7 k

7.65E-02 0.00 3.07E-01 0.00 1.68E-01 0.00 4.36E-02 0.00

3.77E-02 1.02 1.48E-01 1.05 8.48E-02 0.98 2.16E-02 1.01

1.87E-02 1.01 7.23E-02 1.03 4.25E-02 1.00 1.08E-02 1.01

9.33E-03 1.00 3.57E-02 1.02 2.12E-02 1.00 5.37E-03 1.00

4.66E-03 1.00 1.77E-02 1.01 1.06E-02 1.00 2.68E-03 1.00

2.33E-03 1.00 8.84E-03 1.00 5.31E-03 1.00 1.34E-03 1.00

Table B.3: The L2 errors for mDDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.33E-01 0.00 2.50E-02 0.00 2.96E-02 0.00

1.00E-01 6.48E-02 1.04 5.86E-03 2.09 1.52E-02 0.96

5.00E-02 3.19E-02 1.02 1.42E-03 2.05 7.67E-03 0.98

2.50E-02 1.59E-02 1.01 3.52E-04 2.01 3.88E-03 0.98

1.25E-02 7.93E-03 1.00 8.73E-05 2.01 1.95E-03 1.00

6.25E-03 3.96E-03 1.00 2.18E-05 2.00 9.77E-04 1.00

case 4 k case 5 k case 6 k case 7 k

6.43E-02 0.00 1.55E-01 0.00 8.67E-02 0.00 3.56E-02 0.00

3.17E-02 1.02 7.35E-02 1.07 4.34E-02 1.00 1.76E-02 1.02

1.57E-02 1.01 3.57E-02 1.04 2.16E-02 1.00 8.73E-03 1.01

7.89E-03 1.00 1.77E-02 1.02 1.09E-02 1.00 4.38E-03 1.00

3.94E-03 1.00 8.78E-03 1.01 5.43E-03 1.00 2.19E-03 1.00

1.97E-03 1.00 4.39E-03 1.00 2.72E-03 1.00 1.09E-03 1.00

Table B.4: The L∞ errors for mDDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.55E-01 0.00 3.89E-02 0.00 2.80E-02 0.00

1.00E-01 3.77E-02 2.04 1.38E-02 1.50 7.15E-03 1.97

5.00E-02 8.54E-03 2.14 4.87E-03 1.50 1.80E-03 1.99

2.50E-02 1.89E-03 2.17 1.72E-03 1.50 4.71E-04 1.94

1.25E-02 4.16E-04 2.19 5.88E-04 1.55 1.27E-04 1.89

6.25E-03 8.74E-05 2.25 1.94E-04 1.60 3.46E-05 1.88

case 4 k case 5 k case 6 k case 7 k

4.42E-02 0.00 1.44E-01 0.00 1.07E-01 0.00 2.57E-02 0.00

1.08E-02 2.03 3.31E-02 2.12 2.69E-02 1.99 6.31E-03 2.02

2.51E-03 2.10 6.78E-03 2.29 6.50E-03 2.05 1.48E-03 2.09

5.86E-04 2.10 1.25E-03 2.44 1.59E-03 2.03 3.48E-04 2.09

1.38E-04 2.09 1.91E-04 2.71 4.01E-04 1.99 8.28E-05 2.07

3.20E-05 2.11 1.39E-05 3.78 1.01E-04 1.98 1.96E-05 2.08

Table B.5: The L2 errors for mDDM3
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ε case 1 k case 2 k case 3 k

2.00E-01 8.23E-02 0.00 2.58E-02 0.00 2.18E-02 0.00

1.00E-01 2.23E-02 1.88 8.98E-03 1.52 5.82E-03 1.91

5.00E-02 5.96E-03 1.91 3.14E-03 1.51 1.56E-03 1.90

2.50E-02 2.03E-03 1.55 1.10E-03 1.51 5.17E-04 1.59

1.25E-02 6.15E-04 1.72 3.76E-04 1.55 1.56E-04 1.73

6.25E-03 2.29E-04 1.42 1.24E-04 1.60 5.73E-05 1.44

case 4 k case 5 k case 6 k case 7 k

4.10E-02 0.00 8.94E-02 0.00 5.78E-02 0.00 2.29E-02 0.00

1.12E-02 1.88 2.40E-02 1.89 1.58E-02 1.88 6.22E-03 1.88

2.99E-03 1.90 6.39E-03 1.91 4.22E-03 1.90 1.67E-03 1.90

1.02E-03 1.56 2.21E-03 1.53 1.41E-03 1.58 5.64E-04 1.56

3.07E-04 1.72 6.72E-04 1.72 4.27E-04 1.73 1.71E-04 1.72

1.14E-04 1.43 2.52E-04 1.41 1.58E-04 1.43 6.35E-05 1.43

Table B.6: The L∞ errors for mDDM3
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Appendix C

Validation of the asymptotic analysis

Here we present validations of our asymptotic analysis using the numerical results for the

seven cases in Appendix A. In Tab. C.1, we present ū
(1)
1 s in DDM2 obtained from both our

asymptotic analysis theory (Eq. (2.42)) and the numerical results. In Tab. C.2, we compare

the slope C(ε) computed numerically (through an analogous linear fit as in Sec. 2.1.2.2) with

the one derived from our asymptotic analysis theory (−A/6) for DDM1 and DDM3. In Tab.

C.3, we show û
(1.5)
3 (0)s from our asymptotic theory (−A/

√
2π for mDDM1 and −A/

√
6π

for mDDM3) together with the ones calculated from the numerical results for mDDM1 and

mDDM3. ū
(1)
1 and û(1)(0) in mDDM2 obtained from both our asymptotic analysis theory

(Eqs. (2.120) and (2.121)) and the numerical results are presented in Tab. C.4. Clearly our

theory is consistent with the numerical results.
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case Theory Numeric

case 1 -0.450 -0.450

case 2 0.000 0.000

case 3 0.180 0.183

case 4 0.363 0.368

case 5 -4.020 -4.072

case 6 -0.403 -0.408

case 7 -0.301 -0.305

Table C.1: Comparisons between ū
(1)
1 from theory and the one from numerical results.

case Theory Numeric (DDM1) Numeric (DDM3)

case 1 -0.185 -0.186 -0.188

case 2 0.000 0.000 0.000

case 3 0.074 0.075 0.075

case 4 0.149 0.150 0.152

case 5 -1.655 -1.667 -1.686

case 6 -0.166 -0.167 -0.168

case 7 -0.124 -0.125 -0.126

Table C.2: Comparisons between the slope of C(ε) from theory and the one from numerical
results.
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mDDM1 mDDM3

case Theory Numeric Theory Numeric

case 1 -0.443 -0.442 -0.256 -0.257

case 2 0.000 0.001 0.000 -0.001

case 3 0.178 0.177 0.103 0.103

case 4 0.356 0.357 0.206 0.207

case 5 -3.961 -3.952 -2.287 -2.299

case 6 -0.397 -0.396 -0.229 -0.230

case 7 -0.297 -0.296 -0.171 -0.172

Table C.3: Comparisons between û
(1.5)
3 (0) from asymptotic theory and from numerical results

of mDDM1 and mDDM3.

ū(1)(0) û(1)(0)

case Predictions Numerics Predictions Numerics

case 1 -0.381 -0.380 -0.391 -0.391

case 2 0.000 0.000 0.000 0.000

case 3 0.152 0.152 0.157 0.157

case 4 0.307 0.307 0.316 0.315

case 5 -3.401 -3.399 -3.496 -3.495

case 6 -0.341 -0.340 -0.350 -0.350

case 7 -0.255 -0.254 -0.262 -0.262

Table C.4: Comparisons between the asymptotic theory and the numerical results for ū(1)(0)
and û(1)(0) of mDDM2.
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Appendix D

Derivation of solution to Eq. (2.109)

Recall the homogeneous ordinary differential equation (Eq. (2.109)),

y′′ − e6x(y − xy′) = 0.

Clearly, y1 = x is one of the linearly independent solution to Eq. (2.109). We derive the

other solution through reduction of order. We assume y2(x) = v(x)y1(x) = xv(x) and plug

into Eq. (2.109). Thus,

xv′′ + 2v′ + x2e6xv′ = 0, (D.1)

which gives v(x) =
∫

ee
6x(1−6x)/36

x2
dx for x 6= 0. Hence,

y2 = x

∫
ee

6x(1−6x)/36

x2
dx = −ee6x(1−6x)/36 − x

∫
h(x)dx for x 6= 0, (D.2)

where h(x) = ee
6x(1−6x)/36+6x. It is not hard to verify that y2 is a solution to Eq. (2.109)

for all x including 0. Although the anti-derivative of h(x) is not an elementary function,

h(x) ∈ L1(−∞,+∞) and Matlab computes
∫ +∞
−∞ h(x)dx ≈ 2.92. Let H ′(x) = h(x) and y2
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can be written as

y2 = −ee6x(1−6x)/36 − x
∫ x

0

h(t)dt−H(0)x. (D.3)

Note that H(0)x is linearly dependent with respect to y1, thus y2 can be simplified as

y2 = −ee6x(1−6x)/36 − x
∫ x

0

h(t)dt. (D.4)

Hence, the general solution to Eq. (2.109) is

y = C1x+ C2(−ee6x(1−6x)/36 − x
∫ x

0

h(t)dt). (D.5)
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