
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Reinforcement Learning Influences Widespread Changes in Cortical Representations in a 
Selective Whisker Detection Task in Mice

Permalink
https://escholarship.org/uc/item/6g93z5nh

Author
Aruljothi, Krithiga

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g93z5nh
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA 
RIVERSIDE 

 

Reinforcement Learning Influences Widespread Changes in Cortical 
Representations in a Selective Whisker Detection Task in Mice 

 

A Dissertation submitted in partial satisfaction   
of the requirements for the degree of  

 

Doctor of Philosophy 

in 

Psychology 

 

by 

Krithiga Aruljothi 

March 2024 

 

 

 

Dissertation Committee: 
Dr. Edward Zagha, Chairperson 
Dr. Anubhuti Goel 
Dr. Aaron Seitz 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 
Krithiga Aruljothi 

2024 

 

 
 
 



 

The Dissertation of Krithiga Aruljothi is approved:  
 
 
 
 

 
 
 
 

 
 
 
 

 
Committee Chairperson  

 

 

University of California, Riverside 

 

 

 

 

 

 

 

 



 iv 

ACKNOWLEDGEMENTS  

Included in this dissertation are Chapters 2 and 3, adaptations from previously 

published materials (Aruljothi et al., 2020; Marrero et al., 2022). Primary 

contributions, additions, or changes are noted at the beginning of their respective 

chapters. 

I express my gratitude to my committee members, Dr. Eddie Zagha, Dr. Anu Goel, 

and Dr. Aaron Seitz, for their unwavering support and invaluable teachings 

throughout my research journey. My appreciation extends to all the faculty 

members in the Psychology department and the interdepartmental Ph.D. program 

in Neuroscience at UCR for their ceaseless inspiration and engaging interactions, 

including professional talks, conferences, casual discussions, and classes. A 

special acknowledgment goes to Dr. Khaleel Razak, Dr. Hongdian Yang, Dr. Martin 

Riccomagno, Dr. Peter Hickmott, Dr. Kalina Michalska, and Dr. Viji Santhakumar 

for significantly shaping my academic experience through their mentorship. I am 

also grateful to the Psychology department staff, including Renee Young, Jay 

Melashenko, Sarah Turnbull, and Kirsten Alonso, for their administrative efforts 

and contributions to routine graduate affairs. 

Above all, my deepest gratitude goes to Dr. Eddie Zagha, my principal investigator, 

graduate mentor, and brother. I consider myself incredibly fortunate to have had 

the best mentor and the most intellectually gifted person I know to guide my 



 v 

scientific journey through his exceptional mentorship. I owe much of my growth as 

a researcher to you, and I wouldn't be where I am today without your influence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

DEDICATIONS 

To my beloved parents, Mammishka and Daddishka, as I affectionately call them: 

This entire life journey, encompassing education and, most importantly, my PhD, 

is dedicated to my father, Aruljothi R., my eternal teacher, and best friend. Dad, 

you guided me through this vision we shared, holding my hand through life's highs 

and lows. Initiating this journey without you was daunting, but even in your 

absence, your influence helped me reach the finish line. There were moments 

when I nearly gave up, but the determination to make you proud propelled me to 

the end. Thank you, Daddy; I wish you were here to witness me becoming Dr. 

Aruljothi. To my mom, Geetha Aruljothi: Navigating life and studies wouldn't have 

been possible without your unwavering support. You stood by me through thick 

and thin, especially during the challenging times. I hope I have made you proud, 

and my commitment to doing so will persist. 

To my dear friends: Aditi, my best friend, confidante, and soul sister, has been my 

unwavering cheerleader throughout our decade-long friendship. Thank you for 

patiently listening to my ramblings for hours every single day. Your encouragement, 

whether in the form of a pat on the shoulder for my achievements or a smack on 

the head when I needed redirection, means the world to me. 

To my REC and ASU buddies—Sujata, Deepika, Sneha, Yashwanth, Swarnima, 

and Ranjani—thank you for becoming my U.S. family and creating memories that 

will be cherished forever. 



 vii 

And to my UCR and Riverside buddies—Marissa, Krista, Sirajan, Zoe, Jamiela, 

Sam J, Sam P, Manas, Uma, Donna and Manish—thank you for being my pillars 

of moral and emotional support. 

Lastly, to my lab family—the Zaghies, both longstanding members and 

newcomers, including Krista, Manas, Angelina, Joanne, Behzad, Sarah, Dominic, 

Christian, Emaan, Lovleen, Maham, Lourance, Raghad, and everyone else who 

has been part of the lab from the outset. Your constant presence and support have 

been invaluable. I've navigated the journey of growth, faced losses, and celebrated 

victories—all with your unwavering support and love. I eagerly anticipate 

witnessing the exceptional scientists and doctors you will undoubtedly become in 

the near future. 

 

 

 

 

 

 

 

 



 viii 

 

ABSTRACT OF THE DISSERTATION 

 

Reinforcement Learning Influences Widespread Changes in Cortical 
Representations in a Selective Whisker Detection Task in Mice 

 

by 

 

Krithiga Aruljothi 

 
Doctor of Philosophy, Graduate Program in Psychology 

University of California, Riverside, March 2024 
Dr. Edward Zagha, Chairperson 

 

A fundamental aspect of goal-directed behavior involves the capacity to selectively 

respond to specific stimuli during the decision-making process. My dissertation 

project is dedicated to uncovering the associations between changes in behavioral 

outcomes and the broader patterns of cortical activity as mice acquire proficiency 

in the selective detection task. In our research, we aim to delve into the neural 

mechanisms that underlie sensory selection (sensory detection and impulse 

control), employing the Widefield Calcium imaging technique. To achieve this, we 

conducted a training regimen with mice, employing a whisker-based selective 
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detection paradigm where they learned to respond to preferred target stimuli while 

disregarding non-preferred distractor stimuli throughout the learning process. 

Notably, mice that achieved expertise in the task demonstrated a clear attenuation 

of sensory-to-motor signal propagation in distractor-aligned cortical regions. 

Additionally, we explored the impact of prestimulus activity in the neocortex on 

stimulus detection. We observed that reduced prestimulus activity in the dorsal 

cortex correlated with improved stimulus detection, predicting whether a response 

would occur or not, and resulting in faster reaction times. Finally, we investigated 

whether learning the selective detection task induces widespread changes across 

the cortex, examining whether alterations in specific behavioral measures can be 

linked to distinct cortical modulations. Our results showed that the learning process 

entails extensive neocortical adaptations as mice advance to expert-level 

performance in the task. This research offers valuable insights into the learning 

mechanisms involved in the selection process, with potential applications for 

understanding impairments in learning trajectories observed in certain mental 

health disorders. 
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Chapter 1: Introduction 

Each day, instrumental actions can fall into the categories of habit or goal-directed 

behavior. A “goal-directed” action is a behavior driven by an expectation that it is 

likely to bring about a desired outcome (Dickinson & Weiskrantz, 1985). An action 

is considered goal-directed if it meets two criteria. Firstly, the individual must 

demonstrate awareness of the causal impact of their actions and their outcomes 

in the present state or context (causal efficacy). Secondly, intentional actions are 

aimed at specific conditions in the external world, referred to as goals, driven by 

internal motivations and guided by representations of those goals (goal 

representations).    

The capacity to adapt behavior based on desired outcomes in a given situation 

represents a fundamental aspect of flexible behavior, speculated to be 

compromised in various psychological disorders like obsessive-compulsive 

disorder (Gillan et al., 2011) and addiction (Everitt et al., 2008). Despite its 

behavioral significance, there remains a limited understanding of the neural 

mechanisms that empower individuals to dynamically modify their behavior in 

pursuit of desired outcomes.  

Learning to become an expert 

Gaining feedback from the results of decisions has the potential to enhance future 

decision-making and increase overall success. Both humans and other animals 

adeptly learn from past rewards, selecting actions that have recently resulted in 
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the most favorable outcomes (Daw et al., 2006; D. Lee et al., 2012; Samejima et 

al., 2005; Tai et al., 2012). Decision-making, besides assessing past rewards, 

typically requires the consideration of present perceptual signals. Therefore, 

effective decisions should encompass both the current sensory evidence and the 

prior history of successes and failures. Examining decisions influenced by past 

rewards falls under the purview of a reinforcement learning framework (Sutton & 

Barto, 2018). Learning can also occur even without reinforcement, such as in 

statistical learning, an unconscious cognitive process in which repeated patterns, 

or regularities, are extracted from the sensory environment (Fiser & Aslin, 2001; 

Turk-Browne, 2012; Turk-Browne et al., 2010).  

Experience dependent performance 

In perceptual decision-making paradigms, overt learning typically does not occur 

once the task is acquired. Nevertheless, numerous studies have demonstrated the 

significant impact of past rewards, actions, and stimuli on subsequent perceptual 

choices (Abrahamyan et al., 2016; Akaishi et al., 2014; Akrami et al., 2018; Braun 

et al., 2018; Busse et al., 2011; Cho et al., 2002; Fan et al., 2018; Fischer & 

Whitney, 2014; Fritsche et al., 2017; Fründ et al., 2014; Gold et al., 2008; Hwang 

et al., 2017; Lueckmann et al., 2018; Luu & Stocker, 2018; Marcos et al., 2013; 

Tsunada et al., 2019; Urai et al., 2017). Certain observations suggest that simple 

forms of reward-based learning contribute to asymptotic perceptual performance. 

For instance, subjects may tend to repeat a previously rewarded choice or avoid it 

after an unsuccessful trial (Abrahamyan et al., 2016; Busse et al., 2011; Tsunada 
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et al., 2019; Urai et al., 2017). However, these types of choice biases appear 

suboptimal and may reflect simple heuristics. Consequently, the extent to which 

normative considerations in reinforcement learning can explain choice biases in 

perceptual decisions has remained unclear.  

Reinforcement in Operant Conditioning  

Within operant conditioning, the term "reinforcement" denotes anything that 

enhances the probability of a response occurring. Psychologist B.F. Skinner 

introduced this concept in 1937 (Skinner, 1937). While the term 'operant behavior' 

wasn't inherently groundbreaking, Skinner's introduction of automated training with 

intermittent reinforcement and the exploration of reinforcement schedules it 

prompted represented a novel approach.  

In operant conditioning, there exist two distinct forms of reinforcement. Both exert 

an influence on behavior, but their mechanisms differ. These two types are: 

1. Positive reinforcement: This entails adding something to amplify a 

response. 

2. Negative reinforcement: This involves removing something to augment a 

response. 

While these terms include the words positive and negative, it's crucial to recognize 

that Skinner employed them without connotations of "good" or "bad." Instead, 

consider these terms in a mathematical context: positive functions like a plus sign, 

indicating the addition or application of something to the situation, while negative 
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functions like a minus sign, denoting the removal or subtraction of something from 

the situation. 

A fundamental question in behavioral neuroscience is how subjects select actions 

in the face of reward and punishment and the neural mechanisms of the decision-

making processes. In behavioral psychology, this question has been investigated 

in detail through the classical and operant conditioning paradigms and much 

evidence has accumulated regarding the associations that control different aspects 

of learned behavior (Bornstein & Daw, 2011; Dayan & Niv, 2008; Ito & Doya, 2011; 

van der Meer & Redish, 2011). While the psychological foundations are well 

established, the neuronal implementations are very poorly understood. One 

possible hypothesis could be that learning induces specific changes in distinct 

brain regions, like S1 for somatosensory detection. Alternatively, another 

hypothesis could be that learning leads to broad changes throughout the entire 

cortex and brain. 

Goal-directed Behavior Paradigms 

Goal-directed behavior has been investigated across various paradigms, animal 

models, and mental health disorders. Goal-directed sensory and motor paradigms 

encompass tasks such as detection (Huber et al., 2012), discrimination (Erlich et 

al., 2011; Pai et al., 2011; Rudebeck & Murray, 2008), categorization (Baunez & 

Robbins, 1997, 1999; Freedman et al., 2003; Reinert et al., 2021), and sequencing 

(Jin & Costa, 2010; Smits-Bandstra & De Nil, 2007), among other features. Our 
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investigations focus on the selective detection process, where subjects selectively 

respond to target stimuli while ignoring distractors. 

Common measures such as detection (of stimulus) and discrimination (between 

stimuli) are typically employed in standard selection paradigms, particularly in 

primate studies, where standardized signal detection measures determine the 

selectivity of detection (Britten et al., 1992, 1996; Luck et al., 1997). To investigate 

the correlations between cortical neural modulation and behavioral changes 

across learning, we designed a simple go/no-go whisker-based selective detection 

task paradigm. This paradigm involves selectively responding to a target stimulus 

and refraining from responding to a distractor stimulus, with fixed assignments for 

target and distractor stimuli.  

Rodent Whisker System 

Sensory information plays a crucial role in action planning, and the execution of 

actions relies on sensory feedback. The whisker primary sensory cortex (wS1) is 

believed to facilitate the integration of sensory, motor, and top-down signals for 

specific computations in individual neurons and neuronal circuits. The complex 

neuronal circuits involved in cortical whisker-related sensorimotor processing are 

gradually being uncovered through advancements in labeling, recording, and 

manipulating specific cell types during behavior. In the mouse wS1, the 

somatotopic map reveals individual representations for each mystacial whisker, 

known as a 'barrel' (Figure 1.1 B)  (Woolsey & Van der Loos, 1970). This barrel 
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map seems to develop through genetic programs and is refined through 

experience and activity (Fukuchi-Shimogori & Grove, 2001; Hannan et al., 2001; 

Iwasato et al., 2000; Van der Loos & Woolsey, 1973; Welker et al., 1996; Welker & 

Van der Loos, 1986). 

Whisker deflection triggers sensory information through glutamatergic synapses in 

the brainstem and thalamus before reaching the cortex. This incoming sensory 

information is processed within neuronal microcircuits in wS1 and transmitted to 

various directly connected downstream cortical and subcortical brain regions 

(Aronoff et al., 2010; Ferezou et al., 2007; Yamashita et al., 2018). The sensory 

(S1) and motor (M1) cortical representations of the mouse whisker system are 

depicted in Figure 1.1 A derived from (Aronoff et al., 2010). 
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Figure 1.1 (derived from figure 1 of (Aronoff et al., 2010)) a) sensory (S1) and 
motor (M1) cortical representations of the mouse whisker system b) and c) The 
primary somatosensory cortex of rats and mice contains obvious anatomical units 
called ‘barrels’ in layer 4 of wS1, which represent individual whiskers on the snout 
and are somatotopically organized. 
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While selective detection has not been extensively explored in mice, the whisker 

barrel system in these animals provides an ideal framework for sensory stimuli due 

to its barrel-specificity and spatial laterality. The barrel cortex, with its precisely 

defined maps, offers a unique opportunity for a detailed analysis of causal 

mechanisms within well-defined cell-type-specific neuronal circuitry during sensory 

perception (Petersen, 2019). Despite wS1's direct involvement in whisker motor 

control (Matyas et al., 2010), its most significant contribution to behavior regulation 

is likely indirect. Through associative learning, whisker sensory information 

becomes crucial for goal-directed behavior. Context-, motivation-, and learning-

dependent processing of whisker-related sensory information probably engages 

various brain regions, including wS1 and its downstream targets (Aruljothi et al., 

2020; J. L. Chen et al., 2015; Eggermann et al., 2014; Marrero et al., 2022; 

Sachdev et al., 2004; Sofroniew et al., 2015; Zareian et al., 2021, 2023; Zhang & 

Zagha, 2023). Uncovering the neuronal circuits responsible for transforming 

whisker sensory information into goal-directed motor output is a key objective. 

Head-restrained mice can readily learn goal-directed tasks through trial-and-error, 

with neuronal recordings in wS1 revealing trial-by-trial correlates of task 

performance. Optogenetic and pharmacological inactivation of wS1 reduces hit 

rates in such tasks, indicating the involvement of wS1 neuronal activity in task 

execution (Sachidhanandam et al., 2013; H. Yang et al., 2016). Conversely, 

optogenetic stimulation of wS1 can substitute for whisker stimulation during both 

learning and execution (Sachidhanandam et al., 2013; Sofroniew et al., 2015). 
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Remarkably, in trained animals, even the stimulation of single wS1 neurons can 

drive licking responses (Houweling & Brecht, 2008; Tanke et al., 2018). 

Widefield Calcium Imaging 

Utilizing wide-field calcium imaging, particularly with genetically encoded calcium 

indicators like the GCaMP family, has emerged as a compelling method to observe 

neural activity across the entire dorsal cortex in live mice during diverse sensory 

and cognitive processes (Cardin et al., 2020; Ren & Komiyama, 2021). This 

approach offers excellent spatiotemporal resolution by illuminating large cortical 

areas simultaneously. 

In recent years, the field of systems neuroscience has undergone a revolution in 

wide-field imaging, primarily driven by advancements in genetically encoded 

fluorescent indicators. Engineered proteins within this category exhibit changes in 

fluorescence intensity in response to various neuronal events, encompassing 

transmembrane voltage, intracellular calcium concentration, vesicle release, and 

alterations in neurotransmitter concentration (Lin & Schnitzer, 2016; Sabatini & 

Tian, 2020). Among these protein sensors, genetically encoded calcium indicators, 

notably the GCaMP family (Akerboom et al., 2012; Chen et al., 2013; Dana et al., 

2019; Tian et al., 2009; Y. Yang et al., 2018), have become the standard choice for 

visualizing neural activity in both one-photon and multiphoton imaging.  

GCaMP, a genetically encoded calcium indicator (GECI), is a synthetic fusion that 

includes green fluorescent protein (GFP), calmodulin (CaM), and M13, a peptide 
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sequence derived from myosin light-chain kinase (Chen et al., 2013). In the 

presence of Ca2+, GCaMP emits green fluorescence, with a peak excitation 

wavelength of 480 nm and a peak emission wavelength of 510 nm (Barnett et al., 

2017). GCaMP fluorescence exhibits sensitivity to changes in intracellular calcium 

dynamics predominantly driven by action potentials, thereby reporting neuronal 

spiking activity with high signal-to-noise ratio (SNR). The genetic encoding of 

GCaMP also ensures stable expression over time, facilitating longitudinal 

recordings. These advantages position GCaMP as a powerful tool in wide-field 

calcium imaging, overcoming challenges often encountered with intrinsic signal 

imaging and voltage-sensitive dye imaging. As a result, it has become an attractive 

approach for characterizing large-scale cortical dynamics in behaving animals. 

An increasing number of investigations utilize wide-field calcium imaging to 

characterize cortical activity on a macroscopic scale, covering a field of view (FOV) 

that spans most of the mouse dorsal cortex. These studies have significantly 

enhanced our comprehension of cortex-wide dynamics across various cognitive 

processes, ranging from relatively straightforward sensorimotor integration to more 

intricate decision-making tasks (Allen et al., 2017; Makino et al., 2017; Musall et 

al., 2019; Salkoff et al., 2020).  

Dynamics of learning in dorsal cortical activity 

Several studies have harnessed the stable expression of genetically encoded 

calcium indicators to conduct longitudinal wide-field calcium imaging, exploring 
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macroscopic dynamics associated with learning (Makino et al., 2017; Musall et al., 

2019). A systematic characterization of cortex-wide activity reconfiguration during 

motor learning revealed that, with learning, the macroscopic sequence of activity 

during movement execution became more temporally compressed and 

reproducible across trials (Allen et al., 2019; Makino et al., 2017). This suggests 

that efficient and reliable signal transmission across cortical regions evolves as a 

function of learning. The observed cortex-wide dynamics in various learning tasks 

indicate that learning-induced plasticity extends beyond individual cortical regions 

and involves widespread changes in the interaction between regions (Makino et 

al., 2017).  

As mice engage in the learning process of the goal-directed selective detection 

task, we expect the neocortex to undergo certain adaptations to meet the 

challenges posed by the cognitive functions related to sensory selection. Our 

objective is to assess this expectation by monitoring the progression of behavioral 

learning alongside changes in neocortical responses to sensory and motor events. 

In contrast to conventional learning studies that often concentrate on isolated 

behavioral measures and specific brain regions, our approach is designed to 

investigate two hypotheses: 1) that learning induces widespread alterations in 

sensory and motor responses throughout the cortex, and 2) that distinct cortical 

modulations are linked to the acquisition of specific behavioral processes. This 

exploration holds significance as it has the potential to generate multiple 
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hypotheses regarding the neuronal mechanisms that underlie the acquisition of 

various behavioral processes within the framework of a single task.  

Attenuation of distractor signal in the brain 

Selection serves as a cognitive filter, enabling us to sift through the overwhelming 

influx of sensory input and concentrate on what truly matters. Picture a scenario in 

your mind: you are at a bustling party with a myriad of conversations, booming 

music, and a cacophony of ambient sounds all vying for your attention. Yet, as you 

engage in a conversation with someone, you find yourself remarkably adept at 

tuning out the irrelevant noise and immersing yourself in the dialogue at hand. This 

intriguing phenomenon is known as the cocktail party effect and has been 

extensively explored within the realm of auditory psychology. Early theories on this 

form of selective attention, such as Broadbent's filter model, posited that our 

cognitive processing capacity is finite, leading to the early selection of information 

for processing while the rest gets blocked out (Broadbent, 1958). While this idea 

explained some behavioral data, it failed to explain our ability to process pertinent 

details within unattended messages. Here, Treisman proposed a different 

perspective: selective attention operates through an attenuating filter rather 

than a blocking mechanism (TREISMAN, 1964).  

Initially developed to understand the selection process within the auditory system, 

the attenuation theory has found applications in the study of sensory selection 
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across various sensory modalities and different species (Moran & Desimone, 

1985; Sridharan et al., 2014; Wiederman & O’Carroll, 2013).  

The precise processing stages at which motor learning incorporates selection have 

sparked substantial debate. According to early-selection theory, the initial selection 

of target information occurs at an early perceptual level (Broadbent, 1958; Cherry, 

1953). Conversely, late-selection theory posits that both target and distractor 

information undergo similar encoding at the early perceptual stage, with the 

selection of the target happening only at a later, post-perceptual level of processing 

(Deutsch & Deutsch, 1963). In primate visual system, studies show that there is 

progressive distractor suppression along the cortical hierarchy (Moran & 

Desimone, 1985; Tootell et al., 1998; Treue, 2001). Our goal for our first study was 

to localize the attenuating filter for a simple sensorymotor task in the mouse 

whisker system.   
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Chapter 2: Functional Localization of an attenuating filter 

This first study introduced both our new whisker-based selective detection task 

and the use of widefield imaging to study sensory selection in mice. Employing the 

signal detection theory framework, we determined key behavioral measures, 

including stimulus detection, discrimination between stimuli, and response rates, 

crucial for characterizing expert behavior in mice. We used widefield calcium 

imaging technique to record the spatio-temporal flow of activity across dorsal 

cortex of expert mice. Our selective detection paradigm provided compelling and 

consistent evidence of the presence of an attenuation filter localized within the 

cortex for the selective detection task in mice. The findings of our study support 

Treisman's framework over Broadbent's, observing sensory encoding for both 

target and distractor stimulus propagation, as evidenced by the reduction in 

distractor compared to target responses beyond primary somatosensory cortex.       

My contributions to this work included establishing the behavioral paradigm, animal 

surgeries, behavioral training of mice used in imaging analyses, collection of 

widefield imaging data, and data analyses for fluorescence activity and stimulus 

encoding (as shown in Figures 1, 2, 3, 5 and 6).  
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Abstract 

An essential feature of goal-directed behavior is the ability to selectively respond 

to the diverse stimuli in one’s environment. However, the neural mechanisms that 

enable us to respond to target stimuli while ignoring distractor stimuli are poorly 

understood. To study this sensory selection process, we trained male and female 

mice in a selective detection task in which mice learn to respond to rapid stimuli in 

the target whisker field and ignore identical stimuli in the opposite, distractor 

whisker field. In expert mice, we used widefield Ca2+ imaging to analyze target-

related and distractor-related neural responses throughout dorsal cortex. For 

target stimuli, we observed strong signal activation in primary somatosensory 

cortex (S1) and frontal cortices, including both the whisker region of primary motor 

cortex (wMC) and anterior lateral motor cortex (ALM). For distractor stimuli, we 

observed strong signal activation in S1, with minimal propagation to frontal cortex. 

Our data support only modest subcortical filtering, with robust, step-like attenuation 

in distractor processing between mono-synaptically coupled regions of S1 and 

wMC. This study establishes a highly robust model system for studying the neural 

mechanisms of sensory selection and places important constraints on its 

implementation. 
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Significance Statement 

Responding to task-relevant stimuli while ignoring task-irrelevant stimuli is critical 

for goal-directed behavior. Yet, the neural mechanisms involved in this selection 

process are poorly understood. We trained mice in a detection task with both target 

and distractor stimuli. During expert performance, we measured neural activity 

throughout cortex using widefield imaging. We observed responses to target 

stimuli in multiple sensory and motor cortical regions. In contrast, responses to 

distractor stimuli were abruptly suppressed beyond sensory cortex. Our findings 

localize the sites of attenuation when successfully ignoring a distractor stimulus, 

and provide essential foundations for further revealing the neural mechanism of 

sensory selection and distractor suppression.   
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Introduction 

We are constantly bombarded by sensory stimuli. To complete a given task, we 

must selectively respond to task-relevant stimuli while ignoring task-irrelevant 

stimuli. A framework for understanding stimulus selection is provided by the 

Treisman attenuation theory (Figure 1). According to this theory, both attended and 

unattended signals enter short-term storage. Responses to attended stimuli 

propagate forward for higher-order processing. Responses to unattended stimuli, 

however, are suppressed by an attenuating filter at some point along the 

processing stream (TREISMAN, 1964). The attenuation theory was originally 

developed to understand selection amongst conflicting speech patterns, yet has 

since been adapted to study sensory selection across multiple sensory modalities 

and species (Moran & Desimone, 1985; Sridharan et al., 2014; Wiederman & 

O’Carroll, 2013). 

Where in the brain does attenuation occur and what are the neural 

mechanisms involved? Extensive studies in the primate visual system have 

identified stimulus filtering throughout multiple brain regions. Sensory selection 

was initially proposed to occur in the thalamus, mediated by the modulation of 

thalamic relay neuron activation by the reticular thalamus (Crick, 1984). 

Recordings in behaving primates have demonstrated early-onset attentional 

modulations in thalamus (McAlonan et al., 2008), consistent with stimulus filtering 

prior to reaching cortex. However, earlier physiological studies demonstrated 

robust attentional filtering within cortex, between primary visual cortex and visual 
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area V4 (Moran & Desimone, 1985). Alternatively, other studies argue for filtering 

occurring primarily within prefrontal cortex (Mante et al., 2013). Potential ‘top-

down’ pathways establishing an attenuating filter include cortical feedback and 

ascending neuromodulation (Miller & Cohen, 2001; Noudoost & Moore, 2011). Yet, 

these mechanisms are poorly understood, in part due to the apparent highly 

distributed filtering processes of the primate visual system.   

Our goal in this study is to localize the attenuating filter for a simple sensory-

motor task in the mouse whisker system. This model system benefits from 

extensive characterization of the sensory and motor regions and pathways 

involved, with significantly fewer hierarchical levels than the primate visual system 

(Guo et al., 2014; Kleinfeld et al., 1999; Petersen, 2019). Whisker deflection 

activates brainstem pathways which travel predominantly through the ventral 

posteromedial (VPM) thalamus and onto primary somatosensory (barrel) cortex 

(S1). From S1, there are robust, mono-synaptic connections to the whisker region 

of primary motor cortex (wMC) (Mao et al., 2011; Miyashita et al., 1994; Porter & 

White, 1983). Sensory responses in S1 rapidly propagate to wMC, under both 

anesthetized and awake conditions (Chakrabarti et al., 2008; Farkas et al., 1999; 

Ferezou et al., 2007; Kleinfeld et al., 2002; Zagha et al., 2015). Moreover, this 

pathway may be particularly important for input detection; S1-wMC projection 

neurons were found to be preferentially responsive to touch in an object detection 

task (Chen et al., 2013), which enhanced during task training (J. L. Chen et al., 

2015). Recent studies in the rodent whisker system have reported sensory filtering 
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within the thalamus (Rodenkirch et al., 2019) and brainstem (Chakrabarti & 

Schwarz, 2018). However, it remains unknown to what extent these subcortical or 

cortical pathways contribute to filtering during a sensory selection task. 

We designed a selective detection task with spatially and temporally distinct 

processing streams. Mice respond to rapid deflections of one whisker field (target) 

and ignore identical stimuli in the opposite, contralateral whisker field (distractor). 

Rather than presenting target and distractor stimuli together, as in the original 

studies on sensory selection (Moran & Desimone, 1985; TREISMAN, 1964), we 

present each stimulus individually on different trials. Thus, we can evaluate target 

and distractor processing separately across space (different hemispheres) and 

time (different trials). The motor response in our task is a straight-forward lick. As 

the sensory and motor content of our task is symmetric, the only asymmetry is the 

selection process. In expert performing mice, we used widefield Ca2+ population 

imaging (Wekselblatt et al., 2016) to simultaneously monitor neural activity 

bilaterally in sensory and motor regions. We then quantified the asymmetry in 

target-aligned versus distractor-aligned sensory processing streams to localize 

sites of attenuation. 
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Materials and Methods 

Animal Subjects and Surgery 

All experiments performed in this study were approved by the IACUC of University 

of California, Riverside. Mice were purchased from Jackson Laboratories (JAX). 

Task-related neural imaging data were obtained from GCaMP6s expressing 

Snap25-2A-GCaMP6s-D mice (JAX #025111). The SNAP25-2A-GCaMP6s mouse 

line expresses GCaMP6s pan-neuronally, in both excitatory and inhibitory neurons 

throughout the brain (Madisen et al., 2015). Transgenic mice were backcrossed 

into the BALB/cByJ (JAX 000651) background. Both male and female mice were 

used in these experiments. Recording sessions from male and female mice were 

similar according to behavioral performance (imaging experiments: 4 male mice, 

32 sessions, 1 female mouse, 7 sessions; discriminability d’: male 2.0 ± 0.1, female 

1.9 ± 0.2, two sample t-test, p= 0.36, t(37)= 0.92; target stimulus reaction time (s): 

male 0.30 ± 0.01, female 0.32 ± 0.02 , two sample t-test, p= 0.70, t(37)= -0.38) and 

neural responses (data not shown), and therefore data were combined for grand 

average analyses. Mice were housed on a light cycle of 12 hours light/ 12 hours 

dark. All trainings and recordings were conducted on mice head-fixed in the 

behavioral apparatus. For headpost implantation, 2 to 5 months-old mice were 

placed under a combination of isoflurane (1-2%), ketamine (100 mg/kg), and 

xylazine (10 mg/kg) anesthesia. A 10 mm x 10 mm piece of scalp was resected to 

expose the skull.  The exposed skull was cleared of connective tissue and a 

custom-built headpost was implanted onto the skull with cyanoacrylate glue.  The 
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lightweight titanium or stainless steel headpost (3 cm in length and 1.5 grams in 

weight) had an 8 mm x 8 mm central window for imaging and recording. For in vivo 

widefield Ca2+ imaging, a thin layer of cyanoacrylate gap-filling medium (Insta-

Cure, Bob Smith Industries) was applied to the window, to both seal the exposed 

skull and enhance skull transparency. Silicone elastomer (Reynolds Advanced 

Materials) was additionally applied above the imaging window. After surgery, mice 

were placed onto a heating pad to recover and administered meloxicam (0.3 

mg/kg) and enrofloxacin (5 mg/kg) for three days post-op. Mice were given a 

minimum of three days to recover from surgery before water-restriction and 

behavioral training. Recordings under anesthesia were conducted immediately 

after headpost implantation.   

 

Animal Behavior 

Mice were trained in a Go/NoGo passive whisker selective detection task. During 

behavioral training mice were given food ad libitum but were water-restricted to a 

minimum of 1 mL per day. Weights were monitored daily to maintain over 85% of 

their initial post-surgery weights, and additional water was given as needed to 

maintain this level. The behavioral apparatus was controlled by Arduino and 

custom MATLAB (MathWorks) code. Piezo-controlled paddles (Physik Instrumente 

and Piezo.com) were placed bilaterally in the whisker fields, with each paddle 

contacting 2 to 4 whiskers. Paddle deflections of a triangle waveform had rising 
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phases that ranged from 0.1 s (for large deflections) to 0.01 s (for small 

deflections), followed by an immediate falling phase. Deflection velocity was 

constant, therefore increased duration correlated with increased deflection 

amplitude. The maximum amplitude, for 0.1 s deflections, was 1 mm. Stimulus 

duration and amplitude were varied with training with the goal of maintaining a 75% 

hit rate. This target hit rate was selected to maintain high reward rates while still 

operating within the dynamic range of each mouse’s psychometric curve. Within 

every session, target and distractor stimulus strengths were identical. Directly 

below the mouse’s snout was a central lick port. Each ‘hit’ trial was rewarded with 

~5 mL of water delivered through the lick port.  

Behavioral training consisted of three stages. Inter-trial intervals for all 

stages varied from 5 to 9 s with a negative exponential distribution to minimize 

potential timing strategies. Additionally, in all stages a ‘lockout’ period of 200 ms 

separated stimulus onset and the earliest opportunity for reward. Target and 

distractor whisker fields were assigned at Stage 1 and remained constant 

throughout training. Target/distractor assignment was varied across the population 

and analyzed separately (Figure 7A-C) before combining for grand average 

analyses. Each session lasted approximately 60 minutes and consisted of ~200 

trials.  (Stage 1) Classical conditioning: Unilateral (target) whisker deflection was 

paired with fluid reward; distractor whisker deflection was neither rewarded nor 

punished. Mice were trained on this stage for 1 to 3 days, 1 to 2 sessions per day. 

(Stage 2) Operant conditioning: Following unilateral (target) whisker deflection, 
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mice were required to contact the lick port within a lick detection window of 1.5 s 

in order to initiate the fluid reward. Mice were trained on this stage for 2 to 3 days, 

1 session per day. (Stage 3) Impulse control: Similar task structure as above, 

except all incorrect responses (licking during the ITI, during the lockout period, or 

following distractor deflections) were punished by re-setting the ITI, effectively 

acting as a time-out. The response detection window was shortened to 1 s. 

Following full-length ITIs, trial types were selected randomly from a distribution of 

80% distractor and 20% target. For distractor trials, not responding (correct 

rejection) was rewarded with a shortened ITI (2 to 4 s, negative exponential 

distribution) and a subsequent target trial. Licking to the distractor (false alarm) or 

not responding to the target (miss) initiated a subsequent full-length 

ITI. Responding to the target stimulus (hit) triggered a fluid reward, followed by a 

full-length ITI. Behavioral and neural imaging data for hit trials with and without 

preceding correct rejections were compared (Figure 7D, E) before combining for 

grand average analyses. For approximately half of the mice in this study, following 

full-length ITIs, catch trials without a whisker stimulus were interspersed at a rate 

of 10% of all stimulus trials. 

A single, contiguous behavioral window was considered for analyses, from 

session onset until 120 s of no responding, which we interpreted as task 

disengagement. Hit rate, false alarm rate, spontaneous lick rate, and reaction 

times were all used to assess task performance. Foremost, we used the sensitivity 

or d-prime (d’) framework from signal detection theory. Traditionally, d’ is used as 
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a measure of detection between stimulus present and stimulus absent 

conditions.  Here, we implemented a discriminability d’ between target detection 

and distractor detection [d’ = Zhit rate - Zfalse alarm rate] where Z is the inverse of the 

normal cumulative distribution function. Mice were considered expert in our task 

once they achieved a d’>1 for three consecutive days. Spontaneous lick rate was 

calculated as the response rate during the last 1 s of the full-length ITI. 

Widefield Imaging 

Widefield imaging was performed through-skull in head-fixed mice while they 

performed the selective detection task. Imaging was conducted through a 

Macroscope IIa (RedShirtImaging), beam diverter removed, 75 mm inverted lens 

with 0.7x magnification and 16 mm working distance.  The lens (NA 0.4) was 

positioned directly over the cranial window, providing a 7 mm x 5.8 mm field of 

view, including most of dorsal parietal and frontal cortex bilaterally. Illumination was 

provided by a mounted 470 nm LED (Thorlabs M470L3), dispersed with a 

collimating lens (Thorlabs ACL2520-A), band-pass filtered (Chroma ET480/40x) 

and directed through the macroscope using a dichroic mirror (Chroma T510lpxrxt). 

Fluorescent light returning to the brain was band-pass filtered (Chroma 

ET535/50m) prior to reaching an RT sCMOS camera (SPOT Imaging). On camera 

2x2 binning and post-processing image size reduction gave a final resolution of 

142 x 170 pixels at 41 μm per pixel and 12-bit depth. Images were acquired at a 

temporal resolution of 10 Hz, aligned to the trial structure. TIF image sequences 

were imported to MATLAB for preprocessing and analysis. 
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Local field potential (LFP) recordings 

LFP recordings were conducted through small (<0.5 mm diameter) craniotomies 

and durotomies positioned above S1 (from bregma: posterior 1.5 mm, lateral 3.5 

mm), wMC (anterior 1 mm, lateral 1 mm) and ALM (anterior 2.5 mm, lateral 1.5 

mm), in target-aligned and distractor-aligned cortices. Recording sites were 

positioned 750 mm below the pial surface, targeting layer 5. Recordings were 

acquired with silicon probes (Neuronexus, A1x16-Poly2-5mm-50s-177), bandpass 

filtered from 0.1 Hz to 8 kHz and digitized at 32 kHz (Neuralynx). Further analyses 

were conducted in MATLAB. 

Imaging of whisker movements 

A CMOS camera (Thorlabs DCC3240M camera with Edmund Optics lens 33-301) 

was positioned directly above the mouse while performing the detection task. Field 

of view included both whisker fields and stimulus paddles. Images were captured 

at 8-bit depth continuously at 60 Hz (ThorCam) and imported to MATLAB for 

analyses. 

Data Analysis 

All data analyses were performed in MATLAB using custom scripts. 

Fluorescence Preprocessing and Trial-Based Neural Activity 

Peri-stimulus trial imaging time windows included 1 s before stimulus onset and 

1.2 s after stimulus onset, which included the lockout and response windows. The 
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first step of image processing was to concatenate fluorescence activity from 

consecutive trials to create a raw movie F, where Fn(i,j,f) shows the fluorescence 

of each pixel (ith row, jth column) in the fth frame for each individual trial n. The pre-

stimulus baseline fluorescence Fo(i,j,n) was calculated by averaging pixelwise 

activity across the first 10 frames preceding the stimulus onset per trial n (1 s pre-

stimulus). Finally, relative fluorescent signal normalized to pre-stimulus baseline 

(dF/F) was calculated as 

𝑑𝐹
𝐹0(𝑖, 𝑗, 𝑛)⁄  =  

[𝐹𝑛(𝑖, 𝑗, 𝑓) − 𝐹0(𝑖, 𝑗, 𝑛)]
𝐹0(𝑖, 𝑗, 𝑛)⁄  

Average trial movies were created by indexing trials according to trial outcome (hit, 

miss, false alarm, correct rejection, spontaneous) and averaging activities at each 

pixel across the corresponding frame of each corresponding trial. Frame 

alignments were conducted both with reference to stimulus onset (stimulus-

aligned) and with reference to the first frame containing the response (response-

aligned) (see Figure 4). Spontaneous trials were those in which a response 

occurred during the 1 s pre-stimulus imaging period. Trials with responses during 

the lockout period were excluded from all further analyses.   

Data were analyzed per session (n=39), per mouse (n=5), per target-

distractor assignment (n=2) and across all experiments (grand average). For a 

session to be included in our analyses, our inclusion criteria were d’>1 for at least 

10 minutes of continuous engagement. Only one engagement period per session 

was included. For qualitative analyses, trial movies from recording sessions were 
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spatially aligned to bregma and averaged per mouse. These data were then 

averaged per target-distractor assignment (see Figure 7 for whisker deflection 

assignments). One target-distractor assignment dataset was then flipped 

horizontally (rostro-caudal axis) at bregma before the grand average dF/F. For 

quantitative analyses, the subsequent datasets were first flipped at bregma 

according to target-distractor assignment (as before) and then averaged across all 

sessions. 

Quantification of Stimulus Encoding 

To quantify stimulus response magnitude, we calculated the neurometric d’ (Britten 

et al., 1992) comparing activity pre-stimulus (stimulus absent) and post-stimulus 

(stimulus present), specifically during the lockout period. Neurometric d’ was 

calculated separately for target and distractor trials, and included all trials 

regardless of outcome (hit and miss trials for target, false alarm and correct 

rejection for distractor). Pre-stimulus (10 frames preceding stimulus onset) and 

post-stimulus activities were binned and plotted in an ROC (receiver operating 

characteristic) curve. The area under the curve (AUC) was converted to d’ using 

the equation: 

neurometric d' = √2 * ZAUC 

In the context of this study, neurometric d’ is the performance measurement of a 

pixel where d’>0 denotes more post-stimulus pixel activity and d’<0 denotes more 

pre-stimulus pixel activity. For each region of interest, we report the peak 
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neurometric d’ within the spatially-defined region of interest (ROI). Subsequent 

analyses compared target stimulus encoding in target-aligned cortices to distractor 

stimulus encoding in distractor-aligned cortices. 

Quantification of Choice Probability 

To quantify choice-related neural activity, we calculated choice probability d’ 

(Britten et al., 1996) comparing activity on hit trials (response present) and miss 

trials (response absent), specifically during the lockout phase. Sessions were 

included in this analysis if they had 5 or more trials of each type. Trials with stimuli 

of different amplitudes were combined only if response rates for each amplitude-

specific trial type were comparable (within 15%). Overall, 9 sessions were 

excluded from this analysis, due to too few miss trials (n=30, instead of n=39). 

Choice probability was calculated for activity within the pre-response frame (100 

to 200 ms during the lockout) and for activity between the pre-response frames 

(change in activity, subtraction of activity in the 0 to 100 ms frame window from the 

100 to 200 ms frame window during the lockout).  In the context of this study, 

choice probability d’ is the performance measurement of a pixel where d’>0 

denotes more response-related pixel activity and d’<0 denotes more no response-

related pixel activity. Response present and response absent activities were 

binned and plotted in a ROC curve. The area under the curve was converted to d’ 

as described above. 
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Seed Correlation Analysis 

Correlation maps were generated separately for target and distractor hemispheres 

and for S1, wMC and ALM seed regions (generating six correlation maps per 

session). Baseline averaged fluorescence activity trajectories from all trial types 

(excluding spontaneous) were concatenated into a single time series. The 

following trial structures were analyzed separately: 1) full trial, including 10 frames 

pre-stimulus and 12 frames post-stimulus including the lockout and response 

windows, 2) pre-stimulus only, including 10 frames pre-stimulus, 3) peri-stimulus 

and lockout, including 1 frame pre-stimulus and 2 frames post-stimulus during the 

lockout, and 4) response, including 10 frames after the lockout and during the 

response window. The seed was the average time series from all pixels in the 

indicated region of interest. Pairwise correlation coefficients were calculated 

between the seed and all other pixels. To reduce computation time, all trial movies 

were spatially down sampled 4-fold across both axes for a resolution of 36 x 43 

pixels at 164 um per pixel prior to running the correlation analyses. We report r2 

values, as the square of the correlation coefficient. For each region of interest, we 

report the average correlation r2 within the spatially defined region. Subsequent 

analyses compared target-aligned intracortical correlations to distractor-aligned 

intracortical correlations. 
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Evoked-potential analyses 

Single-trial LFP recordings were aligned to target and distractor stimulus onset. To 

isolate the LFP signal, single-trial data were bandpass filtered from 0.2 Hz to 100 

Hz using a second order Butterworth filter, then downsampled to a sampling 

frequency of 400 Hz. Following filtering and downsampling, single-trial data were 

averaged according to trial type. In figure 9, stimulus artifacts at 0-10 ms post-

stimulus were truncated when present.  

Whisker movement analyses 

Movies were parsed into regions of interest containing target or distractor whisker 

fields. Whisker motion energy (WME) within each region was calculated for each 

frame as the temporal derivative for each pixel of the mean gray value from the 

previous frame. Values per pixel were normalized (squared) and summed across 

pixels, providing a single WME value. WME data from the movies were aligned to 

target and distractor stimulus onset and averaged across trial type. 

Statistical Analyses 

For neurometric d’ and choice probability d’, statistical analyses were performed to 

determine whether each pixel value was significantly different than zero across 

sessions (one sample t-test). Data were spatially aligned across sessions as 

described above. Threshold for statistical significance was corrected for multiple 

comparisons using the Bonferroni correction [0.05/(142x170) = 2.1x10-6 for a 

single imaging session and 0.05/(156x194) = 1.7x10-6 across aligned imaging 
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sessions]. For neurometric d’ and seed correlation, we additionally conducted 

region of interest (ROI) analyses. For neurometric d’, reduction in distractor 

encoding was calculated as: (target d’ – distractor d’) / target d’, calculated 

separately for S1, wMC and ALM. Statistical analyses were performed to 

determine whether reduction in distractor encoding was significantly different than 

zero within each region across sessions (one sample t-test, significance threshold 

corrected for multiple comparisons 0.05/3 = 0.017). Additionally, comparison of 

reduction in distractor encoding between the three ROIs across sessions was 

conducted using ANOVA and post-hoc Tukey test. For seed correlation, 

comparison between the three ROIs across sessions and comparisons between 

different trial phases across sessions were conducted using ANOVA and post-hoc 

Tukey test. To quantify changes in whisker motion energy (WME), post-stimulus 

values (each frame) were compared to average pre-stimulus (1 s baseline) values. 

Comparisons were conducted using paired t-test for each post-stimulus window, 

with a p-value threshold of 0.01 for significance. Average data are reported as 

mean ± standard error of the mean. 
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Results 

Training mice in a selective detection task 

To study the neural mechanisms of sensory selection, we developed a Go/NoGo 

passive whisker detection task in head-fixed mice (Figure 2). In this task, target 

stimuli are rapid deflections of multiple whiskers in one whisker field and distractor 

stimuli are identical deflections in the opposite whisker field (Figure 2A). 

Throughout training we quantified task performance as the separation (d’) between 

hit rate and false alarm rate (Figure 2C). We considered mice ‘expert’ once they 

achieved a discriminability d’>1 on three consecutive sessions. Average time to 

expert performance was 11 days in the full task (see Methods) (Figures 2D and 

2E) (number of sessions to expert performance: 11.2 ± 0.9, n=43 mice). 

Performance measures for the imaging sessions used in subsequent analyses are 

shown in Figure 2F (n=39 sessions across n=5 mice, hit rate (%), 80.4 ± 2.2; false 

alarm rate, 13.6 ± 1.1; spontaneous lick rate, 8.1 ± 0.5; d’ comparing hit vs false 

alarm rates, 2.0 ± 0.1). 

Two key features of this task facilitate the study of sensory selection. First, 

target and distractor stimuli are presented to contralateral whisker fields. Given the 

highly lateralized somatosensory whisker representation, we expect the target-

aligned and distractor-aligned processing streams to be well separated across 

hemispheres. Second, we imposed a short (200 ms) lockout period after stimulus 

onset and before the response window. Responding during the lockout is punished 
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with a time-out, and mice learn to withhold their licking responses through this 

period (e.g., Figure 2G). All analyses of stimulus selection are conducted within 

this lockout period, which is post-stimulus onset and pre-reward, thereby isolating 

the selection process from reward-associated behavior. 

Propagation of cortical activity during task performance 

We used widefield calcium imaging (GCaMP6s Ca2+ sensor) to monitor neural 

activity broadly across dorsal cortex during task performance. We used a 

combination of anatomic landmarks and functional mapping to identify various 

cortical regions (Figures 3A and 3B). Whisker deflection in anesthetized mice was 

used to localize the primary somatosensory barrel field (S1) and the whisker region 

of primary motor cortex (wMC) (n=13, example session shown in Figure 3B, left). 

Reward-triggered licking in water-restricted yet task naïve mice was used to 

localize anterior lateral motor cortex (ALM), which has recently been identified as 

a pre-motor licking-related region (T.-W. Chen et al., 2017; Guo et al., 2014) (n=6, 

example session shown in Figure 3B, right). Thus, our anatomic and functional 

mapping confirms that we can simultaneously monitor licking-related and whisker 

sensory and motor cortical regions bilaterally.  

We imaged expert mice while they were performing the whisker detection 

task. Here, we show stimulus evoked cortical activity on target and distractor trials 

across all mice and all sessions (grand average: n=5 mice, n=39 sessions) 

(Figures 3C and 3D). The two sequential imaging frames both occurred within the 
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lockout period, which is after stimulus onset and before the earliest allowed 

response time. As expected, for both trial types we observed activity initiation in 

S1 contralateral to the deflected whisker field. By the end of the lockout period we 

observed strong S1 activity following both target and distractor stimuli. On target 

trials we observed propagation of activity to wMC, ALM, and retrosplenial cortex 

(RSP). Note that the activity does not spread uniformly from the site of initiation, 

but rather emerges in discrete cortical regions. In contrast, on distractor trials the 

activity was largely contained within S1, with only mild activation of wMC. 

In Figure 4, we show the grand average fluorescence signals across all trial 

types and outcomes, aligned to both stimulus onset and response onset. Notice 

that during the response (post-response onset for hit, false alarm and spontaneous 

licking trials) we observed strong signals that are widespread throughout dorsal 

cortex. However, in this study we are most interested in the activity initiating, and 

therefore preceding, the response. On hit trials (Figure 4A), we observed the 

propagation of activity from S1 to frontal and parietal regions post-stimulus (aligned 

to stimulus) and pre-response (aligned to response). On correct rejection trials 

(Figure 4E), we also saw strong activity in S1, but with very little propagation to 

other cortical regions. Propagation is not simply delayed on these trials, as we can 

track the resolution of distractor-evoked activity into the response window.        

The incorrect trial types also showed distinct activation patterns. On both 

false alarm trials (Figure 4B) and miss trials (Figure 4D), in addition to lateralized 

S1 responses, we also observed prominent bilateral activity in the somatosensory 
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limb regions. We interpret these neural signals as reflecting self-motion of the 

mouse. Prior studies have shown that during passive whisker detection tasks, self-

motion (quantified by whisking behavior) reduces detection probability 

(Ollerenshaw et al., 2012). Thus, limb region activation observed here is consistent 

with self-motion contributing to incorrect, both miss and false alarm, trial outcomes. 

On spontaneous trials (responses not preceded by a whisker stimulus) we 

observed minimal pre-response cortical activity (Figure 4C). 

Quantification of stimulus encoding and attenuation across cortex 

The above analyses demonstrate, qualitatively, the differential propagation of 

cortical signals for target and distractor stimuli. Next, we sought to quantify these 

responses. To do this, we calculated the neurometric sensitivity index (d’) (Britten 

et al., 1992) for each pixel in our imaging window (Figure 5). Across each session 

we compared the pre-stimulus activity (stimulus absent) to activity during the 

lockout period (stimulus present). Importantly, for this analysis we included all 

target trials and all distractor trials regardless of trial outcome (although excluding 

trials with responses during the lockout). We use d’ rather than dF/F, as the former 

accounts for trial-by-trial variability and reflects the ability of an ideal observer to 

distinguish signal from noise on single trials. The d’ maps from target and distractor 

stimuli largely match dF/F patterns described above; for target stimuli high d’ 

values are observed in S1, wMC, ALM and RSP (Figure 5A, right) whereas for 

distractor stimuli, high d’ values are only observed in S1 (Figure 5B, right). These 

regions show neurometric d’ values significantly above zero (Figure 5C and 5D). 
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We do observe a focal increase in d’ for distractor wMC (Figure 5B, right), but this 

does not reach statistical significance after correction for multiple comparisons 

(Figure 5D).  

Next, we quantified the propagation of stimulus responses for target versus 

distractor stimuli. We describe this analysis first for S1. For each session, we 

determined the peak neurometric d’ for the target stimulus in target-aligned S1 

versus the peak neurometric d’ for the distractor stimulus in distractor-aligned S1. 

We plotted these data in Figure 6A. Data along the unity line indicate equal 

neurometric d’ values for target and distractor stimuli for that session. For S1, the 

data are widely distributed, yet with a nonsignificant trend towards larger 

responses for target stimuli (n=39 sessions, 8.8 ± 7.9% reduction in distractor d’, 

one sample t-test, p=0.27, t(38)= 1.12) (Figure 6D). We repeated these analyses 

for wMC and ALM. For these regions we find that neurometric d’ values are 

consistently larger for target stimuli (Figures 6B and 6C). Reduction in distractor d’ 

is 61.0±7.1% in wMC (one sample t-test, p=1.76e-10, t(38)= 8.62) and 72.1 ± 6.9 

% in ALM (one sample t-test, p=8.83e-13, t(38)= 10.49) (Figure 6D). Additionally, 

reduction in distractor encoding is greater for wMC and ALM compared to S1 

(ANOVA, p=7.97e-9, F(1,38) = 54.2, with post-hoc Tukey comparison). Overall, 

these data demonstrate robust attenuation of distractor responses between the 

mono-synaptically connected regions of S1 and wMC. 
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Analyses of intrinsic lateralization, trial history, electrical activity, whisker 

movements and choice probability 

We performed a series of analyses to determine whether the neural activity 

described above reflects the selection process or can be accounted for by task or 

behavioral confounds. First, widespread cortical propagation in our task could 

reflect target selection or an intrinsic lateralization of cortical activity (e.g., left-sided 

whisker deflections always evoke more widespread cortical activation). To 

distinguish between these possibilities, two cohorts of mice were trained with 

opposite target-distractor assignments. In previous analyses we aligned all data 

with respect to target-distractor orientation. Here, we show behavioral 

performance (Figure 7A) and neural activity separately according to target 

assignment (Figure 7B target-aligned right hemisphere, n=3 mice and n=25 

sessions; Figure 7C target-aligned left hemisphere, n=2 mice, n=14 sessions). 

Note that propagation from S1 to frontal and other parietal cortices occurs 

selectively on target trials, irrespective of the side of target assignment. Therefore, 

these differential patterns of cortical activation reflect learned adaptations to our 

task, rather than intrinsic lateralization. 

 In our task, most target trials followed a correct rejection and shortened 

inter-trial interval (80%), while a minority of target trials was not preceded by a 

correct rejection and followed a long inter-trial interval (20%). It is possible that the 

mice in our task implemented a strategy of using the distractor stimulus to orient 

attention to the target whisker field rather than solely attending the target stimulus. 
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To determine the likelihood of this strategy, we compared behavioral performance 

on target trials (Figure 7D) and hit-related neural activity (Figure 7E) separately 

according to the presence of a preceding correction rejection. The similar 

behavioral performance (hit rate, paired t-test, p=0.63, t(38)=-0.49; reaction time, 

paired t-test, p=0.77, t(38)=0.29) and neural activity suggest that the distractor 

stimulus was not utilized to enhance target detection. 

 Next, we sought to confirm our Ca2+ imaging findings with local field 

potential (LFP) recordings, which have much higher temporal resolution. We 

recorded LFP signals from layer 5 of S1, wMC and ALM, in target-aligned and 

distractor-aligned hemispheres (not simultaneously recorded). We compared 

target-evoked responses in target-aligned cortices (Figure 8 A-C) to distractor-

evoked responses in distractor-aligned cortices (Figure 8 D-F). We find that early 

post-stimulus activity, likely reflecting the initial feedforward sensory sweep, is 

similar in target-aligned and distractor-aligned S1 and wMC (Figure 8 G, H; peak 

1, occurring within 50 ms post-stimulus). Late activity does diverge in S1 and wMC 

between target and distractor recordings. In ALM, notably, the large post-stimulus 

activity in target recordings is nearly absent in distractor recordings. These LFP 

data support our Ca2+ imaging findings of minimal subcortical filtering of the 

sensory response followed by robust attenuation across cortex. 

 To further understand how neural activity relates to movements during the 

task, in four additional sessions we imaged whisker movements during task 

performance and analyzed task-aligned whisker motion energy. We present two 
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example sessions in Figure 9, in which we plot whisker motion energy for target 

and distractor whiskers aligned to target and distractor stimulus trials. We find that 

whisker movements increase on target trials in both target and distractor whiskers 

approximately 100 ms after stimulus onset (Figure 9 A, B, E, F) (latency, n=4; target 

whiskers: 100 +/- 10 ms; distractor whiskers: 129 +/- 4 ms). This increase in 

bilateral whisker movements is before the onset of licking (>200 ms, due to lockout 

window), and therefore appears to be part of a response motor sequence (Musall 

et al., 2019). Whisker motion energy on distractor trials remained at pre-stimulus 

levels or increased late in the trial (Figure 9G, H), for target and distractor whiskers. 

In comparing the onset of neural signals (LFP) to the onset of behavior (whisking 

and licking) we find that the cortical signals precede overt behavior. Our data are 

therefore consistent with activation of wMC and ALM triggering a whisking and 

licking response sequence. 

We conducted additional analyses of the widefield imaging data to 

determine whether the observed propagation to frontal cortex for target stimuli is 

predictive of response initiation. The alternative hypothesis is that propagation 

reflects a learned stimulus association that may be independent of responding. To 

distinguish between these hypotheses, we calculated choice probability (Britten et 

al., 1996) for each pixel (Figure 10), comparing activity on hit trials (response 

present) versus miss trials (response absent). The average spatial map of target 

stimulus choice probability is shown in Figure 10A (left). This analysis revealed 

pixels with modest positive (increased on hit trials) and negative (increased on 
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miss trials) values of choice probability. However, none of the pixel values were 

significantly different than zero after correction for multiple comparisons (Figure 

10A, right). 

We reasoned that hit versus miss outcomes may depend on both the state 

of the mouse as well as the strength of the stimulus-evoked responses. In order to 

isolate the latter component, we recalculated choice probability based on the 

difference in activity between early and late lockout period activity (see Methods). 

With this method, we observed large and significant choice probability values in 

target-aligned wMC and bilateral ALM (Figure 10B). We also observed focal 

increases in choice probability in target-aligned S1 and RSP, but these regions did 

not reach statistical significance after correction for multiple comparisons (Figure 

10B). Thus, cortical activation of frontal cortex on target trials is predictive of 

response initiation.   

Quantification of functional connectivity across cortex 

Finally, we sought to determine whether the differences in propagation for target 

versus distractor stimuli are reflected in the correlation patterns, or ‘functional 

connectivity’, between sensory and motor cortices. To do this, we created pixel-by-

pixel correlation maps for S1, wMC, and ALM in target-aligned or distractor-aligned 

hemispheres as seed regions of interest (ROIs). We show the correlation maps for 

the full trial data, which include the pre-stimulus, peri-stimulus, and response 

windows for all stimulus trial types (Figures 11A-F). The most striking findings are 
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regional structure and symmetry. The spatial correlation patterns are highly similar 

for wMC and ALM seeds, which are quite different from S1 seeds (compare Figures 

11A/D with 11B/E, C/F). This regional structure illustrates that the correlation 

values reflect local neural activity rather than global imaging artifacts. Regarding 

symmetry, for all three cortical regions, the target-aligned and distractor-aligned 

seed maps are qualitatively extremely similar (compare Figure 11A-C with 11D-F). 

Despite these similarities, we do find significant differences in correlations 

between S1 and wMC (r2, target 0.84±0.01, distractor 0.76±0.01, paired t-test, 

p=2.9e-7, t(38)=6.2, n=39) and between S1 and ALM (r2, target 0.80±0.01, 

distractor 0.68±0.02, paired t-test, p=8.6e-10, t(38)=8.1, n=39). (Figure 11G). The 

largest differences in target-aligned and distractor-aligned correlations were 

between S1 and ALM (ANOVA, p=1.6e-8, F(2,37)=30.3, with post-hoc Tukey 

comparison) (Figure 11G). To determine whether these differences are persistent 

or related to specific phases of the task, we ran the correlation analyses separately 

for the pre-stimulus, peri-stimulus, and response windows. We found that 

differences in correlations for target-aligned versus distractor-aligned S1 to wMC 

(Figure 11H) and S1 to ALM (Figure 11I) were significantly larger in the response 

phase compared to the pre-stimulus phase (ANOVA with post-hoc Tukey 

comparison, S1-wMC, p=0.0004; S1-ALM, p=0.0005). However, even in the pre-

stimulus phase, there was a small yet significant increase in S1 to ALM correlation 

in target-aligned compared to distractor-aligned hemispheres (paired t-test, 

p=0.0018, t(38)=3.4) (Figure 11I). Overall, these data are inconsistent with large, 
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global changes in synaptic plasticity or functional connectivity driving task 

performance, but rather implicate more focal, possibly pathway-specific, 

adaptations. 

Discussion 

We developed a Go/NoGo selective detection task to study the neural processes 

of sensory selection in the mouse somatosensory whisker system. Mice learned 

to respond to target whisker deflections and ignore contralateral, distractor whisker 

deflections, achieving expert performance within 2 to 3 weeks of training (Figure 

2). The main finding of this study is robust attenuation of distractor compared to 

target stimulus processing between mono-synaptically coupled cortical regions S1 

and wMC (Figures 3-6). We interpret this observation as reflecting the presence of 

an intra-cortical attenuating filter, suppressing higher order processing of 

unattended stimuli (TREISMAN, 1964). 

We note important differences between our study and previous studies of 

the neural correlates of sensory selection. In our task, target and distractor 

receptive fields were assigned at the onset of training and remained constant 

throughout the learning process. This contrasts with previous studies in primates, 

in which target and distractor assignments are cued each block or trial. Moreover, 

our target and distractor stimuli were always across hemispheres, rather than 

varying in proximity. Yet, despite differences in training, species, sensory modality, 

stimulus details, and recording technique, we do note remarkable similarities with 

previous studies. As in the primate visual system, we observe progressive 
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distractor suppression along the cortical hierarchy (Figure 6D) (Moran & 

Desimone, 1985; Tootell et al., 1998; Treue, 2001). Comparing modulation 

amplitudes between studies is problematic, because they vary widely depending 

on task and stimulus details. However, generally, within thalamus and primary 

visual cortex, attentional modulations of approximately 10% have been reported 

(McAlonan et al., 2008; Motter, 1993; Tootell et al., 1998), which is similar to the 

8.8% average modulation we observed in primary somatosensory cortex. Within 

higher order sensory cortices, attentional modulations of 50 to 65% have been 

reported (Moran & Desimone, 1985; Tootell et al., 1998), which is similar to the 

61.0% and 72.1% average modulations we observed in wMC and ALM, 

respectively. 

What is the nature of distractor suppression? One possibility is that 

suppression is reactive, that once a distractor is detected, another brain region 

initiates an inhibitory brake to prevent further processing. This type of transient 

activation is observed, for example, in prefrontal cortex during stop-signal reaction 

time tasks at the detection of a ‘stop’ signal (Aron & Poldrack, 2006; Hanes et al., 

1998). A second possibility is that suppression is proactive, already deployed in 

the initial conditions of the brain regions receiving the distractor stimulus. Insofar 

as we do not observe additional transient activations for distractor stimuli, our data 

support the second explanation of proactive suppression. 

Given our localization of an attenuating filter between S1 and wMC, there 

are multiple possible mechanisms for implementing this filter. The most direct 
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mechanism would be bidirectional modulation of the S1-wMC intra-cortical 

projection pathway. Previous studies of whisker detection have identified 

increased sensory processing with learning in wMC and in specific S1-wMC 

projection neurons (J. L. Chen et al., 2015; Le Merre et al., 2018). Whether this 

pathway decreases in strength when aligned with a distractor has not been 

studied. However, such a finding of bidirectional modulation would provide strong 

evidence for involvement of this pathway in specific stimulus selection, rather than 

general task engagement. Additionally, regulated propagation between S1 and 

wMC may involve subcortical loops through the striatum (Alloway et al., 2006) or 

posterior medial thalamus (Kleinfeld et al., 1999), or cortical feedback projections 

from PFC to wMC or from wMC to S1 (Xu et al., 2012; Zagha et al., 2013). For 

example, wMC to S1 feedback may strengthen (target-aligned) or weaken 

(distractor-aligned) the reciprocal S1 to wMC feedforward pathway. Strengthening 

or weakening may occur through feedback targeting of excitatory, inhibitory or 

disinhibitory S1 neurons (Kinnischtzke et al., 2014; S. Lee et al., 2013; Petreanu 

et al., 2009; Rocco & Brumberg, 2007; Zagha et al., 2013). Our task provides an 

excellent platform for studying the plasticity and cellular/circuit contributions of 

each of these mechanisms towards target enhancement and/or distractor 

suppression. Alternatively, our findings are inconsistent with strong reductions in 

ascending sensory drives to distractor-aligned S1 (Figures 3-6 and 8) or large, 

global reductions in the structural or functional connectivity between distractor-

aligned S1 and the rest of cortex (Figure 11). 
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While our study identifies a sensory filtering process distal to S1, other 

studies have identified sensory gating in S1 and earlier subcortical structures. 

Previous studies of the rodent whisker system have examined differences in 

sensory processing during periods of whisking versus non-whisking. In general, 

these studies find reductions in sensory responses during whisking (Chakrabarti & 

Schwarz, 2018; Crochet & Petersen, 2006; Fanselow & Nicolelis, 1999; Ferezou 

et al., 2007; S. Lee et al., 2008), which is already present in the first sensory 

brainstem relay (Chakrabarti & Schwarz, 2018). This sensory gating process is 

likely mediated by both top-down cortical (Chakrabarti et al., 2008; S. Lee et al., 

2008) and neuromodulatory (Eggermann et al., 2014) inputs. Thus, modulations 

of sensory processing may occur all along the ascending sensory pathway, 

including brainstem, thalamus and cortex. Why different behavioral contexts 

engage different mechanisms of sensory gating is currently unknown. 

Finally, we currently do not know how wMC contributes to the sensory 

selection process. This cortical region has been studied extensively with respect 

to whisking, specifically in establishing its set-point, initiation, and amplitude 

modulation (Carvell et al., 1996; Hill et al., 2011). Consistent with this, we find that 

wMC activation on target trials correlates with bilateral increases in whisking 

(Figure 9). Alternatively, more recent studies have demonstrated roles for this 

same region in orienting behaviors and action suppression (Ebbesen et al., 2017; 

Pai et al., 2011; Zagha et al., 2015). Our study demonstrates, at the 

representational level, a possible additional function of regulating the propagation 
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of sensory processing for sensory selection. And yet, wMC is only one of the many 

routes by which a whisker stimulus can initiate a motor output (Kleinfeld et al., 

1999). Defining how wMC contributes to sensory-motor processing in this task and 

in other behavioral contexts will be a major focus of future investigations. 
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Figures and Legends 

 

 

 

Figure 1: Treisman Attenuation Model 

This model of selective attention proposes that both attended and unattended 
signals enter an early sensory store. At some point in the processing stream, 
however, an attenuating filter suppresses unattended signals while allowing 
attended signals to propagate forward for higher order processing. 

 

  



66 
 

 

Figure 2: Behavior Paradigm and Measures of Selective Detection 
(A) Illustration of the behavioral setup. Mice are head-fixed in the behavioral rig 
with piezo-controlled paddles within their whisker fields bilaterally. Each paddle is 
assigned as target (purple) or distractor (green) at the start of training. Mice report 
stimulus detection and receive rewards from a central lickport. (B) Task structure. 
Each trial consists of an inter-trial interval, a stimulus and 200ms lockout, and a 1 
s response window. Trial type as determined by the stimulus could be target, 
distractor or catch (no stimulus). (C) Calculation of discriminability d’, as the 
separation between hit rate and false alarm rate. (D) Performance trajectories for 
all mice (n=43 mice) and box and whiskers summary plot. Those used for imaging 
studies (n=5 mice) are indicated in blue.  Mice were considered expert once they 
achieved a d’>1 for three consecutive days. (E) Comparison of d’ for novice mice 
(first day of training on impulse control) and expert mice (n=43 mice, paired sample 
t-test, p=3.7e-20, t(42)=16.71). (F) Performance measures for the imaging sessions 
(n=39 sessions). Lines below plot denote statistical significance. (G) Example 
session data showing reaction time distributions for target and distractor trials.  
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Figure 3:  Sensory and Motor Cortical Representations Using Widefield Ca2+ 
Imaging 
(A) Illustration of the imaging setup (left) and example frame from the through-skull 
GCaMP6s imaging (right). Surface vessels appear as dark striations overlaying 
the brain parenchyma. Bregma is indicated by the central ink blot. ALM, anterior 
lateral motor cortex; wMC, whisker region of primary motor cortex; S1, primary 
somatosensory cortex; bf, barrel field; RSP, retrosplenial cortex. (B) Cortical 
activity (dF/F) following whisker deflections in an anesthetized mouse (left), to 
localize of the sensory and motor whisker representations. Cortical activity 
following reward-triggered licking in a naïve mouse (right), to localize licking-
related activity. (C) Cortical activity on target trials during the two sequential 
imaging frames of the lockout period in expert mice performing the detection task 
(grand average, n=39 sessions). Black arrow indicates whisker stimulus onset, 
which is coincident with the start of the first imaging frame. (D) Same as [C], but 
for distractor trials. Note the differential propagation of cortical activity depending 
on trial type. Scale bars in [A] and [B] are 1mm. 
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Figure 4: Cortical Activity Patterns Across All Trial Types     
(A) Hit trials. Black arrows indicate alignment to stimulus onset (left three panels) 
or response onset (right three panels). The third frame aligned to stimulus (300 
ms) is the first frame after the lockout and within the response window. Note the 
strong activity in contralateral S1 (pink arrows) with propagation to wMC (white 
arrows) and ALM, prior to response generation. (B) False alarm trials, with the 
same plot structure as in [A]. Asterisks mark elevated activity in the S1-limb 
regions, bilaterally. (C) Spontaneous trials (no stimulus alignment). (D) Miss trials. 
As there is no response on these trial types, we plot an extended series of post-
stimulus activity. (E) Correct rejection trials, with the same plot structure as in [D]. 
Note the strong activity in S1 (pink arrow), yet lack of propagation to wMC (white 
arrow) and ALM. Scale bar in [A] is 1 mm. 
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Figure 5: Spatial Maps of Stimulus Encoding 
We quantified stimulus encoding as the separation between stimulus absent and 
stimulus present d’, computed pixel-by-pixel. (A) Map of target stimulus encoding 
during the two sequential frames of the lockout period (black arrow represents 
stimulus onset). (B) Map of distractor stimulus encoding during the same time 
windows as in [A]. (C) and (D) Significance maps of the right panels of [A] and [B], 
respectively. Significance threshold determined by the Bonferroni correction for 
multiple comparisons is indicated by the arrow on the color bar (Bonf). Pixels with 
smaller p-values (warmer colors) have d’ values significantly above 0. For target 
stimuli, we observed widespread stimulus encoding including in multiple frontal 
and parietal regions. For distractor stimuli, significant stimulus encoding is 
restricted to S1.   
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Figure 6: Quantification of Target vs Distractor Stimulus Propagation within 
Cortex 
For each session, we compared target stimulus encoding in target-aligned 
cortices to distractor stimulus encoding in distractor-aligned cortex. (A-C) Scatter 
plots of target versus distractor encoding in S1 (A), wMC (B) and ALM (C). Each 
data point is one session (n=39 sessions). Note that the data are broadly 
distributed in S1, and highly biased towards stronger target encoding in wMC and 
ALM. (D) Summary data, comparing reductions in distractor encoding within each 
region (values above each data point) and between regions (lines below graph 
denote statistical significance). Reductions in distractor encoding are significantly 
larger in wMC and ALM compared to S1.  
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Figure 7: Similar behavior and neural activity across target assignments and 
trial structures 
(A) Discriminability d’ and reaction times reported (box and whisker plots) 
separately for mice with left or right target whisker field assignment. None of the 
behavioral measures were significantly different between these two populations. 
(B) Cortical activity during the lockout period for target trials (top) and distractor 
trials (bottom) for sessions in which the target was assigned to the left whisker field 
(represented by the right cortical hemisphere) (n = 3 mice, n = 25 sessions). (C) 
Same as [B], but for sessions in which the target was assigned to the right whisker 
field (represented by the left cortical hemisphere) (n = 2 mice, n = 14 sessions). 
Signal propagation to frontal cortex correlated with target assignment. (D) Hit rates 
and reaction times reported (box and whisker plots) separately for target trials with 
and without a preceding correct rejection. None of the behavioral measures were 
significantly different between these two trial structures. (E) Cortical activity during 
the lockout period for hit trials following a correct rejection (top) and hit trials not 
following a correct rejection (bottom) (n=39 sessions for both). 
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Figure 8: LFP signal transformation across S1, wMC and ALM 

LFP signals were recorded from layer 5 of S1, wMC and ALM. (A-F) Each trace 
reflects average LFP signals from one session, across all target trials in target-
aligned cortices (A-C) and across all distractor trials in distractor-aligned cortices 
(D-F). The count in each panel refers to the number of recorded sessions 
included. (G-I) Target-aligned (black) and distractor-aligned (grey) LFP signals, 
averaged across sessions. We observed three distinct event-related potentials, 
two negative-going (1 and 3) and one positive-going (2). Event 1, which is large 
in S1, small in wMC and absent in ALM, likely reflects the initial feedforward 
sensory sweep. This event is similar in target and distractor recordings. Event 3, 
which is large in ALM and moderate in wMC and S1, is highly dissimilar between 
target and distractor recordings. 
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Figure 9: Bilateral whisker movements on target trials 

Whisker movement energy was calculated from target or distractor whisker fields 
and plotted separately for target and distractor trials. Significant changes in post-
stimulus compared to pre-stimulus whisker movements are indicated as black 
bars above each plot. Two example sessions are shown, session 1 (A-D) and 
session 2 (E-H). (A, E) Target whisker energy on target trials; (B, F) distractor 
whisker energy on target trials; (C, G) target whisker energy on distractor trials; 
(D, H) distractor whisker energy on distractor trials. Significant increases in 
whisker movements occurred for both target and distractor whiskers 
approximately 0.1 seconds after target stimulus onset (A, B, E, F). Target and 
distractor whisker movements to distractor stimuli were either non-significant 
throughout the trial (C, D) or delayed (G, H).     
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Figure 10:  Spatial Maps of Choice Probability 
We quantified choice probability as the separation between response absent and 
response present d’, computed pixel-by-pixel. (A) Choice probability map (left) and 
significance map (right) during the last frame of the lockout period. None of the 
pixels reached significance after correcting for multiple comparisons (Bonferonni). 
(B) Same as in [A], except with choice probability computed on the difference in 
activity between the two lockout frames. With this approach, significant choice 
probability was observed in target-aligned wMC and bilateral ALM. 
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Figure 11: Spatial Correlation Analysis 
(A-F) Correlation maps for full trial data. Seed regions of interest (marked by 
asterisk) included S1, wMC and ALM, in target-aligned (A-C) and distractor-
aligned (D-F) cortices. (G) Summary data of average pairwise correlation values 
between S1-wMC, wMC-ALM and S1-ALM. Statistical comparisons were made 
between target-aligned (T) and distractor-aligned (D) correlations, with 
significance denoted by lines connecting adjacent columns. Statistical 
comparisons were also made based on the differences in target-aligned and 
distractor-aligned correlations between regions, with significance denoted by 
lines connecting pairs of columns. (H, I) Similar structure as in [G], except for 
comparisons of target-aligned and distractor-aligned correlations (H, S1-wMC; I, 
S1-ALM) for different trial phases (pre, pre-stimulus; stim, peri-stimulus; resp, 
response).  
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Chapter 3: Global, low amplitude prestimulus cortical state 

Having identified an attenuating filter in the brain region situated between sensory 

and motor areas during distractor trials on the hemisphere aligned with the 

distractor, our subsequent focus aimed to investigate the impact of preparatory 

activity on learning and executing the selective detection task. We sought to reveal 

1) whether the prestimulus activity impacts stimulus encoding and detection, and 

2) whether such task-relevant prestimulus activity is focal and restricted to specific 

cortical regions or global and observed throughout neocortex. To achieve this, we 

isolated and averaged neural activity across the last 500ms preceding the stimulus 

onset. This approach allowed us to compare prestimulus and post-stimulus activity, 

enabling us to observe differences in both temporal and spatial aspects of the task.  

Given that this work built upon the foundations laid in the previous manuscript 

(chapter 2) and utilized the same behavioral and neural dataset, my contributions 

overlap with those in the attenuation study (Aruljothi et al., 2020) , as well as 

conducting new analyses on both behavioral and neural data such as calculating 

the sliding window normalization to account for trial-by-trial variance and plotting 

the heat maps for the difference in prestimulus fluorescence (as shown in Figures 

1-4).   
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Abstract 

Spontaneous neuronal activity strongly impacts stimulus encoding and behavioral 

responses. We sought to determine the effects of neocortical prestimulus activity 

on stimulus detection. We trained mice in a selective whisker detection task, in 

which they learned to respond (lick) to target stimuli in one whisker field and ignore 

distractor stimuli in the contralateral whisker field. During expert task performance, 

we used widefield Ca2+ imaging to assess prestimulus and post-stimulus neuronal 

activity broadly across frontal and parietal cortices. We found that lower 

prestimulus activity correlated with enhanced stimulus detection: lower prestimulus 

activity predicted response versus no response outcomes and faster reaction 

times. The activity predictive of trial outcome was distributed through dorsal 

neocortex, rather than being restricted to whisker or licking regions. Using principal 

component analysis, we demonstrate that response trials are associated with a 

distinct and less variable prestimulus neuronal subspace. For single units, 

prestimulus choice probability was weak yet distributed broadly, with lower than 

chance choice probability correlating with stronger sensory and motor encoding. 

These findings support a low amplitude, low variability, optimal prestimulus cortical 

state for stimulus detection that presents globally and predicts response outcomes 

for both target and distractor stimuli.  

Keywords 

Neocortex, widefield imaging, sensory detection, choice probability, prestimulus  
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Introduction 

The brain is never silent. Throughout sleep and wakefulness, spontaneous 

neuronal activity reflects dynamic, self-organized states that affect the generation 

and propagation of neuronal signals (Arieli et al., 1995, 1996; Ferezou et al., 2007; 

McCormick et al., 2015; McGinley et al., 2015b; Niell & Stryker, 2010; Poulet et al., 

2012; Zagha & McCormick, 2014). Changes in spontaneous activity impact the 

amplitude of neuronal sensory responses (Crochet & Petersen, 2006; Haider & 

McCormick, 2009; Poulet & Petersen, 2008; Sachdev et al., 2004; Shimaoka et 

al., 2018) and behavioral outcomes (Boly et al., 2007; Fiebelkorn & Kastner, 2021; 

Kim & Sejnowski, 2021; Mazaheri et al., 2011; McGinley et al., 2015b; van Kempen 

et al., 2021). In awake subjects, these changes correlate with changes in task 

engagement, movement, and internal (cognitive or egocentric) versus external 

(perceptive or allocentric) processing modes (Andreou & Borgwardt, 2020; Boly et 

al., 2007; de Lange et al., 2013; M. C. Murphy et al., 2018; Musall et al., 2019; 

Salkoff et al., 2020; Stringer et al., 2019). However, most studies of sensory 

processing and sensory detection normalize post-stimulus by prestimulus activity, 

thereby obscuring the impacts of spontaneous activity. And yet, understanding how 

spontaneous activity impacts neuronal signaling and task performance will reveal 

important principles of context-dependent sensory and motor processing. 

 This study focuses on prestimulus activity during a sensory detection task, 

for which many open questions remain. First, is the ability to detect a stimulus 

improved by high or low prestimulus activity (Figure 1A)? A common model of 
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decision-making is integration to bound, which proposes that a decision is made 

once neuronal activity reaches a specific threshold (Gold & Shadlen, 2007; Hanes 

& Schall, 1996; Roitman & Shadlen, 2002). Within this model, higher prestimulus 

activity may bring a network closer to decision threshold and/or increase the gain 

of a network and therefore promote stimulus detection (Haider & McCormick, 

2009). Consistent with this framework, studies in primary visual cortex 

demonstrate that higher prestimulus activity leads to larger amplitude stimulus 

responses (Haider et al., 2007). However, higher prestimulus activity may reduce 

cortical stimulus responses (Hasenstaub et al., 2007), due to increased cortical 

inhibition and reduced intrinsic and synaptic excitability. Studies in the primary 

somatosensory and primary auditory cortices support this alternative noise 

suppression framework, demonstrating that lower prestimulus activity, or activity in 

a low-arousal synchronized state, leads to larger amplitude stimulus responses 

(McGinley et al., 2015; Petersen et al., 2003; Sachdev et al., 2004).  

In somatosensory (whisker) detection tasks, impacts of prestimulus activity 

on stimulus encoding and detection have been studied at the level of membrane 

potential through whole cell patch clamp recordings. While prestimulus membrane 

potential activity of primary somatosensory cortical neurons did predict sensory 

response amplitudes (Sachidhanandam et al., 2013), it did not predict trial 

outcome (e.g., hit versus miss) (Sachidhanandam et al., 2013; H. Yang et al., 

2016). However, these whole cell recording studies are limited by relatively small 
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samples sizes (10s of neurons) which may obscure the ability to resolve small yet 

widespread contributions of prestimulus activity to task performance.   

A second open question is whether the prestimulus activity that impacts 

stimulus encoding and detection is focal and restricted to specific cortical regions 

or global and observed throughout neocortex (Figure 1B). Global activity may 

reflect changes in arousal and movement (Musall et al., 2019; Salkoff et al., 2020; 

Stringer et al., 2019) whereas focal changes may reflect shifts in, for example, 

attentional focus or response preparation (Fries et al., 2001; Ghose & Maunsell, 

2002; Luck et al., 1997; Moore & Armstrong, 2003). It is currently unknown whether 

prestimulus activity in sensory compared to motor cortices have larger impacts on 

task performance, and whether the directionality of that impact is the same across 

neocortical regions (Shimaoka et al., 2018). In addition to considering different 

cortices individually, is there an ‘optimal state’ of prestimulus activity that includes 

the contributions of multiple cortices (Figure 1C)? A third open question is whether 

prestimulus activity has the same or different impacts on target (attended) versus 

distractor (unattended) stimulus encoding and detection (Figure 1A, C). For 

example, the same prestimulus activity may promote discrimination (response to 

targets, no response to distractors) or bias responses for detection (respond to or 

ignore all stimuli). Lastly, do the neurons that express task-relevant changes in 

prestimulus activity overlap with or are they distinct from the neuronal populations 

that express strong post-stimulus sensory and/or motor activity (Figure 1D)? 
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 We address these questions in the context of a selective whisker detection 

task in mice. We trained mice to respond (lick) to deflections on one whisker field 

(target) and ignore deflections in the contralateral whisker field (distractor) 

(Aruljothi et al., 2020; Zareian et al., 2021). Using widefield Ca2+ imaging, we 

previously identified the cortical regions that are highly active post-stimulus and 

pre-response, and therefore may contribute to stimulus detection: the whisker 

region of primary somatosensory cortex (S1), the whisker region of primary motor 

cortex (wMC), and the pre-motor licking region anterior lateral motor cortex (ALM) 

(Aruljothi et al., 2020). We consider these cortical regions to be ‘task-related’ and 

all other cortical regions to be ‘task-unrelated’. Here, we implement a sliding 

window normalization to preserve prestimulus fluctuations. We investigated the 

impacts of prestimulus activity levels on trial outcome, for both target and distractor 

stimuli. Additionally, we use dimensionality reduction of the imaging data to assess 

prestimulus variability across cortices. Lastly, we assess prestimulus choice 

probability of single units in task-related cortices to determine the distribution of 

these signals across the neuronal population. 
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Methods 

The experimental datasets in this study were previously published, including the 

whisker monitoring, widefield GCaMP6 imaging (Aruljothi et al., 2020) and single 

unit recordings (Zareian et al., 2021).  Below, we summarize these experimental 

methods and describe the new analyses used in this study. 

Animal Subjects 

Experiments were approved by the IACUC of University of California, Riverside. 

Both male and female adult mice were used, either wild type (C57BL/6J, 

BALB/cByJ) or transgenic (Snap25-2A-GCaMP6s-D, backcrossed to BALB/cByJ). 

GCaMP6s expressing transgenic mice were used for widefield Ca2+ imaging; wild 

type mice were used for whisker imaging and electrophysiology. Mice were housed 

in a 12-hour light/dark cycle; experiments were conducted during the light cycle.  

Animal Surgery 

For headpost implantation, mice were placed under isoflurane (1-2%), ketamine 

(100 mg/kg), and xylazine (10 mg/kg) anesthesia. The scalp was cut (10 mm x 10 

mm) and resected to expose the skull. A lightweight metal headpost was fixed onto 

the skull using cyanoacrylate glue. An 8 mm × 8 mm headpost window exposed 

most of dorsal cortex. The skull was covered with a thin layer of cyanoacrylate gap-

filling medium (Insta-Cure, Bob Smith Industries) to seal the exposed skull and 

enhance skull transparency; the window was sealed with a quick-dry silicone gel 

(Reynolds Advanced Materials). Mice were administered meloxicam (0.3 mg/kg) 
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and enrofloxacin (5 mg/kg) for three days post-op. Water restriction began after 

recovery from surgery (minimum of three days). Training on the behavior rig began 

after one day of water restriction. For electrophysiological recordings, craniotomies 

and durotomies (< 0.5 mm diameter) were performed under isoflurane anesthesia. 

Full recovery from anesthesia was allowed (up to 60 minutes) before placement 

on the behavioral rig. 

Animal Behavior 

Training stages, metrics of learning, and criterion for expert performance in the 

Go/NoGo selective whisker detection task were previously reported (Aruljothi et 

al., 2020). Briefly, head-fixed and water deprived mice were placed on a behavioral 

apparatus controlled by Arduino and custom MATLAB (MathWorks) scripts. Two 

paddles were placed in whisker fields on the opposite sides of the face, designated 

as target or distractor. Target and distractor designations were assigned at the 

beginning of training and remained constant. Following variable intertrial intervals, 

mice could receive a target trial (rapid deflection of the target paddle), distractor 

trial (rapid deflection of the distractor paddle) or catch trial (no whisker stimulus). 

Mice responded by licking at a central lick port. Hits (responses to target stimuli) 

were rewarded with ~5 μL of water, correction rejections (not responding to 

distractor stimuli) and correct withholdings (not responding during the catch trial) 

were rewarded with a shortened intertrial-interval (ITI) and a subsequent target 

trial. Licking during the ITI was punished by resetting the ITI, effectively a time-out. 
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Mice were considered expert once they achieved a discriminability d’ > 1 

(separation of hit and false alarm response rates) for three consecutive days:  

𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑′ = 𝜙𝐻𝑖𝑡 𝑟𝑎𝑡𝑒
−1  −  𝜙𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒

−1  

 

All recordings were conducted in expert mice while performing the task.  

Widefield Imaging 

Widefield imaging during expert task performance was conducted as previously 

reported. The dataset consists of 38 behavioral/imaging sessions, recorded from 

5 mice.  The through-skull imaging window included bilateral dorsal parietal and 

frontal cortices. Illumination from a 470 nm LED source (Thorlabs) was band-pass 

filtered for excitation (Chroma ET480/40x) and directed onto the skull via a dichroic 

mirror (Chroma T510lpxrxt). Emitted fluorescence was band-pass filtered (Chroma 

ET535/50m) and collected using an RT sCMOS camera (Diagnostic Imaging, 

SPOT Imaging software). Images were acquired at 10 Hz with a final resolution of 

142 x 170 pixels (41 μm per pixel). Image sequences were imported to MATLAB 

for subsequent analyses. 

Electrophysiology  

Single unit recordings during expert task performance were conducted as 

previously reported (Zareian et al., 2021). The dataset consists of 32 

behavioral/recording sessions, recorded from 22 mice, yielding a total of 936 single 

units from three cortical regions (target-aligned whisker region of primary 
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somatosensory cortex [S1], whisker region of motor cortex [wMC], and anterior 

lateral motor cortex [ALM]). Coordinates (mm, from bregma): S1 3.2-3.7 lateral, 1-

1.5 posterior; wMC 0.5-1.5 lateral, 1-2 anterior; ALM 1-2 lateral, 2-2.5 anterior. 

Recordings were targeted to layer 5 of S1, wMC, and ALM, approximately 500 to 

1100 μm below the pial surface. Electrophysiological recordings were conducted 

using a silicon multielectrode probe (NeuroNexus A1x16-Poly2-5mm-50s-177), 

positioned using a Narishige micro-manipulator. Neuralynx amplifier (DL 4SX 32ch 

System) and software were used for data acquisition and spike sorting. 

Whisker imaging 

Whisker imaging during expert task performance was conducted as previously 

reported  (Aruljothi et al., 2020). The dataset consists of 9 behavioral/recording 

sessions, recorded from 4 mice. Images were acquired with a CMOS Camera 

(Thorlabs DCC3240M camera with Edmund Optics lens 33-301) at either 20 or 60 

Hz. No systematic difference between 20 and 60 Hz was observed (data not 

presented). The imaging field of view included both paddles and the mouse’s head 

(including whiskers and snout).   

Data Analysis  

Data analyses were performed in MATLAB using custom scripts. 
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Engagement period 

To ensure that analyses were conducted during task engagement, ‘engaged 

periods’ were defined as continuous behavioral performance of at least 10 minutes 

without 60 seconds of no responding. For sessions with more than one engaged 

period, the longest engaged period was used for further analyses. Furthermore, 

sessions were included in subsequent analyses only if performance was at expert 

level: discriminability d’>1. For sessions with multiple stimulus amplitudes, trials 

were combined for further analyses only when the differences in response rates 

were 15% or less. 

Sliding Window Normalization and Trial-Based Neuronal Activity 

The trial-based imaging time window consisted of the prestimulus epoch (1 s), the 

stimulus and lockout epoch (0.2 s), and the allowable response epoch (1 s), a total 

of 2.2 s. A raw movie F was created by concatenating fluorescence activity from 

consecutive trials, where Fn(i,j,f) is the fluorescence of each pixel (row i and column 

j) in frame f for each trial n. To generate normalized fluorescence values, we first 

determined the sliding window local mean for each pixel, computed every 2 s using 

a +/- 200 s window size [FSW(i,j,n)]. Then, we calculated the normalized 

fluorescence (Salkoff, 2020 #1244) (see also Supplemental Figure 1) for each pixel 

at each frame as:   

𝑑𝐹𝑆𝑊/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) = [𝐹𝑛(𝑖, 𝑗, 𝑓) − 𝐹𝑆𝑊(𝑖, 𝑗, 𝑛)]/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) 
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Trialwise average movies were then compiled by first indexing outcome type (hit, 

miss, false alarm, correct rejection) and then by averaging pixelwise activity across 

corresponding frames of corresponding trials. Frames were aligned to the stimulus 

onset frame (stimulus-aligned) where stimulus occurred or aligned to the first frame 

containing the response (response-aligned) where response occurred. Trials with 

responses during the lockout period were considered premature and excluded 

from the analysis. Trials with responses before the stimulus but within the 

prestimulus imaging period were considered spontaneous, dF/F reported but not 

further analyzed. Grand average movies were aligned to bregma, flipped at 

bregma according to target-distractor assignment, and then averaged across all 

sessions. 

Difference in Prestimulus Fluorescence 

Fluorescence differences for target and distractor assignment were calculated per 

trial type per session. Prestimulus frames 6 to 10 (capturing the last 500 ms of the 

prestimulus window, before stimulus onset) were trialwise and pixelwise averaged 

per session. Session data were excluded from this analysis if there were fewer 

than 5 incorrect trials in the session (excluding 9 sessions for target Miss, 6 

sessions for distractor FA). For target fluorescence difference frames (n = 29 

sessions), Hits fluorescence mean frame was subtracted from Miss fluorescence 

mean frame. For distractor fluorescence difference frames (n = 32 sessions), FA 

fluorescence mean frame was subtracted from CR fluorescence mean frame. 

Response prestimulus frames were subtracted from no response prestimulus 
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frames because no response fluorescence activity was generally higher than 

response fluorescence activity. Prestimulus difference frames were aligned, 

assigned, and averaged across all sessions (as above). To normalize for 

differences in changes in fluorescence across regions, we performed a z-score 

normalization of the dF/F values for each pixel as the pixelwise mean divided by 

the pixelwise standard deviation (μi,j/σi,j). For quantification of target versus 

distractor prestimulus difference, normalized difference (index), and significance, 

frames were averaged across pixels for scalar values. 

Regression analyses between Prestimulus Activity and Reaction Time for 

Response Trials:  

The correlation between activity during prestimulus period (dF/F) and reaction 

times (RT) for response trials (Hits and FAs) were computed as a linear regression 

from which we obtained the slope of the linear fit with 95% confidence interval and 

coefficient of determination, R2, as the goodness of fit (Zareian et al., 2021) (Curve 

Fitting Toolbox in Matlab). For this analysis, we assigned prestimulus dF/F as the 

independent variable and reaction time as the dependent variable. 

Stimulus Encoding in Post-Stimulus Fluorescence 

Stimulus encoding was quantified as the neurometric d’ (Britten et al., 1992) of 

prestimulus fluorescence (stimulus absent) and post-stimulus fluorescence 

(stimulus present) during the lockout epoch, as previously applied to imaging data 

(Aruljothi et al., 2020). We excluded session data from this analysis if there were 
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fewer than 4 incorrect trials in the session (excluding 5 sessions for target Miss, 2 

sessions for distractor FA). Neurometric d’ was calculated separately according to 

target and distractor assignment and then according to trial type outcome. This 

resulted in 6 different datasets for stimulus encoding: all target, all distractor, hit 

trials, miss trials, false alarm trials, and correct rejection trials. Prestimulus and 

post-stimulus fluorescence histograms were plotted into receiver operating 

characteristic (ROC) curves and the area under the curve (AUC) was converted to 

d’ as the neurometric: 

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑑′
𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 =  √2 ∗ 𝑍𝐴𝑈𝐶 

 

Region specific pixel values were identified as the maximum value within the 

defined regions of interest (ROI), performed for target-aligned and distractor-

aligned regions of S1, wMC, and ALM. The difference in stimulus encoding in S1 

between the response and the no response trials for both target and distractor 

stimuli was calculated as the percentage: 

%𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙 − 𝑛𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙

(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙 + 𝑛𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙)/2
∗ 100 

 

Whisker Motion Energy During Behavior 

The imaging window was cropped by region of interest: target or distractor paddle 

stimulus or whisker fields. The function vision.VideoFileReader was used for 

optimal reading of video frames into MATLAB. Whisker movement per frame 
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(Δframe) was calculated as the pixelwise frame by frame mean gray value (MGV) 

difference (ΔMGVpixel). Whisker motion energy (WME) was defined as the sum of 

the squares across pixels: 

𝑊𝑀𝐸 =  (𝛥𝑙)2 = ∑ (
𝛥𝑀𝐺𝑉𝑝𝑖𝑥𝑒𝑙

𝛥𝑓𝑟𝑎𝑚𝑒
)

2

𝑝𝑖𝑥𝑒𝑙𝑠

 

 

WME traces of the cropped videos of the paddles were used to detect stimulus 

events (target/distractor). This was performed by using a constant threshold and 

aligning detected events from the video to their temporally closest events recorded 

using Arduino. The traces from the cropped videos of whisker fields were 

transformed (z-scored) to have a mean of zero and standard deviation of 1 for the 

purpose of comparison across sessions. Subsequently, WME data were 

temporally aligned by trial type to stimulus onset (target/distractor) determined 

from the videos.  

Principal Component Analysis of Fluorescence 

Fluorescence was averaged across anatomic masks [target and distractor S1, 

wMC, ALM, and retrosplenial (RSP) cortex] per frame per trial per session. Mean 

regions were normalized and placed into a covariance matrix. The covariance 

matrix was decomposed into an eigenmatrix, eigenvectors were sorted by 

eigenvalue weight, and eigenvectors were projected into component space. All 

frames were separated by trial type, plotted in PC space, and differentiated by trial 
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epoch (prestimulus, post-stimulus and pre-response lockout, and allowable 

response window). Component data for prestimulus frames were further analyzed: 

confidence area ellipses of 1 standard deviation, σ, was defined by the ellipsoid 

distribution of prestimulus frames in PC space per session. Centroids were defined 

as the geometric mean of prestimulus frames in PC space per session.  

Spike Sort and Cluster of Single Units 

Using Neuronalynx recording system, signals were sampled at 32 kHz, band-pass 

filtered from 0.1Hz to 8000 Hz, and high-pass filtered at 600 Hz to 6000 Hz. 

Putative spikes crossed thresholds of 20 to 40 μV, isolated from baseline noise. 

KlustaKwik algorithm in SpikeSort3D software was used for spike sorting and 

clustering. Clusters were defined by waveform and cluster location in feature space 

(peaks and valleys); movement artifacts (atypical waveforms or those occurring 

across all channels) were removed, as previously reported (Zareian et al., 2021). 

Subsequent analyses were conducted using MATLAB software (MathWorks).  

Sensory and Motor Encoding of Single Units 

Sensory and motor encoding of single units was performed as previously reported 

(Zareian et al., 2021). Sensory encoding was quantified by the neurometric d’ using 

stimulus absent spiking (300 ms prestimulus) and stimulus present spiking (100 

ms post-stimulus). Motor encoding was quantified by the neurometric d’ using 

response absent spiking (300 ms prestimulus) and response present spiking (100 



94 
 

ms pre-response). Distributions were plotted into ROC curves and the AUC was 

converted to d’ as a neurometric: 

𝑠𝑝𝑖𝑘𝑒 𝑑′
𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑜𝑟 𝑑′

𝑚𝑜𝑡𝑜𝑟 =  √2 ∗ 𝑍𝐴𝑈𝐶 

 

Choice Probability of Single Units  

For choice probability analyses, we ensured that there was a minimum of 5 trials 

per trial type (minimum 5 Hits and 5 Miss). Choice probability (%) was quantified 

as the separation of prestimulus spiking in Hits versus Miss trials. ROC and AUC 

were calculated from the distributions of Hits and Miss across trials, 500 ms to 0 

ms before stimulus onset, averaged over 50 ms nonoverlapping intervals, as 

previously reported (Zareian et al., 2021).  

Statistical Analyses  

For imaging statistics, threshold for statistical significance was corrected for 

multiple comparisons with a Bonferroni correction. Fluorescence difference (Miss 

– Hits, CR – FA), statistical analyses determined whether dF/F frames were 

significantly different than zero across sessions (one sample t-test). For whisker 

analyses statistics, since the number of samples in the whisking data were low, we 

used one-sample Kolmogorov-Smirnov test (kstest in MATLAB) to test for 

normality assumptions. Since the data mostly violated the normality assumption, 

Wilcoxon signed rank (signrank in MATLAB) and rank sum (ranksum in MATLAB) 

tests were used for comparisons between prestimulus and post-stimulus whisking 
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and between trial types (Hits vs. Miss, FA vs. CR), respectively. For stimulus 

encoding (neurometric d’), statistical analyses determined whether the trialwise 

(Hits, Miss, FA, CR) maximum pixel value in S1 was significantly different than zero 

across sessions (one sample t-test). For differences in stimulus encoding, 

statistical analyses determined whether the stimulus-aligned S1 maximum pixel 

value was significantly different between response (Hits, FA) and no response 

(Miss, CR) outcome types across sessions (two sample t-test). For PCA ellipsoid 

variance and centroid distribution, statistical analysis determined whether ellipsoid 

variance or centroid distribution was significantly different between response and 

no response prestimulus frames, evaluated per component. Box whisker plots 

show the distribution of prestimulus frames or ellipsoid centroids per trial type with 

outliers, evaluated per component. For choice probability of single units, statistical 

analysis determined whether distributions within regions were significantly different 

from chance (one-sample t-test, chance level 50%) and whether distributions 

between regions were significantly different from each other (ANOVA and post-hoc 

Tukey test). For the significance assessment of sensory and motor encoding of 

single units, one-sample t-test was used to compare d-prime distributions to zero. 

For the relationship between sensory and motor encoding and choice probability 

of single units, statistical analysis determined whether regression slopes were 

significantly different from zero (95% confidence bounds for slopes). Box whisker 

plots were used to show distributions of sensory encoding, motor encoding, and 
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choice probability of single units evaluated within regions. Average data are 

presented as mean +/- standard error of the mean, unless otherwise indicated. 
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Results  

Global prestimulus activity predicts response outcomes 

We considered how prestimulus activity may influence sensory detection (Figure 

1A-D). High prestimulus activity may promote detection of target and distractor 

stimuli; alternatively, low prestimulus activity may promote detection of target and 

distractor stimuli or discrimination of target from distractor stimuli (Figure 1A). The 

prestimulus activity that influences behavioral outcomes may present focally in 

specific task-related regions or globally across neocortex (Figure 1B). A low 

variability, specific ‘optimal state’ configuration may promote stimulus detection or 

target/distractor discrimination (Figure 1C). At the level of single units, prestimulus 

contextual signals and post-stimulus sensory and motor signals may be carried by 

distinct neuronal ensembles (sparse coding) or overlapping neuronal ensembles 

(dense coding) (Figure 1D). We tested these possibilities in a selective whisker 

detection task, in which head-fixed mice learn to respond to rapid deflections in 

one whisker field (target) and ignore identical deflections in the opposite whisker 

field (distractor) (Figure 1E). In this task, the possible trial outcomes include hit 

(response to target), miss (no response to target), false alarm (FA, response to 

distractor), and correct rejection (CR, no response to distractor) (Figure 1F). Prior 

to each stimulus was a variable inter-trial interval (ITI), in which mice were required 

to withhold responding or else reset the ITI. The prestimulus epoch we used for 

analyses is the last 1 second of the ITI immediately prior to stimulus onset (Figure 

1G). 
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We used widefield Ca2+ imaging to measure neuronal activity during expert 

task performance in frontal and parietal cortices, bilaterally (Figure 1F). Our 

imaging dataset consists of 38 imaging sessions from 5 mice, using a single task-

engaged period per session (see Methods). Due to the highly lateralized cortical 

whisker representation, we could clearly define target-aligned and distractor-

aligned cortical regions, contralateral to the side of the whisker stimulus. To 

preserve activity fluctuations prestimulus, we normalized raw fluorescence activity 

using a sliding window method (400 s sliding window, see Methods and 

Supplemental Figure 1).  

In Figure 2 we present grand average fluorescence activity for each trial 

outcome, aligned to the onsets of both the stimulus and response. In the first 

column of Figure 2 we show the last prestimulus frame, which is representative of 

the full prestimulus epoch. We note stark differences in prestimulus activity for 

different trial outcomes, particularly when comparing hit (Figure 2A) and miss 

(Figure 2D) trials. We observed lower prestimulus activity for hit versus miss and 

for FA versus CR trials, indicating that lower prestimulus activity precedes 

‘response’ compared to ‘no response’ outcomes. Interestingly, low prestimulus 

activity appears to be specifically related to stimulus detection rather than 

response preparation. This is evidenced by higher activity preceding spontaneous 

responses (Spont, a response during the ITI, Figure 2C) compared to stimulus-

related responses (hits and FA, Figures 2A and 2B). The magnitude of the 

prestimulus differences is large, on the same scale as the post-stimulus activity. 
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Additionally, prestimulus activity suppression preceding response trials appears to 

be widely distributed throughout dorsal neocortex, rather than being focused on 

the task-related regions of S1, wMC and ALM. 

 We quantified the differences in prestimulus activity between response and 

no response trials for target and distractor stimuli (Figure 3A-F). Shown in this 

figure are data from the last 500 ms of the prestimulus (similar results were 

obtained using 100 ms or 1 s prestimulus epochs, data not shown). We subtracted 

the average prestimulus fluorescence activity of hit from miss trails (Figure 3A). 

The positive values indicate higher activity preceding miss compared to hit trials 

(n=29 sessions, averaged across the entire field of view: dF/F μ[Miss-

Hits]=2.1%±0.3%; one-sample t-test, t(28)=8.1, p=7.9e-09). The largest differences 

were not in the task-related whisker or licking regions but appear to be focused on 

the limb regions of somatosensory cortex. While dF/F is already a normalized 

metric, we sought to further control for possible regional differences in imaging 

sensitivity. Therefore, we conducted the same subtraction analysis, but on dF/F 

values that were additionally normalized by z-score, using the mean and standard 

deviation of the entire session. With this analysis (Figure 3B), the activity 

differences are more uniformly distributed across frontal and parietal cortices, with 

an average miss-hit difference of 1.2 standard deviations. 

 To determine the spatial regions of significance, on each pixel we performed 

a paired, two-sample t-test on average prestimulus fluorescence activity in hit 

versus miss sessions (p-value of each pixel shown in Figure 3C). All neocortical 
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regions within our field of view demonstrated statistical significance, even with a 

Bonferroni corrected alpha level to control for multiple comparisons (28,960 

pixels). Thus, lower prestimulus activity on upcoming target trials is predictive of 

hit versus miss outcomes. This is observed for all cortical regions within our field 

of view, including task-related and task-unrelated regions.  

 There were some notable similarities and differences for distractor trials 

(Figure 3D-F). Similar to target trials, higher activity was observed preceding no 

response (CR) versus response (FA) trials (n=32 sessions, averaged across the 

entire field of view: dF/F μ[CR-FA]= 0.36± 0.11% one-sample t-test, t(31)=3.38, 

p=0.002). However, the fluorescence differences were approximately 5-fold higher 

for target trials compared with distractor trials (dF/F μ[Miss-Hits]=2.1% versus μ[CR-

FA])=0.36%). A second difference is that for distractor trials, the focus on the 

somatosensory limb regions was observed in dF/F, z-score, and p-value maps 

(Figure 3D-F, respectively). The regions with the lowest p-value were slightly above 

the Bonferroni corrected alpha level. Thus, while lower activity preceding distractor 

trials was also predictive of a response, the effect size was smaller and less 

widespread. 

 In addition to predicting response outcome, we also sought to determine 

whether prestimulus activity levels predict reaction time on response trials (Figure 

3G-J). For these analyses, we determined the slope and coefficient of 

determination (R2) of linear fits for prestimulus dF/F versus reaction time for Hit 

and FA trials (separately) for each session. As shown in the example session in 
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Figure 3G, a positive slope indicates a correlation between higher prestimulus 

activity and longer post-stimulus reaction times. Across all sessions, we found a 

significant positive correlation (positive slope) on Hit trials between prestimulus 

activity and reaction time (n=30 sessions, slope=0.64±0.23, one-sample t-test: 

t(29)=2.73, p= 0.011;  R2=0.074±0.023) (Figure 3H). Thus, for target stimuli, lower 

prestimulus activity predicts both Hit versus Miss outcomes and faster reaction 

times. 

 We performed the same correlation analyses for FA trials (Figure 3I,J). In 

contrast to Hit trials, FA trials across sessions did not show a consistent 

correlations between prestimulus activity and reaction time (n=32 sessions, 

slope=-0.45±1.48, one-sample t-test: t(31)=-0.3, p=0.76; R2=0.12±0.021) (Figure 

3J). 

Contributions of stimulus encoding and movement on trial outcomes 

Next, we assessed whether the differences in trial outcome were reflected in 

differences in stimulus responses in the neocortex. We quantified the stimulus 

encoding during the lockout period (200 ms post-stimulus and pre-response) for 

each trial type (Figure 4). For each pixel, we measured stimulus encoding as the 

neurometric sensitivity index d’ (Figure 4A-F) and determined whether these 

values were significantly different from zero (Figure 4G-L). We observed significant 

stimulus encoding in the stimulus-aligned primary somatosensory cortex (S1) for 

each trial type (one-sample t-test, n= 38, hits: 38, miss: 33, FA: 36, CR: 38, hits: d’ 
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μS1=0.98±0.06, t(37)=15.58, p=7.79e-18; miss: d’ μS1=0.69±0.08, t(32)=9.08, 

p=2.26e-10; FA: d’ μS1=1.05±0.09, t(35)=12.08, p=4.87e-14; CR: d’ 

μS1=0.58±0.049, t(37)= 11.89, p=3.32e-14). Thus, significant stimulus responses 

occur in S1 for both response and no response trials. However, we did observe a 

40-60% reduction in S1 stimulus encoding in no response compared to response 

trials for target and distractor stimuli (hits vs. miss: d’ μ% difference=39.84±7.44%, 

paired-sample t-test, t(32)= 4.51, p=8.26e-05; FA vs. CR: d' μ% 

difference=61.62±7.26%, paired-sample t-test, t(35)= 6.72, p=8.75e-08, see 

Methods). In summary, response trials are associated with reduced prestimulus 

activity and enhanced post-stimulus sensory responses. 

Recent studies have demonstrated widespread neuronal activity increases 

due to movement (Musall et al., 2019; Salkoff et al., 2020; Stringer et al., 2019). 

Therefore, in a separate set of recordings, we determined the magnitude of 

prestimulus and post-stimulus whisker movements on different trial outcomes. 

Whisker movement was quantified as whisker motion energy (WME, normalized 

by z-score, see Methods). In Figure 5A-C we present these analyses for one 

example session for target stimuli. On hit trials, WME increased dramatically post-

stimulus (Figure 5A, purple trace). We interpret this as whisking being part of the 

‘uninstructed’ behavioral response sequence (Musall et al., 2019). Importantly, we 

also observed differences in WME prestimulus, with higher WME on miss 

compared to hit trials (mean +/- STD WME μHits=-0.45 ± 0.32, WME μMiss=0.19 ± 

0.71, rank sum=1516, p=0.001, two-sided Wilcoxon rank sum test; Figure 5A and 
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5B). In Figure 5C, we show prestimulus WME for each target trial, with the color of 

the bar indicating trial outcome. High prestimulus WME was more likely to result in 

a miss trial, even though many miss trials were not preceded by high prestimulus 

WME. Similar results were observed across all sessions (n=9 session, Figure 5D, 

Wilcoxon sign rank test, mean +/- STD prestimulus WME μHits=-0.12 ± 0.17 vs. 

prestimulus WME μMiss=0.12 ± 0.15, signed rank=1, p=0.008). Thus, high 

prestimulus movement was associated with some, but not all, of the miss trials. 

 Differences in prestimulus WME were not as pronounced on distractor trials 

(Figure 5E-H). We did notice a trend towards increased WME on CR trials. 

However, this effect was not statistically significant across sessions (n=9 session, 

Figure 5H, Wilcoxon sign rank test: prestimulus WME μFA=-0.14 ± 0.2 vs. 

prestimulus WME μCR=-0.04 ± 0.10, signed rank=8, p=0.098). Notably, the effects 

of prestimulus movement on target and distractor trial outcomes parallel the effects 

of prestimulus neuronal activity: low prestimulus neuronal activity and low 

prestimulus WME predict response outcomes, yet these effects are much more 

pronounced for target compared to distractor trials.  

Analyses of prestimulus activity variance and subspace in reduced spatial 

dimensions 

Next, we sought to characterize frame-by-frame variability in our imaging data. To 

accomplish this, we used principal component analysis (PCA) to reduce the spatial 

dimensionality (Figure 6). First, we extracted regional single-trial fluorescence 
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activity using anatomic masks from the dorsal neocortex centered on regions of 

interest: target/distractor S1, RSP, wMC, and ALM (Figure 6A). We concatenated 

data from all frames, trials, sessions, and mice and performed PCA on this 

combined matrix. This enabled us to convert all sessions into the same lower-

dimensional axes. Most of the variability in our imaging data could be explained by 

the first component (~91%) and the first two components explained ~96% of the 

variance (Figure 6B-D). Therefore, further analyses focused on these first two 

spatial components.  

 We determined the distributions of prestimulus activity from single frames 

within this PCA space (Figure 7). In Figure 7A, we plot the data from two example 

sessions, in which each data point is a single prestimulus frame preceding a hit 

(purple) or miss (yellow) trials. We noticed that the data from hit trials were more 

tightly clustered than the data from miss trials. To quantify this observation, first we 

fit the data from each trial type with a covariance ellipse. The shaded ellipses in 

Figure 7A represent a confidence area of 1 standard deviation, σ, which we used 

as a measure of framewise variability. Figure 7B plots the confidence area for 

prestimulus activity on hit and miss trials for all sessions (n=29 sessions). The 

prestimulus activity variance is significantly lower for hit compared to miss trials 

(effect size, Cohen’s d=1.92; paired t-test, t(28)= 9.43, p=1.74e-10). 

 We conducted the same analyses for distractor trials and obtained similar 

results. The two example sessions in Figure 7C show more tightly clustered 

prestimulus activity for response (FA) compared to no response (CR) trials. Across 
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all sessions (n=32), the confidence areas are significantly lower for FA compared 

to CR trials (effect size, Cohen’s d=1.11; paired t-test, t(31)= 7.40, p=1.22e-8, 

Figure 7D). Thus, for both target and distractor trials, lower framewise prestimulus 

variability predicts response outcomes.   

 In addition to differences in variability, we also noticed that the prestimulus 

activity resides in different subspaces preceding response and no response trials. 

As evident in Figure 7A, within each session the centroids of the hit and miss 

confidence areas are offset, whereas between these two sessions the hit centroids 

occur at similar positions. In Figure 7E, we plot the centroid position for all sessions 

(n=29 sessions). Indeed, we find that across all sessions the centroid positions 

preceding hit trials are separated from the centroid positions preceding miss trials. 

This separation is significant, for both PC1 and PC2 axes (Figure 7F, PC1: d=2.19, 

paired t-test, t(28)=8.55, p=1.34e-9; PC2: d=1.24, t(28)=4.01, p=2.07e-4). In 

contrast, for distractor trials, the centroids of prestimulus activity show greater 

overlap for response (FA) and no response (CR) trials (Figure 7G). However, we 

do still find significantly different centroid positions on distractor trials along PC1 

(Figure 7H, PC1: d=0.57, paired t-test, t(31)=2.99, p=0.0027; PC2: d=0.43, 

t(31)=1.30, p=0.10). These data indicate that the neuronal activity across dorsal 

neocortex preceding response trials is less variable than no response trials and 

occupies a separate subspace. Similar to prestimulus neural activity (Figure 3) and 

movement (Figure 5), the differences in variability and subspace position are larger 
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for target compared to distractor trials. Taken together, these data specify an 

optimal neuronal and behavioral state for stimulus detection. 

Distribution of prestimulus choice probability among single units 

The above analyses of widefield imaging data assessed population neuronal 

activity. In this final series of analyses, we sought to determine the distribution of 

task-relevant prestimulus activities among single units (Figure 8). During the same 

selective whisker detection task, we recorded 936 single units, from target-aligned 

S1 (377 units), target-aligned wMC (338 units) and target-aligned ALM (221 units). 

First, we quantified the prestimulus choice probability of all units on target trials. 

Choice probabilities (CP) of single units in each region were marginally below 

chance (Figure 8A, CP μS1=49.10 ± 0.16, one-sample t-test, t(376)=-5.72, 

p=2.21e-8, CP μwMC=49.44 ±0.2, one-sample t-test, t(337)=-2.82, p=0.005, CP 

μALM=49.64 ±0.19, one-sample t-test, t(220)=-1.92, p=0.06). These distributions 

were not significantly different across the three regions (two-way ANOVA: 

F(2,933)= 2.18, p=0.11 and post hoc Tukey: S1 vs. wMC, p=0.33; wMC vs. ALM, 

p=0.76; S1 vs. ALM, p=0.12). Prestimulus choice probability below chance 

indicates that lower activity predicts hit compared to miss outcomes, and therefore 

is consistent with the widefield imaging data. However, the distributions of these 

data indicate that only a small portion of single units show strong prestimulus 

choice probability. 
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 Given this variability of single units, we next asked whether the units with 

strong prestimulus choice probability overlap with the units with strong post-

stimulus sensory and pre-response motor encoding. To test this, we plotted 

prestimulus choice probability against post-stimulus sensory (Figure 8A) and pre-

response motor (Figure 8B) encoding. The negative regression slopes show 

correlations between choice probability and sensory encoding for S1, and between 

choice probability and motor encoding for S1, wMC, and ALM (Figure 8C and 8D, 

one-sample t-test, sensory encoding slope: mS1=-1.96 ± 0.31, t(375)=-6.34, 

p=6.56e-10; one-sample t-test, motor encoding slope: mS1=-2.05 ± 0.28, t(375)=-

7.35, p=1.23e-12 , mwMC=-0.64 ± 0.26, t(336)=-2.49, p=0.013, mALM=-0.96 ± 0.28, 

t(219)=-3.46, p=6.41e-4). Thus, units in these regions have combined neuronal 

representations such that those representing prestimulus behavior context overlap 

with those with post-stimulus (sensory) and pre-response (motor) task-relevant 

encoding. This overlap may be influenced by a common factor such as firing rate 

(Supplemental Figure 2). Nevertheless, these analyses demonstrate that the 

subset of neurons that show the largest prestimulus suppression on hit trials are 

the same neurons that strongly encode task features.  
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Discussion 

The primary focus of this study is to determine whether and how neuronal activity 

before stimulus onset predicts trial outcomes during goal-directed behavior. We 

assessed this for both target and distractor stimulus detection. We find that lower 

prestimulus activity predicts detection of both target and distractor stimuli (Figures 

2 and 3) and faster reaction times on Hit trials (Figure 3). This low activity state is 

distributed globally throughout dorsal cortex (Figure 3), maps onto a distinct, less 

variable subspace than activity preceding no response trials (Figure 7) and is 

represented most robustly in the subset of neurons also encoding post-stimulus 

sensory and pre-response motor task features (Figure 8).    

 The impacts of spontaneous activity on stimulus responses have been 

explored extensively in both physiological and computational studies. Increased 

spontaneous activity has been proposed to increase response gain by two primary 

mechanisms: depolarization to reduce membrane potential distance to spike 

threshold and increased variance to amplify the impacts of weak inputs (Cardin et 

al., 2008; Haider et al., 2007; Haider & McCormick, 2009; Hô & Destexhe, 2000; 

Rudolph & Destexhe, 2003; Shu et al., 2003). Therefore, we were surprised to find 

that reduced prestimulus activity correlated with both enhanced stimulus detection 

(Figures 2 and 3) and increased sensory responses (Figure 4). And yet, our data 

are consistent with studies in primary somatosensory and auditory cortices, 

demonstrating increased sensory responses with reduced prestimulus activity 

(Cardin et al., 2008; Hasenstaub et al., 2007; McGinley et al., 2015; Sachdev et 
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al., 2004). Future studies are required to determine the cellular and network 

mechanisms underlying increased responsiveness with low activity, with 

possibilities including reduced membrane conductance (Chance et al., 2002), 

reduced inhibition, and reduced synaptic depression. 

 Our study was conducted in the context of a somatosensory (whisker) 

detection task. It is not currently known, however, whether these findings will 

generalize to other sensory modalities and other types of tasks. Reduced network 

activity and reduced synaptic variance have been shown to predict a network with 

a discrete, all-or-none input-output function (Hô & Destexhe, 2000). This 

configuration may improve distinguishing the presence versus absence of a 

stimulus as needed for stimulus detection. Such a network state, though, would be 

predicted to poorly encode the precise features of a stimulus. Therefore, we 

speculate that tasks requiring discrimination of fine stimulus details may be optimal 

in a high activity network state with a continuous input-output function. However, 

this remains to be tested.  

 Most studies of the impacts of spontaneous activity on sensory responses 

focus on primary sensory areas. However, stimulus detection tasks require the 

contributions of multiple cortices (De Lafuente & Romo, 2006). Indeed, we have 

recently shown that the task in this study activates multiple sensory and motor 

cortices, including S1, wMC, and ALM (Aruljothi et al., 2020; Zareian et al., 2021). 

In this study we demonstrate that the prestimulus activity predictive of trial outcome 

is global, involving all regions of dorsal neocortex. This global cortical state may 
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reflect the coordination amongst multiple cortices, to improve not just stimulus 

encoding in primary sensory cortex, but the propagation of task-relevant signals 

throughout neocortex. Interestingly, we found prestimulus activity suppression to 

be largest in the same neurons that also strongly encode post-stimulus sensory 

and pre-response motor features, in S1, wMC, and ALM. This organization may 

ensure coordination not just between cortical regions, but among the specific 

neuronal ensembles involved in this stimulus detection task. Low activity in these 

specific neuronal ensembles may increase excitability and transmission by 

increasing membrane resistance and reducing synaptic depression.   

 Global changes in cortical state, as observed here, are traditionally 

associated with changes in arousal, driven by widespread ascending 

neuromodulatory systems (Zagha & McCormick, 2014). More recently, studies 

have shown that movement is associated with global increases in neocortical 

activity (Musall et al., 2019; Salkoff et al., 2020; Stringer et al., 2019). As with low 

activity preceding response trials, we also find that whisker movements are 

reduced preceding hit trials (Figure 5), consistent with previous reports (Kyriakatos 

et al., 2017; Ollerenshaw et al., 2012). We suspect that whisker movements impair 

detection for multiple reasons: 1) reafference signals from self-generated 

movements (Fee et al., 1997) may obscure stimulus-evoked afferent signals, 2) 

self-generated movements may evoke top-down sensory gating and thereby 

suppress stimulus evoked signals (Chakrabarti & Schwarz, 2018), and 3) centrally-

mediated cortical activation associated with whisker movements (Poulet et al., 
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2012) may reduce network excitability. And yet, our findings support a view of 

cortical state as higher dimensional than stationary versus moving (McGinley et 

al., 2015; Zagha & McCormick, 2014). Among Hit trials, we find a positive 

correlation between prestimulus activity and reaction time (Figure 3). This 

suggests that even within overt changes in arousal, the precise levels of cortical 

activity impact performance in our task, with the lowest prestimulus activity 

correlating with optimal performance. Dissecting the physiological mechanisms 

underlying the low amplitude cortical state permissive for whisker stimulus 

detection is a focus of ongoing investigations. 
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Figure 1: Predictions and experimental design for testing impacts of 
prestimulus activity on sensory detection and discrimination. (A-D) Potential 
mechanisms of task-relevant prestimulus activity. (E-G) Experimental design. (E). 
Head-fixed mice are trained to discriminate between target whisker deflections 
(purple) and distractor whisker deflections (green), within opposite whisker fields. 
Mice report detection by licking a central lickport. The orange rectangle reflects the 
widefield Ca2+ imaging window. The inset below is a sample imaging frame, 
demarcating neocortical regions of interest in bilateral frontal and parietal cortices. 
(F) Classification of trial types and outcomes. Task performance is quantified by 
discrimination d’ as the separation between hit and false alarm rates. z, inverse 
cumulative function of the normal distribution. G. Trial structure, including a 
variable inter-trial interval, 1 s prestimulus window, 0.2 s stimulus and lockout 
(delay) window, and 1 s response window. The prestimulus window of interest in 
this study is the last 1 s of the inter-trial interval (blue shade), immediately before 
stimulus onset. Spont, spontaneous responses during the prestimulus window; 
Preme, premature responses during the lockout window. Scale bar in (E) is 1 mm. 
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Figure 2: Sliding window normalized grand average fluorescence activity 
(dF/F). Data are averages across all mice and all sessions (n=38 sessions). 
Activity in specific imaging frames is aligned to the stimulus onset (left, purple and 
green arrows for target and distractor stimuli, respectively) or response onset 
(right, black arrows, in rows A, B, and C). Warmer colors indicate higher activity. 
The pink arrowheads specify stimulus-aligned whisker regions of S1, whereas the 
white arrowheads specify limb regions of S1 (see atlas in leftmost panel in row C). 
The last prestimulus frame is shown in the first column (blue shade). Shown are 
hit trials (A), false alarm trials (B), spontaneous trials (C), miss trials (D), and 
correct rejection trials (E). Note the low (negative due to normalization) dF/F 
prestimulus activity in response trials (hit and false alarm), compared to the high 
dF/F prestimulus activity in miss trials. Scale bar in (C) is 1 mm. 
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Figure 3: Prestimulus neuronal activity differences between response and 
no response trials and correlations with reaction time. (A) Grand average of 
prestimulus dF/F for miss minus hit trials. All pixel values within neocortex are 
greater than 0, indicating higher global activity preceding miss trials. (B) Similar to 
[A], except that the individual session dF/F signals were further normalized by z-
score to control for differences in fluorescence fluctuations. (C) Significance map 
for the data in [A]. Significance threshold with Bonferroni correction for multiple 
comparisons is indicated by the arrow (Bonf). For target trials, higher activity 
preceding no response trials is statistically significant throughout dorsal cortex. (D-
F) Same structure as [A-C], except for CR minus FA trials. Note the more restricted 
range of scale bars in each panel, compared to target data. For distractor trials, 
higher activity preceding no response trials is marginally significant, most 
prominent in the S1 limb regions. Scale bar in (A) is 1 mm. (G) An example session 
showing a positive correlation between prestimulus activity (dF/F) and reaction 
time for individual Hit trials (slope=3.34, R2=0.10, dotted line is the linear 
regression). (H) Regression analyses across all sessions for Hit trials. The red data 
point is the example session in [G], the black data reflect the mean ± standard 
deviation across sessions (n=30 sessions). (I) FA trials in an example session, with 
a non-significant negative correlation between prestimulus activity and reaction 
time (slope=-1.6, R2=0.006). (J) Same as H but for FA trials (n=32 sessions).  
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Figure 4: Quantification of stimulus encoding for each trial type. (A-F) 
Neurometric d’ values were calculated for each pixel during the last frame of the 
lockout: after stimulus presentation and before the allowed response window. Data 
are grand average d’ maps from all sessions, showing all target trials (A), hit trials 
(B), miss trials (C), all distractor trials (D), FA trials (E), and CR trials (F). Note the 
larger stimulus encoding in response trials (B and E compared to C and F). 
Significance maps of the data in [A-F], respectively. Significance threshold with 
Bonferroni correction for multiple comparisons is indicated by the arrow (Bonf). For 
all trial types there is significant stimulus encoding in the stimulus-aligned S1 
whisker region. Scale bar in (A) is 1 mm.  
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Figure 5: Prestimulus and post-stimulus whisker movements in each trial 
type. (A) Peristimulus whisker motion energy (WME) on target trials in an example 
session, hits (purple) and misses (orange). On hits trials there was a dramatic 
increase in WME post-stimulus and during the response window. Prestimulus, 
however, WME on hits trials was reduced compared to miss trials. (B) 
Quantification of data in [A], comparing prestimulus (pre) and post-stimulus WME 
for hit and miss trials. (C) Prestimulus WME values for each trial in the example 
session. (D) Summary data for all sessions (n=9). Note the reduced WME 
preceding hit compared to miss trials. (E-H) Same as above, but for distractor trials. 
While this example session shows moderately reduced WME preceding false 
alarm trials (E-G), this trend was not statistically significant across the full dataset 
(H). Data are presented as mean +/- STD, *p<0.05, **p<0.005. 
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Figure 6: Spatial dimensionality reduction for single trial analyses. (A) 
Methodology for using principal component analysis (PCA) to reduce spatial 
dimensionality. Left, full images were parsed into 8 regional masks. Average dF/F 
within each mask for all trials and all sessions were appended into a single matrix, 
upon which PCA was performed. Right, frames with different trial outcomes were 
back-projected to the first principal component (PC1) and plotted against their 
projection onto the second principal component (PC2). Transformed samples are 
colored based on their frame index: prestimulus (blue to white), post-stimulus and 
pre-response (yellow and orange), response (red to pink). (B) Original dataset, 
each data point represents a sample frame ROI-specific average, plotted against 
its change in fluorescence (dF/F) between target (x-axis) and distractor (y-axis) 
hemispheres. Black arrows represent the first two principal vectors. (C) 
Transformed dataset, each data point represents a sample frame plotted against 
its projection onto PC1 and PC2. (D) PCA scree plot. PCs are plotted according to 
their rank in variance, with accumulated variance plotted in red. The first two PCs 
were chosen for further analysis as they explain >95% variance of the 
untransformed dataset (PC1, 91%, PC2, 6%). (E) PCA biplot. Samples plotted 
against their normalized projection onto PC1 and PC2, with vectors representing 
individual ROIs according to their loadings. 
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Figure 7: Single trial analyses of prestimulus subspace variance and 
position according to trial outcomes. All data presented are from the last 500 
ms of the prestimulus window (frames 6 to 10 of Figure 6A). (A) Prestimulus activity 
in PC space for hit (purple) and miss (yellow) trials of two example sessions. Each 
data point represents a single prestimulus frame. Overlaid are covariance ellipses 
for both trial outcome types (major radius, 1σ along PC1; minor radius, 1σ along 
PC2). Note the reduced area and distinct position of the covariance ellipses for hit 
compared to miss trials. (B) Comparison of the ellipse area, as a measure of 
variability, across all sessions. (C and D) Same as [A] and [B], except for FA (green) 
and CR (gray) trials. Response trials (hit and FA) are preceded by less variable 
prestimulus activity compared to no response trials (miss and CR). (E) Centroid 
positions of the covariance ellipses in PC space for all sessions, for hit and miss 
trials (same color designation as above). Each data point represents the hit or miss 
centroid from one session. (F) Quantification of centroid positions on axes PC1 
(left) and PC2 (right). (G and H) Same as [E] and [F], except for FA and CR trials. 
Prestimulus activity occupies distinct subspaces for response and no response 
trials, along both PC1 and PC2 for target trials and along PC 1 for distractor trials. 
*p<0. 01; **p<0.001; ***p<0.0001; n.s., non-significant. 
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Figure 8: Distribution of prestimulus choice probability, post-stimulus 
sensory, and pre-response motor encoding across single units in S1, wMC 
and ALM. (A) Plots of sensory encoding (d’) versus choice probability (%) for 
single units in target-aligned S1 (left), wMC (center), and ALM (right). Asterisks 
above box plots reflect comparisons of individual measures to chance (d’=0 and 
choice probability=50%). Scatter plots include linear fits of the single unit data. 
Single units in each of these three cortical regions show below chance prestimulus 
choice probability (tending yet not significant for ALM (p=0.06), significant for S1 
and wMC) and positive post-stimulus sensory encoding. (B) 95% confidence 
bounds of the linear regression slope values. (C and D) Same as [A] and [B], but 
for pre-response motor encoding. The significant negative slope values indicate 
an overlap between the single units with lower than chance prestimulus choice 
probability and positive post-stimulus sensory encoding (for S1) and pre-response 
motor encoding (for S1, wMC, and ALM). *p<0.05; **p<0.005; n.s., non-significant. 
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Supplemental Figure 1, Related to Methods, Figures 1-3: Sliding window 
normalization method and robustness of window size. (A) Depiction of 
response trials (red), no response trials (black) and sliding window (green) used 
for an example session. This session consisted of 304 trials over 43.4 minutes. 
Each sliding window segment included an average of 46 trials. (B) Rundown in raw 
fluorescence per frame and mean subtracted raw fluorescence per frame acquired 
across example session. (C) Different sliding windows considered for optimization 
of method used in this study. Top row: dF/F using a sliding window every 2s; 2s 
half-width (far left), 100s half-width (center left), 200s half-width (center right), 
1000s half-width (far right). Bottom row: Mean to Hits difference using sliding 
window indicated in top row. This normalization method is robust to a range of 
sliding window sizes, between 50s to 200s. If the window is too small (left) single 
trial differences are normalized out. If the window is too large (right) fluorescence 
rundown is not corrected. (D) Sliding window method (200s) applied to prestimulus 
frames only and applied to prestimulus frames with spontaneous trials removed. 
Left to right: dF/F per frame across prestimulus frames in example session (far 
left), Miss to Hits difference using only prestimulus frames (left center), dF/F per 
frame across prestimulus frames, spontaneous trials removed, in example session 
(right center), Miss to Hits difference using prestimulus frames, spontaneous trials 
removed (far right). Excluding post-stimulus frames and spontaneous trials does 
not impact our sliding window prestimulus analyses.   
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Supplemental Figure 2, Related to Figure 8: Relationship between spike rate 
and prestimulus choice probability and post-stimulus sensory and pre-
response motor encoding across single units in S1, wMC and ALM. (A) Plots 
of sensory encoding (d’) versus spike rate (Hz) for single units in target-aligned S1 
(left), wMC (center), and ALM (right). Scatter plots include linear fits of the single 
unit data. Single units in each of these three cortical regions show positive 
relationship between spike rate and post-stimulus sensory encoding. (B and C) 
Same as [A], but for pre-response motor encoding (B) and prestimulus choice 
probability (C). (D) 95% confidence bounds of the linear regression slope values 
for all scatter plots. These data identify spike rate as a common factor that 
correlates with both post-stimulus sensory and motor encoding (positive 
correlation) and prestimulus choice probability (negative correlation). 
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Chapter 4   

Correlation of behavioral measures and neural modulations in dorsal 

cortex across learning of a selective whisker detection task in mice 

Introduction  

The optimal performance of a motor task hinges on the ability to learn and 

accurately respond to certain stimuli while disregarding others, as exemplified in a 

simple go/no-go task. In the context of mice mastering the whisker selective 

detection task, we anticipate cortical activation to undergo changes in tandem with 

behavioral modifications related to both sensory and motor events. While previous 

research on rodents has predominantly implicated changes in the motor cortex to 

underlie motor skill learning and execution (Kawai et al., 2015; Komiyama et al., 

2010; Laubach et al., 2000; Peters et al., 2017) and changes in sensory cortex to 

underlie sensory detection (Huber et al., 2012b) and sensory discrimination (Pai 

et al., 2011; Rudebeck & Murray, 2008), extensive research has demonstrated the 

challenges of categorizing brain regions strictly into sensory and motor systems. 

Traditionally considered motor areas have been found to exhibit sensory receptive 

fields (di Pellegrino et al., 1992; J. T. Murphy et al., 1978) and neural activity 

associated with sensory decision-making (Romo et al., 2002, 2004). Motor 

experience can induce selective expansions in sensory regions of the brain (Xerri 

et al., 1996). Moreover, alterations in motor function have been shown to impact 

the processing of visual (Brown et al., 2007), acoustic (Shiller et al., 2009), and 
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proprioceptive stimuli (Cressman & Henriques, 2010), highlighting the intricate 

interaction between motor and sensory systems within the brain. 

Consequently, we set out to test two hypotheses: 1) learning in a selective 

detection task involves cortex-wide alterations in sensory and motor regions, and 

2) changes in the learning of specific behavioral measures can be attributed to 

distinct cortical modulations. This exploration was anticipated to yield multiple 

hypotheses regarding the neural mechanisms underpinning the acquisition of 

diverse behavioral processes within a singular task.              

We conducted widefield calcium imaging throughout the learning phase of the 

selective detection behavioral paradigm. Pixel-wise correlation maps of neural 

activation were generated to identify patterns that correlated with changes in 

behavioral measures. Our findings revealed that the learning process 

encompasses extensive neocortical changes as mice progress to expert-level 

performance in the task. 

Materials and Methods 

Animals and Surgery  

All experiments conducted in this study received approval from the Institutional 

Animal Care and Use Committee (IACUC) of the University of California, Riverside. 

Mice utilized in the study were procured from Jackson Laboratories (JAX). Neural 

imaging data related to the task were derived from mice expressing GCaMP6s 

under the Snap25-2A-GCaMP6s-D promoter (JAX #025111). The SNAP25-2A-
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GCaMP6s mouse line expresses GCaMP6s pan-neuronally, encompassing both 

excitatory and inhibitory neurons throughout the brain (Madisen et al., 2015). 

Transgenic mice were backcrossed into the BALB/cByJ background (JAX 

000651). Both male and female mice participated in the experiments. 

Mice were housed in a controlled environment with a 12-hour light/12-hour dark 

cycle. All training and recordings were conducted with mice securely head-fixed in 

the behavioral apparatus. Headpost implantation was performed on mice aged 

between 2 to 5 months under anesthesia induced by a combination of isoflurane 

(1-2%), ketamine (100 mg/kg), and xylazine (10 mg/kg). A 10 mm x 10 mm section 

of the scalp was removed to expose the skull. The exposed skull was cleared of 

connective tissue, and a custom-built headpost (made of lightweight titanium or 

stainless steel, measuring 3 cm in length and weighing 1.5 grams) was affixed to 

the skull with cyanoacrylate glue. The headpost featured a 5 mm x 7 mm central 

window for imaging and recording. 

For in vivo widefield Ca2+ imaging, a thin layer of cyanoacrylate gap-filling medium 

(Insta-Cure, Bob Smith Industries) was applied to the window to seal the exposed 

skull and enhance skull transparency. Silicone elastomer (Reynolds Advanced 

Materials) was additionally applied above the imaging window. Post-surgery, mice 

were placed on a heating pad for recovery and administered meloxicam (0.3 

mg/kg) and enrofloxacin (5 mg/kg) for three days. Mice were given a minimum of 

three days to recover from surgery before undergoing water restriction and 
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behavioral training. Recordings under anesthesia were conducted immediately 

after headpost implantation. 

Animal Behavior 

The training stages, learning metrics, and criteria for expert performance in the 

Go/NoGo selective whisker detection task were previously detailed in our previous 

works (Aruljothi et al., 2020; Marrero et al., 2022; Zareian et al., 2021b, 2023; 

Zhang & Zagha, 2023). In summary, mice, fixed in a head restraint and subjected 

to water deprivation, were positioned on a behavioral apparatus governed by 

Arduino and custom MATLAB scripts. Two paddles were strategically located in 

whisker fields on opposite sides of the face, designated as either target or 

distractor. These designations were established at the onset of training and 

remained fixed. 

After variable intertrial intervals, mice encountered target trials (involving a rapid 

deflection of the target paddle), distractor trials (involving a rapid deflection of the 

distractor paddle) or catch trials (involving no whisker stimulus). Mice expressed 

their responses through licking at a central port. Hits (responses to target stimuli) 

resulted in a reward of approximately 5 μL of water. Correct rejections (non-

responses to distractor stimuli) and correct withholdings (non-responses during 

catch trials) were rewarded with a shortened intertrial interval (ITI) and a 

subsequent target trial. 
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Licking during the ITI incurred a penalty, resetting the ITI and acting as a time-out. 

Mice achieved expert status upon maintaining a discriminability (d') greater than 1 

(indicating a distinction between hit and false alarm response rates) for three 

consecutive days: 

𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑′ = 𝜙𝐻𝑖𝑡 𝑟𝑎𝑡𝑒
−1  −  𝜙𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒

−1  

 

Widefield Calcium Imaging 

Widefield imaging in head-fixed mice performing the selective detection task was 

conducted through-skull. The imaging setup utilized a Macroscope IIa 

(RedShirtImaging) with the beam diverter removed, a 75 mm inverted lens 

featuring 0.7x magnification and a 16 mm working distance. The lens (NA 0.4) was 

directly positioned over the cranial window, providing a field of view measuring 7 

mm x 5 mm, encompassing most of the dorsal parietal and frontal cortex on both 

sides. 

Illumination was achieved using a mounted 470 nm LED (Thorlabs M470L3), 

dispersed through a collimating lens (Thorlabs ACL2520-A), band-pass filtered 

(Chroma ET480/40x), and directed through the macroscope using a dichroic mirror 

(Chroma T510lpxrxt). Fluorescent light returning from the brain underwent band-

pass filtering (Chroma ET535/50m) before reaching an RT sCMOS camera (SPOT 

Imaging). Employing on-camera 2x2 binning and post-processing image size 

reduction, the final resolution was 142 x 170 pixels at 41 μm per pixel with a 12-bit 
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depth. Image acquisition occurred at a temporal resolution of 10 Hz, synchronized 

with the trial structure. TIF image sequences were imported into MATLAB for 

preprocessing and subsequent analysis. 

Data Analysis  

Data analyses were performed in MATLAB using custom scripts. 

Behavioral learning analyses 

Behavioral analyses were performed and reported in our latest publication 

(Marrero et al., 2023). Scatter plots were generated, where each point represented 

individual mouse sessions across mice (n=52 mice). The means were depicted as 

mouse sessions, resampled to 20 sessions per mouse, and then averaged across 

all mice (n=52 mice). Transitions are considered 'increasing' if the slopes across 

mice were significantly positive and as 'decreasing' if the slopes were significantly 

negative. These measures were considered to have a monotonic transition across 

learning. If slopes of the behavioral measures first showed an increase and then a 

decrease across learning, then these measures were considered to have a 

biphasic transition across learning. In this chapter, we focused on five out of the 11 

measures, selecting them based on their dependence on trial types. Specifically, 

for target trials, we opted for hit rate and target reaction times as behavioral 

measures reflecting pure target responses. For distract trials, we selected false 

alarm rate as a behavioral measure representing pure distractor responses. 

Additionally, as measures encompassing both target and distractor trials, we 
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included discrimination d’ and wait AUC, which gauges the mice's ability to withhold 

licking during the inter-trial interval (ITI) period. 

Sliding Window Normalization and Trial-Based Neuronal Activity 

The imaging time window for each trial comprised the prestimulus epoch (1 s), the 

stimulus and lockout epoch (0.2 s), and the allowable response epoch (1 s), 

totaling 2.2 s. A raw movie F was constructed by concatenating fluorescence 

activity from consecutive trials, where Fn(i,j,f) represents the fluorescence of each 

pixel (row i and column j) in frame f for each trial n. To obtain normalized 

fluorescence values, we initially determined the sliding window local mean for each 

pixel, calculated every 2 s using a +/- 200 s window size [FSW(i,j,n)]. 

Subsequently, we computed the normalized fluorescence (following the method of 

Salkoff et al., 2020) for each pixel at each frame as follows:   

𝑑𝐹𝑆𝑊/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) = [𝐹𝑛(𝑖, 𝑗, 𝑓) − 𝐹𝑆𝑊(𝑖, 𝑗, 𝑛)]/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) 

 

Average movies were created by initially categorizing stimulus type (target and 

distractor trials), followed by averaging pixel-wise activity across corresponding 

frames of the respective trials. The resulting averages were then aligned to 

bregma. 

Difference in Prestimulus Fluorescence 

Fluorescence variations for target and distractor categorization were computed for 

each trial type in every session. The prestimulus frames 6 to 10, encompassing 
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the final 500 ms of the prestimulus window before stimulus onset, were averaged 

on a per-trial and per-pixel basis for each session. Sessions with fewer than 5 

incorrect trials were excluded from this analysis. For target fluorescence difference 

frames, the mean frame of Hits fluorescence was subtracted from the mean frame 

of Miss fluorescence. 

Defining Cortical Regions of Interest 

For both task-relevant and task-irrelevant cortical regions, we established a center 

pixel based on the pixel resolution (41 μm) and alignment with bregma, calculated 

as center pixel value = [coordinates from bregma (in mm)]/0.041 mm. This allowed 

the conversion of bregma-based coordinates (mm) [wS1 ±3.4 lateral, 1.4 posterior; 

wM1 ±1 lateral, 1 anterior; ALM ±1.5 lateral, 2.5 anterior; RSP ±0.4 lateral, 2.4 

posterior; limb S1 ±2.0 lateral, 0.6 posterior] to coordinates from bregma in pixels. 

The coordinates and wires were adapted from the Allen Brain Institute's common 

coordinates framework (CCF) (Wang et al., 2020). 

Stimulus Encoding in Post-Stimulus Fluorescence 

The quantification of stimulus encoding involved calculating the neurometric d’ 

(Britten et al., 1992) for prestimulus fluorescence (stimulus absent) and post-

stimulus fluorescence (stimulus present) for one frame after the lockout epoch 

(200- 300ms from stimulus onset), adapted from the methodology previously 

applied to imaging data (Aruljothi et al., 2020c; Marrero et al., 2022). Neurometric 

d’ was computed separately based on target and distractor assignment and further 
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categorized according to trial type outcome. Prestimulus and post-stimulus 

fluorescence histograms were translated into receiver operating characteristic 

(ROC) curves, and the area under the curve (AUC) was transformed into d’ as the 

neurometric measure. 

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑑′
𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 =  √2 ∗ 𝑍𝐴𝑈𝐶 

 

The neurometric d' was computed separately for naïve and expert days, 

considering the average of the last three days, for all six mice trained in the task. 

The stimulus encoding average for naïve days was subsequently subtracted from 

that of the expert days, with alignment to the bregma.  

Statistical Analyses 

For imaging statistics, threshold for statistical significance was set at a confidence 

interval of 99% (α = 0.01). For all dF/F, dF/F differences (Miss–Hits) and d’, 

statistical analyses determined whether each pixel of the frames were significantly 

different than zero across sessions (one sample t-test).  

 

 

 

 

 



142 
 

Results 

Sensory-motor attenuation of distractor trials in distractor-aligned 

hemisphere occurs out of S1: 

To address whether the attenuation of distractor-aligned sensory-motor 

propagation is a result of target selection or distractor inhibition, we conducted 

neural encoding analyses following the methodologies outlined in chapters 2 and 

3. One potential scenario is that, in naïve mice, both target and distractor sensory 

cortical signals propagate to the frontal cortices, and attenuation emerges through 

the process of distractor inhibition as mice learn to achieve expert performance. 

Specifically, the propagation from distractor VPM to sensory cortex and sensory 

cortex to motor cortex signals are inhibited, while target signal propagation remains 

unaffected. Alternatively, the hypothesis posits that, in naïve mice, neither target 

nor distractor sensory cortical signals propagate to frontal cortices. Instead, the 

emergence of attenuation occurs through a process of target selection during 

learning, where, in expert mice, target VPM and sensory cortical signals propagate 

to the frontal cortex while distractor signals do not. 

For this analysis, we averaged the data from the first frame following the lockout 

period, excluding trials with reaction times less than 300 ms. This selection is made 

because this specific frame exhibits a robust sensory and sensory-motor 

propagation signal compared to the last frame of the lockout period. The average 

of this frame across mice reveals that, in naïve mice, both target and distractor 
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trials exhibit clear sensory cortex to motor cortex propagation (Figure 1A left and 

Figure 1B left). With learning, the sensory cortex to motor cortex propagation 

remains unchanged in target trials, while in distractor trials, sensory cortex to motor 

cortex propagation undergoes significant reduction (Figure 1A right and Figure 1B 

right). Based on this observation, the hypothesis that attenuation arises through 

the process of distractor inhibition during learning is supported. Consequently, our 

observations lead us to conclude that there is a consistent reduction in S1 and 

wM1 activation with learning in the distractor hemisphere for distractor trials. This 

observation is further validated through the subtraction of the average naive neural 

d' from the average expert neural d' across all six mice (n=6) [Figure 1C]. The heat 

maps for both target and distractor trials were generated across each pixel using 

a one-sample t-test with α = 0.01 (-log10(p)=1 on significance maps). The heat 

map for target trials indicates a noteworthy trend toward activation in the preferred 

tjMC, bilateral ALM, the cortical areas associated with licking. Conversely, for 

distractor trials, the heat map demonstrates a pronounced suppression in the 

preferred wS1, wM1, and bilateral ALM and limb S1, indicating attenuation in the 

sensory cortex to motor cortex propagation and to other projection areas. (figure 

1D). While the target trials show a process of sensory selection (enhancement) 

downstream of cortical whisker regions, distractor trials show the suppression of 

sensory-motor propagation (attenuation) within cortical whisker regions.     
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Figure 1: Sensory-motor attenuation of distractor trials in distractor-aligned 
hemisphere occurs within S1 and wM1. (A) Reference brain and areas of 
interest in the dorsal cortex with the imaging window highlighted in orange (B) 
Sensory encoding for target trials. Left, Sensory encoding in naïve mice (average 
across n=6 mice) showing clear stimulus representation in target-aligned sensory 
cortex, sensory cortex to motor cortex propagation and propagation to retrosplenial 
cortex (RSP). Right, Sensory encoding in expert mice (average across n=6 mice) 
showing similar stimulus encoding in target-aligned whisker sensory cortex (wS1), 
and robust propagation to the licking-associated cortical areas (ALM and tjMC). 
(C) Sensory encoding for distractor trials. Left, Sensory encoding in naïve mice 
(average across n=6 mice) showing similar encoding patterns as the naïve mice 
for target trials. Right, Sensory encoding in expert mice (average across n=6 mice) 
showing clear but diminished stimulus representation in distractor-aligned wS1 
and strong attenuation of sensory-motor propagation. (D) Difference between 
sensory encoding in expert and naïve sessions for target and distractor trials. Top, 
Difference in target trials (expert – naïve), showing enhancement in stimulus 
encoding in target-aligned tjMC and bilateral ALM in expert sessions. Bottom, 
Difference in distractor trials (expert – naïve), showing reductions in the S1 and 
wM1 in the distractor-aligned hemisphere and other parietal and frontal regions 
bilaterally. (E) Significance maps for the top and bottom panels of C respectively. 
The color bar indicates the range of p-value. For target trials, we observed only a 
trend towards significance. For distractor trials, we observed suppression in the 
distractor-aligned wS1, wM1, and bilateral ALM and limb S1.        
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Correlation between activation of brain regions for stimulus encoding with 

behavioral measures: 

Subsequently, we focused on determining the neuronal activation patterns that 

correlate with changes in various behavioral measures throughout learning. To 

address this, we selected behavioral measures based on their reliance on trial 

types: Hit rate and target reaction time (RT) for target trials, False Alarm rate for 

distractor trials, and the discrimination d’ and wait AUC for target trials vs distractor 

trials. Figure 2 illustrates the phasic learning transitions of 11 behavioral measures 

across a total of 52 mice. The 5 measures highlighted in this chapter exhibit distinct 

learning trajectories among mice. Specifically, the hit rate, a measure of target 

response, demonstrates a monotonically increasing transition. In contrast, target 

reaction times exhibit a monotonically decreasing transition. The false alarm rate, 

representing distractor responses, displays a biphasic transition, indicating an 

initial increase followed by a decrease as mice progress to expert levels in the 

task. The two measures shared between target and distractor trials—

discrimination d' and wait AUC— both exhibit an increasing transition throughout 

the learning process. 
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Figure 2: Behavioral measures show phasic learning transitions across 
mice. Top row, Scatterplots with each point representing individual mouse 
sessions across mice (n=52 mice). Bottom row, Means resampled to 20 sessions 
per mouse and averaged across all mice (n=52 mice). Behavioral measures of 
interest are highlighted in blue.  
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We then generated pixel-by-pixel correlation maps for the neural d' of the target 

and distractor trials in relation to each behavioral measure to discern correlation 

patterns. For these analyses, we used all training days, from naïve through expert 

performance, and correlated neuronal and behavioral measures across days. 

Figure 3A illustrates that, for target trials, the activation of licking areas (target-

aligned tjMC and bilateral ALM) exhibits a significantly positive correlation with hit 

rate across the learning period. Intriguingly, the activation of these same areas 

demonstrates a significantly negative correlation with target reaction time (Figure 

3B), suggesting that these two behavioral measures are influenced by common 

neural mechanisms. In the case of distractor trials, Figure 3C reveals that the 

activation of distractor-aligned ALM and bilateral tjMC significantly positively 

correlates with False Alarm rate (FAR), mirroring the effects observed in the target 

trials vs hit rate correlation map. These observations might indicate that the 

response to either stimulus (HR and FAR) and target reaction times are all driven 

by similar neural mechanisms – that is, the ability for stimuli to activate licking-

associated regions. Notably, these behavioral measures are not correlated with 

activation of whisker-associated sensory or motor cortices (for target or distractor-

related measures). Together, these findings indicate that the stimulus evoked 

responses in the cortex are predictive of the upcoming motor response (licking) 

and not indicative of the sensory response and that common neural correlates are 

associated with the behavioral measures. So far, these data are consistent with 

the low dimensional learning theory.   
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Figure 3: Correlation between activation of brain regions for stimulus 
encoding with behavioral measures. (A) left, Correlation map between stimulus 
encoding for target trials and hit rate. Activation of licking areas, particularly in the 
target-aligned hemisphere, are positively correlated with hit rate. Right, Color map 
as generated in Figure 2. (B) left, Correlation map between stimulus encoding for 
target trials and target reaction times. Right, Significance map as in A. (C) left, 
Correlation map between stimulus encoding for distractor trials and false alarm 
rate. Right, Significance map as in A and B.    
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Next, we analyzed the correlation of behavioral measure discrimination d’ vs target 

trials and distractor trials individually. Figure 4A indicates that, for target trials, the 

activation of licking areas (preferred tjMC and ALM) exhibits a positive correlation 

with discrimination d’, closely resembling the effects observed in Figure 3A, though 

the significance map only shows a trend towards the observed effects. In Figure 

4B, for distractor trials, the global suppression of the dorsal cortex is positively 

correlated with discrimination d’, strongly supported by the significance map. The 

observed effect diverges significantly from the patterns identified in the correlation 

maps of response rates (hit rate and false alarm rate), target reaction times, and 

discrimination d' for target trials. This discrepancy suggests the presence of an 

entirely distinct mechanism influencing the correlation map for distractor neural d' 

and behavioral discrimination d'. Such findings hint at the possibility that learning 

processes may not be adequately described by a low-dimensional model. 

  Figures 4C and 4D portray the correlation between wait AUC and the neural d’ 

for target trials and distractor trials, respectively. The activation of the target-

aligned parietal cortex displays a positive correlation with waiting AUC for target 

trials (Figure 4C), while the significant suppression of bilateral retrosplenial cortex 

(RSP) and distractor-aligned tjMC and ALM are negatively correlated with waiting 

AUC for distractor trials (Figure 4D). While the wait AUC was correlated to the 

sensory area for target trials (target-aligned parietal cortex), it was correlated more 

to the response aligned areas (distractor-aligned tjMC, ALM and bilateral RSP) for 
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distractor trials, indicating that they are influenced by distinct neural mechanisms. 

Considering the various effects evident in Figures 3 and 4, we hypothesize that 

multiple mechanisms contribute to establishing the correlation between neural and 

behavioral measures throughout the learning process. This speculation supports 

the notion that learning is likely characterized by high dimensionality. 
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Figure 4: Correlation between activation of brain regions for stimulus 
encoding with behavioral measures. (A) left, Correlation map between stimulus 
encoding for target trials and discrimination d’. Activation of licking areas are 
positively correlated similar to hit rate in Figure 3A. Right, Significance map as 
generated in Figures 2 and 3. (B) left, Correlation map between stimulus encoding 
for distractor trials and discrimination d’. Global suppression of the dorsal cortex is 
positively correlated with discrimination d’. Right, Significance map. (C) left, 
Correlation map between stimulus encoding for target trials and Wait AUC. 
Activation of the target-aligned parietal cortex displays a positive correlation with 
waiting AUC. Right, Significance map.  (D) left, Correlation map between stimulus 
encoding for distractor trials and Wait AUC. Suppression of bilateral retrosplenial 
cortex (RSP) and distractor-aligned tjMC and ALM are negatively correlated with 
waiting AUC for distractor trials.  Right, Significance map.    
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Correlation between activation of brain regions for prestimulus misses-hits 

rate of change of fluorescence for target trials with behavioral measures: 

In Ch 3 we found that global cortical suppression predicted response outcomes 

and reaction times. Across training, what is the relationship between cortical 

suppression and task learning for specific behavioral measures? We identified the 

correlation between specific behavioral measures and prestimulus cortical 

suppression for each pixel. We chose hit rate, target reaction time, and 

discrimination d’ as our behavioral measures, comparing them against the 

prestimulus fluorescence change (miss-hit, dF/F) as discussed in Chapter 3. 

Separation in prestimulus fluorescence change between hits and misses was 

positively correlated with hit rate as supported by the significant map in Figure 5A. 

This indicates that as the mice learn to respond more to the target stimulus, 

stronger the separation between prestimulus hits and misses dF/F. The same is 

true for discrimination d’ as observed in Figure 5C. However, the miss-hits 

prestimulus dF/F is negatively correlated with the target reaction times, indicating 

that as the mice respond faster to the target stimulus, the separation between 

prestimulus hits and misses dF/F increases (Figure 5B).   

The correlation profiles of the three behavioral measures- hit rate, target reaction 

times and discrimination d’- with the neural measures are similar between the pre- 

and post-stimulus epochs but the regions of correlation in the dorsal neocortex are 

distinctly different between the two epochs. The activation of paw regions in the 
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prestimulus epoch as opposed to the activation of distinct regions in the post 

stimulus epoch might be indicative of a preparatory state before the stimulus onset.    

In summary, with this study, we were able to determine that the emergence of 

attenuation of distractor signal across learning of our selective detection task is 

due to the selective enhancement in the licking areas for target trials and the 

suppression of sensory encoding and sensory motor propagation for distractor 

trials (Figure 2). We also were able to establish the correlation between select 

behavioral measures and neural measures both pre- and post-stimulus 

presentation and speculate on the cellular mechanisms involved in those 

processes (figures 3-5). 
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Figure 5: Correlation between activation of brain regions for prestimulus rate 
of change of fluorescence for target trials with behavioral measures. (A) left, 
Correlation map between prestimulus miss-hit dF/F and hit rate.  Separation in 
prestimulus fluorescence change between hits and misses was positively 
correlated with hit rate globally across the dorsal neocortex. Right, Significance 
map as generated in previous figures. (B) left, Correlation map between 
prestimulus miss-hit dF/F and target reaction times. Separation in prestimulus 
fluorescence change between hits and misses was negatively correlated with 
target reaction times globally across the dorsal neocortex. Right, Significance map. 
(C) left, Correlation map between prestimulus miss-hit dF/F and discrimination d’. 
Separation in prestimulus fluorescence change between hits and misses was 
positively correlated with discrimination d’ globally across the dorsal neocortex, as 
observed in (A). Right, Significance map.  
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Discussion 

Our aim was to observe the longitudinal evolution of behavioral performance and 

its corresponding neural activity in mice engaging in a go/no-go selective detection 

task. The central inquiry guiding our investigation was the emergence of the 

attenuation filter in the distractor hemisphere during distractor trials and its 

temporal evolution through learning. As depicted in Figure 1, our findings indicate 

that selective enhancement occurs in the licking related areas of tjMC and ALM for 

target trials and the attenuation occurs in the whisker related areas for distractor 

trials. This observation implies the involvement of multiple cortical regions in the 

attenuation process, rather than the isolated influence of a singular brain region. 

This suggests the involvement of a cognitive process known as associative 

learning in the brain, where the animal forms a connection between the stimulus 

(whisker deflection) and the desired response (licking for a reward). In our prior 

investigations (chapters 2 and 3), we noted an improvement in sensory-motor 

propagation (from whisker somatosensory cortex, wS1, to motor cortex, wM1) in 

expert mice following the stimulus. Initially, we assumed this enhancement was 

solely triggered by the stimulus. However, upon examining the neural activity 

during task learning, we realized that the increased activation in the licking areas 

indicated the "response" aspect of associative learning was initiating the effect. 

Conversely, for distractor trials, the attenuation remained evident in the whisker-

related areas, suggesting that attenuation is primarily a stimulus-triggered process. 
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Building on this, our focus shifted to unraveling the relationship between 

established behavioral measures, as outlined in our parallel behavioral study 

(Marrero et al., 2023), and the neural correlates as potential drivers of those 

behavioral measures. Figure 2 shows the phasic learning transition of 11 

behavioral measures across 52 mice. The 5 measures of interest all show different 

transition profiles throughout learning. The target response measures hit rate and 

reaction tikes show a monotonically increasing and decreasing transition profiles 

respectively. The distractor response measure false alarm rate shows a biphasic 

transition profile whereas, the two measures common for target and distractor 

trials- discrimination d’ and wait AUC- both show a monotonic increase of the 

transition profile (Figure 2, bottom row).  Figures 3 and 4 demonstrate that 

analogous neural mechanisms correlate with key behavioral measures positively 

such as hit rate (HR), target reaction times (target RT), and discrimination d’ for 

target trials, and with false alarm rates (FAR) for distractor trials. The distinctive 

correlation patterns between discrimination d’ and waiting AUC for target trials 

versus distractor trials, as depicted in Figure 3, suggest the involvement of multiple 

processes in preparatory activity preceding responses to target versus distractor 

stimuli. Figure 3 shows how the ‘go’ or ‘response’ measures are triggered in the 

licking areas of the brain (tjMC and ALM) while figure 4 shows how the other two 

measures are triggered distinctively in the brain. The process of decision-making 

developing across learning calls for some speculations in terms of the mechanisms 

involved. As discussed in the results section for each observation and to 
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summarize, the behavioral response measures and discrimination d' aligned with 

targets exhibit a positive correlation with the activation of the brain areas related 

to licking. In contrast, distractor-aligned discrimination d' displays a global negative 

correlation with neural d'. Interestingly, the wait AUC for target and distractor trials 

reveals distinct patterns of correlated brain areas, suggesting the involvement of 

multiple mechanisms in these learning-related changes. This observation supports 

the idea that learning is a high-dimensional process. 

Subsequently, we explored the activation of specific brain regions influencing the 

delineation between hits and misses during the prestimulus period. Figure 4 

illustrates a positive correlation between hit rate, target reaction time, 

discrimination d’, and the separation in prestimulus fluorescence changes between 

hits and misses. This implies that these three behavioral measures are governed 

by common neural mechanisms during both pre- and post-stimulus phases of the 

task. 

However, this method has its limitations. While it informs us about the correlation 

of neuronal modulations with individual behavioral measures, it doesn't compare 

neuronal modulations across various behavioral processes. To address this, we 

propose using multiple linear regression analyses, a statistical method employing 

independent variables to predict the outcome of a dependent variable. Ridge 

regression can be applied, utilizing the five behavioral learning trajectories as 

regressors for each mouse's neuronal modulation trajectory (dependent variable). 

This analysis aims to ascertain the extent to which each behavioral learning 
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measure independently co-varies with neuronal modulations. The explained 

variance signifies the ratio of variance in the response variable that can be clarified 

by the predictor variable(s) within the regression model, providing insight into the 

individual contributions of each predictor variable to the observed changes in the 

model. 

Although this study successfully identifies the brain regions associated with driving 

behavioral measures, the correlation maps alone cannot elucidate the extent to 

which each behavioral learning measure co-varies with individual neuronal 

modulations. To understand whether the behavior measures drive the neuronal 

changes we observed or vice versa, we need to establish causality through 

manipulations. This could be achieved by silencing the brain areas that get 

activated or suppressed for the behavioral measures they are correlated with. For 

instance, since the stimulus evoked response rates (HR and FAR) and 

discrimination d’ show positive correlations with the stimulus-aligned licking areas 

(tjMC and ALM), silencing one of the two areas could potentially affect the 

response rates and discrimination d’ accordingly.  
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Chapter 5: Discussion and Conclusion 

Our investigations have delved into the neuronal correlates of goal-directed 

behavior, examining the neural underpinnings of task performance across the 

cortex, tracking learning behavior over time, and establishing connections between 

neural correlates and behavioral measures throughout the learning process. These 

discoveries have merely opened the door to further scrutiny, prompting additional 

potential avenues of research, raising new questions, and heightening awareness 

of the multifaceted aspects of our task. 

Behavior Paradigm  

We have deepened our understanding of the decision-making process associated 

with selectively responding to and ignoring similar stimuli. We trained mice to 

perform a whisker-based go/no-go selective detection task where they learn to 

respond to a target stimulus while withholding responses to a distractor stimulus. 

We used widefield calcium imaging in expert mice to analyze neural responses 

throughout dorsal cortex. In the first study, detailed in chapter 2, we observed 

robust sensory cortex to motor cortex propagation in the target-related hemisphere 

for target trials but attenuation of sensory-to-motor propagation for distractor trials. 

In chapter 3, we determined whether and how neuronal activity before stimulus 

onset predicts trial outcomes during goal-directed behavior. We found that lower 

prestimulus activity correlated with enhanced stimulus detection. The activity 

predictive of trial outcome was distributed through dorsal neocortex, rather than 



166 
 

being restricted to task-relevant sensory or motor regions. In chapter 4, we tracked 

the behavioral measures and their neural correlates across learning of the task 

and observed distinct correlations between the two measures.  

One limitation of my thesis work is that this exploration has been limited to a 

behavioral paradigm where the opposing stimuli are well separated across 

hemifields and hence perceptually quite easy to discriminate. To investigate a more 

refined discrimination, our lab has chosen to introduce a conceptually minor yet 

significant modification to our existing task paradigm. This decision is based on the 

advantage of using the same established behavioral and neuronal outcome 

measures, eliminating the need to validate entirely new measures. The current 

task involves a directional (rostral-caudal) discrimination task within the same 

whisker field, requiring the differential filtering of stimuli within overlapping cortical 

populations. Another interesting direction to take would be to implement a 

switching task to observe behavioral flexibility. This task includes within-session 

changes in target and distractor assignment in block design, which requires 

dynamic changes in stimulus filtering across blocks (McBurney-Lin et al., 2022). 

For both the tasks, we suspect that there might be distractor filtering within wS1 

and wM1 as observed in our original task.  
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Generalization across sensory modalities 

Stimuli previously associated with rewards tend to capture attention, even when 

they lack robust physical salience, are currently irrelevant to the task, and no 

longer predict rewards (Anderson et al., 2011; Anderson & Halpern, 2017; Watson 

et al., 2019). This value-based attentional bias can extend to objects perceptually 

related to the rewarded stimuli (Mine & Saiki, 2018). However, investigations into 

the generalization of stimulus-reward associations have predominantly centered 

on perceptual cues within a single sensory modality. Semantic and cross-modal 

generalization of such associations have been largely understudied despite real-

world learning applications (Dunsmoor & Murphy, 2015). Extending value-based 

attentional priority across sensory modalities in a semantic context would 

challenge existing assumptions about the neural mechanisms underlying reward 

history effects. This could offer new perspectives on maladaptive behaviors like 

addiction, given that attentional biases for drug cues significantly influence drug-

seeking behavior and contribute to relapse (Anderson, 2016). 

Mouse Models 

Animal models are necessary for understanding the pathophysiology of 

neuropsychiatric disorders such as ADHD, Autism, Schizophrenia, etc. These 

disease models could show faster reaction times to ‘go’ signal and slower reaction 

times to the ‘stop’ signal or increase in overall impulsivity. The transgenic GCaMP 

mice used in our study had faster reaction times and generally higher spontaneous 
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licking. These may indicate deficits regarding attention and/or hyperactivity. 

Classical transgenic rodent models contribute to understanding loss of function for 

specific genes in psychiatric disorders using conventional KO mice. In addition, the 

advent of tissue-specific Cre-loxP system enables to investigate more regional and 

temporal deletion or overexpression of a gene (Baker et al., 2020). For example, 

the Fmr1 KO mouse exhibits symptoms akin to those seen in the human condition, 

such as hyperactivity, repetitive behaviors, and seizures (Larson et al., 2008). 

Furthermore, this model presents abnormalities in the density of dendritic spines, 

making it a promising candidate for our research. These mice would make great 

candidates to be trained in our behavior paradigm to observe whether the 

attenuating filter exists if the mice fail to learn to ignore the distractor stimulus. 

The dysbindin-1 gene (DTNBP1: dystrobrevin binding protein 1) emerges as a 

notable susceptibility gene for schizophrenia. It predominantly localizes to neurons 

in the brain, contributing to the regulation of neurotransmitter release, expression 

of membrane-surface receptors, and synaptic plasticity. The Sandy mice, 

characterized by spontaneous Dtnbp1 deletion, exhibit behavioral abnormalities 

relevant to schizophrenia symptoms. These mice exhibit a range of behavioral 

abnormalities associated with schizophrenia symptoms, encompassing 

hypoactivity, heightened anxiety-like responses, diminished social interaction 

(Hattori et al., 2008), deficits in both long-term (FENG et al., 2008) and working 

memory (Takao et al., 2008), and challenges in contextual fear conditioning (Glen 

et al., 2014). The potential mechanisms underlying these behavioral abnormalities 



169 
 

in Sandy mice include diminished dopamine transmission in the forebrain (Hattori 

et al., 2008) and destabilization of snapin, a protein binding to SNAP25 that 

regulates calcium-dependent exocytosis (FENG et al., 2008). These mice also 

exhibit increased impulsive and compulsive behaviors relevant to psychiatric 

disorders. When trained on a reward-based operant task, the Dys KO mice 

produced more premature and timeout responses at the beginning of learning and 

significantly decreased these behaviors with learning (Carr et al., 2013).  

Widefield calcium imaging 

Exploring widefield calcium imaging posed an initial challenge in this research 

endeavor, given the relatively novel nature of the imaging technique. Once we had 

defined the behavior paradigm and identified the tool for assessing neural 

attributes to address our inquiries, the subsequent challenge arose in interpreting 

the results obtained through widefield imaging. Various methods were employed 

to process the raw fluorescence data, including mean grey value, baseline 

normalization, and sliding window normalization. In terms of quantitative analysis, 

decoding the fluorescence data provided valuable insights into our understanding 

of sensory encoding (distinguishing between stimulus present and stimulus 

absent), choice encoding (discerning response presence versus response 

absence), and so forth.  

Using the widefield calcium imaging method, we successfully captured neural 

activity from the majority of the dorsal cortex, encompassing our regions of interest. 
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However, it's important to note that this method comes with limitations, resulting in 

the inability to image certain areas such as the medial prefrontal cortex (mPFC) 

(Allen et al., 2017; Harris et al., 2019; Makino et al., 2017) and secondary 

somatosensory cortex (S2) (Condylis et al., 2020; Rossi-Pool et al., 2021). These 

regions may play crucial roles in sensory selection, utilizing memory from past 

experiences to inform present decisions, and tactile object recognition—all of 

which are integral aspects of our study. 

There are limitations in achieving cellular resolution with widefield imaging. For 

instance, if directional discrimination involves two spatially overlapping ensembles, 

widefield imaging may not be adequate to distinguish these populations. 

Additionally, the specific activities of distinct excitatory projection neurons or 

inhibitory neurons are not discernible. A promising avenue for future research 

would involve conducting widefield imaging exclusively from genetically or 

projection-defined neurons throughout the cortex. For instance, this could include 

imaging only PV neurons expressing GCaMP throughout the cortex or exclusively 

focusing on striatal-projecting neurons. This would also help with achieving 

pathway specificity of projection sites. 

Behavioral vs Neural correlates 

In exploring the impact of neural correlates on behavioral measures, we employed 

a simple yet effective method of analysis: examining the relationship through linear 

correlation, specifically reported as Pearson’s correlation (R). This analysis 
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provides insights into the degree of correlation between the measures. A positive 

R value indicates a linear correlation between the neural measure and the 

behavioral measure, occurring in phase with each other. Conversely, a negative R 

value signifies an inverse correlation between the neural measure and the 

behavioral measure. 

One limitation of this approach is that while it informs us about whether and how 

neuronal modulations correlate with individual behavioral measures, it doesn't 

compare neuronal modulations across behavioral processes. Multiple linear 

regression analyses, a statistical method utilizing one or more independent 

variables to predict the outcome of a dependent variable, offer a solution. For each 

mouse's neuronal modulation trajectory (dependent variable), ridge regression can 

be applied using the four behavioral learning trajectories as regressors. These 

analyses aim to answer a crucial question: to what extent does each behavioral 

learning measure co-vary with each neuronal modulation? 

Conducting a two-way ANOVA of the β-weights, followed by post-hoc pairwise 

comparisons, will enable the comparison of the main effects of neuronal 

modulation and behavioral measures. Additionally, for each behavioral measure, 

ranking the neuronal modulations with the highest β-weights provides insights into 

potential neuronal mechanisms that underlie the learning of specific behavioral 

processes. 



172 
 

This approach faces a few potential challenges. Firstly, there is the risk of 

collinearity among the regressors, which can complicate the assignment of model 

weights. To mitigate the impact of potential multicollinearity, ridge regression may 

be employed instead of the standard linear regression model, with the penalty term 

determined through cross-validation. It is worth noting that, in the behavioral-

neuronal comparison, behavioral measures serve as predictors for each neuronal 

measure. Previous validation work, encompassing a substantial sample size (n=52 

mice across learning, 6), has indicated low correlation among these behavioral 

measures, minimizing concerns about collinearity. 

The second limitation is that our behavioral-neuronal comparisons are inherently 

correlational. Consequently, it is not possible to assert that neuronal modulations 

directly cause behavioral learning. However, we anticipate that future studies will 

generate numerous mechanistic hypotheses that can be rigorously tested in 

subsequent causal investigations by performing chronic lesions of specific brain 

legions or by utilizing transient optogenetic manipulations. Based on our findings 

in chapter 4, for example, as the response rates (HR and FAR) and discrimination 

d' exhibit positive correlations with the preferred licking areas (tjMC and ALM), 

silencing either of these areas by either chronic lesioning or optogenetic 

suppression might have a detrimental impact on response rates and discrimination 

d'.  

Another consideration is that this method does not sample from vital non-surface 

cortices, such as the medial prefrontal cortex and orbitofrontal cortex. Sampling 
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these and sub-cortical structures will necessitate alternative approaches, such as 

silicon probe or Neuropixels recordings. 

Cellular mechanisms of reward association and uncertainty 

As our cortical research utilized a transgenic SNAP25 pan-neuronal promoter for 

calcium-related activity, the distinction between excitatory and inhibitory calcium-

related activity remains undetermined. Consequently, the observed dynamic 

fluorescence can only suggest potential regions of interest for future investigations 

into task-related function and circuitry. Exploring excitatory versus inhibitory 

transgenic lines has been proposed as a means to address this differentiation. 

Additionally, we anticipate that the overall low activity in the prestimulus state and 

the dynamic propagation of signals post-stimulus would be contingent on a specific 

(potentially learned) neuromodulatory tone. One particularly important 

neuromodulator to investigate in our learning studies is dopamine (see below). 

In the 1940s and 1950s, Hebb was among the pioneers proposing that alterations 

in synaptic strength, based on local patterns of activation, could elucidate the 

biophysical mechanisms behind conditioned reflexes. Bliss and Lomo (Bliss & 

Lomo, 1973) later established a connection between Hebb's theoretical proposal 

and the biophysical manifestation by demonstrating long-term potentiation (LTP) 

in the rabbit hippocampus. Subsequent biophysical studies have revealed several 

mechanisms for altering synaptic strength, closely tied to Hebb's theory and Bliss 

and Lomo's findings. (Wickens & Kötter, 1995)introduced a crucial concept known 
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as the three-factor rule, suggesting that synapses strengthen when presynaptic 

and postsynaptic activities coincide with dopamine release, and weaken in the 

absence of dopamine.  

Temporal-difference (TD) learning is an extension of the Rescorla-Wagner model 

that also takes into account the timing of different events. In the context of 

reinforcement learning, when an animal encounters a significant positive reward 

prediction error, signaling an unexpected reward, the TD model indicates a need 

to increment the value assigned to the associated actions or sensations. Dopamine 

neurons release dopamine uniformly throughout frontocortical–basal ganglia loops 

under such circumstances (Barto, 1995; Houk et al., 1995; Joel et al., 2002). 

According to the three-factor rule, any dopamine receptor-equipped neuron active 

during a movement, for instance, will have its synapses strengthened when 

dopamine is present. This implies that when a positive prediction error occurs, the 

entire active segment of the frontocortical–basal ganglia loop has its synapses 

strengthened. 

To understand the behavioral implications, consider neurons in the dorsal striatum 

forming maps of possible movements in extrapersonal space. Each time a 

movement occurs, the associated neurons are briefly active, and if followed by a 

positive prediction error, dopamine bathes the entire topographic map. This results 

in a permanent increase in synaptic strength among neurons associated with 

recent movements, encoding the expected value of those movements through 

repeated exposure to dopamine (Lau & Glimcher, 2007, 2008). 
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Crucially, all elements in this narrative align with preexisting observations of 

nervous system properties. Neurons in the striatum exhibit activity after 

movements, as posited by TD models. In prior research, it is observed that reward 

exerts an influence on both the primary motor (M1) and somatosensory (S1) 

cortices during both action and action observation (Marsh et al., 2015; D. McNiel 

et al., 2016; D. B. McNiel et al., 2016). Additionally, individual M1 neurons were 

revealed to multiplex information related to kinematics and reward (Marsh et al., 

2015). Subsequent support for this work came from Ramakrishnan et al. 2017 

(Ramakrishnan et al., 2017), where they similarly observed responses to reward 

prediction errors in both M1 and S1, highlighting the modulatory effect of reward 

on sensorimotor directional tuning curves. Dopamine releases a global prediction 

error signal throughout frontocortical–basal ganglia loops, and it induces LTP-like 

phenomena when correlated with underlying activity. After conditioning, 

synaptically driven action potentials in these areas encode the subjective values 

of actions, establishing the groundwork for implementing TD-class models of 

learning (Lau & Glimcher, 2007, 2008; Samejima et al., 2005). We could potentially 

express GCaMP in dopamine neurons and image their axons in dorsal cortex 

during learning. With that we can generate spatio-temporal maps of their activity 

during learning of the selective detection task.  

The formation of the prediction error signal coded by dopamine neurons can also 

be envisioned. Neurons in the striatum encode learned action values in their firing 

rates, sending outputs to dopaminergic nuclei as a reward prediction. Additionally, 
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dopaminergic neurons receive direct inputs from sensory areas detecting and 

encoding reward magnitudes. Constructing a prediction error signal at dopamine 

neurons simply requires excitatory and inhibitory synapses to compute the 

difference between predicted and experienced rewards in the voltage of the 

dopamine neurons or their immediate predecessors (Glimcher, 2011).  

We understand that dopamine stimulation plays a role in generating learning and 

behavior. Additionally, encountering rewards better than predicted stimulates 

dopamine neurons, suggesting that the dopamine response to natural rewards can 

directly influence behavioral learning and actions. Each instance of encountering 

a reward leads to dopamine neuron responses influencing subsequent behavior. 

An intriguing aspect is the dopamine response to positive prediction errors, where 

activation occurs when the received reward exceeds predictions. However, the 

challenge arises as each reward updates the prediction, making the previously 

larger-than-predicted reward the new norm, diminishing the dopamine prediction 

error response. Sustaining the same prediction error and dopamine stimulation 

would then necessitate consistently obtaining larger rewards (Schultz, 2016). Our 

lab is venturing into developing experiments to study predictive coding in the mice 

visual and whisker system, where the mice have to learn to respond to a sequence 

of stimuli and a mismatch in the sequence would lead to prediction errors. The 

anticipatory signals leading up to the motor response (licking) can be tracked with 

either electrophysiology or other calcium imaging techniques such as 2 photon 
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calcium imaging to observe the role of dopamine in behavioral learning and 

actions.   

Final Remarks 

In conclusion, we determined the neuronal changes in the cortex while mice 

learned to become experts in a selective detection task. However, the observations 

described here are limited by using specific tools and the task employed. Whether 

the neuronal and behavioral changes observed through learning are generated in 

the neocortex, or rather involve more complex signaling mechanisms involving 

sub-cortical structures are exciting topic of future explorations.  
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