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MEETING REPORT Open Access

Next steps in studying the human
microbiome and health in prospective
studies, Bethesda, MD, May 16–17, 2017
Rashmi Sinha1* , Habibul Ahsan2, Martin Blaser3, J. Gregory Caporaso4, Joseph Russell Carmical5,
Andrew T. Chan6,7,8,9,10, Anthony Fodor11, Mitchell H. Gail1, Curtis C. Harris12, Kathy Helzlsouer13,
Curtis Huttenhower10,14, Rob Knight15, Heidi H. Kong16, Gabriel Y. Lai17, Diane Leigh Smith Hutchinson18,
Loic Le Marchand19, Hongzhe Li20, Michael J. Orlich21, Jianxin Shi1, Ann Truelove22, Mukesh Verma13,
Emily Vogtmann1, Owen White23, Walter Willett8,24, Wei Zheng25, Somdat Mahabir13 and Christian Abnet1

Abstract

The National Cancer Institute (NCI) sponsored a 2-day workshop, “Next Steps in Studying the Human Microbiome
and Health in Prospective Studies,” in Bethesda, Maryland, May 16–17, 2017. The workshop brought together
researchers in the field to discuss the challenges of conducting microbiome studies, including study design,
collection and processing of samples, bioinformatics and statistical methods, publishing results, and ensuring
reproducibility of published results. The presenters emphasized the great potential of microbiome research in
understanding the etiology of cancer. This report summarizes the workshop and presents practical suggestions for
conducting microbiome studies, from workshop presenters, moderators, and participants.
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Introduction
Interest in the role of the microbiome in health has been
increasing, as evidenced by the May 2016 announcement
of the National Microbiome Initiative (NMI) (https://
obamawhitehouse.archives.gov/blog/2016/05/13/
announcing-national-microbiome-initiative), to advance
the use of microbiome science in health care, food pro-
duction, and environmental restoration. The National
Institutes of Health (NIH) invested $20 million in micro-
biome research as part of the NMI in fiscal years 2016
and 2017. NIH is focusing on multi-ecosystem compari-
son studies and the design of new tools to explore and
understand microbiomes.
To date, few prospective epidemiological studies investi-

gating the role of the microbiome in human health have
been published. Epidemiological studies from which we
can draw inferences will require accurate and reproducible

assays, knowledge of potential factors affecting the micro-
biome, an understanding of its metabolic functions, and
more. We will need to replicate findings across multiple
populations and, ideally, pool data from many different
study designs. Variation may occur at each step in the re-
search pipeline: sample collection, storage, DNA extrac-
tion, polymerase chain reaction (PCR) amplifications,
DNA sequencing, bioinformatics, and statistical analyses.

Meeting goals and objectives
To prepare researchers to conduct epidemiologic studies,
the NCI’s Metabolic Epidemiology Branch (MEB) in the
Division of Cancer Epidemiology and Genetics (DCEG)
and the Epidemiology and Genomics Research Program
(EGRP) in the Division of Cancer Control and Population
Sciences (DCCPS) held a two-day workshop, “Next Steps
in Studying the Human Microbiome and Health in Pro-
spective Studies,” in Bethesda, MD, from May 16–17,
2017. More than 200 participants from academia, govern-
ment agencies, and industry attended the workshop.
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The workshop began with an overview of the field, in-
cluding the fundamental questions facing researchers. It
then focused on five key areas:

– Optimizing sample collection for multi-omics
analyses;

– Minimizing variation in sample and data processing;
– Optimizing statistical methods for analyzing

microbiome data;
– Designing epidemiologic studies for microbiome

research; and
– Defining reporting and data sharing standards.

Additionally, speakers presented information about the
NCI extramural microbiome epidemiology grants portfo-
lio, and ongoing NCI intramural microbiome studies.
Here, we present a synopsis of the discussions and high-
light important questions and suggestions for future work.

Overview: fundamental questions
Drs. Stephen Chanock (Director, DCEG, NCI) and Kathy
Helzlsouer (Associate Director, EGRP, DCCPS, NCI)
welcomed the attendees and tasked them to fulfill the
goals of the meeting, which were to present current
findings, discuss issues related to rigor and reproducibil-
ity, and provide suggestions for carrying out microbiome
studies in prospective cohorts. Next, four presenters
spoke about the current state, future potential, and fun-
damental questions of microbiome research.
In his talk that set the stage for the conference, Dr. Rob

Knight said that billions of dollars go to human genome
sequencing, but humans are more microbe than human.
Microbial cells outnumber human cells slightly and mi-
crobial genes outnumber human genes dramatically. The
Human Microbiome Project (https://hmpdacc.org/) col-
lected ~ 4.5 trillion bases of DNA (1500 times the human
genome). Importantly, the genes in our microbiome are
not fixed at birth, are controlled by lifestyle choices, and
encode many of our unique metabolic functions.
We can now create a reference map of the micro-

biome during processes ranging from normal infant de-
velopment to the events that occur following a fecal
microbiota transplant using principal coordinates ana-
lysis, a method to explore and visualize similarities or
dissimilarities of data based on evolutionary distances
between microbes in pairs of samples. A major challenge
is understanding which of the many diseases, including
various forms of cancer and cancer risk factors (e.g.,
obesity and inflammatory bowel disease), are detectable
as different locations on this map. Data collected by
more than 10,000 citizen scientists in the American Gut
Project [1] may help fill in this map, but studies of
well-defined and carefully phenotyped cohorts, who are
monitored over time, will provide even greater value.

Dr. Curtis Harris described his ongoing studies fo-
cused on the microbiome of lung cancer. His analysis
demonstrated that the cancerous lung is characterized
by microbial dysbiosis and harbors a distinct group of
bacteria inside the tumor cells depending upon the lung
cancer type. The types of bacteria inside the tumor cells
vary depending on the lung cancer type. These distinct
bacterial genera were most abundant in squamous cell
carcinomas with TP53 mutations. He also discussed the
need for bacterial isolates to identify specific strains that
may differ in their biological and pathological activity.
Dr. Helzlsouer noted that elucidating the complex associ-

ation between microbiomes and cancer risks will require a
rigorous and reproducible stepwise approach that pro-
gresses from small-scale methodologic studies to
large-scale population-based research [2]. It will be critical
to study the metabolic products of the microbiome that are
absorbed at the tissue level and that circulate systemically.
Reproducibility of methods within and between la-

boratories is critical. Studies have shown that there is
marked variation between laboratories in results for di-
versity. Laboratories also use different methods for sam-
ple collection and processing [3–5]. In addition to
laboratory sources of variation, many factors may affect
reproducibility of results. Mouse studies have demon-
strated immense variability in residential microbes due
to factors such as diet, housing, and stress [6]. Under-
standing the many factors that influence the microbiome
is necessary to guide research decisions, such as the
type(s) of specimens collected, as well as frequency of
the collections and accompanying metadata.
Dr. Helzlsouer noted microbiome research is an excit-

ing and interesting area of study, but methodological
challenges suggest an adage written by Richard Harris:
[7] “…to speed the development of medicine, biomedical
science should actually slow down. This means taking of
fewer projects and doing them more carefully.”
Dr. Martin Blaser highlighted five key points:

1) Microbiota participate in oncogenesis. It has become
clear over the past 25 years that persistent
Helicobacter pylori (H. pylori) colonization is
associated with an increased risk of adenocarcinoma
affecting the gastric corpus and antrum. Now
attention is focused on the roles of microbiota in
colon cancer, as well as estrogen-driven cancers of
the breast, ovary, and endometrium.

2) Risk may begin early in life. Consistent with the
model of Hepatitis B infection and liver cancer,
there is evidence that the interaction early in life
between host and microbes affects the risk of
gastric cancer. This is remarkable since these
cancers typically present in the seventh and eighth
decades of life.

Sinha et al. Microbiome           (2018) 6:210 Page 2 of 10

https://hmpdacc.org


3) Microbiota are changing. Important information in
recent years indicates that our microbiota is
becoming less diverse and some taxa are becoming
extinct in some people.

4) There may be multiple potential mechanisms.
Mechanisms implicated in microbial oncogenesis
include persistent inflammation and genotoxicity.
Furthermore, given the role of the gut microbiota
in modulating serum estrogen levels, an enzyme
that affects the conjugation of estrogens may be
pro-oncogenic. Parallel mechanisms may also be
relevant to androgen-driven neoplasia.

5) Harnessing knowledge of the microbiota may lead to
new preventive strategies, diagnostics, and,
potentially, new treatments. Specific interactions,
such as checkpoint inhibitors, between microbiota
and the immune system are potential targets for
treatments. But identifying particular taxa at the
species and strain level, as well as their metabolic
pathways and metabolites, presents another frontier
for developing diagnostic, preventive, and
therapeutic approaches.

Optimizing sample collection methodology and
quality control (QC) standards
Dr. Rashmi Sinha presented data on fecal collection
methods that could be implemented under typical epide-
miologic cohort field conditions. She investigated six
methods on fecal samples gathered in four studies from
132 individuals [3, 5, 8, 9]. The methods were no addi-
tive, RNAlater, 70% and 95% ethanol, card-based preser-
vation (fecal occult blood test [FOBT] 16S rRNA gene
or Flinders Technology Associates [FTA]) cards), and
fecal immunochemical testing (FIT) tubes.
Reassuringly, the major source of variation of fecal mi-

crobial profiles using 16S rRNA gene sequencing was be-
tween individual persons, followed by between sampling
methods and lengths of time at ambient temperature.
All six methods delivered excellent reproducibility. Ex-

cept for no additive and 70% ethanol, they all delivered
good or excellent stability over 4 or 7 days at ambient
temperature. Compared to the “gold standard” (rapidly
frozen, no additive samples), the most accurate results
were found with 70% and 95% ethanol, FOBT/FTA, and
RNAlater. However, these collection methods differed in
the relative abundances of various bacteria. This finding
has significant implications for future epidemiologic stud-
ies. For adequate power to detect disease associations with
specific microbial taxa, microbiome data will have to be
pooled across multiple studies. If individual studies collect
fecal samples using different methods, conducting pooled
analyses or meta-analyses may not be possible. It is import-
ant for different prospective studies to coordinate and

collect fecal samples using at least one common method in
addition to the method of their choice.
Dr. Sinha also presented shotgun sequencing and

metabolomics data. For shotgun sequencing, FOBT, FIT,
and RNAlater provided robust results. For fecal metabo-
lomics, 95% ethanol or FOBT demonstrated stability.
Thus, future epidemiologic studies should collect feces
using 95% ethanol or FOBT if interested in studying
fecal metabolomics [4].
Dr. Emily Vogtmann provided insights into temporal

variability and the impact of different collection methods
on oral microbiota. On oral samples collected over 10
months from 40 individuals, she calculated intraclass
correlations (ICCs) for specific microbial diversity met-
rics. In general, ICCs were relatively high, particularly
for alpha diversity metrics Chao1 and observed species,
but ICCs decreased for relative abundances at the
phylum level. Researchers could use these estimates to
determine sample size requirements. Collecting multiple
samples over time would decrease required sample sizes,
particularly for metrics with lower ICCs.
In two studies, Dr. Vogtmann found that Scope

mouthwash did a better job preserving the rank order of
participants for the relative abundance of the top phyla
and for alpha and beta diversity estimates, compared to
using saliva collected in the OMNIgene ORAL kit. How-
ever, the Scope mouthwash samples had some distinct
microbial characteristics compared to the OMNIgene
ORAL samples. Like the findings from fecal samples, fu-
ture studies should compare oral microbial metrics
within one sample collection type.
Dr. Joseph Russell Carmical discussed different types

of reference materials (RM). RM is any stable, abundant,
and well-characterized specimen used to assess the
quantitative and/or qualitative validity of a measurement
process. Metagenomic analyses commonly use whole cell
RMs. They fall into three categories: environmental,
pure microbial isolates, and in vitro models of microbial
ecosystems. Each has its pros and cons.
Environmental samples must closely resemble the com-

plexity of the microbial community being evaluated, but
complexity is difficult to characterize. Furthermore, changes
in the microbial makeup over time result in variability in
the RM, which is not suitable for longitudinal studies. Pure
microbial strains and mock communities are characterized
more easily and are abundant, but they lack the complexity
of the environmental samples. In vitro models are culti-
vated in a controlled environment (bioreactors); thus, they
approach the complexity of an environmental sample but
make characterization easier. However, one cannot truly re-
capitulate the complexity of an environmental sample. Also,
batches created in bioreactors may vary from each other.
The three types of RMs can be used in combination, if ap-
propriate for the experimental design.
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In break-out sessions, participants also discussed what
sampling approaches to use. Several fecal sample collec-
tion approaches (FOBT, RNAlater, 95% ethanol) provide
high-quality DNA for 16S rRNA gene and metage-
nomics, but some sample collection approaches are not
as useful for fecal metabolomics or metatranscriptomics.
It would be ideal to collect samples using more than one

preservation method if financially feasible. Implementing a
dual collection approach (using at least one common col-
lection method) even on a subset of participants would
allow for comparisons across cohorts. But the scientific
questions need to guide the decisions about what ap-
proaches to use. More information on the effects of
long-term storage is needed. Also, a standard protocol for
adding samples with synthetic DNA should be considered
to allow for monitoring loss during sample processing.

Variation due to extraction, amplification,
sequencing, and bioinformatics
Dr. Curtis Huttenhower presented on the Microbiome
Quality Control (MBQC) project (http://www.mbqc.org/)
[10, 11], a collaborative effort of the NCI and many indi-
vidual labs to identify and quantify sources of biological
and technical variation in human microbiome research.
An initial baseline study, the MBQC-base, recently charac-
terized the effects of three typical steps in 16S rRNA gene
surveys of human stool samples: nucleotide extraction, se-
quencing, and data analysis. The MBQC-base, modeled
on previous efforts such as the Microarray Quality Con-
trol (MAQC) [12] and Sequencing Quality Control
(SEQC) [13] projects, replicated, blinded, and distributed
a small set of fecal biospecimens to 15 data generation la-
boratories. The labs put their resulting amplicon sequen-
cing data at MBQC Data Analysis and Coordination
Center (DACC) (http://ihmpdcc.org/MBQC/), and nine
bioinformatics groups re-blinded and analyzed the data.
The study assessed the sources and extent of measure-
ment accuracy and variability of more than 16,500 pro-
files—approximately three times the amount of amplicon
data from the Human Microbiome Project.
The team analyzed several aspects of microbiome data

generation and analysis protocols. Fortunately, for micro-
biome population studies, differences between individuals
and biospecimens types were typically the largest. How-
ever, DNA extraction and sample handling environment
contributed substantially to the variability. Other protocol
variables and computing differences had smaller effects.
Using controls—artificial communities as positive controls
and extraction reagents as negative controls—helped iden-
tify differences in environment-specific contamination,
nucleotide extraction, and bioinformatic classification. A
more systematically designed MBQC-II is currently being
planned, but will require financial support. The new study
would test multiple experimental designs and inform

researchers carrying out comparable microbiome studies
across laboratories and cohorts.
In her talk, Dr. Diane Smith Hutchinson noted that re-

searchers are increasingly including metagenomic
characterization of the microbiome in ever larger studies
of how environmental and genetic factors interact to in-
fluence disease susceptibility.
The analytic outputs of metagenomic shotgun sequen-

cing include high-resolution descriptions of bacteria, ar-
chaea, and sometimes DNA viruses, as well as gene
content information (e.g., metabolic potential). Due to
the nature of the data generated, the resulting primary
outputs are represented by sparse and zero-inflated
compositional tables. This is a problem when assessing
the statistical relationship between microbiome metrics
and clinical covariates. Furthermore, longitudinal sam-
pling adds another layer of complexity for statistical
modeling. Researchers have tried to overcome these
challenges, by evaluating the data in a cross-sectional
manner, reducing dimensionality by clustering samples
into groups, employing linear (or nonlinear)
mixed-effects models, and performing conditional logis-
tic regressions with summary metrics created from
microbiome data.
Dr. J. Gregory Caporaso presented the Quantitative In-

sights Into Microbial Ecology 2 (QIIME 2) microbiome
bioinformatics platform (https://qiime2.org) [14], a
complete re-write of the widely used QIIME 1 software.
He focused on one novel feature of QIIME 2: automated,
decentralized provenance tracking of all the bioinfor-
matic steps of an analysis, including methods applied
and parameters used. It also tracks information on the
software environment where an analysis was run. QIIME
2 is a major advance toward improved reproducibility of
bioinformatics analysis.
Dr. Caporaso described other advances in QIIME 2 as

well, including improved sequence quality control, a
focus on analysis of sequence variants rather than OTU
clusters for improved taxonomic resolution, and new
machine learning and alignment-based approaches for
taxonomic assignment of sequences. QIIME 2 also pro-
vides interfaces for different types of users, including a
prototype graphical user interface for end users without
advanced computer skills, a command line interface for
power users, an application programmer interface (API)
for data scientists and programmers, and a web interface
for viewing QIIME 2 results on systems that do not have
QIIME 2 installed. Finally, QIIME 2 is based on a plugin
architecture that allows third-party developers to easily
make their bioinformatics software available to users
through QIIME 2. A community of software developers
around the world are writing QIIME.
In the break-out sessions, participants discussed the

importance of laboratories using automation when
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processing samples, to avoid variation due to handling.
They stressed the importance of including both negative
and positive controls at all stages of sample processing.
Participants considered knowledge sharing to be import-
ant to develop standardized protocols, especially when
methods did not work. Data analysis methods need to be
transparent and reproducible; using a bioinformatics
platform such as QIIME 2 that provides automated data
provenance tracking helps. Furthermore, a data reposi-
tory that supports long-term archiving of primary micro-
biome data (i.e., sequence data) as well as sample and
study metadata, and allows users to easily deposit and
retrieve these data in common formats is currently an
unmet need in the field.

Statistical considerations in the design, analysis,
and interpretation of microbiome studies
Dr. Anthony Fodor reviewed the relationship between
biological variability, technical artifacts, and reproduci-
bility in microbiome studies. He reminded the group
that in any biological experiment, reproducibility is pos-
sible when there is a consistent signal that is larger than
the sum of the measurement error and biological vari-
ability. As a result of statistical methods work, we are
beginning to understand how each component in pro-
cessing of the microbial community impacts technical
reproducibility. While different sequencing runs on the
same platform tend to introduce only small amounts of
technical variability, techniques used for extraction of
microbial DNA have a profound impact on the compos-
ition of the microbial community [15]. PCR steps can
introduce substantial bias; interactions between different
taxa in PCR reactions [16] can be difficult to predict
ahead of time.
Dr. Fodor noted that standardizing techniques can re-

duce the impact of technical artifacts, but reproducibility
also requires an effect size that is larger than biological
stochasticity. A strong association between a disease and
the microbiome would be easier to reproduce than a
weak association. Conditions such as colorectal cancer
and liver cirrhosis clearly have stronger associations with
microbial community composition than obesity [17], and
this presumably explains why there is a more robust re-
producible signal across studies for colorectal cancer
[18, 19] than for obesity [17, 20, 21]. We have increasing
evidence for a common signal of dysbiosis across mul-
tiple diseases, but it is unclear how much of this signal
is due to shared pharmacology [22, 23] rather than the
underlying disease state.
While 16S rRNA gene sequencing provides information

about microbial composition, shotgun metagenomic se-
quencing provides information about microbial genes and
pathways, explained Dr. Hongzhe Li. Knowing the taxo-
nomic composition and the gene composition can be

important to understanding human diseases. Based on the
uneven coverage of the sequencing reads from the origin
and terminus of bacterial replication, shotgun sequencing
data also provide important insights into the microbial
replication rates and growth dynamics [24]. All these
microbiome features have been shown to be associated
with various human diseases or treatment outcomes.
Features of the microbiome can be treated as outcome,

exposure, or covariate. When treated as the outcome,
the statistical issues focus on testing the effect of the ex-
posure on the overall microbial composition or on each
of the taxa. When treated as a covariate in clinical out-
comes, the microbiome can serve as a moderator of the
treatment effect in a regression analysis framework.
Since the data obtained from 16S rRNA gene or shotgun
metagenomic sequencing can only provide relative abun-
dance information, the microbial abundance data are
compositional with a unit sum. When the microbial rela-
tive abundances are used as covariates in regression ana-
lysis, the compositional nature of the data has to be
accounted for in order to achieve the subcompositional
coherence [25, 26] and to reduce false positive results.
The microbiome may serve as an important mediator of

treatment effects. With appropriately designed studies,
such as randomized experiments or longitudinal studies,
researchers can apply methods from the causal mediation
analysis literature to quantify the mediating effect of the
microbiome. Such mediation analyses link treatment to
outcomes and identify the subcomposition of the micro-
bial community that serves as an important mediator.
However, existing mediation analysis methods need to be
extended to account for the high dimensional and com-
positional nature of the microbiome data and to adjust for
confounding factors [27]. It is important to perform rigor-
ous sensitivity analyses for unmeasured confounding.
Dr. Jianxin Shi discussed using data from prospective

studies for estimating the overall contribution of the hu-
man microbiome on the risk of developing a complex
disease. Although data from large-scale prospective stud-
ies are not yet available, Dr. Shi cited BMI and American
Gut Project data as an example [28]. Based on a linear
mixed model and the 4001 OTUs (average relative abun-
dance > 0.5%), the relative abundance data explained
27.0% (standard error (S.E.) 2.1%) of BMI variance and
presence/absence data explained 34.2% (S.E. 2.7%).
Dr. Shi also discussed the potential confounding effects

of population stratification when testing for an overall asso-
ciation using beta-diversity analysis in large-scale studies. In
genome-wide association studies, population stratification
is typically controlled by principal component analysis
based on “beta-diversity matrix” using genome-wide SNP
data. Similarly, beta-diversity tests of the microbiome may
capture population substructure. When such population
structure is associated with the disease risk, testing for the
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overall association using the beta-diversity test will cause
spurious associations with disease. He suggested that such
confounding may be investigated after obtaining host gen-
etic data in large-scale studies.
In the breakout session, participants suggested that

statisticians and computational biologists should be con-
sulted at all stages of study planning as their input is
valuable for determining sample sizes and conducting
statistical analyses. Studies must be designed appropri-
ately to ensure that the results will allow for substantive
interpretation and conclusions, especially since the re-
sults will need to be adjusted for multiple comparisons
thereby lowering the minimum p value required for sta-
tistically significant findings.

Epidemiologic study design
Owing to a lack of studies with fecal samples collected
in prospective cohort studies, most microbiome studies
to date have used a cross-sectional case-control design.
Although these studies have provided insight into the
differences between the microbiome of those with and
without cancer, they are unable to evaluate how the
microbiome may be related to the causes of cancer. To
address this problem, we need to expand our existing
cohorts and set up new ones.
Dr. Wei Zheng described Vanderbilt University Medical

Center’s (VUMC’s) three large prospective cohort studies:
the Shanghai Women’s Health Study (SWHS), the Shang-
hai Men’s Health Study (SMHS), and the Southern Com-
munity Cohort Study (SCCS). The studies are following
about 222,600 participants for cancer incidence and
cause-specific mortality. Using oral samples (saliva or
mouth-rinse) collected from these participants, multiple
studies have evaluated the association of the oral micro-
biome with the risk of cancers of the colon/rectum, upper
aero-digestive tract, lung, pancreas, and stomach, as well
as type 2 diabetes and obesity. VUMC investigators have
also collected stool samples from approximately 16,000
healthy participants since 2014 to study the association of
chronic disease and gut microbiome.
Based on a report by Dr. Loic Le Marchand, prelimin-

ary data from 2771 participants of the Multiethnic
Cohort (MEC) study showed that race/ethnicity (self-re-
ported or based on genetic ancestry) was associated with
small but significant differences in gut microbial com-
munity. MEC includes 215,000 well-characterized, older
African Americans, Latinos, Japanese Americans, Native
Hawaiians, and European Americans in Hawaii and Cali-
fornia. A pattern of less alpha-diversity (Shannon index)
was observed for women and Japanese Americans. Dr.
Le Marchand also reviewed data on the optimization of
a home stool collection protocol with immediate sample
preservation in RNAlater and on the stability of the

samples during over-night shipping and in long-term
storage at − 80 °C.
Dr. Michael Orlich reported that one potential source of

fecal and oral samples may be the 70,000 living cohort
members of the Adventist Health Study-2 (AHS-2). Re-
sponse rates from a pilot collection suggest that researchers
may be able to collect 32,000 samples. AHS-2 has a cohort
of approximately 96,000 Seventh-day Adventist adults living
in the USA and Canada. One-fourth of the cohort is African
American. Notably, a high proportion of AHS-2 participants
are vegetarians: 8% are vegan, 29% are lacto-ovo-vegetarian,
10% are pesco-vegetarian, and 5% are semi-vegetarian (very
low quantity of meat and fish consumption).
Dr. Habibul Ahsan reported that a preliminary study of

the HEALS cohort (http://www.urb-bd.org/ResearchPro-
jects/ResearchProjects) in Bangladesh showed that the use
of antibiotics influenced mortality, suggesting that the
microbiome plays a significant role in determining the
health outcomes in this low-resource community. Re-
search has also shown that the relative abundance of dif-
ferent taxa of the gut and oral microbiome varied between
the Bangladesh and the US population. Dr. Ahsan out-
lined his plans for assessing gut and oral microbiome in
the Chicago COMPASS cohort (http://compass.uchica-
go.edu/) focusing on urban health disparity.
Dr. Andrew Chan reported data on men in the Health

Professionals Follow-up Study (HPFS) showing that se-
quencing of mailed self-collected stool specimens using
a fixative comprised of either 95% ethanol or RNAlater
provided comparable metagenomic and metatranscrip-
tomic data as stool that was collected and immediately
frozen in − 80 °C [29]. A lifestyle and dietary validation
study nested within the HPFS found a high
within-person stability of the metagenome compared to
the stability of the metatranscriptome over 24 to 72 h
and over 6 months. In 2018, Dr. Chan and colleagues
launched an effort to collect stool samples (using 95%
ethanol and Omni-Gut, a commercial fixative developed
by DNAGenotek) from 25,000–35,000 participants of
the MICRObiome Among Nurses Study (MICRO-N),
part of the Nurses’ Health Study II.
The different presentations demonstrated the ongoing

work to collect samples from prospective cohorts. It will
be important for the different researchers to coordinate
and use one common collection method so that data
can be pooled or meta-analyzed in the future.

Reporting and data sharing guidelines
Dr. Owen White noted that sharing analytical methods is
now common in the genomics field for several reasons. It
promotes collaboration, which is particularly important to
the career development of young investigators. Also, pub-
licly funded research should rightfully be available to
everyone. Microbiome’s policy is that authors should make
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available the software and scripts they used to generate
their data, so others can replicate all published bioinfor-
matics and statistical analyses. The NIH Genomic Data
Sharing Policy (https://osp.od.nih.gov/scientific-sharing/
genomic-data-sharing-faqs/?pdf=10976) requires that all
new, NIH-funded genomic data projects, which include
microbiome studies, use transparent data sharing methods
to ensure widespread access to completed study data.
Dr. Christian Abnet reminded workshop participants that

the publication of microbiome exposure studies embedded
in epidemiologic studies are in their infancy, and many are
completed by research groups with little prior work in hu-
man populations. Transparent data reporting improves
peer-review, editorial decision-making, and replication of
study findings [30]. With novel bioinformatic and statistical
methods being used on existing data, having data be freely
available may also lead to novel discoveries [31]. Further-
more, drawing strong inferences from observational studies
requires multiple independent examinations of the same
hypothesis with subsequent meta- or pooled analyses. Pool-
ing multiple observational studies will inform those results
that may be most amenable to translational or interven-
tional studies.
Extensive experience from other fields, including clinical

trials and observational epidemiology with Consort and
STROBE guidelines (https://www.strobe-statement.org/
index.php?id=strobe-home), respectively, have led to many
journals adopting standard reporting guidelines. EQUATOR
(Enhancing the QUAlity and Transparency Of health Re-
search) Network (http://www.equator-network.org/repor-
ting-guidelines/) has a wide selection of reporting guidelines.
To encourage researchers to document and share their

analytic choices, journal editors should require them to
use and share electronic notebooks or other methods for
documenting the exact bioinformatic and statistical
methods. Such functionality can be embedded in up-
dated versions of popular microbiome processing pipe-
lines. Researchers, funders, and publishers should jointly
tackle the challenges of data sharing. Because the micro-
biome is so sensitive to lifestyle and environment, care-
ful assessment of potential confounding factors will be a
crucial component of future studies.

NCI extramural/intramural grants, resources, and
collaborative opportunities
During this session, NCI representatives described NCI re-
sources available for conducting microbiome studies and
opportunities for collaborating with NCI investigators.
Dr. Gabriel Lai explained that grants are primarily

assigned to one of four extramural divisions: Division of
Cancer Biology, DCCPS, Division of Cancer Prevention,
and Division of Cancer Treatment and Diagnosis. For
fiscal year 2014 to the present, DCCPS held fewer than

25% of NCI grants with a microbiome component but
provided nearly 40% of NCI funds.
DCCPS supported 18 microbiome-related grants since

2014. These grants consisted of R01s, R03s and explora-
tory R21s (research grants), larger P01s (program project
grants), and U01 s/UM1s (cooperative agreements).
Most of the grants evaluated the microbiome of the gut
or oral cavity, or multiple sites for purposes of compari-
son. Many grants are part of existing studies, often large
prospective cohorts, indicating NCI’s recognition of the
importance of leveraging existing studies’ infrastructure.
Separately, a few grants have been supported via the
Funding Opportunity Announcement “Core Infrastruc-
ture and Methodological Research for Cancer Epidemi-
ology Cohorts” which requires the collection of
microbiome samples as an element of the grant.
Dr. Abnet began with an overview of NIH’s Intramural

Research Program (IRP). It aims to complete long-term,
high-impact science, including a variety of microbiome stud-
ies. Microbiome research at DCEG currently focuses on
standardization of methods, microbial communities in can-
cer etiology, microbial communities across the carcinogenic
process, microbial communities and cancer-associated expo-
sures, and developing cohorts that collect optimal biosam-
ples for microbiome hypotheses. DCEG seeks to conduct
prospective studies on the microbiome and disease risk
while also building quality control samples, methods, and
tools for intramural and extramural research.

Next steps
While emphasizing that we have made substantial progress,
especially with sample collection methodology, Dr. Sinha
focused on what we can do now to advance microbiome re-
search. The table below (updated since her presentation)
describes current collection methods for fecal samples:

For adequate power, researchers will likely need to
analyze data from multiple studies jointly. However, con-
ducting pooled analyses or meta-analyses may not be
possible if individual epidemiologic studies use different

Collection
method

Analytical method

16S rRNA
gene

Shotgun
sequencing

Transcriptomics Metabolomics

No
additive

Poor Not tested Not tested Not tested

70%
ethanol

Poor Not tested Not tested Not tested

95%
ethanol

Good Fair/good Being analyzed Good

FOBT Good Good Being analyzed Fair/good

FIT Good Good Being analyzed Poor

RNAlater Good Good Good Failed GC/MS
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collection methods. It is, therefore, important for pro-
spective studies to coordinate and collect fecal samples
using at least one common method in addition to the
method of their choice. Dr. Sinha urged participants to
invest in collecting fecal and oral samples in cohorts
now since it will take at least 5 to 10 years to observe
health outcomes, and standardize the information partic-
ipants provide at the time the samples are collected.
DCEG is developing QC standards for use across dif-

ferent cohorts and studies. NCI will supply aliquots of
these standards to each cohort study so the standards
can be analyzed with actual samples. No less important,
Dr. Sinha reminded the audience about the need to re-
tain negative controls or blanks when collecting fecal
and oral samples. Including blanks in the sample set at
the different stages of the pipeline is also critical.
Dr. Heidi Kong discussed the significant bias that

can be introduced during extraction, the importance
of identifying potential sources of contamination, and
the importance of sufficiently validating methods of
extraction [32, 33]. Some of the challenges of PCR
amplification are primer selection that is based on
microbes of interest (e.g., specific hypervariable re-
gions of the 16S rRNA gene for bacteria; other re-
gions for targeting fungi) and PCR conditions that
can be a source of variability. Outlining best practices
for PCR conditions and including mock communities
and negative controls would improve consistency of
PCR amplification across the field.
Decisions concerning common sequencing issues

(amplicon versus shotgun metagenomic sequencing,
platforms, sequencing depth, and reproducibility) depend
on specific research questions, budget, and sequencing
platforms. Important considerations for bioinformatics in-
clude validating findings by comparing different pipelines
and databases, documenting analytical pipelines and pa-
rameters, and expanding existing databases with curated
strains.
Dr. Walter Willett reviewed the design of studies of

microbiome and cancer. In studies of cancer etiology,
both case-control and prospective studies have been in-
formative, but their validity depends strongly on the ex-
posure. Case-control studies have been useful when the
contrasts in exposure and relative risks are high, such as
in comparing smokers with never smokers, heavy alco-
hol consumption with abstainers, or those with positive
serology for HPV infection to seronegative individuals.
However, for many other relationships, the results of
case-control studies can be misleading due to combina-
tions of selection bias, reporting bias, and reverse caus-
ation. These sources of bias will be particularly
problematic when the range of exposures and relative
risks are more modest, which is expected for common
exposures and behaviors related to diet, physical activity,

reproductive practices, and sun exposure. Selection bias
has become a major problem in population-based stud-
ies in the USA because participation rates for controls
are now often less than 60%. Because those who partici-
pate are likely to be more health conscious and because
participation rates of cases remain relatively high, this
may seriously distort associations [34]. Recall bias is also
a risk and can readily occur when people have been af-
fected by a serious illness. Reverse causation, an effect of
disease on exposure, can also be present in case-control
studies of cancer; the disease or its treatment can readily
cause weight loss and changes in diet, physical activity,
sun exposure, and bowel habits. Reverse causation is es-
pecially problematic when using biomarkers of expo-
sures because they will be affected by behavioral
changes, the disease process, or treatments.
In case-control studies of the fecal microbiome and

cancer, dietary factors can modify the microbiome, selec-
tion and recall bias will be major concerns, and the pres-
ence of disease could change the microbiome directly or
indirectly. Because of the likelihood of these biases, or
even just their potential, traditional case-control studies
of the microbiome and cancer will at best be suspect
and at worst seriously misleading. To collect reliable evi-
dence on the microbiome and cancer, we need to estab-
lish biorepositories for human samples of feces
(collected in a similar manner) and other collections to
serve as a basis for nested case-control studies over the
next several decades. Animal and human studies, using
short interventions and cross-sectional designs, have
documented important effects of diet on the fecal micro-
biome [35, 36]. Thus, studies of the microbiome and
cancer need to assess participants’ diets through re-
peated food frequency or recalls. The method and tim-
ing of dietary assessments in relation to sample
collections need to be considered. It would be helpful to
collect other data during biospecimens collection as
well, such as medication, fecal consistency, or probiotic
use.

Conclusions
The human microbiome plays key roles in human
health. Workshop participants enthusiastically con-
cluded that microbiome research needs to continue,
advance, and expand. The field has advanced in
optimizing biological sample collection, processing, and
storage; however, additional methodologic work is re-
quired. Some cohorts have already collected samples for
microbiome studies. But, ideally, cohort studies will use
one common collecting method, as well as a method of
their choice to help ensure future pooled analyses.
Furthermore, collecting samples from new and younger
cohorts may be more scientifically productive than get-
ting samples from aging cohorts. Work on DNA
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processing, metabolomics, and bioinformatics should
continue to develop standardized methods while events
are accruing in new cohorts. However, this ongoing
methods work need not hinder concurrent biosample
collection for later analysis. It will be important to
collaborate more with biostatisticians when designing
studies. Scientists from microbiology, epidemiology, bio-
informatics, and statistics need to work together to de-
velop reporting and data sharing standards that will
ensure replication and reproducibility of studies. They
should also work with journal editors to promulgate and
employ these standards. This exciting new field holds
great promise for improving our understanding of hu-
man health; more and regular engagement in these fields
will accelerate our progress.
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