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ABSTRACT OF THE THESIS

Modeling of Seismic Anisotropy Near The Hawaiian Mantle Plume

by

Chenghao Shen

Master of Science in Earth Sciences

University of California, San Diego, 2017

Professor Gabi Laske, Chair

Seismic anisotropy, the dependence of velocity on direction, is often induced by

mantle flow. Here, I studied the influence of a proposed mantle plume beneath Hawaii on

the azimuth dependence of Rayleigh wave phase velocity. I used a two-layer forward

modeling code to explore how the orientation of a transversely isotropic Pyrolite mantle

model controls the fast direction and strength of azimuthal anisotropy. Two layers are

assumed because plate motion of the Pacific plate rearranged about 45 Million years ago.

It is thought that the fossil spreading direction was frozen into parts of the lithosphere

while the asthenosphere below carries the signature of current mantle flow. Depending

on how different the horizontal orientation of Pyrolite is in both layers, the strength of

xiii



anisotropy can vanish for some frequencies but not others. This can ultimately be used to

estimate the thickness of the anisotropic layers and the orientation of Pyrolite.

In the second part, I forward-modeled data collected for the Hawaiian PLUME

project. At high frequencies, the overall pattern of azimuthal anisotropy follows the

fossil spreading direction while this coherency breaks down at low frequencies. I find

that anisotropy in the upper lithosphere is largely intact, but the pattern is incoherent in

the lower lithosphere and asthenosphere. These results provide strong evidence for the

presence of a mantle plume beneath Hawaii.

xiv



Summary

In my thesis, I explored Rayleigh wave azimuthal anisotropy observed during the

second deployment for the Hawaiian Plume-Lithosphere Undersea Mantle Experiment

(PLUME). The primary goal of this research was to find evidence of plume-related

mantle flow that would disturb the Pacific plate moving across the Pacific ocean. In

the absence of a plume, Rayleigh wave azimuthal anisotropy should show a frequency

dependence that is consistent with the fossil spreading direction of 76◦ ’frozen’ into the

lower lithosphere, while current mantle flow in the asthenosphere below occurs at an

azimuth of 124◦.

In chapters 1 through 3, I provide principal background information on seismic

surface wave dispersion and its dependence on structure with depth. Surface waves at

increasing frequencies have sensitivity to shallower structure where the sensitivity is a

complex frequency-dependent integral over depth. I also provide background information

on seismic anisotropy and its causes. The simplest anisotropy model to explain Rayleigh-

wave azimuthal anisotropy is a transversely isotropic medium that is tilted away from the

vertical. The orientation of the corresponding symmetry axis is then described by two

angles, the inclination, θ, and the azimuth, φ.

In chapter 4, I analyze Rayleigh wave azimuthal anisotropy from data collected

1



2

for PLUME. Azimuthally varying frequency-dependent phase velocity was previously

observed from 27 station triangles and made available to me. Using a truncated trigono-

metric series, I attempted to model observations for triangle 2 using different truncation

levels and data weighting schemes. The goal of this effort was to obtain the two principal

frequency-dependent observables of azimuthal anisotropy: the fast direction and strength

of anisotropy.

Before modeling the observations any further, I performed extensive forward

modeling in chapter 5. Here, I used a modeling code that predicts frequency-dependent

Rayleigh wave azimuthal anisotropy for a model that has two anisotropic layers in the

mantle that are sandwiched between an isotropic crust and uppermost mantle above as

well as an isotropic mantle below. In a series of tests, I explored the impacts of varying

the layer boundaries as well as the inclination angles and azimuths of the symmetry axes

of anisotropy in the two layers. Weak anisotropy at low frequencies but strong anisotropy

at high frequencies indicate a thin anisotropic layer at shallow depth. Strong anisotropy

at low frequencies but weak anisotropy at high frequencies means that anisotropy has

to start at great depth. Anisotropy increases as the incidence angle of the symmetry

axis approaches the horizontal (90◦). But the strength of anisotropy does not change

much once the incidence angle reaches 45◦. One of the most important results is that the

strength of anisotropy can drop dramatically for certain frequencies as the difference in

azimuths becomes larger. The frequency at which this occurs depends on the difference

of the azimuths.

In chapter 6, I performed a grid search for four parameters in the two-layer model

on the example data of triangle 4. I searched for the bottom of layer 1, the top of layer

2 as well as the fast direction of anisotropy in both layers. Here, I experimented with
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different ways of computing the misfit and weighting the two types of data (strength of

anisotropy and fast direction). The ultimate goal of this chapter was to obtain modeling

results for all 27 triangles.

In chapter 7, I summarize the results from the grid-search modeling. I display

the top of layer 2 and the total thickness of upper-mantle anisotropy. I find that to

the southeast and west of Hawaii, anisotropy starts at relatively great depth (some 70

km) compared to the area along the islands and toward the north (35 km). The overall

thickness of mantle anisotropy seems incoherent though anisotropy tends to be quite thin

(less than 40 km) to the southwest of Hawaii. The fast axis of anisotropy is quite coherent

in the upper layer and broadly aligns with the fossil spreading direction, as expected. In

the low layer, however, this pattern breaks down. Along the islands and to the east, the

fast direction aligns with the current plate motion direction, and some directions south are

perpendicular to this. The combination of these observations could potentially be consis-

tent with the parabolic mantle flow expected for an ocean plate overriding a mantle plume.



Chapter 1

Surface Waves

1.1 Introduction

Surface waves travel along the great circle path at the surface of the earth and go

differently from body waves which are fundamentally traveling inside the earth. Away

from the free surface, their amplitude decays exponentially with increasing depth. The

observed velocity of surface waves is usually much lower than that of body waves. For

shallow earthquakes, the amplitude of surface waves are the largest of all the seismic

phases in the seismogram. As a result of geometric spreading, wave energy spreads in

two-dimensional space and therefore the energy of the waves attenuates with 1/r. In con-

trast, body waves travel in a three-dimensional space and they attenuate with 1/r2(Stein

and Wysession, 2003). So body waves show smaller amplitudes in seismograms at the

same epicentral distance. Typically surface waves excited by very large earthquakes can

circle the earth for several times, which is called multiple surface waves. One of the most

distinctive property of surface waves is their dispersion, which means velocity varies

with frequency. The dispersion of surface waves is regarded as a effective tool to help

scientist study earth structure.

4
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1.2 Love Waves

Love waves exist along the free surface of a medium only when the velocity

structure varies with depth. This means that Love waves do not exist in a homogeneous

half space. However, even in a layer over a half space, Love waves exist only if β2 > β1

as shown in figure 1.1. Typically, in this circumstance, full reflection will not occur

until the incidence angle of the ray path reaches the critical angle j, which is defined

as sin( j) = β1/β2. Consequently, Love waves do not form within a critical distance

d = 2htan( j), which is also shown in figure 1.1. Love waves are the result of interfer-

ence of SH polarized waves. One can understand surface waves as a combination of

multiple reflected body waves. i.e. the direct S-wave and waves that bounced several

times at the free surface. (Such as SS,SSS,SSSS, etc.) As shown in figure 1.2, several

multiple reflected phases with different ray parameters propagate in a medium with a

vertical velocity gradient. The ray paths bend over to the surface and bounce at several

bouncepoints. SH waves at certain frequencies constructively interfere with each other

and form Love waves. The frequencies are dominated by the dispersion relation(Stein

and Wysession, 2003) which will be introduced in the following parts.

1.3 Rayleigh Waves

Rayleigh waves are formed by interference of P-waves and SV-waves. Taking

the situation in Poisson solid as an example(A medium which has a Poisson ratio of

0.25). The particle motion is shown in Figure 1.4. In order to describe the polarization of
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h

β1, ρ1

β2, ρ2

jj

Epiceter Free surface

d :  Critical distance

Figure 1.1: Full reflection can only occur when the incidence angle of the ray path is
larger than the critical angle j. Thus, there’s no Love wave within the critical distance.

Rayleigh waves, the particles move in an elliptical way, which means the motion consists

of both radial and vertical motion that are out of phase by π/2. The way of motion is

shown in figure 1.4. At the surface, its motion is retrograde, which means the motion

is against the direction of propagation. However, at some specific depth, the motion

changes to prograde. The amplitudes of motion decay exponentially with depth. On one

hand, when propagating in a homogeneous half space medium, Rayleigh waves show

no dispersion and their phase and group velocity are the same. On the other hand when

Rayleigh waves propagate in a medium with vertical velocity gradient, both phase and

velocity vary with frequency. The phenomenon is termed as dispersion.

1.4 Dispersion

In principle, dispersion means that the velocity of propagation along the surface

of medium varies with frequency. The dispersion of Love waves depends on shear
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X

Figure 1.2: Ray paths with different ray parameters to form Love waves. X is the source-
receiver distance (epicentral distance). r(p1), r(p2), r(p3) are different ray parameters of
the ray paths. S is the direct SH wave, SS is the SH wave that has been reflected for
once by the surface. And SSSS has been reflected for three times.

velocity while the dispersion of Rayleigh waves depends on both compressional and

shear velocity in the medium. There are two kinds of velocity of surface waves: group

velocity and phase velocity, both of which are dispersive. The phase velocity is the

velocity of individual wave peaks and troughs(shown in figure 1.6). And the group

velocity is the velocity of wave packets with which the energy is transported or the

velocity of a point on the envelope. Phase velocity is defined as c =
ω

k
and group velocity

is defined as U =
dω

dk
, where k is the wave number and ω is the angular frequency.

In a realistic earth model, wave groups is a combination of various phases. So group

velocity is a more complex function of frequency than phase velocity. As illustrated

in figure 1.5 and as explained earlier, a surface wave with longer period can penetrate

deeper into a medium. Usually the compressional and shear velocity increases with

depth in the earth. Thus, the phase velocity of surface waves decreases with increasing

frequency(showed in figure 1.7). By contrast, the group velocity curve does not seem

to be monotonously increasing or decreasing. Usually, group velocity is smaller than

phase velocity. In figure 1.7, both curves of group velocities of Love waves and Rayleigh
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waves have some local minimum or maximum points at specific frequencies which are

termed as Airy Phase. Energy of surface waves in a small frequency band will arrive

at almost the same time to form an Airy phase. When an Airy phase occurs, in the dis-

persion curves, the group velocity will increase or decrease at both sides of an Airy phase.
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Figure 1.3: Love wave displacement of fundamental mode(n=0) and higher order
modes(n>0). At fixed period of 5s, higher modes penetrate deeper into the medium
than the fundamental mode.(Modified after Stein and Wysession, 2003)
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Figure 1.4: Particle motion of Rayleigh waves decays with increasing depth: At the sur-
face particle motion is retrograde; At great depth, particle motion is prograde.(Modified
after P. Shearer,2009)

VS Sensitivity 
D
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Figure 1.5: Panel (a): Different displacement with depth for different periods of
fundamental-mode Love waves. Love waves with longer periods penetrate deeper
into the medium.(Modified after Stein and Wysession, 2003) Panel (b): Sensitivity
kernels for Rayleigh wave phase velocity to shear velocity structure with different
frequencies.(modified from Laske et al., 2011)
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Figure 1.6: Showing difference between group velocity and phase velocity(Modified
after P. Shearer, 2009)
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Figure 1.7: Fundamental Love wave and Rayleigh dispersion curves computed from
the isotropic PREM model(Figure from Shearer, 2009; courtesy of Gabi Laske)



Chapter 2

Surface Waves Azimuthal Anisotropy

2.1 Theory of Anisotropy

To start with anisotropy, we need to highlight the general concept of anisotropy is

that the velocity of a seismic wave traveling in an anisotropic medium is highly dependent

on the direction of propagation. As an example, S-wave birefringence is one of the most

common consequence of anisotropy.

Anisotropy is common in Earth’s medium when specific structures(i.e. layering

and cracks with adequate scales) and lattice-preferred orientation of mineral(i.e. Olivine

give rise to the anisotropy in mantle) occurs.

In principle, an anisotropic medium can be viewed as special case of heterogene-

ity. At a microscopic scale, anisotropy can be the consequence of crystal structure. For

instance, olivine in the mantle is made of (MgFe)2SiO4, which is anisotropic because of

the way the element are arranged in the crystal lattice. A single Olivine crystal has an

orthorhombic structure. A sketch of a olivine crystal is plotted in figure 2.1. Whereas

13
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at a larger scale, anisotropy can also be caused by a whole range of structures such as

cracks and layering. In order to explain that, figure 2.2 is plotted to show the concept of

how cracks and layering contribute to anisotropy. What distinguishes anisotropy from

heterogeneity is the relative scale of heterogeneous with respect to the wavelength of

a seismic wave. If the wavelength of a seismic wave is large enough to meet the scale

of heterogeneity caused by layering or cracks, then this anisotropy can be seen by the

seismic wave. In our study, The wavelength of surface waves are as large as several

hundreds of kilometers, which exceed the dimension of geological structures far and away.

Figure 2.1: The figure shows a sketch of a olivine crystal and its a, b and c axis. The
crystal has an orthorhombic structure. Va, Vb, Vc are the velocity with respect to a, b and
c axis(modified after Stein and Wysession, 2002)

An elastic wave propagates through a medium when a perturbation is exerted on

it. In case of an elastic medium, a linear expression describe the relationship between the

stress tensor τi j and the strain tensor ekl:

τi j = ci jklekl (2.1)

where ci jkl is the elastic constant. Considering the symmetry of some of the stress and
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Figure 2.2: panel (a) shows the simplest model of horizontal layering in the case of hor-
izontal transverse isotropy(HTI) which will be introduced in the following paragraphs.
No anisotropy presents at (a), if the ray paths are assumed to be horizontal. panel (b)
shows a more realistic model, the symmetrical axis inclines and the layers are no longer
horizontal. Anisotropy occurs in the horizontal plane. Panel (c) shows a medium with a
whole set of cracks. It cause anisotropy in the similar way as (b). Panel (d) shows how
lattice-preferred orientation(LPO) give rise to anisotropy.

strain components, the 81 components of ci jkl has been simplified to as much as 21

independent components:

ci jkl = ci jlk = c jikl = ckli j (2.2)

When further simplification applied, which means even more symmetrical components

exist at specific conditions, the amount of independent components can be even smaller.

Usually, when the number of independent elastic constants is larger than two(the case

of two independent elastic constants stands for isotropic medium), the elastic medium

responds to a elastic wave differently with various directions of wave propagation. There-
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fore, our observation shows that the wave velocity changes with various direction of

wave polarizations.

Diagram (a) in figure 2.3 shows the wavefronts and propagation directions of

phase and group velocity respectively in isotropic medium. Diagram (b) in figure 2.3

shows the case in anisotropic medium. In homogeneous isotropic medium, the wave

velocity is the same in all direction and the wavefront is spherical. The group and phase

velocity travel in the same path from the source to the wavefront. In homogeneous

anisotropic medium, the group velocity also follows a straight path from the wave source

to the wavefront. The difference between the directions of phase and group velocity

depends on the curvature of the wavefront through the relation:

V =C+
∂C
θ

(2.3)

where θ is the azimuth angle and C = c~n, c is the phase velocity. The vector~n

defines the direction of the phase propagation, and is perpendicular to the wavefront.

Wave energy travels in another direction, defined by the group velocity direction V.

For weak anisotropy, the waves can be separated into a quasi-P wave, with the

highest velocity and a polarization close to the propagation direction, and two quasi-S

waves, which are labeled as quasi-SH waves and quasi-SV waves. quasi-SH waves and

quasi-SV waves have different velocities with two polarization directions perpendicular

to each other. The direction of wave propagation are not generally perpendicular to their

respective wavefront, except for the propagation direction with symmetry of elasticity.

As for strong anisotropy, P-wave and S-waves with two polarizations perpendicular to

each other can not be labeled explicitly due to a high level of hybridization. In our study,
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Figure 2.3: The figure illustrates a concept of group and phase velocity in both ho-
mogeneous isotropic medium and homogeneous anisotropic medium. The direction
of group velocity is pointed from wave source to wavefront while the phase velocity
is always perpendicular to the wavefront. (a) shows the wavefront in a homogeneous
isotropic medium in which the waves travel at the same velocity in all direction. Dia-
gram (b) shows the wavefront in a homogeneous anisotropic medium and the wavefront
is elliptical.

we would focus on weak anisotropic medium.

Assuming a first-order approximation about the differences between the isotropic

and anisotropic elastic constants, the azimuthal variation of the velocity of quasi-P

waves, quasi-SV waves and quasi-SH waves within the X1-X2 plane are expressed as

follows(Crampin, 1977). The formulas are expressed in the form of trigonometric series

which has been truncated to second order.

ρV 2
p = A+Bc cos(2ψ)+Bs sin(2ψ)+Cc cos(4ψ)+Cs sin(4ψ)

ρV 2
SH = D−Cc cos(4ψ)−Cs sin(4ψ)

ρ
2
SV = F +Gc cos(2ψ)+Gs sin(2ψ) (2.4)
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where

A =
3(C11 +C22)+2C12 +4C66

8

Bc =
C11−C22

2

Bs =C16 +C26

Cc =
C11 +C22−2C12−4C66

8

F =
C44 +C55

2

Gc =
−C44 +C55

2

Gs =C45 (2.5)

ρ is the density and ψ is the azimuth measured from the X1 axis to the X2 axis, VP, VSH ,

VSV are phase velocity of quasi-P waves, quasi-SH waves and quasi-SV waves. Further

more,

C11 = c1111

C22 = c2222

C33 = c3333

C44 = c2323

C55 = c1313

C66 = c1212

C12 = c1122 (2.6)

The second order approximation of Azimuthal dependence of surface waves also

has similar form with the case in body waves shown above.
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2.2 Transverse Isotropy

Anisotropy with a cylindrical symmetry is termed as transverse isotropy(TI).

Figure 2.4 gives a concept of transverse isotropy(TI). Suppose in a medium with only

one symmetric axis, the anisotropy is only depended on the incidence angles of seismic

waves with respect to the axis. The symmetrical axis of a general TI medium can be

in any directions including horizontal direction(HTI) or vertical direction(VTI). Fine-

layering and a range of uniformly distributed cracks can be approximately regarded as

transverse isotropy(TI). Moreover, the most important cause of TI in this study is the

olivine crystallization, which is the major factor that cause the transverse isotropy(TI) in

the mantle.

One of the most common notation for transverse isotropy(TI) is expressed as

follows: five independent elastic coefficients are introduced A, C, F , L, N. When the

symmetry axis is along axis x3(VTI), we show the matrix ci j as:



A A-2N F 0 0 0

A-2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N


(2.7)
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where

A = ρV 2
PH =

3
8
(c11 + c22)+

1
4

c12 +
1
2

c66

C = ρV 2
PV = c33

F =
1
2
(c13 + c23)

L = ρV 2
SV =

1
2
(c44 + c55)

N = ρV 2
SH =

1
8
(c11 + c22)−

1
4

c12 +
1
2

c66 (2.8)

where ρ is density of the medium, VPV is horizontal P-wave velocity, VPV is vertical

P-wave velocity, VSH is horizontal S-wave velocity, and VSV is vertical S-wave velocity

(Montagner and Nataf, 1988).

In the isotropic case, A and C reduce to λ+ 2µ, F reduces to λ, and L and N

reduce to µ.

Figure 2.4: A concept of transverse isotropic(TI) model. VP1 6=VP2,VP3 and VP2 =VP3
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2.3 Surface wave azimuthal anisotropy

Figure 2.5 shows the simplified models of azimuthal anisotropy by tilting the

transverse isotropy, where θ is the inclination and φ is the azimuth. Especially, in case of

θ = 0◦, the medium is transversely isotropic. In case of θ = 90◦, the medium gets to the

strongest anisotropy.

Figure 2.5: A comparison of azimuthal anisotropy with different tilting angle θ. Panel
(a) shows a relatively weak anisotropy while panel (b) shows a strong anisotropy.

According to Smith and Dahlen’s research(1973), the azimuthal dependence of

both Love and Rayleigh phase velocity can be expressed in the same form:

c(ψ,ω) = a1(ω)+a2(ω)cos2ψ+a3(ω)sin2ψ+a4(ω)cos4ψ+a5(ω)sin4ψ (2.9)

where c(ψ,ω) is phase velocity, ω is angular frequency, ψ is azimuth, and a1,a2,a3,a4,a5

are depth integral functions that depend on the elastic parameters of the medium through

which the seismic waves are traveling.
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Figure 2.6 shows the conceptual plots of phase velocity c(ψ) with various values

of a2,a3,a4,a5. a1 is set to 5%, which is the average level of phase velocity variation. As

shown in panel (a), a2,a3 are an order of magnitude larger than a4,a5, then the 2ψ terms

dominate. If we neglect the 4ψ term, then the phase velocity can be expressed as:

c(ψ) = 5+2cos2ψ+2sin2ψ (2.10)

The phase velocity is a periodic function with a period of 180 degrees. In the plot, the

curve gets to its first maximum at 22 degrees and 23 degrees. Since the trigonometric

function is symmetric, it has a phase shift of 22.5 degrees. For panel (b), a4,a5 = 2%

are larger than a2,a3 = 0.1%, then the 4ψ terms are the dominant terms. The dominant

period becomes 90 degrees but still shows some slight 180-degree periodicity because

a1,a3 6= 0. Analogous to (a), the phase velocity can be written as:

c(ψ) = 5+2cos4ψ+2sin4ψ (2.11)

The first maximum of the curve is at 9 degrees. Due to a smaller weight of 2ψ terms, the

nearby maximums and minimums are uneven. In panel (c) a2,a3,a4,a5 are equal, az-

imuthal anisotropy is composed of 2ψ terms and 4ψ terms but the 180-degree periodicity

dominates. In each period, it has two non-equal maximums as well as two non-equal

minimums. The first maximum is at 13 degrees and the first minimum is at 62 degrees. In

panel (d), if we assume a different a2 and a3 compared with (a), this plot has a 180-degree

periodicity but a phase shift of 35.8 degrees. Derivation is shown as following:

c(ψ) = 5+ cos(2ψ)+3sin(2ψ) (2.12)
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In order to transform from cos(2ψ)+3sin(2ψ) to Asin(2ψ+β)

c(ψ) = 5+
√

10
[

1√
10

cos(2ψ)+
3√
10

sin(2ψ)

]
(2.13)

Assume
1√
10

= sin(β) and
3√
10

= cos(β)

c(ψ) = 5+
√

10 [sin(2ψ+β)] (2.14)

where β = arccos(
3√
10

) = 18.4

c(ψ) = 5+
√

10 [sin(2(ψ+9.2))] (2.15)

This curve has a phase shift of 9.8 degrees, and its first maximum is at 35.8 degrees.

In panel (e), if we set different a2,a3 and a4,a5, the amplitude of the 4ψ term change

significantly comparing with panel (c) while the periodicity of both 2ψ term and 4ψ term

remain the same. The first maximum shows up at 12 degrees.

a1,a2,a3,a4,a5 of each panel are shown in table 2.1

Table 2.1: Parameters from a1 to a5

panel a1(%) a2(%) a3(%) a4(%) a5(%)
a 5 2 2 0.1 0.1
b 5 0.1 0.1 2 2
c 5 1 1 1 1
d 5 1 3 0.1 0.1
e 5 1 1 3 3

In real case, we use several data points to recover the curve of azimuthal

anisotropy. According to Nyquist sampling criterion, the sampling frequency should be

twice the frequency of a sinusoid. As for panel (a) of figure 2.6, we need at least 3 data
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points(which is plotted as red dot in panel (a)) at nearby maximums and minimums to

resolve the plot of 2ψ terms. However, the data points may not be evenly distributed at

each maximums and minimums. Thus, more data points are needed to resolve the curve.

For 4ψ terms, we need a higher sampling frequency to avoid aliasing which means more

data are used to resolve the azimuthal anisotropy of Love waves. Sometimes we can’t get

enough density of distribution of data.
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Figure 2.6: For panel (a), a1 = 5%,a2 = a3 = 2%,a4 = a5 = 0.1%; For panel (b), a1 =
5%,a2 = a3 = 0.1%,a4 = a5 = 2%; For panel (c), a1 = 5%,a2 = a3 = a4 = a5 = 1%
are of the same order; For panel (d), a1 = 5%,a2 = 1%,a3 = 3%,a4 = a5 = 0.1%; For
panel (e), a1 = 5%,a2 = a3 = 1%,a4 = a5 = 3%

Figure 2.7 shows a concept of how we measure the azimuthal anisotropy of phase

velocity. Each network consists of several stations. We assume the a constant velocity

within each network. And then we fit a spherical wavefront to the travel time data at each

station by using a least-square method. In this way, we calculate the phase velocities

with respect to different propagating directions.
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Figure 2.7: A conceptual map of station network: red stars are the stations. orange,
blue and green curves stand for different wave phases

2.4 Surface Dispersion and Structure at Depth

In a transversely isotropic medium, the integral function a1(ω) for Love waves

can be formulated as:

a1(ω) = a0(ω)

[∫ a

0
KN(z,ω)N(z)dz+

∫ a

0
KL(z,ω)L(z)dz+

∫ a

0
Kρ(z,ω)ρ(z)dz

]
(2.16)

where a0(ω) is a normalization factor and a is the Earth radius. In case of no azimuthal

dependence, a1(ω) is the phase velocity in either an isotropic medium or in a transversely

isotropic medium. Note that Loves waves are related to both L and N, or vSV and vSH

respectively. But usually sensitivity to vSV is ignored because it is much smaller (shown

in figure 2.8).
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For Rayleigh waves, we have

a1(ω) = a0(ω)[
∫ a

0
KA(z,ω)A(z)dz+

∫ a

0
Kc(z,ω)C(z)dz+

∫ a

0
KL(z,ω)L(z)dz (2.17)

+
∫ a

0
Kg(z,ω)g(z)dz]

Figure 2.9 shows the sensitivity Kernels for Rayleigh waves of 40s. Note that Rayleigh

waves have no sensitivity to N (VSH).

Figure 2.8: Conceptual drawing of sensitivity kernels of Love wave phase velocity at a
period of 40s. L is related to VSV . N is related to VSH . (modified after Gerald Schubert,
2015)

Montagner and Nataf(1986) introduced several constant terms independent of

azimuth in addition to A,C,F,L,N.
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Figure 2.9: Conceptual drawing of sensitivity kernels of Rayleigh wave phase velocity
at a period of 40s. A is related to VpH . C is related to VpV . L is related to VSV . (modified
after Gerald Schubert, 2015)

2ψ terms:

BC =
1
2
(c11− c22)

BS = c16 +C26

GC =
1
2
(c55− c44)

GS = c54

HC =
1
2
(c13− c23)

HS = c36 (2.18)

4ψ terms:

CC =
1
8
(c11 + c22)−

1
4

c12−
1
2

c66

CS =
1
2
(c16− c26) (2.19)
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First, the partial derivatives of the constant terms with respect to the elastic coef-

ficient (A,C,F,L,N) are equal to the the partial derivatives of the azimuthal terms with

respect to the other elastic coefficients (BC,BS,GC,GS,HC,HS,CC,CS). Panel (a) in figure

2.10 shows the partial derivatives for Love waves. The partial derivative with respect to

L (related to SV-velocity) is equal to the partial derivative with respect to −GC in the

2ψ term. The partial derivative with respect to N (related to SH-velocity) is equal to the

partial derivative with respect to −CC in the 4ψ term. Since Love waves are dominated

by SH-velocity, CC is dominant for Love wave. On the contrary, for Rayleigh waves,

the derivatives with respect to CC only have small value except in very shallow zone.

Therefore, at the depth we are interested in, GC dominates just as panel (b) shows.

Figure 2.10: A sketch of partial derivatives for both Love waves and Rayleigh
waves(Montagner and Nataf, 1986)



Chapter 3

Case Study Hawaii

3.1 Reviews of Plate Tectonics

The lithosphere is a thin shell made of the crust and the uppermost mantle. Figure

3.1 shows a concept of a spreading and cooling lithosphere. It has a lower temperature

relative to the asthenosphere beneath. The lithosphere is assumed to be rigid while the

asthenosphere is soft and can deform in response to stresses and mantle drag. The bound-

ary of the lithosphere and the asthenosphere is an isotherm of approximately 1600(K)

according to Turcotte and Schubert, 2014. An oceanic lithosphere is formed at the mid

ocean ridge and disappears at the subduction zone. Due to the rigidity of the lithosphere,

the dragging force from the subduction zone and the pulling force from the mid ocean

ridge can be transmitted to the whole lithosphere, which accounts for the dynamics

of plate motion. Hot asthenosphere rises up to fulfill the gap between two pieces of

lithosphere which are called plates. When the oceanic lithosphere moving away from the

ocean ridge, it gets cooler. Then the mantle rocks from the asthenosphere are added to the

bottom of the oceanic lithosphere, which means the lithosphere is thickening when the

distance from the mid ocean ridge gets larger. As the oceanic lithosphere gets cooler, it

29
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also gets denser and lose its gravitational buoyancy. Finally it descends at the subduction

zone where it gets melted into the asthenosphere again. This makes up a cycle of a whole

life span of oceanic lithosphere.

Anisotropy is formed is this process. When the mantle rocks are being added

to the bottom of the lithosphere, they are also being driven to flow with the spreading

of lithosphere. Pyrolite in the asthenosphere is anisotropic because of flowing. As the

mantle flow is ”frozen”, it causes an increase in the anisotropy in the lithosphere. Figure

3.2 shows a concept figure about that.

Figure 3.1: A concept figure of the spreading lithosphere over the asthonesphere. The
Oceanic lithosphere is generated at the mid ocean ridge and melted at the subduction
zone. As the lithosphere moves towards the subduction zone and gets cooler, it gets
thicker. When the density of the lithosphere reach a certain point, it descends into the
subduction zone.

3.2 Present-day and Fossil Spreading Directions

Hotspots lie in the interior of a plate, usually far away from the plate boundaries.

It causes swelling and volcanism at the surface of oceanic lithosphere. Hawaii-Emperor

seamount chain is the track of a hotspot with the motion of the Pacific plate. Figure



31

Figure 3.2: A concept figure of how anisotropic mantle rocks are formed: As the
lithosphere cools down, the anisotropic mantle flows are added to the bottom of the
lithosphere. We assume that the olivine in the mantle flow has a certain pattern of
anisotropy. When the asthenosphere gets solidified, such anisotropy is ”frozen” at the
lithosphere. The lowest layer represents for the present-day anisotropy and the layer
above that is formed at an earlier time.

3.3 is a concept figure to show the geography of the seamount chain. Hawaii-Emperor

seamount chain starts at Kilauea volcano on the island of Hawaii and ends up near

Aleutian Islands. The geological age of the chain of seamount increases linearly with

distance from Kilauea volcano. At around 43 Myrs ago, the direction of plate motion

shifted suddenly, which accounts for the turning point in the seamount chain. The oldest

age in Emperor seamount chain is 82 Myrs.

The current direction of the Pacific plate motion is around −56.6◦ or 123.4◦

according to Gripp and Gordon(2002), with an error of 6.3◦. The fossil direction of the

Pacific plate motion is around 76◦ according to Searle et al.(1993). Searle et al. figured

out the fossil plate motion by measuring the orientation of Molokai Fracture Zone near

Hawaii. Here we can also measure the direction of these fracture zones near Hawaii

in google Earth. We use the ruler tool in Google Earth to measure the azimuth of each
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Figure 3.3: A concept figure of Hawaiian-Emperor seamount chain: the hexagons in
the right bottom corner shows the islands in Hawaii. The age of the oldest island is
around 5 Myrs. At the kink of Hawaiian-Emperor seamount chain, the age is 43 Myrs.
The oldest age in Emperor seamount chain is 82 Myrs.

single fracture and take the average of seven to ten fractures to get the value of fossil

plate motion direction.

The direction of plate motion changed at 43 Myrs ago. As illustrated before, the

mantle flow that is driven by plate motion can give rise to anisotropy in the lithosphere.

However, the pattern of anisotropy was changed at 43 Myrs ago when the direction of

plate motion shifted. Thus the shallow layer represents the fossil spreading direction

and the deeper layer indicates the present-day spreading direction(From 43 Myrs ago to

present). Figure 3.4 shows how the layer of fossil spreading direction and the layer of

present-day spreading direction are formed in the lithosphere. Without considering the ef-

fect of mantle plume, this medium only has two anisotropic layers. Above the anisotropic

layer, there is a isotropic layer which is consist by the crust and the isotropic upper

mantle. The first anisotropic layer is formed by ancient mantle flow. The present-day

anisotropic layer is consist of lower lithosphere with a different orientation of anisotropy



33

and a layer of asthenosphere. The asthenosphere right beneath the lithosphere is dragged

by plate spreading. So it is also anisotropic but the thickness of this layer still needs

to be studied. Surface waves with high frequencies are sensitive to relatively shallow

anisotropic medium which correlates to fossil spreading directions. Surface waves with

low frequency are sensitive to deeper anisotropic medium(associated with the present-day

spreading direction) but they can also be influenced by shallow medium as well. In a

lateral homogeneous medium, we can expect that the parameters of fast direction and the

strength of anisotropy change gradually from the values in the fossil mantle flows to the

values in present-day mantle flows. That is the origin of the frequency dependency of the

fast direction and the strength of anisotropy.

Figure 3.4: Geometrical relationship of the layer of fossil plate motion and the layer
with present-day plate motion.

Before forward modeling, we need to identify a model in which only two layers

are anisotropic. Figure 3.5 shows a concept of this model. This model is consist of six

layers. The two layers for fossil spreading direction and present-day spreading direction

are anisotropic. And the rest of four layers are all isotropic. We use a Fortran program to

model the frequency dependency of fast direction and the strength of anisotropy. Then
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we can compare the results with the data in Chapter 4.

Figure 3.5: A concept figure of a six-layer model. Only the layer a1 and a2 are
anisotropic.

3.3 The Hawaiian Mantle Plume

Hawaiian mantle plume is isolated from any plate boundary and it is less complex

to studying the cause of the hotspot volcanism in Hawaii than in other places. Since it

is located in the middle of the Pacific Plate, we are able to collect seismic arrivals in all

directions surrounding it. However, the deep ocean floor around Hawaiian are regarded

as the most significant obstacle for any previous studies in the collection of seismic

observation.
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Figure 3.6: This Diagram shows a concept of mantle plume hypothesis with a conduit
rising through the mantle and lithosphere, causing volcanism and forming the island.
(https://igppweb.ucsd.edu/∼gabi/plume.html)

There are two models explaining the origin of hotspots. The plume theory (Wil-

son, 1963; Morgan, 1971) proposes that Hawaiian volcanism is the consequence of hot

buoyant mantle flow that rises to the rigid lithosphere. Some hypothesis indicate that

the mantle plume might originates from the core-mantle boundary. When approaching

the surface, the mantle flow cause swelling on the lithosphere as well as volcanism in

Hawaii. The location of the mantle plume is stationary but the plate is moving steadily.

During this process, a chain of islands is formed with the motion of the plate. Figure 3.6

shows a concept of how this works. The other theory about hotspot is the Propagating

crack theory (Jackson and Shaw, 1975). Propagating crack theory hypothesizes a crack

in the lithosphere that allows mantle flows go through. In this theory, the hotspots only

occur where there is a crack on the plate. And the mantle has a passive role in hotspot
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dynamics with respect to a initiative role in the Plume theory.

A heterogeneity of anisotropy can be modeled by the plume theory (Wilson,

1963; Morgan, 1971) since the fast directions of anisotropy are always determined by the

spreading direction of mantle. As shown in figure 3.7, the fast directions of anisotropy at

different locations have a parabolic shape. This model is explained by figure 3.8 which

provides a concept about how the orientations of fast directions of a plume interact with

that of a spreading plate. The model of anisotropic medium is expected to be verified by

the azimuthal anisotropy we measured.

Figure 3.7: The figure shows the shear wave splitting around Hawaii as well as flows
lines in the mantle.(Walker et al., 2001)
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Figure 3.8: The blue lines with arrows are the flow lines, the black short lines shows
the fast directions of anisotropic medium. Panel (a) shows a homogeneous anisotropic
medium in a plate spreading with a steady velocity. Panel (b) shows the anisotropy
caused by a mantel plume in a stationary plate. Panel (c) shows a realistic model of
mantle plume. It is a mantle plume with a stationary location, which is dragged by a
moving plate.



Chapter 4

Rayleigh Wave Azimuthal Anisotropy

at Hawaii

4.1 The PLUME Project

The Hawaiian Plume-lithosphere Undersea Mantle Experiment(PLUME) is a

multidisciplinary program. Data are collected from a large network of four-component

broadband ocean bottom seismometers(OBS) and three-component portable broadband

land stations. Figure 4.1 shows the locations of all seismic stations. Because of a wide

range of seismic observation covering the sea floor around the Hawaiian mantle plume,

the PLUME project is able to provide a 3-D tomographic image of Hawaiian plume in

the lower and upper mantle. And a full range of seismic techniques has been applied in

land-deployed experiments.

However, in this study, we only use the WHOI OBS stations. Figure 4.2 shows

the 38 stations we are using and the 27 triangles formed by them.

38
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We use Rayleigh waves to study Hawaiian mantle plume in the upper mantle.

Since surface waves have a strong frequency dependence, a specific frequency is sensitive

to a range of depth. As stated in Chapter 1, surface waves in different frequencies can

be used to retrieve information at different depths. According to Chojnacki and Laske’s

study (2011), the velocity differences can be as small as 2% when measuring anisotropy.

Surface waves are also the strongest arrivals on seismograms. Thus, it is easier to be

distinguished from background noise and provided higher signal to noise ratio.

4.2 PLUME Instrument

Since the wave length of Rayleigh wave we are measuring is 10-60 mHz, we

use a network of four-component broadband ocean bottom seismometers(OBSs) and

three-component portable broadband land stations. The OBS network included 72 sites

occupied in two phases by 73 instruments that were provided by the Woods Hole Oceano-

graphic Institution (WHOI) and the Scripps Institution of Oceanography (SIO), both of

which are institutional operators of OBSIP. The Carnegie Institution of Washington (CIW)

operated the 10 land stations. An inner OBS network of 35 sites was deployed around

the island of Hawaii and recorded continuously from January 2005 through January 2006

(phase 1). An outer OBS network of 37 sites covered the entire swell around the island

chain and recorded from April 2006 through June 2007 (phase 2).

WHOI instruments were equipped with Güralp CMG-3T sensors (orthogonal

components; −3-decibel corner period of the instrument response is at 120 seconds). The

SIO instruments featured a Nanometrics Trillium-40 (symmetrical triaxial components,

−3-decibel corner period at 40 seconds) during phase 1 and a Trillium-240 (−3-decibel
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corner period at 240 seconds) during phase 2.

4.3 Rayleigh Wave Azimuthal Anisotropy

In this chapter, we first introduce a least square method to fit the azimuthal depen-

dent data to equation 9 in chapter 2. The least square fit is applied to a set of synthetic data

to test the effectiveness of this method. Then we simply apply the least square fit to a set

of data recorded at 50 mHz regardless of the error bars. We test the impact of small errors

after introduce a weighted least square fit. A few different ways to optimize the over

weighing of small errors are discussed from section 4.5 to section 4.7. Finally we apply

the most favorable method to other sets of data recorded at 10 mHz, 15 mHz, 20 mHz,

25 mHz, 30 mHz, 35 mHz, 40 mHz and 45 mHz. This chapter is aimed at processing the

data of azimuthal dependent phase velocity and find out an appropriate method to be used.

Assuming we have a set of data with phase velocity c with respect to azimuth

ψ, we fit the data set with a linear equation which express an azimuthal dependence of

phase velocity:

c = A1 +A2 cos(2ψ)+A3 sin(2ψ)+A4 cos(4ψ)+A5 sin(4ψ) (4.1)
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In order to solve the linear equations:

c1 = A1 +A2 cos(2ψ1)+A3 sin(2ψ1)+A4 cos(4ψ1)+A5 sin(4ψ1)

.................................................

c j = A1 +A2 cos(2ψ j)+A3 sin(2ψ j)+A4 cos(4ψ j)+A5 sin(4ψ j)

.................................................

c113 = A1 +A2 cos(2ψ113)+A3 sin(2ψ113)+A4 cos(4ψ113)+A5 sin(4ψ113) (4.2)

we use a least square method to find out a set of coefficients A1,A2,A3,A4,A5, and now

we denote them as a model vector m. Assume d=Gm, where d is a M dimensional vector,

m is a N dimensional vector. G is a M×N matrix.(In this case, M=113, N=5)

d = [c1, ...,c j, ...,c113]
T (4.3)

G =



1 cos(2ψ1) sin(2ψ1) cos(4ψ1) sin(4ψ1)

....................................

1 cos(2ψ j) sin(2ψ j) cos(4ψ j) sin(4ψ j)

....................................

1 cos(2ψ113) sin(2ψ113) cos(4ψ113) sin(4ψ113)


(4.4)

m = [A1,A2,A3,A4,A5] (4.5)

In a least square fit, we find a solution of m to minimize the sum of the square of every

modeled misfit.

The misfit of the i-th equation is defined as: di−∑
N
j=1 Gi jm j

Our objective function is:

E =
M

∑
i=1

(di−
N

∑
j=1

Gi jm j)
2 (4.6)
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To minimize the objective function, we calculate the model vector as:

m = [GTG]−1GTd (4.7)

The Matlab script is shown as following:

m=[G’*G]\G’*d;
%where "\" means inversion of a matrix on the left side of this symbol.
%symbol " ’ " means the transpose of a matrix.

4.4 Exploring Equation 20

Before using real data, this method is first applied to a set of synthetic data, it is

a blind test. We use a set of synthetic data generated by an unknown model vector m.

Then a linear inversion as equation 4.7 is applied to the synthetic data. The result of a

least square fit is shown in table 4.1:

Table 4.1: results of the inversion of synthetic data

parameter 4ψ 2ψ

A1 2.0000 2.0000
A2 3.0000 3.0000
A3 4.0000 4.0000
A4 0.5000 No
A5 0.5000 No
MF 0 0.25
VR 100% 98%

Where misfit is denoted as MF,

MF =
1
N ∑

N
(doi−dpi)

2

(4.8)
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doi is the observed datum, dpi is the predicted datum. Variance reduction is denoted as

VR,

V R = (1− Var2

Var1
)×100%

Var2 =
1

N−1 ∑
i
(doi−dpi)

2

Var1 =
1

N−1 ∑
i
(doi−

−
d)2 (4.9)

doi is the observed datum, dpi is the predicted datum,
−
d mean of observed data.

Misfit measures how well the data are fitted to a predicted curve, the smaller the

misfit is, the better a inversion is. Variance reduction is a percentage which also shows

how well fit a inversion has done. A 100% variance reduction means the predicted data

after inversion is perfectly fitted to the observed data.

We compare the results with the initial input model vector of synthetic data and

find that: (1) The result of 4ψ fit is consistent with the input model vector which shows

the validity of this method( all the five parameters are the same). Figure 4.3 shows a

plot of synthetic data and its least square fit. The curve of 4ψ fit perfectly modeled the

synthetic data since the misfit(MF) is 0. The variance reduction(VR) of the inversion is

100% because the synthetic data and modeled data are exactly the same. (2) Obviously

the result of 2ψ fit can not match the synthetic data because the input model vector has

two more parameters. The curve of 2ψ fit is inconsistent with synthetic data and the

misfit is 0.25. The variance reduction is 98% though is does not have much meaning as

we have already known the synthetic data has a 4ψ term.
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4.5 An inversion Using Real Data (assuming no data er-

ror)

This sample data is an azimuthal dependency of Rayleigh wave phase velocity

including 113 data points. We get the data from triangle 2 (see figure 4.4) and the data

is recorded at 50 mHz(Courtesy of Gabi, 2016). We apply the same technique with the

example of synthetic data in last section assuming no data error. The result are shown in

table 4.2

Table 4.2: Results of the inversion for real data (assuming no data error)

parameter 4ψ 2ψ

A1 3.9662 3.9698
A2 -0.0465 -0.0495
A3 0.0641 0.0675
A4 0.0017 No
A5 -0.0386 No
MF 0.0312 0.0320
VR 12.62% 10.55%
SA 4.74% 4.22%
DIR 67◦ 63◦

Two major parameter in this experiment that we are really interested are strength

of anisotropy and fast direction. These two parameter measure the characteristics of an

anisotropic medium. We define the strength of anisotropy as: SA =
Cmax−Cmin

C0
×100%,

where Cmax is the maximum phase velocity and Cmin is the minimum phase velocity,

and C0 = A1 is an average of phase velocity. The parameter DIR is the fast direction

of anisotropy. Fast direction is the azimuth at which degree the predicted curve goes

to its summit. Note that the azimuth should be from 0◦ to 90◦. We calculate phase

velocity at different azimuth with an increment of 1◦ before manually picking up one

azimuth which maximizes the phase velocity. We get a fast direction at 67◦ in 4ψ fit
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and at 63◦ in 2ψ fit. Also, the strength of anisotropy in 4ψ fit (4.74%) is stronger than

that in 2ψ fit (4.22%). To estimate the effectiveness of inversion of 4ψ fit and 2ψ fit,

we compare the misfit(MF) and the variance reduction(VR) of the 4ψ and 2ψ fit. We

find that a 2ψ fit has a slightly larger MF but smaller VR than 4ψ fit, which means 4ψ

fit should be more effective. The result of the least square fit is shown in figure 4.4, a

2ψ fit roughly depicts the trend of data point and the 4ψ fit does not seem to be a better fit.

4.6 An Inversion Using Real Data (weighted by error

bars)

In this section, we weight the data with its error bar before apply an inversion.

Specifically, every row of matrix G and vector d are multiplied by their corresponding

one over error bar. For example,

[G11,G12,G13,G14,G15]×
1

error1
and d1×

1
error1

The result are shown in table 4.3:

Table 4.3: Results of the weighted least square fit (weighted by error bars)

parameter 4ψ 2ψ

A1 4.0087 4.0099
A2 -0.1333 -0.1381
A3 0.0806 0.0661
A4 0.0349 No
A5 -0.0084 No
MF 41.2 45.2
VR 77.85% 75.69%
SA 8.28% 7.63%
DIR 80◦ 77◦
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In a weighted least square fit, the expression for MF and VR changes a little:

MF =
1
N ∑

N
(
doi−dpi

σi
)2 (4.10)

doi is the observed datum, dpi is the predicted datum, σi is the error.

V R = (1− Var2

Var1
)×100%

Var2 = ∑
N
(
doi−dpi

σi
)2/(∑

N

1
σ2

i
)

Var1 = ∑
N
(
doi−

−
d

σi
)2/(∑

N

1
σ2

i
) (4.11)

σi is the error, Var1 is the initial variance, Var2 is the modeled variance.

Figure 4.5 shows the result of the least square fit. The MF of 4ψ fit is 41.2

and the MF of 2ψ fit is 45.2. However, VR of 4ψ fit is 77.85% ans VR of 2ψ fit is

75.69%. The MF of 4ψ fit is smaller and the VR of 4ψ fit is larger. Consequently, in

a weighted least square fit, a 4ψ fit is slightly more effective. It is reasonable that we

get a little different fit if we add two more parameters. The strength of anisotropy are

8.28% for 4ψ fit and 7.63% for 2ψ fit, which are almost twice the value of least square

fit without error bar. The fast directions are 80◦ and 77◦ for 4ψ fit and 2ψ fit respectively,

which are also different from the previous least square fit. Both the fast direction and

the strength of anisotropy have significant difference with the values obtained from the

last section(assuming no data error). This means both results are not convincing before

further evaluation. In the next step, we explore how small errors influence the results,

and distort the inversion.
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In the form of matrix, we also apply a weighted least square fit using the same

method. Then a M×M weight matrix w is introduced. The weight matrix w only has

none-zero value at its diagonal components which are defined by
1

error2 .

w =



1
error12

1
error22

......

1
error1132


(4.12)

Analogous to the formula previously used, the a weighted least square fit is expressed as:

m = [GTwG]−1GTwd (4.13)

The Matlab script is:

m=[G’*w*G]\G’*w*d;

The result are identical.

4.7 An Experiment with 12 ’best’ data

(a) Only use 12 data with smallest error, the plots of 2ψ and 4ψ fit are shown in

figure 4.6 and the results are also shown in table 4.4:

With only 12 data, the misfit of 4ψ fit is 253.99 and the misfit of 2ψ fit is 290.99.

Both misfits are much more larger than weighted least square fit, which means the 12 data

can not be regarded as ’best’ data at all though they have relatively small data error. One
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Table 4.4: Results of the inversion using 12 data

parameter 4ψ 2ψ

A1 4.0205 4.0170
A2 -0.1542 -0.1511
A3 0.0755 0.0664
A4 0.0403 No
A5 -0.0018 No
MF 253.99 290.07
VR 83.76% 81.45%
SA 9.12% 8.22%
DIR 84◦ 79◦

possibility is that the small numbers of error bars are not convincing and we can’t take

the error bars as the only evidence to weight the data. Moreover, the results of variance

reduction and strength of anisotropy are both close to those from weighted least square

fit, which indicates that a few data points with relatively smaller error can dominate

the weighted least square fit. Since we weight the data with 1/error, if the some of the

data points are not as precise as we expected, these data can dominate the inversion.

Consequently, most of the other data with relatively larger error bars are meaningless

in an inversion. As we need to take advantages all the data and prevent ourselves from

wasting any useful informations, we will improve this least square fitting.

(b) Using the rest of 101 data, a plot of 2ψ fit and 4ψ fit is shown in figure 4.7

and the results are shown in table 4.5:

Compared with 12-data fit, the misfit gets smaller, and even smaller than weighted

least square fit in section 4.3. If we remove the differences in algorithm of non-weighted

and weighted least square fit, the misfit of this test without 12 data is very close to the

result from non-weighted least square fit. That further convinces us that the small errors

dominate the inversion and cause higher misfit. The rest of 101 data points do not have



49

Table 4.5: Results of the inversion using 101 data

parameter 4ψ 2ψ

A1 3.9941 3.9911
A2 -0.0735 -0.0782
A3 0.0670 0.0573
A4 0.0327 No
A5 -0.0056 No
MF 11.41 11.87
VR 47.43% 45.32%
SA 5.77% 4.86%
DIR 80◦ 73◦

much impact on the inversion compared to the 12 data with smallest error. In this test,

the fast directions of 4ψ fit and 2ψ fit are still larger than non-weighted least square fit

in section 4.2 though we expect they should not be. Most importantly, the strength of

anisotropy is close to the results in section 4.2. Additionally, even we remove some of

the data with smallest error, we still can not make every data point fit the curve. Because

there some data which have the same azimuth but different phase velocity. Those data

are called internally inconsistent data.

4.8 A Test With Various Threshold of Minimum Data

Errors

In the previous sections, we learn that small errors can highly influence the results

of an inversion. Now we introduce a threshold to constrain the minimum available errors.

Practically, if an error is smaller than the threshold, then we replace the error with the

threshold. The results are shown as MF, VR, SA, DIR as functions of various thresholds.

Figure 4.8 and table 4.6 show the results for the 4ψ fit.

Figure 4.9 and table 4.7 show the results for the 2ψ fit.
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Table 4.6: A test with different threshold for the 4ψ fit

threshold 0.01 0.02 0.05 0.1 0.15 0.2 0.5 1.0 1.5
MF 20.48 12.35 5.41 2.33 1.19 0.74 0.14 0.04 0.03
VR 61.62 46.43 25.94 12.43 11.16 10.49 11.13 12.48 12.62
SA 7.46 6.63 5.07 4.30 4.11 4.15 4.21 4.68 4.74
DIR 79 74 69 62 63 63 65 67 67

threshold of 0.01 weighted with no
error threshold

omit 12 ’best’ data 12 ’best’ data

MF 20.48 41.2 11.41 253.99
VR 61.62 77.85 47.43 83.76
SA 7.46 8.28 5.77 9.12
DIR 79 80 80 84

Table 4.7: A test of different threshold for 2ψ fit

threshold 0.01 0.02 0.05 0.1 0.15 0.2 0.5 1.0 1.5
MF 21.98 13.02 5.50 2.35 1.20 0.76 0.14 0.04 0.03
VR 58.82 43.55 24.70 11.97 10.25 8.86 9.39 11.46 10.54
SA 6.96 6.28 5.12 3.90 3.66 3.49 3.87 4.19 4.21
DIR 76 71 68 66 65 64 64 64 64

threshold of 0.01 weighted with no
error threshold

omit 12 ’best’ data 12 ’best’ data

MF 21.9809 45.2 11.87 290.07
VR 58.82 75.69 45.32 81.45
SA 6.96 7.63 4.86 8.22
DIR 76 77 73 79

In figure 4.8, the misfit keeps declining as the threshold grows. However, in the

plot of variance reduction, strength of anisotropy and fast direction, there is an unex-

pected trend that the curves decline when the threshold is smaller than approximately

0.2. After that, the curves appear to approach the results from the non-weighted least

square fitting in section 4.2 (plotted in red lines). For comparison, results from the 2ψ

fit of the non-weighted least square fit are plotted as green lines. As what we can see

from table 4.6, SA is 7.46% for the 4ψ fit when we set a small threshold as of 0.01.

The value is smaller than the case of no error threshold(8.28%) and the case of 12 ’best’
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data(9.12%). The fast direction is 76◦, which is also smaller than the case of no error

threshold(80◦) and the case of 12 ’best’ data(82◦). However, the fast direction of ”omit

12 ’best’ data”(80◦) is close to the result of no threshold(80◦). But SA of ”omit 12 ’best’

data”(5.77%) is close to the result of small threshold(5.07%). Such inconsistency may

occur due to the involvement of a few erroneous data with unrealistically small error bars.

One small error may not necessarily means a high accuracy. Since the fast direction and

SA change significantly as the threshold increases, we need to guarantee the stability of

these two parameter as we select the minimum error threshold. The range of practical

thresholds is plotted as shadowed box in figure 4.8. We chose a threshold of 0.2 for

example. In this condition, DIR stays within 2◦ to 3◦. Likewise, the change of SA is

around 0.1%.

4.9 A Test With Different Means of Definition of The

Weight

Previously we use w =
1

error
as the weight for an inversion. But we found that

this type of the weight overemphasizes data with vary small error. Here explore a way to

even out the the impact of changing error bars. We replace our weight w =
1

error
with

w =
1√

error
. The results for an inversion with no error threshold are in table 4.8.

Compared with the results from no error threshold in section 4.5, we get a smaller

fast direction and smaller SA. That means a different weight function does contribute

to down weigh the effect of small error bars. Nonetheless, we still can not remove

completely the effect of some data with extremely small errors because we still do not

get the results that we obtained for our ’best’ choice of minimum error threshold. Thus,
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Table 4.8: Results of the inversion (different definition of the weight)

new weight no error threshold error threshold of 0.02
parameter 4ψ 2ψ 4ψ 2ψ 4ψ 2ψ

A1 3.9813 3.9900 / / / /
A2 -0.0908 -0.1067 / / / /
A3 0.0898 0.0756 / / / /
A4 0.0110 No / / / /
A5 -0.0298 No / / / /
MF 11.41 11.87 41.2 45.2 0.74 0.76
VR 51.33% 48.99% 77.85% 75.69% 10.49% 8.86%
SA 6.61% 6.55% 8.28% 7.63% 4.15% 3.49%
DIR 70◦ 72◦ 63◦ 77◦ 63◦ 64◦

setting a threshold of error is necessary.

4.10 Making a new data set by taking average of data in

each 10◦-bins

We divide the azimuth from 0◦ to 360◦ into 36 equal 10◦-bins. In each bin, we

take the value in center as the azimuth of this bin. We calculate the average of phase

velocities in every bin as the phase velocity of the bin. And we calculate the standard

deviation of phase velocities in each bin as the error of the bin. For some bins, there

may be less than 3 data points, which should be abandoned from our experiment. We get

one datum for each bin and perform a weighted least square fitting as stated before. The

results are shown in table 4.9 and figure 4.10.

The result of SA for the 4ψ fit is 5.64%, which is larger than the shadowed box

area(4%-5%) in figure 4.8 as we choose. SA for the 2ψ fit appears to be more reasonable

since it stays in consistency with the results of the test using different threshold. DIR
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Table 4.9: results of the inversion using 10◦-bins

parameter 4ψ 2ψ

A1 3.9718 3.9779
A2 -0.0463 -0.0380
A3 0.0899 0.0743
A4 -0.0297 No
A5 -0.0353 No
MF 1.175 1.345
VR 70.81% 66.59%
SA 5.64% 4.19%
DIR 58◦ 59◦

for the 4ψ fit(58◦) and the 2ψ fit(59◦) is also a little smaller than the shadowed box

area(60◦−65.5◦) in figure 4.8. But it should be acceptable.

4.11 The Inversion of Data Recorded At Different Fre-

quencies

In this section, we apply the inversions to a few sets of data recorded at 10 mHz,

15 mHz, 20 mHz, 25 mHz, 30 mHz, 35 mHz, 40 mHz, 45 mHz. According to the

previous sections, we select a minimum error threshold of 0.2 to conduct a weighted

least square fit, we obtain a table( table 4.10) showing how FM, VR, SA, DIR change

with respect to frequency. Also, figure 4.11 shows SA and DIR as functions of frequency.

Results of 4ψ fit (red line) and 2ψ fit (blue line) are plotted in different colors.

It is of our expectation to see that the fast directions at low frequencies reach

around 123.4◦, which reflects the present-day direction of plate motion. It is acceptable

that fast direction values at the lowest frequency from both the 4ψ fit and the 2ψ fit are

smaller than present spreading direction because shallower medium also have a little
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Table 4.10: Results of the inversion of data recorded at different frequencies

frequency(mHz) 10 15 20 25 30 35
MF(4ψ) 1.826 1.988 11.934 1.917 3.716 1.308
MF(2ψ) 182.6 234.6 1456 237.7 431.0 153.0
VR(4ψ) 22.51% 24.48% 31.20% 29.60% 28.03% 34.29%
VR(2ψ) 16.68% 23.51% 28.93% 23.96% 25.80% 31.86%
SA(4ψ) 5.76% 4.18% 4.83% 5.42% 4.92% 4.64%
SA(2ψ) 3.78% 4.31% 4.55% 4.66% 4.56% 4.75%
DIR(4ψ) 116◦ 94◦ 91◦ 96◦ 98◦ 82◦

DIR(2ψ) 100◦ 90◦ 78◦ 84◦ 89◦ 78◦

frequency(mHz) 40 45 50
MF(4ψ) 11.153 1.285 0.744
MF(2ψ) 1294 149.1 84
VR(4ψ) 33.56% 25.29% 10.49%
VR(2ψ) 27.61% 23.50% 8.87%
SA(4ψ) 5.07% 4.51% 4.15%
SA(2ψ) 4.89% 4.46% 3.49%
DIR(4ψ) 74◦ 73◦ 62◦

DIR(2ψ) 74◦ 70◦ 63◦

impact on fast direction at the lowest frequency. And the fast direction declines as the

frequency increases. At the largest frequency, the value is around 60◦. However, the

fossil direction of plate motion is 76◦. This is beyond our expectation. As for strength

of anisotropy, the result of 4ψ fit varies between 5.7% to 4.2%. The curve of 2ψ fit is

between 3.5% to 5%. Both of the parameters of SA and DIR have a strong dependency

on frequency.

We process the data for all the other triangles (from 10 mHz to 60 mHz) in

a similar way. Results of all the triangles (10 mHz, 20 mHz, 40 mHz, 50 mHz) are

shown in figure 4.12. The results at 40 mHz on the top right panel and 50 mHz on

the top left panel seem to be sort of coherent. Generally all the fast directions align

with the fossil plate motion. At the north of the islands, the fast direction is particularly

coherent and the strength of anisotropy is relatively large. In the south west, the strength
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of anisotropy is relatively smaller. Both panels for 10 mHz and 20 mHz show strong

incoherence. Lower frequencies can see current plate motion with shallower depth. At

20 mHz, the fast direction in the north of the islands aligns with the fossil plate motion.

In contrast, the fast direction in the north of the islands is more similar to the current

plate motion when the frequency is 10 mHz. The panel for 10 mHz shows increasing

sensitivity to deeper structures. It shows strong anisotropy near the islands which is close

to the current plate motion. In the south east, the symbols are coherent with the fossil

plate motion which means the fossil anisotropic layer at here is deeper than anywhere else.
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Figure 4.1: Site locations of the Hawaiian PLUME phase 2 deployment from April
2006 through May 2007 (Laske et al. 2011). Thirty OBSs were recovered. Of these, 8
OBSs from the Scripps Institution of Oceangraphy (SIO) and 19 OBSs from the Woods
Hole Oceanographic Institute (WHOI) delivered data. In this study, we analyze the
WHOI data only.
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Figure 4.2: A map of 38 stations we are using, the stations are plotted with red dots
and labeled with numbers. All these stations form 27 triangles just as labeled in the
figure.(courtesy of Gabi Laske)
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Figure 4.3: A plot of testing data: Black symbols show the synthetic data, red curve
shows the 4ψ fit, blue curve shows the 2ψ fit. The curve for 4ψ fit (red line) is top of
the symbols of synthetic data.
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Figure 4.4: A plot of Azimuth-dependent phase velocity and a least square fit regardless
of error bar: Black symbols shows the raw data, red curve shows the 4ψ fit, blue curve
shows the 2ψ fit
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Figure 4.5: A plot of Azimuth-dependent phase velocity and a least square fit: Black
symbols shows the raw data, red curve shows the 4ψ fit, blue curve shows the 2ψ fit
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Figure 4.6: A plot of phase velocity as function of azimuth: Black symbols show the
synthetic data, red curve shows the 4ψ fit, blue curve shows the 2ψ fit.
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Figure 4.7: Phase velocity as function of azimuth: Black symbols show the synthetic
data, red curve shows the 4ψ fit, blue curve shows the 2ψ fit.
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Figure 4.8: 4ψ fit: Plots of MF, VR, SA, DIR as functions of thresholds of data error(in
blue line). 4ψ fit of non-weighted least square fit is plotted as horizontal red lines. 2ψ fit
of non-weighted least square fit is plotted as horizontal green lines. Orange lines show
the weighted least square fit without any error threshold. The shadowed box shows the
practical range of error threshold.
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Figure 4.9: Same as figure 4.8 but for the 2ψ fit: Plots of MF, VR, SA, DIR as functions
of thresholds of data error(in blue line). The results of non-weighted least square fit is
plotted as horizontal red lines.
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Figure 4.10: A plot of phase velocity as function of azimuth: Black symbols show the
data points, red curve shows the 4ψ fit, blue curve shows the 2ψ fit.
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Figure 4.11: Final Data for Triangle 2: Strength of anisotropy(SA) as function of
frequency is in the left panel, and Fast direction(DIR) as function of frequency is in the
right panel. Red symbols show the 4ψ fit, blue symbols show the 2ψ fit. The orange
horizontal line shows the present spreading direction(124◦), the green line shows the
fossil spreading direction(76◦).
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Figure 4.12: Results of the strength of anisotropy and the fast directions of all triangles
with the frequencies of 10 mHz, 20 mHz, 40 mHz, 50 mHz. The current plate motion
(123.4◦) and the fossil plate motion (76◦) are shown in the top right panel. The length
of the black symbols shows the strength of anisotropy. The directions of this symbols
show the fast directions. And the minor black lines on the symbols show the error of
fast directions.



Chapter 5

Forward Modeling - 2-Layer Model

5.1 Test 1 - Vary the Boundaries

In chapter 5, we made the case for a six-layer model with two anisotropic layers

that describes the seismological make up of the Pacific plate around Hawaii. Here, we

take the anisotropic model to calculate the phase velocity as function of azimuth using a

Fortran forward-modeling program. For each run, we call the Fortran program with one

specific frequency to compute azimuthal anisotropy. The frequency varies from 10 mHz

to 60 mHz with a step of 5 mHz. I wrote a c-shell script to streamline the computations.

We will perform a number of tests to explore the impact of changing model parameters

on the frequency-dependent azimuthal anisotropy of Rayleigh waves. In table 5.1, we

list all the parameters in test 1a as well as the following tests. In the first test, we will

explore how the frequency-dependent azimuthal anisotropy changes when we change

the thickness of anisotropic layers. In the first run, test 1a, we change the bottom of the

lower layer 1(present-day mantle flow). In test 1b, we change the top of layer 2(fossil

spreading direction). Anisotropy at different frequencies are shown in different panels in

figure 5.1 and figure 5.3.

63
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In test 1a, the bottom of layer 1(the present-day’s anisotropic layer) varies from

71 km to 251 km with a step of 30 km. At its greatest thickness, this layer includes

the bottom of the lithosphere as well as part of the asthenosphere. The upper boundary

of the fossil anisotropic layer(layer 2) is fixed at 21 km. The boundary between the

two layers is fixed at 71 km. We keep φ fixed of 45◦ in both layers. In figure 5.1, the

curves of different depths are shown with different colors. In the first panel(10 mHz),

the curve of varying depths of the bottom of layer 1 has the most obvious differences.

The curve with the deepest bottom of layer 1 appears to be the most anisotropic. The

anisotropy gets weaker as the depth declines. Thus, Rayleigh waves of 10 mHz are very

sensitive to deep structure. In contrast, for the frequency of 60 mHz in the last panel,

the curves of varying depths of layer 1 are almost the same. Azimuthal anisotropy at

60 mHz is not affected by structures below a depth of 71 km. Figure 5.2 shows a plot

of strength of anisotropy as a function of frequency. For each frequency, the strength

of anisotropy increases as the bottom of layer 1 gets deeper. However, at frequencies

50 mHz and greater, the strength of anisotropy does not change when the bottom of

layer 1 is of depths greater than 101 km. The strength of anisotropy changes more

with frequency as the depth of the bottom of layer 1 is shallower. This is because

the low-frequency waves depend on the integral of anisotropy anisotropic structure for

a larger and deeper depth range in order to build up significant azimuthal anisotropy.

When the bottom of layer 1 is 251 km and 221 km, the strength of anisotropy does not

change significantly with frequency (varying from 6.8% to 8.2%). It shows that the

strength of anisotropy of Rayleigh waves with high frequency is less sensitive to the

depth of the bottom of the present-day’s anisotropic layer. That indicates surface waves

with higher frequencies are less likely be influenced by deeper media. Moreover, the

curves of the bottom depth at 251 km, 221 km and 191 km even have a summit at 20 mHz.
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Table 5.1: A list of all the parameters in each test

test fixed parameters variable parameters
test 1a top of layer 2, boundary between layer 1 and 2,

θ1,θ2,φ1,φ2

bottom of layer 1

test 1b bottom of layer 1, boundary between layer 1 and 2,
θ1,θ2,φ1,φ2

top of layer 2

test 2 top of layer 2, boundary between layer 1 and 2, bot-
tom of layer 1, φ1 = φ2

θ1,θ2

test 3 top of layer 2, boundary between layer 1 and 2, bot-
tom of layer 1, θ1 = θ2,φ1

φ2

test 4 top of layer 2, boundary between layer 1 and 2, bot-
tom of layer 1, θ1 = θ2,φ2

φ1

test 5 top of layer 2, boundary between layer 1 and 2, bot-
tom of layer 1, θ1 = θ2,φ1

φ2

test 6 top of layer 2, boundary between layer 1 and 2, bot-
tom of layer 1, θ1,φ1,φ2

θ2

test 7a top of layer 2, bottom of layer 1, θ1,φ1,φ2,θ2 boundary between
layer 1 and 2

test 7b top of layer 2, bottom of layer 1, θ1,φ1,φ2,θ2 boundary between
layer 1 and 2

As for test 1b, figure 5.3 also has eleven panels for different frequencies from 10

mHz to 60 mHz with a step of 5 mHz. The upper boundary of layer 2 varies from 21 km

to 71 km with a increment of 10 km. The boundary between the two layers is always

fixed at 71 km. The bottom of the lower layer(layer 1) is fixed at 251 km. In contrast to

figure 5.1, in figure 5.3, the curves in the first panel shows the smallest differences among

panels of all the frequencies. The curve for the top of layer 2 at 21 km has the strongest

resulting azimuthal anisotropy and the curve for 71 km has the smallest. However, as the

frequency increases, the difference between curves of different tops of layer 2 becomes

greater. In the last panel at the frequency of 60 Hz, the curve of 21 km has the strongest

anisotropy while the curve turns less anisotropic when the depth increases to 71 km. This

is because 60 mHz waves are no longer sensitive to structure at that depth. Similarly

strength of anisotropy as a function of frequency is plotted in figure 5.4. Here, the
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Figure 5.1: Test 1a, result of forward modeling. The lower boundary of the lower
anisotropic layer (layer 1) varies from 71 km to 251 km, the upper boundary of layer
2 is set to 21 km. Colors mark resulting azimuthal anisotropy curves for varying the
bottom of layer 1. The frequency varies from 10 mHz to 60 mHz.

anisotropy changes the most for the highest frequencies while that for low frequencies

changes only moderately. Note that the anisotropy at 60 mHz does not change much

once the upper bound of layer 2 is 51 km or deeper. This is because the sensitivity of

high frequency waves to changes in structure concentrates to a depth range of shallower

depths, up to about 50 km. When the depth of the upper boundary is 21 km, it has the

highest strength of anisotropy. For all the other depths except 21 km, the strength of

anisotropy have an over all trend that declines with increasing frequency. That means 21

km is a depth that all the frequencies from 10 mHz to 60 mHz can penetrate. Rayleigh

waves with higher frequency are more likely to be influenced by the upper boundary of
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Figure 5.2: Test 1a, strength of anisotropy as a function of frequency: Layer 1 varies
from 71 km to 251 km. Colors mark the strength of anisotropy for varying the bottom
of layer 1.

the fossil anisotropic layer. That means surface waves with higher frequencies are more

likely to be influenced by shallow media.

The result of forward modeling are generally consistent with our expectation in

Chapter 2. The sensitivity kernels of Rayleigh waves in figure 8 and 9 of Chapter 2 show

that Rayleigh waves with high frequencies are more sensitive to shallow media while

Rayleigh waves with low frequencies are more sensitive to deep media.
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Figure 5.3: Test 1b, result of forward modeling: The upper boundary of layer 2 varies
from 21 km to 71 km, the lower boundary of layer 1 is now set to 251 km. Colors mark
resulting azimuthal anisotropy curves for varying the top of layer 2. The frequency
varies from 10 mHz to 60 mHz.

5.2 Test 2 - Vary Inclination

In test 2, we will now change θ, the angles of the symmetry axis of the anisotropic

medium with respect to the vertical direction. θ1 and θ2 are changed from 0◦ to 90◦ with

a increment of 5◦, where θ1 = θ2. The boundaries of the bottom layer(layer 1) and the

top layer(layer 2) are all fixed. The bottom of layer 1 is 251 km. The boundary between

layer 1 and layer 2 is 71 km. The top boundary of layer 2 is 21 km. φ1 = φ2 are fixed at

45◦(see in chapter 1, figure 1.5). We still use the same Fortran program to calculate the

azimuthal anisotropy as in test 1. But I wrote a new C-shell script. In figure 5.5, we plot

the strength of anisotropy as function of frequency. Different colors show the strength of
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Figure 5.4: Test 1b, strength of anisotropy as a function of frequency: The upper
boundary of layer 1 varies from 21 km to 71 km. Colors mark the strength of anisotropy
for varying the upper boundary of layer 1. All other modeling parameters are the same
as in test 1a.

anisotropy as a function of frequency with varying θ1 and θ2.

Figure 5.5 is a plot of the strength of anisotropy as a function of frequency. First

of all, at each frequency, the strength of anisotropy increase with θ(when θ is small than

70◦). Also, we can clearly see that the strength of anisotropy is 0% when θ is 0◦. That

is because the symmetric axis is vertical and the medium is transversely isotropic(TI)

and so does not cause azimuthal anisotropy. Moreover, the strength of anisotropy is not

obviously affected by frequency when θ is smaller than 25◦. For θ smaller than 50◦, it

shows no frequency dependency in the strength of anisotropy. When frequency is larger

than 20 mHz, the curves decline slightly as the frequency increases. When θ is larger

than 70◦, the curves of the strength of anisotropy have peaks at the frequency of 15 mHz.
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As θ gets larger, the strength of anisotropy declines more significantly with increasing

frequency.
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Figure 5.5: Test 2, Strength of anisotropy: Colors mark strength of anisotropy for
varying input of θ’s from 0◦ to 90◦ with a step of 5◦. Frequency varies from 10 mHz to
60 mHz.

5.3 Test 3 - Vary Upper Azimuth φ2

In test 3, we examine how the azimuthal anisotropy changes when we change φ2,

the azimuth in the shallower layer 2. We set the upper boundary of layer 2 at 21 km, the

boundary between layer 1 and layer 2 at 71 km, the lower boundary of layer 2 at 251

km. All of the θ1 and θ2 are fixed at 50◦. φ1 of layer 1 is fixed at 15◦ while φ2 of layer

2 varies from 0◦ to 170◦ with a increment of 10◦. The same Fortran program is used to

produce one curve of azimuthal anisotropy with every input. But I wrote a new C-shell
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script that varies φ2 on input.

We expect that the fast directions for low frequencies will be determined mainly

by φ1 while the fast direction for high frequencies will depend more on φ2.

The left panel of figure 5.6 is a plot of fast direction as a function of frequency

and the right panel is the strength of anisotropy as a function of frequency. In the left

panel, the fast directions varies from 5◦ to 25◦ at the frequency of 10 mHz. But actually

φ1 is 15◦. Thus, the fast direction at the frequency of 10 mHz is determined by both φ1

and φ2. When the frequency is larger than 30 mHz, the fast direction tends to stay in

consistency with φ2, which indicates that Rayleigh waves with a frequency higher than

30 mHz can not penetrate the lower anisotropic layer(layer 1). When the frequency is

from 20 mHz to 25 mHz, the fast direction shifts significantly. We expect this range of

frequency would be related to the depth of the boundary between layer 1 and layer 2.

This will be explored in test 5.

In the right panel of strength of anisotropy, when φ1 and φ2 have the smallest

difference (where φ2 = 10◦ or 20◦ and the curve is red), the strength of anisotropy is the

strongest(8.2%). As the angle between φ1 and φ2 gets larger, the strength of anisotropy

gets smaller. But this is relevant only at low frequencies that have sensitivity to structure

at depths greater than 50 km. When the angle between φ1 and φ2 exceeds 55◦(on the

legend, the curve for 70◦ or 140◦ and below), there is a minimum at the frequency of 20

mHz. When the angle between φ1 and φ2 continues to get larger, the curve of strength

of anisotropy declines at any frequency. Such effects are strongest for frequencies at 20

mHz. When the angle between φ1 and φ2 gets to its maximum(on the legend, the curve

for 100◦ or 110◦), the curve’s minimum is 1% at the frequency of 20 mHz. It is inferred
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that if φ1 and φ2 of both layers are 15◦, the anisotropy of the lithosphere as a whole can be

maximized. When the angle between φ1 and φ2 is close to 90◦, the strength of anisotropy

declines to nearly 0%(at 20 mHz). The strength of anisotropy at a frequency as high as 60

mHz is equal to 7.5% and simply affected by φ2 of the shallower layer. But at a frequency

of 10 mHz, the azimuthal anisotropy are controlled by both φ1 and φ2, which ranges from

3.6% to 7.4%. That confirms what we have found in the plot of the fast direction. At

last, we find the greatest varying in the strength of anisotropy between 1% and 8% at

the frequency of 20 mHz. One possible reason is that the azimuthal anisotropy partially

caused by layer 1 cancels out that caused by layer 2. Even though both layers have the

same θ, i.e., the media have the same anisotropic strength. So 20 mHz is very close to

a frequency at which both layers have equivalent contributions to azimuthal anisotropy.

According to the sensitivity kernel in figure 1.5 of chapter 1, Rayleigh waves with the

frequency of 20 mHz shows the greatest sensitivity to the media at the depths between 60

and 80 km, which is near our boundary at 71 km. If the boundary between the two layers

are at a different depth, then the minimum of the curves should be at a different frequency.
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Figure 5.6: Test 3: The left panel is the fast direction as a function of frequency. The
right panel is the Strength of anisotropy as a function of frequency. Colors mark varying
input of φ2. Since the strength of anisotropy is symmetric about 15◦, each curve stands
for two values of φ2.
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5.4 Test 4 - Vary Lower Azimuth φ1

In test 4, φ1 varies instead of φ2. We would expect that the biggest effects are that

the fast direction and the strength of anisotropy at high frequencies are mainly controlled

by φ2 and they change less as the frequency gets higher. φ1 varies from 0◦ to 170◦ with a

increment of 10◦ while φ2 is fixed at 15◦. We also set the upper boundary of layer 2 at 21

km, the boundary between layer 1 and layer 2 at 71 km, the lower boundary of layer 2 at

251 km. All of the θ1 and θ2 are fixed at 50◦.

The left panel of figure 5.7 shows the fast direction as a function of frequency. At

the highest frequency of 60 mHz, the fast direction is totally determined by φ2 while it

is mostly affected by φ1 at 10 mHz though at a frequency of 10 mHz, Rayleigh waves

still have a little sensitivity to the top layer(layer 2). 20 mHz to 25 mHz is a range of

frequency where all curves of the fast direction shift from a value near φ1 to φ2. It is

the same range with that of test 3. Note that the frequency of this transition depends on

where we position the boundary between layer 1 and layer 2.

The right panel of figure 5.7 is a plot of strength of anisotropy as a function of fre-

quency. The plot is totally identical with test 3 because it is the angle between φ1 and φ2

that really affects the strength of anisotropy. It does not matter if we fixed φ2 instead of φ1.

We keep θ1 and θ2 the same and also the depths of all boundaries but only change φ1 or φ2.

5.5 Test 5 - Vary Upper φ2 With Different Boundary d12

In test 5, we repeat test 3 but now change the position of the boundary between

the two layers. This should have an impact on the frequency range at which the transition
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Figure 5.7: Test 4: The left panel is the fast direction as a function of frequency. The
right panel is the Strength of anisotropy as a function of frequency. Colors mark varying
input of φ1. Since the strength of anisotropy is symmetric about 15◦, each curve stands
for two values of φ1.

occurs in the fast direction and the frequency at which the strength of anisotropy gets to

the minimum. We set the upper boundary of layer 2 at 21 km, the boundary between layer

1 and layer 2 at 41 km, the lower boundary of layer 2 at 251 km. All of the θ1 and θ2 are

fixed at 50◦. φ1 of layer 1 is fixed at 15◦ while φ2 of layer 2 varies from 0◦ to 170◦ with a

increment of 10◦. The only difference from test 3 is that the boundary between layer 1 and

layer 2 is fixed to 41 km instead of 71 km. We will compare the result of test 3 and test 5.

It is expected that the ”shifting range” of the fast direction can move to a higher frequency.

The left panel of figure 5.8 shows the fast direction as a function of frequency. At

the frequency of 10 mHz, the fast direction is around 10◦ to 20◦. And when the frequency

is larger than 45 mHz, the fast direction is close to φ2. When the frequency is in the

range from 35 mHz to 45 mHz, the curves of fast direction shift from a value near φ1 to a

value near φ2. Note that for test 3, this transition occurs at lower frequencies. However,

compared with test 3, the fast direction at the frequency of 60 Hz can still be affected by

φ1. Because the boundary between layer 1 and layer 2 is much shallower than that in test

3, Rayleigh waves of 60 mHz still have a little sensitivity to the bottom layer 1.
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In the right panel of figure 5.8, the strength of anisotropy varies from 0.6% to

8.1%. The curves of strength of anisotropy still decrease with increasing angle between

φ1 and φ2. The minimums of the curves with φ2 at 100◦, 110◦, 90◦, 120◦, 80◦, 130◦, 70◦,

140◦, 60◦, 150◦ appear to be moved to 40 mHz while it is 20 mHz in test 3. Because the

boundary between layer 1 and layer 2 is changed from 71 km to 41 km. The frequency at

which the effects from both layers cancel each other out also increases accordingly.
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Figure 5.8: Test 5, a repeat of test 3, but new d12 = 41 km instead of 71 km: Colors
mark varying input of φ2. The left panel is the fast direction as a function of frequency.
The right panel is the strength of anisotropy as a function of frequency. Since the
strength of anisotropy is symmetric about 15◦, each curve stands for two values of φ2.

5.6 Test 6 - Vary the Inclination θ2

In test 6, we examine in more detail how a changing θ2 of layer 2 can influence

both the fast direction and the strength of anisotropy when φ1 6= φ2. We set the upper

boundary of layer 2 at 21 km, the boundary between layer 1 and layer 2 at 71 km, the

lower boundary of layer 2 at 251 km. φ1 is fixed at 15◦ and φ2 is fixed at 60◦. θ1 is

fixed at 50◦. θ2 varies from 0◦ to 90◦ with an increment of 5◦. The fast direction and
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the strength of anisotropy are expected to be changed as θ2 increases from 0◦ to 90◦.

Also, they should have a frequency dependency because the two layers have different θ’s

and Rayleigh waves with different frequencies are sensitive to media at different depth.

Because we change θ of layer 2, we expect the most dramatic changes at high frequencies.

The left panel of figure 5.9 shows the fast direction as a function of frequency.

When θ2 is 0◦, layer 2 does not contribute to azimuthal anisotropy. The fast direction is

therefore φ1 for all frequencies. We also see in the panel on the right that the strength

of anisotropy declines with increasing frequency to nearly zero at 60 mHz. For each

frequency, as θ2 increases, the fast direction also increases towards φ2 though φ2 is

reached only at high frequencies. For all θ2 larger than 10◦, the fast direction at 60 mHz

are all very close to φ2. This means that θ2 does not have to be far from the vertical to

contribute significant anisotropy.

In the right panel of figure 5.9, the strength of anisotropy varies from 5.5% to

6.2% at the frequency of 10 mHz. Such amount of anisotropy is mainly caused by layer

1. Once θ2 reaches 35◦ degrees, only small changes occur for both the fast direction and

the strength of anisotropy, even at low frequencies.

5.7 Test 7 - Vary Boundary d12

In test 7a and test 7b, we explore how azimuthal anisotropy changes with varying

the depth of the boundary between layer 1 and layer 2 (denoted as d12). In test 7a, d12

varies from 31 km to 171 km with a step of 10 km. The bottom of layer 1 is fixed at 251

km and the top of layer 2 is fixed at 21 km. θ1 and θ2 are both fixed at 80◦, as a realistic
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Figure 5.9: Test 6: The left panel is the fast direction as a function of frequency. The
right panel is the Strength of anisotropy as a function of frequency. Colors mark varying
input of θ2

value. φ1 is 123◦(the present day plate motion). φ2 is 76◦(the fossil plate motion). We

expect to see that at high frequencies, the fast direction changes greatly with d12 when

d12 is relatively shallow. Otherwise, when d12 is deeper, the fast direction is mainly

determined by the fossil direction of motion in layer 2. So the fast direction no longer

changes at high frequencies. At low frequencies, the azimuthal anisotropy has a larger

sensitivity to deeper media so we expect changes to greater depths of d12.

The left panel in figure 5.10 shows the fast direction resulting from the forward

modeling. At a frequency of 10 Hz, the fast direction decreases steadily from 117◦

to 86◦ as d12 increases. When d12 is as shallow as 31 km to 61 km, the result shows

that Rayleigh wave with 10 mHz is less impacted by layer 2 because it is thinner. At

frequencies near 35 mHz, the fast direction remains near the fossil spreading direction as

long as d12 is about 91 km or deeper. This indicates that Rayleigh waves with 35 mHz

are sensitive to structure up to this depth but not much beyond that(see sensitivity kernels

in Figure 1.5 in Chapter 1). At the frequency of 60 mHz, when d12 is deeper than 51 km,

the fast directions are all very close to 76◦, the direction of fossil plate motion. However,
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when d12 is 31 km or 41 km, the fast direction will tend towards the present-day direction

but will not reach it. The reason for this is because 60 mHz Rayleigh waves are sensitive

primarily to shallow structure.

The right panel of figure 5.10 shows the strength of anisotropy as a function of

frequency. First, we can compare the curve of d12 = 71 km with another curve in test

4(when φ2 = 60◦). The angle between φ1 and φ2 are similar. So the overall shape of the

two curves are identical. While in test 4, θ1 and θ2 are fixed at 50◦, which is smaller than

a real case. The curve of strength of anisotropy in test 4 is obviously smaller than that in

this test. Secondly, take the curve of d12 = 41 km for example. The curve has a minimum

at the frequency of 45 mHz. That is the depth of d12 at which the contribution from both

layers partially cancel out with each other. As d12 gets larger, the frequencies of the

minimums get smaller. When d12 is deeper than 101 km, its minimum even gets smaller

than 10 mHz and can not be seen in the plot. Moreover, at the frequency of 60 mHz, the

strength of anisotropy for d12 varying from 71 km to 171 km have little differences from

each other for this particular frequency. That means Rayleigh waves with a frequency

of 60 mHz are not sensitive to media deeper than 61 km. At lower frequencies, more

symbols with higher and higher depths are not distributed in a close range. Thus the

depth of sensitivity gets larger.

In test 7b, d12 varies from 41 km to 151 km with a step of 10 km. The bottom

of layer 1 is fixed at 201 km and the top of layer 2 is fixed at 31 km. So essentially,

both anisotropic layers are thinner. θ1 and θ2 are all fixed at 80◦. φ1 is 123◦(the present

day plate motion). φ2 is 76◦(the fossil plate motion). Because the anisotropic layers

are now thinner, we expect that the strength of anisotropy is diminished for all frequencies.

The left panel of figure 5.11 shows the fast direction as a function of frequency.
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Figure 5.10: Test7a: The left panel is the fast direction as a function of frequency. The
right panel is the Strength of anisotropy as a function of frequency. Colors mark varying
depths of the boundary between layer 1 and layer 2 (d12)

Generally the figure looks similar to that of test 7a. Unlike the plot of fast direction in

test 7a, only when d12 = 41 km, the fast direction at the frequency of 60 mHz appears

to be far from 76◦(the fossil plate motion). Because the top of layer 2 is deeper and the

thickness of layer 2 is thinner than that in test 7a, layer 1 now has more contributions

to the fast direction. When d12 is ranging from 81 km to 151 km and the frequency is

larger than 35 mHz, layer 2 has much stronger impact on the fast direction than that of

layer 1. At small frequencies, the fast direction varies greatly because the both layers

have considerable contributions to it.

The right panel shows the strength of anisotropy as a function of frequency. The

most important difference from test 7a is that the strength of anisotropy at every condi-

tions is generally smaller than that of test 7a because both layer 1 and layer 2 gets thinner.

At high frequencies, now the symbols are distributed closer to each other comparing to

that of test 7a.

A summary of all the tests is shown in table ??.
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Table 5.2: A summary of all the tests

test number variable
parameter

figure
number

most important result

test 1a bottom of
layer 1

5.2 The bottom of layer 1 has larger influence on
azimuthal anisotropy as the frequency gets lower.
SA is dramatically reduced if the bottom of layer
1 is at 101 km.

test 1b top of
layer 2

5.4 The top of layer 2 has larger influence on az-
imuthal anisotropy as the frequency gets higher.
SA is dramatically reduced for 60 mHz if the top
of layer 2 is at 61 km.

test 2 θ1 = θ2 5.5 θ controls the strength of anisotropy of a
medium. The larger θ is, the stronger anisotropy
occurs. SA is dramatically reduced if θ is less
than 40◦.

test 3 φ2 5.6 For ∆φ (φ1−φ2) ranging from 65◦ to 95◦, SA is
dramatically reduced at a certain frequency.

test 4 φ1 5.7 SA is the same with that in test 3 but the fast
direction is different.

test 5 like test 3
but d12 =
41 km in-
stead of 71
km

5.8 Comparing to test 3, a shallower d12 shifts the
minimum in SA to a higher frequency.

test 6 θ2 5.9 θ2 We compare this test to test 2 but now φ1 6= φ2
and θ1 6= θ2. SA drops dramatically at high
frequencies when θ2 is smaller than 35◦.

test 7a d12 5.10 Now we are using realistic φ1 and φ2. A d12
shallower than 81 km dramatically impact the
fast direction and SA, particularly at high fre-
quencies.

test 7b d12 but
the top of
layer 2 is
deeper and
the bottom
of layer
1 is shal-
lower. The
anisotropic
layers get
thinner.

5.11 SA is dramatically reduced at all frequencies but
particularly at high frequencies.



Chapter 6

Grid Search Modeling of Real Data

6.1 Grid Search For Bottom of Layer 1 And Top of Layer

2 by Strength of Anisotropy

Triangle 4 consists of 3 stations including PL48(22.2986◦ N 155.6336◦ W),

PL44(25.5928◦ N 152.7643◦ W), PL46(24.3082◦ N 156.9659◦ W). We get the cen-

troid of triangle 4 by taking the average of the coordinates of these three stations. The

coordinate of the centroid is (24.0665◦ N 155.1213◦ W). Figure 6.1 is a map of triangle 4.

Figure 6.2 shows the observed results of triangle 4. A plot of the fast direction is

shown in the left panel and the plot of the strength of anisotropy is shown in the right

panel.

In the first step of inversion, we use a grid search to find out which 2-layer

anisotropic model fits the observed strength of anisotropy best. The bottom of layer 1 is

varied from 71 km to 251 km with a step of 10 km and the top of layer 2 is varied from 21

km to 71 km with a step of 10 km. The boundary between layer 1 and layer 2 is fixed at

82
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Figure 6.1: A map of triangle 4 and its centroid: the coordinate of the centroid is
determined as the average of the coordinates of stations PL48, PL44 and PL46.

71 km. θ1 = θ2 = 80◦, φ1 = 123◦ and φ2 = 76◦. The strength of anisotropy with respect

to frequency is calculated at each grid point using a forward modeling program pyro2

provided by Gabi. I wrote a Fortran program to calculate the misfit between the observed

data and the forward modeling data. In the following parts, we will discuss the way the

frequency-dependent data points are weighted and how we get the best fitting model.

Case 1: all the data points are equally weighted.

The misfit(MF) and the variance(VR) are calculated by:

MF =
1
N ∑

N
(doi−dpi)

2 (6.1)
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Figure 6.2: Result of triangle 4: the left panel shows the fast direction as a function
of frequency and the right panel shows the strength of anisotropy as a function of
frequency.

V R = (1− Var2

Var1
)×100%

Var2 =
1

N−1 ∑
i
(doi−dpi)

2

Var1 =
1

N−1 ∑
i
(doi−

−
d)2 (6.2)

doi is the observed datum, dpi is the predicted datum, σi is the error, N is number

of data, Var1 is initial variance, Var2 is modeled variance,
−
d is the mean value of the

observed datum.

During a grid search, we calculate the misfit at every value of top of layer 1 and

every value of bottom of layer 2. Then we get a matrix of misfit. Figure 6.4 shows a

matrix of misfit. We find the best fitting model when the bottom of layer 1 is at 111

km and the top of layer 2 is at 41 km. Misfit in the matrix varies from nearly 1 to 12.

The smallest misfit doesn’t show up at the edge of the matrix, so the best fitting model

is obtained. Figure 6.3 shows a data fit plot. The green curve represents the predicted
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data by forward modeling. The red curve shows the observed data. At frequencies from

10 mHz to 50 mHz, the difference between the predicted data and the observed data

are acceptable. At 30 mHz and 35 mHz, the predicted data are much bigger than the

observed data, but they are still in the range of error bar. The observed data at 55 mHz

and 60 mHz can’t be fitted with our predictions. The variance reduction(VR) for this

case is −64.83%. The last two data points contribute to most of the negative variance

reduction. In this case, all the data are equally weighted and we haven’t pay attention to

errors at different data points. It is possible that some data with large error may add too

much uncertainty to the inversion.
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Figure 6.3: A matrix of misfit in case 1: All data are equally weighted. The red box
shows the best fitting model.
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Figure 6.4: A fit plot of triangle 4: All data are equally weighted. The strength of
anisotropy predicted by the best fitting model is showed by the green curve. The
observed strength of anisotropy of triangle 4 is showed by the red curve with error bars.

Case 2: the data points are weighted by their error bars.

The misfit(MF) and the variance(VR) are calculated by:

MF =
1
N ∑

N
(
doi−dpi

σi
)2 (6.3)
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)
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i
) (6.4)

doi is the observed datum, dpi is the predicted datum, σi is the error, N is number of data,

Var1 is initial variance, Var2 is modeled variance,
−
d is the mean value of the observed

datum.

Figure 6.5 shows a matrix of misfit for which all the data are weighted by errors.

Since the best fitting model is lying on the edge of the matrix, this result may not be the

correct answer we are looking for. Figure 6.6 shows the fit to the data. It is obvious that

the observed data can not be fitted by the predicted curve when the frequency is larger

than 30 mHz. Since we have 3 errors (out of 11) that are extremely small, these 3 data

points dominate the inversion. Some extremely small errors are regarded as mistakes

in the observation. The consequence of this is that the top of layer 2 is pushed from 41

km to 71 km, effectively eliminating the layer. In figure 6.6, we can see the strength of

anisotropy nearly vanishes at high frequencies. Thus, we should apply a minimum error

threshold to down weight data with extremely small error bars.

Case 3: Set a threshold for error.

Since small values of error can dominate the inversion. It is practical to set a

specific threshold for error. In this case, we will find out the best threshold from 0.1, 0.15,

0.25, 0.4 and 0.8. Figure 6.7 shows the matrix of misfit for all the thresholds. When the

threshold is 0.1, the misfits at most matrix components are relative large. The figure of
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Figure 6.5: A matrix of misfit when data are weighted by their errors, case 2: The red
box shows the best fitting model.

matrix looks similar with Case 2 but the best fitting model is different. As the threshold

increases, the matrix changes to a pattern like case 1 and the misfit also decreases.

For all of the different thresholds, the best fitting model is always 111 km (bottom

of layer 1) and 41 km (top of layer 2). So the fit plot should be the same with case 1

(shown in figure 6.8). We choose 0.4 as a preferred value because a regular data of error

is usually larger than 0.4 if we don’t take the 3 small error into consideration.

Table 6.1 shows all the results of case 1, case 2, case 3. When the error threshold

gets larger, the misfit(MF) gets smaller while the variance reduction(VR) is reduced
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Figure 6.6: A fit plot of triangle 4 when data are weighted with their errors. The
strength of anisotropy predicted by the best fitting model is showed by the green curve.
The observed strength of anisotropy of triangle 4 is showed by the red curve with error
bars.

significantly. When the error threshold is 0.8 or equally weighted, the variance reduc-

tion become a negative number. However, the best fitting model does not change with

various threshold, so we can not judge which fit is the best only by comparing MF and VR.

6.2 Grid Search for φ1 and φ2 by Fast Direction

In this part, We use a grid search to find out the best φ1 and φ2 to fit the observed

fast direction. The present day plate motion direction is 123◦, we set a range of φ1 which
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Table 6.1: Result of various fit for the strength of anisotropy

Test number error thresh-
old

MF VR best fit(top of layer 2, bottom of
layer 1)

Test 1, case 3 0.1 3.75 73.23% 41 (km), 111 (km)
Test 2, case 3 0.15 2.44 63.85% 41 (km), 111 (km)
Test 3, case 3 0.2 1.77 52.73% 41 (km), 111 (km)
Test 4, case 3 0.4 1.54 7.00% 41 (km), 111 (km)
Test 5, case 3 0.8 0.81 -39.91% 41 (km), 111 (km)

case 2 weighted
with er-
rors(no
threshold)

42.15 91.98% 71 (km), 131 (km)

case 1 equally
weighted

0.69 -64.83% 41 (km), 111 (km)

contains 123◦. We assume that φ1 is varied from 70◦ to 150◦ with the step of 10◦. The

fossil plate motion direction is 76◦. φ2 is assumed to be varied from 40◦ to 100◦ with

the step of 5◦. Then we use two parameters of best fitting model found in section 7.2.

The top of layer 2 is fixed at 41 km and the bottom of layer 1 is fixed at 111 km. The

boundary between layer 1 and layer 2 is fixed at 71 km. θ1 = θ2 = 80◦. As with fitting

the SA. We apply our search search to 3 cases: equal weight, raw error weight, error

weight with minimum threshold.

Case 1: all the data points are equally weighted.

We find the best fitting model when φ1 = 110◦ and φ2 = 55◦. Figure 6.10 shows

a fit plot of fast direction as a function of frequency. The green curve shows the predicted

data and the red curve with error bars shows the observed data. Figure 6.9 shows a

matrix of misfit. Since all the data points are equally weighted, we expect the misfit is

significantly dominated by small errors. According to 6.10, however, the observed data

can not be fitted with the predicted curve. Since the error bar at 40 mHz and 55 mHz
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are too small to fit the observed curve, these difference are acceptable. But the predicted

data are lying out of the error bar at 25 mHz and 30 mHz. The fitting model still needs

some optimizations.

Case 2: the data points are weighted by error.

We find the best fitting model when φ1 = 80◦ and φ2 = 65◦. Figure 6.12 shows a

fit plot of fast direction as a function of frequency. The green curve shows the predicted

data and the red curve with error bars shows the observed data. Figure 6.11 is a map of

misfit. Compared with case 1, the misfit of case 2 are much more smaller. φ1 decreases

a lot from 110◦ to 80◦ while φ2 changes from 55◦ to 65◦. The fit plot looks better than

Case 1. Every predicted point lies in the range of error bar. At low frequencies, though

the predicted data are obviously smaller than the observed ones, the error bars are also

larger.

Case 3: Set a threshold for error.

Like the previous test for strength of anisotropy, we will find out the best threshold

among 2.5, 5, 10, 15 and 20. Figure 6.13 shows all the matrix when different thresholds

are applied. For threshold equals to 2.5 and 2, the fit plot is the same with figure 6.12.

For threshold equals to 10 and 15, the fit plot is shown in figure 6.14. When threshold

is 20, the fit plot is the same with figure 6.10. Considering the 5 matrix plots, when the

threshold gets larger, φ1 gets larger but φ2 gets smaller. The misfit also gets smaller with

increasing threshold. When threshold equals to 10 and 15, we get a new fit plot that

haven’t appeared before (see figure 6.14). The observed data are almost fitted by the

predicted data, but this fit is no better than Case 2. Here we choose a threshold as 5 to be
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our best fit when φ1 = 80◦ and φ2 = 65◦.

Table 6.2: Result of various fit for the fast direction

Test number error threshold MF VR best fit(φ1, φ2)
Test 1, case 3 2.5 0.32 25.06% 80◦, 65◦

Test 2, case 3 5 0.31 25.29% 80◦, 65◦

Test 3, case 3 10 0.27 31.81% 90◦, 60◦

Test 4, case 3 15 0.22 40.39% 90◦, 60◦

Test 5, case 3 20 0.19 37.67% 110◦, 55◦

case 2 weighted with errors(no
threshold)

0.32 24.98% 80◦, 65◦

case 1 equally weighted 76.94 56.60% 110◦, 55◦

Table 6.2 shows the result for all the tests in section 7.3. As it shows, the misfit

decreases with the threshold while VR increases with the threshold.
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Figure 6.7: A matrix of misfit in case 3: The thresholds are 0.1, 0.15, 0.2, 0.4, 0.8. The
red box shows the best fitting model.
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Figure 6.8: A fit plot of case 3: The thresholds are 0.1, 0.15, 0.2, 0.4, 0.8 respectively.
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Figure 6.9: Case 1: a matrix of misfit equally weighted. φ1 is varied from 70◦ to 150◦.
φ2 is varied from 40◦ to 100◦. The red box shows the best fitting model.
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Figure 6.10: Case 1: a fit plot of fast directions. The fast direction predicted by the best
fitting model is showed by the green curve. The observed fast direction is showed by
the red curve with error bars. φ1 = 110◦ and φ2 = 55◦
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Figure 6.11: Case 2: A matrix of misfit when data are equally weighted: φ1 is varied
from 70◦ to 150◦. φ2 is varied from 40◦ to 100◦.The red box shows the best fitting
model.
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Figure 6.12: Case 2: A fit plot of fast directions: The fast direction predicted by the
best fitting model is showed by the green curve. The observed fast direction is showed
by the red curve with error bars. φ1 = 80◦ and φ2 = 65◦
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Figure 6.13: Case 3: A matrix of misfit equally weighted. The thresholds are 2.5, 5, 10,
15 and 20. The red box shows the best fitting model.
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Figure 6.14: A map of misfit when data are weighted by their errors: The threshold is
10 and 15.
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6.3 Calculate The Weighted Average of The Misfit of

Fast Direction And The Misfit of Strength of

Anisotropy

The minimum error threshold for SA is 0.4 and the minimum error threshold

for DIR is 5◦. In this case, d12 = 71 km. The top of layer 2 is varied from 21 km to 71

km with the step of 10 km. The bottom of layer 1 is varied from 51 km to 251 km with

the step of 10 km. φ1 = 80◦ and φ2 = 65◦(these are best fitting model from section 7.3).

θ1 = θ2 = 80◦. In this case, the misfit of strength of anisotropy and the misfit of fast

direction are calculated separately. Then our objective function is a weighted average

of these both misfits. We do a grid search for best fitting model just like the previous

tests. All of the different weight are shown in table 6.3. And this how we calculate the

weighted misfit:

MF = MFSA ·η+MFDIR ·µ (6.5)

in which η+µ = 100%

Table 6.3 shows five tests with different weights. Therefore, the results don’t

show obvious difference between various weight. All of the five tests get a best fitting

model when the top of layer 2 is 41 km and the bottom of layer 1 is 91 km. Thus, in the

following tests, we will use equal weights between the fast direction and the strength

of anisotropy. Figure 6.13 shows the matrix plot. Figure 6.16 shows a fit plot for both

the fast direction and the strength of anisotropy. The fast direction at frequencies higher

than 15 mHz are fitted perfectly. But the fit for the strength of anisotropy is no very ideal.

The predicted data are too large at the frequencies from 30 mHz to 35 mHz. And the
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predicted data are too small when the frequency is higher than 50 mHz. So the next step

can be exploring a change to d12, the boundary between layer 1 and layer 2.

Table 6.3: Result of various fit for the fast direction

Test number weight(η:µ) MF VR best fit(top of layer 2, bottom of
layer 1)

Test 0, case 3 10:1 1.73 15.01% 41 (km), 91 (km)
Test 1, case 3 4:1 1.57 11.66% 41 (km), 91 (km)
Test 2, case 3 2:1 1.36 7.56% 41 (km), 91 (km)
Test 3, case 3 1:1 1.11 2.44% 41 (km), 91 (km)
Test 4, case 3 1:2 0.85 -2.68% 41 (km), 91 (km)
Test 5, case 3 1:4 0.69 -6.77% 41 (km), 91 (km)

DIR, rather than SA, is better fitted to data even though we are using a 10:1 weight

in case 0. We do not pay attention to VR. when the weight is 1:1, the misfit is relatively

small. And we do not need a larger weight on DIR. So we choose an equal weight

when calculating the average of the misfit of fast direction and the misfit of strength of

anisotropy.

6.4 Triangle 2 in PLUME Phase 2 Network

The data set used in Chapter 4, section 4.2 is from triangle 2, provided by Gabi.

Triangle 2 is formed by the stations: PL43(26.7781◦ N 155.7646◦ W), PL44(25.5928◦

N 152.7643◦ W), PL46(24.3082◦ N 156.9659◦ W). We get the centroid of triangle 2

by taking the average of the coordinates of these three stations. The coordinate of the

centroid is (25.5597◦ N 155.1649◦ W). Figure 6.17 is a map of triangle 2.

Figure 6.18 shows the results of triangle 2. A plot of the fast direction is shown
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in the left panel and the plot of the strength of anisotropy is shown in the right panel. The

fast direction varies from 103◦ to 61.8◦. At the frequency of 10 mHz, the fast direction is

close to 123◦(the present-day plate motion). And at the frequency from 30 mHz to 60

mHz, the fast directions are near 76◦(the fossil plate motion). However, at the frequency

of 20 mHz and 25 mHz, the results is out of our expectation. The strength of anisotropy

varies from 3.36% to 8.65%. It stays constantly at around 3.5% when the frequency is

from 10 mHz to 25 mHz. Then it has a maximum at 55 mHz.

Case 1: Do a grid search for the top of layer 2 and the bottom of layer 1, but

d12 = 51 km. Only fit the strength of anisotropy. For all of the following fits, the error

threshold for strength of anisotropy is 0.4, the error threshold for fast direction is 5.

In this case, d12 = 51 km. The top of layer 2 is varied from 11 km to 14 km with

the step of 1 km. The bottom of layer 1 is varied from 51 km to 171 km with the step of

10 km. φ1 = 123◦ and φ2 = 76◦. θ1 = θ2 = 80◦

A matrix plot is shown in figure 6.19, the best fitting model is 81 km (bottom of

layer 1), 21 km (top of layer 2). Although the best fitting model is shown at the edge of a

matrix, the fit plot (figure 6.20) indicates a really good fit.

Case 2: Fit the fast direction.

φ1 is varied from 70◦ to 150◦ with the step of 10◦. φ2 is varied from 40◦ to 100◦

with the step of 5◦. Then we use the best fitting model from the last case. The top of

layer 2 is 21 km, the bottom of layer 1 is 81 km. d12 = 51 km.
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Figure 6.21 shows the matrix plot of the misfit. The best fitting model is φ1 = 80◦,

φ2 = 75◦. Figure 6.22 shows the fit plot to data. This fit is acceptable though one data

point at 10 mHz can not be fitted.

Case 3: Do the same with case 1 and 2 but fit the strength of anisotropy and the

fast direction with equal weights.

The bottom of layer 1 is varied from 51 km to 251 km with the step of 10 km. The

top of layer 2 is varied from 21 km to 51 km with the step of 1 km. φ1 = 80◦ , φ2 = 75◦,

d12 = 51 km.

Figure 6.23 shows the matrix plot of the misfit. The best fitting model is 21 km

(top of layer 2), 61 km (bottom of layer 1). Figure 6.24 shows the fit plot to data. Both

the fit to DIR data and the fit to SA data are acceptable.

6.5 Results of All The Other Triangles

We do other triangles with similar method, the results are shown in table 6.4.

Table 6.4: Result of the fit for SA and DIR with equal weight

Triangle number MF VR best fit(top of layer 2, bottom of layer 1)
Triangle 1 0.97 26.48% 31 (km), 171 (km)
Triangle 2 0.49 36.62% 21 (km), 61 (km)
Triangle 3 0.85 41.47% 51 (km), 161 (km)
Triangle 4 0.73 2.44% 41 (km), 91 (km)
Triangle 5 3.96 -202.27% 41 (km), 101 (km)
Triangle 6 0.99 -46.94% 31 (km), 91 (km)

Triangle 11 1.84 -37.04% 41 (km), 161 (km)
Triangle 15 0.72 -6.77% 41 (km), 191 (km)
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Figure 6.15: A matrix of misfit with different weights. The red box shows the best
fitting model.
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Figure 6.16: A fit plot of both the fast direction(left panel) and the strength of
anisotropy(right panel). The red curves with error bars are the observed data and
the green curves are predicted data. The top of layer 2 is 41 km and the bottom of layer
1 is 91 km
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determined as the average of the coordinates of stations PL43, PL44 and PL46.
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Figure 6.18: Result of triangle 2: the left panel shows the fast direction as a function
of frequency and the right panel shows the strength of anisotropy as a function of
frequency.
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Figure 6.19: A matrix of misfit for triangle 2: The bottom of layer 1 is varied from 51
km to 251 km. The top of layer 2 is varied from 21 km to 51 km.
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Figure 6.20: A fit plot of SA: The strength of anisotropy predicted by the best fitting
model is showed by the green curve. The observed strength of anisotropy of triangle 2
is showed by the red curve with error bars.
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Figure 6.21: A matrix of misfit for triangle 2: The bottom of layer 1 is varied from 51
km to 171 km. The top of layer 2 is varied from 21 km to 51 km.
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Figure 6.22: A fit plot of DIR: The predicted fast direction is showed by the green
curve. The observed fast direction is showed by the red curve with error bars. φ1 = 80◦,
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Figure 6.23: A matrix of misfit for triangle 2: The bottom of layer 1 is varied from 51
km to 171 km. The top of layer 2 is varied from 21 km to 51 km.
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Figure 6.24: A fit plot of DIR: The predicted curve is showed by the green curve. The
observed data is showed by the red curve with error bars. The top of layer 2 is 21 km,
the bottom of layer 1 is 61 km



Chapter 7

Discussion of Results

In this chapter, I summarize the modeling results for all 27 triangles show in

Figure 4.2.

For time-saving purposes my advisor automated the grid search an processed

all 27 triangles. She used a slightly different approach though. Comparison of her and

my results for triangle 4 and 2 and a few others indicate that results may vary a bit but

are consistent when parameters are well-constrained. Gabi’s approach had 4 main steps

where she started in the same way I did:

- step 1: Grid search for SA with default φ1 = 124o; φ2 = 76o to get best-fitting

bottom of layer 1 and top of layer 2.

- step 2: Use result for bottom of layer 1 and top of layer 2 and do grid search for

DIR to get best-fitting φ1 and φ2.

- step 3: stop if both SA and DIR data are fit to within error bars or iterate for

113
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another grid search for SA using φ1 and φ2 obtained from Step 2.

- step 4: if there are obvious outliers in the data, edit data and repeat steps 1-3.

The final four model parameters, and the combined thickness of the two anisotropic

layers are summarized for each triangles in table 7.1.

In Figure 7.1, I show the depth of the top of the upper layer (layer 2), i.e. the depth

above which the mantle and crust beneath Hawaii is isotropic. Though local variations

may occur, and overall coherent pattern emerges: to the south and southwest of the

islands, anisotropy starts at a greater depth than along the islands and toward the north. In

the north, this depth is between 20 km and 45 km. We assume that this area has normal

oceanic crust so the Moho should be at a depth of about 12 km (5.5 km water plus 6.5

km solid crust). Near and beneath the islands, the Moho is at 25 km depth. We therefore

conclude that the top of our layer 2 is in the mantle and not in the crust. In the other areas

the top of anisotropy is much deeper, at about 70 km. This depth is already well in the

lower lithosphere, maybe even close to the lithosphere-asthenosphere boundary.

While there is some obvious coherency in Figure 7.1, we are unable to draw a

coherent picture for the combined thickness of anisotropy (Figure 7.2). It seems that in

the south and west, anisotropy can be very thin (about 20 km or so). This is consistent

with the data, i.e. small values of strength of anisotropy across all frequencies in the

corresponding triangles. However, some of these triangles can be surrounded by triangles

with very thick anisotropy (greater than 150 km). To refute one or the other, a very

detailed quality analysis of the 2ψ and 4ψ fits would be required which is beyond the

scope of this MS thesis. We find less extreme values toward the north where we would
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expect unaltered, more typical oceanic lithosphere. Here, the total thickness of anisotropy

is more in the range between 50 and 100 km.

We now turn our attention to the azimuth of the symmetry axis of the tilted

transversely isotropic Pyrolite mantle model that we used in the modeling. Figure 7.3

shows the azimuth, φ of the upper layer (layer 2). Here we would expect to see an overall

alignment with the fossil spreading direction because it froze into the younger and thinner

oceanic mantle. This is essentially what we see. The azimuth is also quite coherent across

the entire PLUME network, with a few exceptions. To the far west, the azimuth seems

to align more with the current plate motion direction but we see no obvious systematic

connection to the top of layer 2 or total thickness of anisotropy. Toward the south, the

pattern is less coherent but azimuths tend to over-rotate, i.e. may have some component

of the current plate-motion direction. Since both in the west and southeast of the islands,

anisotropy starts at a greater depth, there appears to be less imprint from the fossil

direction. Perhaps, this is an indication that an upwelling mantle plume removed some of

this imprint. The area affected here would be much larger that what was imaged in the

isotropic tomography by Laske et al. (2011) but would be consistent with the concept of

broad-scale parabolic mantle flow in Figure 3.7.

The situation is much more incoherent for the lower layer (Figure 7.4). In the

north, the fast direction still aligns with the fossil plate motion direction. But along the

island chain, it aligns with the current plate motion. In the west, in some triangle the

fast direction still aligns with the fossil spreading direction but some do not. Again, this

inconsistency may result from vastly different thicknesses of anisotropy found between

adjacent triangles, and we cannot fully explain this at this time. In the south of the islands,

the fast directions show significant rotation away from the fossil spreading direction, and
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is perhaps perpendicular to the present-day plate motion. Again, this would be consistent

with the plume-related parabolic mantle flow.

To summarize, we find a more coherent pattern of the azimuth of anisotropy in the

upper layer than in the lower layer that broadly aligns with the fossil spreading direction.

In the layer beneath, the picture is less coherent but there are indications that suggest that

we image a deeper plume-related parabolic mantle flow. This is also consistent with the

patterns in the ’raw’ maps in Figure 4.12 where patterns are more coherent for higher

frequencies that sense shallower structure than at lower frequencies. If this was the case,

that flow may be narrower than expected because our results to the far north of the islands

show no deviation from the expected motion of the spreading Pacific plate.

The results for the lower layer may have to be taken with some caution. As

Figure 4.12 indicates, some results at the lower frequencies are less certain than at high

frequencies. Consequently, our results in chapter 7 may be less certain for layer 1 than

they are for layer 2. Nevertheless, it seems that even the upper layers exhibits some form

of deviation of anisotropy expected for a uniformly spreading Pacific plate.

The results are shown in table 7.1 :
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Table 7.1: Result of all 27 triangles

Triangle
num-
ber

centroid
longitude

centroid
latitude

total
thick-
ness
(km)

bottom
of
layer
1
(km)

top of
layer
2
(km)

fast
direc-
tion
of
layer
1 (◦)

fast
direc-
tion
layer
2 (◦)

1 −157.2206◦ 22.2210◦ 145 175 30 85 65
2 −155.1649◦ 25.5597◦ 40 60 20 80 75
3 −159.7157◦ 22.5997◦ 60 120 60 55 85
4 −158.2665◦ 23.3839◦ 70 110 40 110 55
5 −157.1672◦ 22.6245◦ 45 95 50 125 65
6 −155.1213◦ 24.0665◦ 55 90 35 80 65
7 −160.9089◦ 19.8413◦ 20 85 65 85 115
8 −160.0869◦ 21.0137◦ 35 85 50 50 65
9 −159.0415◦ 20.4869◦ 165 190 25 140 60
10 −157.5711◦ 21.3135◦ 105 150 45 105 75
11 −153.1042◦ 22.2685◦ 65 105 40 125 90
12 −159.7050◦ 17.9728◦ 160 225 65 115 110
13 −158.0444◦ 17.9286◦ 105 170 65 85 115
14 −158.2030◦ 19.2703◦ 25 75 50 30 55
15 −155.8491◦ 18.7644◦ 160 195 35 80 40
16 −155.5981◦ 20.3250◦ 125 165 40 135 70
17 −153.1772◦ 19.8379◦ 100 145 45 130 75
18 −158.9765◦ 16.2531◦ 130 195 65 90 90
19 −155.9858◦ 17.0936◦ 15 75 60 55 45
20 −154.4130◦ 17.7440◦ 120 160 40 85 45
21 −152.8300◦ 17.4512◦ 45 105 60 70 75
22 −151.8452◦ 17.9846◦ 160 225 65 50 30
23 −150.5182◦ 17.5468◦ 95 160 65 40 140
24 −155.7490◦ 15.2337◦ 25 90 65 110 50
25 −154.4188◦ 16.1184◦ 15 80 65 130 55
26 −152.3975◦ 16.2480◦ 155 200 45 30 90
27 −150.7752◦ 16.1392◦ 70 125 55 60 70
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Appendix A

Other triangles in PLUME Phase 2

Network

Table 1a, 1b, 1c show the results of fitting in 3 steps respectively. For all of the

fits for triangles, the error threshold for strength of anisotropy is 0.4, the error threshold

for fast direction is 5.

Table 1a: Step 1: Result of the fit for SA

Triangle number MF VR best fit(top of layer 2, bottom of layer 1)
Triangle 1 0.59 10.00% 31 (km), 191 (km)
Triangle 3 2.76 -137.69% 51 (km), 131 (km)
Triangle 6 0.80 -14.21% 31 (km), 121 (km)

Triangle 11 2.84 -109.64% 41 (km), 131 (km)
Triangle 15 3.51 13.59% 41 (km), 201 (km)

A.1 Triangle 1

For step 1, the misfit is 0.59 which is much smaller than most of the other triangles.

The data points from 10 mHz to 50 mHz can be fitted perfectly. For step 2, the prediction
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Table 1b: Step 2: Result of the fit for DIR

Triangle number MF VR best fit(φ1, φ2)
Triangle 1 1.27 43.33% 100◦, 65◦

Triangle 3 0.47 89.61% 50◦, 120◦

Triangle 6 0.38 38.08% 100◦, 65◦

Triangle 11 0.07 93.38% 140◦, 80◦

Triangle 15 0.36 48.22% 70◦, 35◦

Table 1c: Step 3: Result of the fit for SA and DIR with equal weight

Triangle number MF VR best fit(top of layer 2, bottom of layer 1)
Triangle 1 0.97 26.48% 31 (km), 171 (km)
Triangle 2 0.49 36.62% 21 (km), 61 (km)
Triangle 3 0.85 41.47% 51 (km), 161 (km)
Triangle 4 0.73 2.44% 41 (km), 91 (km)
Triangle 5 3.96 -202.27% 41 (km), 101 (km)
Triangle 6 0.99 -46.94% 31 (km), 91 (km)

Triangle 11 1.84 -37.04% 41 (km), 161 (km)
Triangle 15 0.72 -6.77% 41 (km), 191 (km)

can not fit the data at 20 mHz and 55 mHz. The misfit a lot larger than other triangles.

Variance reduction is 43.33%. For step 3, the bottom of layer 2 of best fitting model

changes from 171 km to 191 km. The misfit is acceptable but the variance reduction is

negative.

A.2 Triangle 3

In step 1, SA is perfectly fitted. In step 2, the prediction is a lot larger than DIR

data, but they almost lie in the range of the error bars. The variance reduction is 89.61%,

relative it is a better than others. In step 3, the fit plot does not change obviously but the

best fitting model has been changed.
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A.3 Triangle 6

In step 1, it is a good fit and the misfit is 0.80. However, the variance reduction is

negative. In step 2, only the first point can not be fitted. In step 3, the fit plot to DIR gets

better than step 2. The misfit is good. But the variance reduction is negative.

A.4 Triangle 11

In step 1, the data 25 mHz, 45 mHz and 60 mHz can not be fitted. The misfit is

large and the variance reduction is negative. In step 2, the fit to data is perfect. The misfit

is as small as 0.07 and the variance reduction is 93.38%. In step 3, the misfit is large and

the variance reduction is negative.

A.5 Triangle 15

For step 1, the misfit is relative large, but the variance reduction is positive. For

step 2, only 15 mHz can not be fitted, the misfit is acceptable. For step 3, the misfit is

0.72 but the variance reduction is a small negative number.
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Figure A.1: Triangle 1: misfit matrices and fit plots.
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Figure A.2: Triangle 3: misfit matrices and fit plots.
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Figure A.3: Triangle 6: misfit matrices and fit plots.
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Figure A.4: Triangle 11: misfit matrices and fit plots.
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Figure A.5: Triangle 15: misfit matrices and fit plots.




