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Abstract

This paper describes a formal framework for
perceptual categorization that can account for the
salient qualitative predicates human observers are
willing to ascribe to a closed class of objects, and
consequently the simple groupings they can induce
from small sets of examples. The framework hinges
on the idea of a generative process that produces a
given set of objects, expressed as a sequence of
group-theoretic operations on a primitive element,
thus ascribing algebraic structure to perceptual
organization in a manner similar to Leyton (1984).
Putatively, perceivers always seek 1o interpret any
stimulus as a formally generic result of some
sequence of operations; that is, they interpret each
object as a typical product of some generative
process.

The principle formal structure is a "mode
lattice,” which a) exhaustively lists the qualitative
shape predicates for the class of shapes, and b)
defines the inferential preference hierarchy among
them. The mechanics are worked out in detail for
the class of triangles, for which the predicted
qualitative features include such familiar geometric
categories as "scalene," "isosceles,” and "right," as
well as more "perceptual” ones like "tall" and
“short." Within the theory it is possible as well to
define "legal" vs. "illegal" category contrasts; a
number of examples suggest that our perceptual
interpretations tend to regularize the latter to the
former.

Introduction
Among all the descriptions of a stimulus configuration that
are in principle possible, human observers seem to favor the
simplest ones, a generalization that can be traced back as
least as far as the Gestaltists (e.g., Koffka, 1935; Kohler,
1947). Consequently, many perceptual theories have
atempted to account for preferred descriptions by showing
that they minimize some measure of complexity, often
description length in some description language (e.g.,
Buffart, Leeuwenberg, & Restle, 1981; Darrell, Sclaroff, &
Pentland, 1990; Hochberg & McAlister, 1953; Simon,
1972; see also Hatfield & Epstein, 1985; Leeuwenberg &
Boselie, 1988; Perkins, 1976). This notion, often termed
the "minimum principle,” parallels the mathematical theory
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of informational complexity (e.g. Chaitin 1966,
Kolmogorov, 1965), in which the complexity of a string is
defined as the length of the shortest computer program that
can generate it. However, these perceptual theories have
often suffered from the fact that the description languages
used must be somewhat arbitrary; the atoms of the
language—individual features, predicates, and types of
spatial relationships that are worth incorporating into
descriptions—are difficult to motivate by underlying theory.
Rather than finding one "minimum principle" underlying
perception, as would be desired, perceptual theorists find
many. Moreover, the relationship between descriptive
simplicity and descriptive correctness—if there is any—has
never been made completely clear.

This paper attempts to get around these problems by
proposing a framework of stimulus description which
explicitly generalizes across different ways of conceiving of
the stimulus as having been constructed. A particular
conception of the generating process underlying a particular
class of stimuli entails a lattice relating the subspaces and
half-spaces. This lattice both a) exhaustively enumerates the
qualitative structural predicates and features of the class of
objects, and b) makes the inferential preference relationships
among them explicit. The scheme is worked out here in
detail for one class of object, triangles; the resulting legal
shape predicates seem, intuitively, both simple and natural.
In this way the qualitative shape predicates that human
observers are willing to ascribe to triangles, as evidenced in
the categories they are able to induce from a handful of
examples, are thus characterized formally, and (in theory)
exhaustively.

Mode lattices
Leyton (1984) developed a view of perceptual interpretation
in which a stimulus is treated by the observer as the product
of a sequence of nested geomelric transformations,
Perceptual interpretation, then, proceeds by factoring the
input, layer by layer, into successively simpler structures 1o
which more complex ones are referenced. The algebraic
structure this theory imposes on perceptual organization is
intriguing and compelling—explaining, for example, why a
parallelogram is perceived as a slanted rectangle, and a
rectangle as a streiched square. A line segment, in this
framework, might be the visible product of a translation
operation on a point in the plane, which we label the origin
(giving us translation invariance): (0)tr 9. The space of all
line segments constructed this way (the configuration space)
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has two dimensions, r and 6. A generic point in this
space—a typical product of the generative process we are
assuming to have produced all line segments—is a line with
non-zero length that is neither exactly horizontal nor exactly
vertical. Non-generic points fall on one of the subspaces
(i.e., axes) of the space, and correspond (o the class of
vertical lines, the class of horizontal lines, and the origin
point itself. Line segments that fall into one of these
subspace classes are very special, and it is worthwhile
making their specialness explicit in the perceiver's
representation.

In general, we model each stimulus configuration u as
the visible product of the action on the origin of a sequence
of one-parameter operations

u = @) 72“2-...@:“.
where d, the number of one-parameter operations, is the
dimensionality of the resulting configuration space, and each
operation 7 is carried out to a magnitude oj. Any
operation whose magnitude is zero reduces to the identity
operation, and thus drops out of the expression completely;
this corresponds to a subspace of the configuration space.
Within a given space (or subspace) the generic objects are
all produced by generative strings in which none of the
operations has dropped out. Recursively, a non-generic
object that falls in a given subspace can either be generic in
that subspace, or it can actually fall in a subspace of the
subspace, in which case it is even more non-generic; that is,
it has higher codimension in the overall configuration space.
(The codimension is simply the difference between the
dimension of an object and the dimension of the space in
which it is embedded.) Each proper subspace divides each
embedding superspace (of dimension one greater) in half; we
call the two half-spaces modes of the space. Conversely,
each (possibly improper) subspace of dimension k can be
divided into two half-space modes by a subspace (of
dimension k - 1) in k different ways.

Generic interpretations are preferred. Apparently,
perceivers always seek to interpret the observed
configuration as a generic product of some sequence of
generating operations. The generating sequence of operations
is pruned of identities until a generic sequence can be seen to
yield the observed object; that is, if an observed object can
be expressed with one of the operations as the identity, the
object's interpretation drops down a dimensional level to an
embedded subspace. Lower-dimensional (higher
codimension) subspaces, since they have more dimensions
fixed in a way unlikely to occur by accident, always make
stronger inferences of structure. For a closed class of
objects in one configuration space, therefore, all the
predicates a perceiver is willing to apply to objects in the
class should correspond to subspaces or half-spaces of the
configuration space.

These spaces can all be connected up schematically in a
“mode lattice.” The mode lattice is built around the ordinary
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subspace lattice, to which is added, for each subspace, the
two modal half-spaces of the embedding superspace into
which the subspace divides it. The resulting construction
makes the dimensionality and subspace relationships among
interpretations of objects in the class explicit. Then,
putatively, all allowable predicates on these objects can be
read off the mode lattice in an automatic fashion. The next
section describes a mode lattice for triangles.

Mode lattice for triangles

One way of conceiving a triangle is as two legs joined at a
fulcrum, and a third leg joining their ends. We now cast this
generating process formally as a sequence of operations on
the origin, and construct the corresponding mode lattice.
Note that any alternative way of formally conceiving the
construction of triangles would lead to a different mode
lattice, one which imposes a different geometry on the space
of triangles. There are a finite number of such alternatives.

In this way of conceiving triangles, there are two
controlling dimensions: the angle 6 between the two sides
that meet at the fulcrum, and the difference Ar between the
lengths of the legs. Assuming scale invariance, the
dimension of the configuration space 4 is thus 2, so that
there are 3 (24 - 1) proper subspaces: r| = r2, 8 = /2, and
the origin, at which both r{ = rp and 6 = /2. (6 = /2 is an
identity, briefly, because only this special angle differs from
its complementary angle by the identity transform.) The
mode lattice appears in Figure 1; the legend and explanatory
schematics are on the left of the figure, and the lattice itself
is drawn on the right. A dot has been drawn on all the
sample triangles at the reference vertex, both in order to
define it and to encourage the reader's perceptual apparatus to
treat it as special, thus hopefully creating a bias towards
seeing the triangles as products of a generative process of
the sort described.

The "scalene"” triangle (the term here meaning generic in
the overall configuration space) appears at the top of the
lattice. An arbitrary triangle, that is, a typical product of
this generative process, is scalene. The proper subspaces are
also familiar triangle categories: the axes are "isosceles” and
"right”, two categories traditionally treated specially, and the
origin is of course "right isosceles." Necessarily, the origin
triangle is shape-invariant, since there are no degrees of
shape freedom left to vary. This triangle, via the spatial
parameters it has fixed, in a sense implies the entire lattice.

The feature predicates that appear on the mode lattice
should all be categories of triangles that human observers
can induce easily from even a very small set of examples.
This is most acutely seen when categories are contrasted
with one another, as in a "Bongard” problem (Bongard,
1970; Feldman, in preparation; Richards, 1988). The next
section proposes a definition of "legal" category contrasts,
i.e., legal pairings of modes and subspaces from a mode
lattice. The criterion for legal contrasts, though motivated
on independent formal grounds, turns out to be intimately
related to a simple model of naturally-occuring categories.
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(c) (d)
Fig. 1.

(b)

Mode lattice for triangles: (a) list of subspaces and modes (half-spaces); (b) mode lattice; (c) schematic of a

triangle, labeling the angle and sides; and (d) schematic of the configuration space, showing the relation of the

four subspaces. The notation M S; (etc.) indicates the mode that is on the plus side of subspace S2.

Legal category contrasts
The 2-D triangle space has 4 subspaces (including the entire
space) and 8 modes, so there are a total of 12 theoretically
reasonable categories; in the absence of constraint any of the
66 pairings of these might make a good contrast. We now
cut this number down by proposing constraints.
Legal category contrasts naturally fall into two types:
between-space and within-space.
Between-space contrasts. Between-space contrasts, such
as those between the two axes of the triangle space, or

between the entire space and one axis, involve categories
that can be written as completely different sequences of
generative operations. A subspace of a space is generated by
a subsequence of its defining operations, with the identity
operation dropping out. Two crossing subspaces may be
thought of as the product of two different operations on the
same point. In either case, the resulting categories amount
to different "species” of object; with different generative
identities, a perceiver might justifiably expect them to have
qualitatively different structural properties and attributes.

oD



=

Q

A 7
<]~ H

Fig. 2. (a) "Right" (L) vs. "Isosceles"” (R) triangles; (b) schematic of the contrast, showing it as two subspaces

of tmangle configuration space.

An example appears in Figure 2. The reader may
confirm that the category inductions are perceptually
apparent and intuitively natural.

Within-space contrasts. A category within a (sub)space
1s a collection of quadrants of the space; any two such
categories correspond to different classes within the same
basic generating process. Though they cannot be expressed
as the product of different sequences of operations, the
contrasting categories manifest different values along some
structural dimensions. That the differences between them
are modal—they cross the boundaries delineated by the
subspaces—suggests that such categories might, like
between-space contrasts, exhibit qualitatively different
structural properties or attributes.

To motvate the definition of legal within-space
contrasts, consider that some collections of quadrants in a
2-D can be expressed as a contrast along one dimension that
is then extruded symmetrically along the other dimension.

S~

(a)

For example, if the full 2-D space is divided in half, there is
contrast between the two half-spaces across one axis (the
bisecting one), but symmetry across the perpendicular axis.
In such an arrangement, we call the asymmetrical axis the
contrast component, and the symmetrical axis the extrusion
component (because the contrast is extruded along it). Legal
contrasts are defined to be those that can be expressed as a
pure combination of an extrusion component of magnitude e
and a contrast component of magnitude ¢, such that ¢> 0
(or else there is no contrast) and ¢ + e = d (all dimensions
are accounted for). In the extreme case of pure contrast (e =
0), two diagonally opposite quadrants meet at the origin. In
this case the contrast between the categories is complete:
they differ on every essential structural parameter.

An example of a legal within-space contrast appears in
Figure 3. Again, the contrast seems (o caplure a
perceptually intuitive and salient distinction.

1—'2
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(b)

Fig. 3. (a) "Obtuse" (L) vs. "Acute” (R) main angle; (b) schematic of the contrast, showing it as two
modal half-spaces of the configuration space. The categories are contrasted along the © dimension,
and extruded along the Ar dimension.
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Fig. 4. (a) "Right & right leg longer" (L) vs. "Isosceles" (R); (b) schematic showing the
regularization of the contrast to "Right" vs. "Isosceles."

These two examples are meant only to give the general
flavor of legal contrasts: they capture in a formalism the
intuitively natural contrasts that one may exhibit between
triangles (at least those that were created by this generative
process). There are other qualitative types of legal category
contrast, for which space does not permit examples. All the
basic types can be catalogued exhaustively, so that theory's
categorization of hypothetically "natural" perceptual
categories is complete.

Illegal category contrasts: regularization?

Non-modal contrasts. Many of the a priori possible
category contrasts, both between- and within-space, are
illegal as defined. Each of these, apparently, is regularized
by our perceptual apparatus to one of the legal types. Figure
4 gives an example. The space of right triangles (L) is
incomplete, including only triangles with the right leg
longer, but our perceptual apparatus apparently either fails
to notice this or considers it insignificant.

Amodal contrasts. So far, in considering possible
classes of object within a space, we have completely ignored
most possible subregions of the configuration space, in
favor of the subspaces and modes. Nearly all subregions of
the configuration space, of course, are not composed, even
illegally, of subspaces and modes. Arbitrary contiguous
patches of the space, not to even mention discontiguous
parts (such as topologically disconnected or even nowhere
continuous point sets), might in the absence of any
constraint constitute reasonable stimulus categories. We
would not expect our perceptual apparatus, however, to be
able to correctly characterize world categories of arbitrary
complexity. To reflect this, it should be the case that most
topologically possible categories are not modal in any
parameterization of the object class. Moreover, the total
number of modal categories, considering all conceivable
generative processes, should be finite. This turns out to be
the case; all but a finite family of categories are amodal, that
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is, are not constructed from legal modal categories in any
parameterization.

In pilot work we have looked at a particularly simple
case of such amodal categories, which as such is a
particularly good candidate to falsify the theory: a pair of
simple linear categories that cross at a point (like the two
axes of the configuration space), but whose crosspoint is
not an origin in any parameterization (unlike the axes').
Such categories cross modal boundaries in a manner
inconsistent with any legal category interpretation. The
result is a pair of categories that seem not to have a
perceptually reasonable distinction between them. When the
categories are mixed together, moreover, the perceiver tends
to regroup them modally. The "real” category is regularized
to one which is incorrect but is at least perceptually
reasonable.

Conclusion: legal categories as world

categories

Though the term "qualitatively similar” has some intuitive
meaning to human perceivers, a formal definition is elusive;
formally, any two distinct items in a set share the same
number of properties unless some theory constrains the
properties (Watanabe, 1985). Formal theories of perception
(Bennett, Hoffman, & Prakash, 1989; Bobick & Richards,
1986; Feldman, 1991; Jepson & Richards, 1991; Leyton,
1984, 1986, 1988, 1989; see also Fell, 1976; Witkin &
Tenenbaum, 1983, 1986) attempt, in essence, to distinguish
the perceptual predicates that perceptual systems such as
ours favor from the much wider class of arbitrary predicates,
nearly all of which are perceptually useless. The mode
lattice theory provides a formal definition, which the
examples suggest matches human intuitions.

We may now reasonably ask, why does this definition
work for the human perceptual system? In particular, do
"legal" categories correspond reliably to extant natural
categories in the physical and biological world? It turns out
that they do. It can be shown that an extremely simple,



formal model of natural categories and processes reduces
exactly to the legal categories, as defined above. The model,
briefly, assumes that natural categories manifest heavy
internal structure within themselves, and correspondingly
sharp contrasts (that is, sharper than a priori necessary)
between each other. This idea is a particularization of the
Principle of Natural Modes, articulated by Bobick (1987)
and Richards & Bobick (1988). Space requires that a full
discussion, including the requisite formal definition of
"structure," be left to a future paper. The thrust is that the
apparent psychological preference for modal categories, as
evidenced by the various types of regularization
demonstrated above, seems to be rooted in sensible
inferential logic.

Perceptual interpretations, it has long been assumed in
perceptual theories, should (1) be as simple as possible
consistent with the image data, and (2) accurately represent
the essential structural features of the object. The theory
outlined in this paper sheds light on what these two
desiderata have to do with each other, and suggests why
achieving the second might require achieving the first. If
the perceiver is able to identify a formal model of the
generation of the stimulus class that more or less correctly
mirrors the actual physical process by which the stimulus
object was created, then the lowest-dimension description
possible within that generation scheme, read directly off the
mode lattice—in a very particular sense, the simplest
description possible—will accurately represent the
structurally important properties of the object.
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