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∗Department of Electrical Engineering, University of California, Los Angeles.
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†Department of Mechanical Engineering, University of California, Los Angeles
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Abstract— Distributed, high-density spatiotemporal observa-
tions are proposed for answering many river related questions,
including those pertaining to hydraulics and multi-dimensional
river modeling, geomorphology, sediment transport and ripar-
ian habitat restoration. In spite of the recent advancements in
technology, currently available systems have many constraints
that preclude long term, remote, autonomous, high resolution
monitoring in the real environment. We present here a case
study of an autonomous, high resolution robotic spatial map-
ping of cross-sectional velocity and salt concentration in a
river basin. The scientific objective of this investigation was
to characterize the transport and mixing phenomena at the
confluence of two distinctly different river streams - San Joaquin
River and its tributary Merced River. Several experiments for
analyzing the spatial and temporal trends at multiple cross-
sections of the San Joaquin River were performed during the
campaign from August 21-25, 2006. These include deterministic
dense raster scans and in-field adapted experimental design.
Preliminary analysis from these experiments illustrating the
range of investigations is presented with the focus on adaptive
experiments that enable sparse sampling to provide larger
spatial coverage without discounting the dynamics in the
phenomena. Lessons learned during the campaign are discussed
to provide useful insights for similar robotic investigations in
aquatic environments.

I. INTRODUCTION

River observations are important from the perspectives

of navigation, water supply, flood control, water quality

monitoring and management. Water managers in many of the

arid or semi arid regions, such as Western U.S., rely on quan-

titative water distribution algorithms to balance the needs of

municipalities, farms, flood control and aquatic ecosystems.

Deterministic river flow and transport models can play a

role in determining optimal distributions. However, lack

of advances in sensing systems often resulted in usage of

overly simplified routing models for regulatory work. These

routing models are often calibrated using time series data

from a network of river gauging stations which record gross

flow and, in some cases, temperature and bulk salinity in

terms of the water’s electrical conductivity (EC) [1].

One such example is San Joaquin river basin in Central

California where a robust network of 14 river gauging

stations with a spatial granularity of tens of kilometers is

operated and maintained by government agencies. Several

factors such as water resources, population influxes, land

use changes and climate change impacts [2] create a

demand for high density, distributed observation of flow

and water quality parameters. Such observations will enable

distributed model parameterization and enable more detailed

water quality forecasting than had been possible in the past.

This will also provide policy-makers with the information

to make more informed decisions about issues extending

beyond water supply and flood control to the restoration of

river habitat and aesthetics.

Several prototype sensing systems have been used for

sensing the aquatic systems at different scales. Buoyed

or moored deployment platforms exist which can provide

vertical profiling capabilities over long time periods at key

locations [3], [4]. Networked Aquatic Microbial Observing

System (NAMOS) [5] employs a system of static buoys

equipped with chlorophyll sensor along with an array of 6

thermistors, each at different depths and a boat equipped with

fluorometer and thermistor to provide water surface measure-

ments. The system in its current form has limited capabilities

in terms of providing cross-sectional phenomena distribution.

Autonomous underwater vehicles (AUVs) have been used

extensively by the oceanographic community, and more

recently in lakes and large rivers [6]. However, greater

currents and confined operating space associated with small

to moderately sized rivers limit the applicability of AUVs in

these systems. The Rivernet monitoring program is an effort

towards providing high resolution (temporal) measurement

of nitrate using in-stream nutrient analyzers [7]. However

the instrumentation measures a single point within the

flow stream and hence only provides temporally high

resolution data, without any spatial resolution. In spite of

the recent advancements in technology, currently available

systems have many constraints that preclude long-term,

remote, autonomous, high-resolution monitoring in the real

environment. These include availability of energy, precise

autonomous actuation, precise localization, data commu-

nication and others. Researchers commonly survey stream

velocity by manual operations, for example suspending

sensors from bridges [8] or performing high resolution

flow field characterization of river cross-section using laser

doppler anemometer [9]. Literature survey reveals that this

is for the first time that such an extensive set of experiments

have been performed using an autonomous robotic system,

performing high resolution spatial mapping of cross-sectional

velocity and salt concentration in a river basin.

Such high granularity and autonomous measurements

were made possible using a cable based robotic system - Net-

worked Info Mechanical System (NIMS), introduced in [10].

A Rapidly Deployable (RD) version, NIMS-RD (Fig. 1), was

developed to fill the void for efficient and high granularity
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(a) Campaign site (b) Schematic view with basic cable setup

Fig. 1: Satellite view of campaign site and schematic diagram of NIMS system used for autonomous sampling

two dimensional mapping. In this paper we provide a case

study of a campaign at San Joaquin river for mapping the

river cross-sectional velocity and salinity, executed from Au-

gust 21-25, 2006 with NIMS-RD. Fig. 1a displays the satel-

lite view of the campaign site. We performed autonomous

robotic sensing experiments at the multiple cross-sections

and collected physical samples for detailed lab analysis. Real

time data collection facilitated high temporal resolution data.

Autonomous motion of the mobile system facilitated high

spatial resolution data. The high resolution data was then

used for preliminary analysis to learn the spatial distribution.

This was followed by several adaptive experiments based on

learned phenomena distribution. Detailed analysis of such

adaptive experiments is presented in this paper to motivate

the requirement of sparse sampling, coupled with efficient

robotic systems, to provide larger spatial coverage without

discounting the dynamics in the phenomenon distribution.

II. NIMS-RD: INFRASTRUCTURE SUPPORTED

AUTONOMOUS ROBOTIC SYSTEM

An actuated sensor system, NIMS-RD [11] (hereafter

called NIMS), was used during the campaign to navigate a

sensor payload anywhere within the two dimensional cross-

section of the river. Fig. 1b displays the schematic diagram

of the system. It is comprised of three main cables, the

mounting hardware, actuation module and a shuttle. The

three cables are: the static cable supporting the shuttle and

the vertical node platform, a horizontal and a vertical cable

used to control the corresponding motion of the sensor

payload. The mounting hardware is supported by the static

cable and is used to attach the actuation module at one

transect end and horizontal and vertical cables at the other

end. The shuttle and the vertical node platform are actuated

using two motors located on one side of the transect, through

the horizontal and the vertical cables. Both of these motors

are controlled simultaneously using a serial interface.

This system architecture is an improvement from first gen-

eration system introduced in [10]. It allows for reduced node

mass, increased horizontal and vertical node speed, constant

and convenient access to the actuation control module and

rapid yet flexible deployments. Use of cable based system

enabled precise localization and ability to actuate heavy

sensor payload. System design rationale and implementation

Fig. 2: Complete set of sensors with physical sampling device

details are provided in [11]. Sensing at the lowest point

close to the river floor without damaging the sensor system

was made possible through accurate depth profiling.

Deflection in the static cable due to system weight may

disturb the localization calibration of the system. Winches

were used to increase the tension on the static cable to avoid

excessive cable deflection, thereby facilitating long term

autonomous motion resulting from accurate localization.

The cable is specified to support a maximum tension of

3700 pounds while the maximum tension on our system was

close to 750 pounds which was well within the safety limits.

Tensioning spring at one end keeps the horizontal cable

loop tight and prevents it from slipping on the spool on the

other side. The vertical cable was tensioned manually. This

proved to be sufficient, since the vertical cable was also

kept under tension by the sensor payload.

Vertical festooning connected to the sensor system

comprised of the data and the power cables. Power was

delivered to the sensor system using a multi conductor cable.

Serial interfaces from the sensor system were supported

using a serial to ethernet bridge interface, supported by an

embedded control and sampling system. Power supply, power

control, sensor interface and long range communication

were all integrated into a sensor node supported, along with

the sensor payload, and by the NIMS system. Real time data

monitoring was performed at the near shore side to ensure

that data from each sensor is collected autonomously without

any error. Several factors including real time data streaming
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Sensor type Sensing Parameter Sensing Rate Power Requirements

Hydrolab Minisonde 4a [12] Temperature, pH, specific con-
ductivity

0.1 Hz (internal logging), 1 Hz (logging over
serial port)

External AC power and/or
battery (AA) power

Hydrolab DS5 [12] Depth, oxidation reduction po-
tential, turbidity, Luminescent
Dissolved Oxygen (LDO)

0.1 Hz (internal logging), 1 Hz (logging over
serial port)
Simultaneously logs internally and over serial
port

External AC power and/or
battery (C) power

ISUS sensor [13] Nitrate 1 Hz (over serial port)
No memory for internal logging

External AC power

Argonaut-ADV [14] Flow velocity 0.1 Hz (both internal and serial port logging)
Simultaneously logs internally and over serial
port

External AC power

TABLE I: Description of sensors used during the campaign

and monitoring, sufficient AC power for the payload devices,

accurate depth profiling and precise localization among

others enabled autonomous motion of the robotic system.

Several sensors used at different stages of the campaign

for monitoring different phenomena are described in Table I.

Detailed characterization of the sensed phenomena may

be constrained by the available sensors. In spite of recent

advances in commercially available sensors for aquatic

monitoring, certain characteristics still require detailed lab

analysis using physical samples of water collected from the

river. To facilitate such analysis, a physical sampling device

was developed to collect water samples in the field from any

desired location. The device uses dual spring loaded syringes

to collect water samples when actuated at any location

within the two dimensional cross-section of the river. In

consultation with the environmental scientists, we learned

that a sample quantity of approximately 30 ml is sufficient

for detailed laboratory analysis of most phenomena of

interest in this application area. Our device collects

approximately 70 to 80mL of water, in two syringes, at a

time ensuring that at least twice the required amount of water

samples are collected from each desired location to account

for errors during lab analysis. It uses a system that triggers

the action of a spring-loaded device controlled by a solenoid

actuated by the sensor node power system. Fig. 2 shows the

picture of all four sensors and the physical sampling device.

III. EXPERIMENTAL DESIGN

The scientific objective of this investigation was to

characterize the transport and mixing phenomena at the

confluence of two distinctly different rivers: the Merced

River (relatively low salinity) and the agricultural drainage-

impacted San Joaquin River (relatively high salinity). High

spatial resolution sensing experiments were performed at

two different transects. Fig. 1a displays the two transects in

the satellite image of the campaign site. The first transect

was selected further downstream from the confluence point

of San Joaquin river and Merced river (approximately 290

meters downstream) and was representative of the conditions

within the downstream portion of the confluence mixing

zone. The second transect was selected upstream closer to

the confluence of the two rivers (approximately 130 meters

from the confluence point). This was representative of the

conditions in the upstream portion of the confluence mixing

zone. Approximate widths of the two transect was 50 meters

and 70 meters respectively.

Deterministic dense scans with uniform sampling density
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Fig. 4: Spatial variation of specific conductivity at two different
depths during the raster scan in the morning of August 23.

(i.e raster scans) were performed at both transects. Sampling

density for the scan was selected to be 1 meter across

the river and 0.6 meters along the depth. This density was

decided in consultation with environmental scientists based

on prior experiences in sensing such phenomena distribu-

tion [15]. This resulted in a total of 250 and 293 observation

locations in the two transects respectively. Dwelling time at

each sensing location was fixed to 30 seconds to comply with

the requirements associated with both the settling time of

sensor systems and the requirement to collect multiple sam-

ples at each location to verify sampling stability. Fixing the

dwelling time also ensured uniformity across several raster

scans at both transects. However, with such an experimental

configuration, it took approximately 158 and 185 minutes to

complete a single raster scan at the two transects respectively.

Accurate modeling of such environments require making

these observations over large spatial domain as well as

incorporating the spatiotemporal dynamics of the phenomena

distribution. This motivated the need for adaptively sampling

the environment. This involves performing sparse sampling

to provide larger spatial coverage without discounting the

spatiotemporal dynamics in the phenomena. We performed

several in-field adapted experiments, described next, and de-

tailed analysis from such experiments is presented as a study

of the trade off between sensing time and sensing accuracy.

The first adaptive approach that we studied was a common

approach from spatial statistics based on a rich class of

probabilistic models called Gaussian Processes (GPs) [16].

Using GP based approach, we quantified the informativeness

of a particular location, in terms of the uncertainty about our

prediction of the phenomena at the unobserved locations,

given the observations from already visited locations. To
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(a) Specific conductivity at the first transect
during raster scan on August 23 morning
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(b) Nitrate at the first transect during raster scan
on August 23 evening
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(c) Flow distribution at the second transect
during raster scan on August 25 morning

Fig. 3: High granularity (raster) scans at the two transects for different parameters

quantify this uncertainty, we use the mutual information

(MI) criterion [17]. If the phenomenon is discretized into

finitely many sensing locations V , then for a set of locations

P visited by the mobile robot, the MI criterion is defined as:

MI(P) ≡ H(XV\P) − H(XV\P | XP), (1)

where H(XV\P) is the entropy of the unobserved locations,

and H(XV\P | XP) is the conditional entropy after observing

sensing locations P . Therefore, mutual information measures

the reduction in uncertainty at the unobserved locations.

In particular, we learned a non-stationary GP model by

maximizing the marginal likelihood [16] using the specific

conductivity data for half (125 locations out of the total of

250) of the observation locations from the raster scan. We

then used the mutual information criterion to greedily select

a set of 30 and 50 locations each, from the remaining 125

locations. Based on the observations from this subset of

locations, specific conductivity at the remaining locations

was predicted using the learned model.

As a measure of trade off between sensing time and pre-

diction accuracy, we also reduced the density of observation

locations and predicted the phenomena at the rest of the loca-

tions using simple interpolation. It was observed that specific

structure in the phenomena distribution (vertical stratifica-

tion) could be exploited to reduce the density of observation

locations with very little reduction in prediction accuracy.

Logging the data in real time using the serial port

connectors on the sensors provided several advantages. This

increased the logging rate for both Hydrolab Minisonde-4a

and Hydrolab DS5. Additionally, logging in real time

ensured robustness against the system failure which could

simply be detected based on graphical visualization. We

monitored the data in real time and it helped us at several

occasions when we were able to detect certain faults in real

time and were able to take immediate remedial actions.

IV. RESULTS AND DISCUSSION

We present here the analysis from several experiments

performed during the campaign. Several spatial and tem-

poral trends in the distribution of observed phenomena are

presented to display the spatiotemporal dynamics.These ob-

served dynamics motivated the experimental design involving

several adaptive approaches discussed in Section III. Detailed

analysis from these experiments is presented in Section IV-C

to further motivate the requirement for efficient experimental

design in addition to the robust and autonomous robotic

sensing system. Piecewise bilinear interpolation is performed

between the sampling locations to create the surface distribu-

tions. For each surface distribution, the mean at each location

is considered as the sampled value at that location. Points in

the surface distributions, wherever applicable, represent the

observation locations. As per the coordinate system, x-axis

represent distance along the cross-section of the river, while

y-axis represent distance along the depth (y = 0 represent

the water surface). The water stream on the near side (lower

x coordinate value) is coming from Merced river while the

water stream on the far side is coming from San Joaquin

river.

A. Spatial Trends

Spatial distributions of three of the several measured

parameters observed during high granularity raster scans are

shown in Fig. 3. Fig. 3a displays the distribution of specific

conductivity (µS/cm) as measured using Minisonde-4a

at the first transect during a raster scan performed on the

morning of August 23. For precise visualization of the

variation along the cross-section, the corresponding spatial

distribution at two different depths of 0.6 meters and 1.2

meters is presented in Fig. 4. Fig. 3b shows the distribution

of nitrate concentration (µMol/L) as measured by the ISUS

sensor along the same cross-section during the evening of

August 23. Due to the difference in the lengths of ISUS

and Minisonde-4a, ISUS sensor was above the river surface

for all the observations taken at y = 0. Therefore, only the

readings for depths less than 0 are considered for creating

the surface distribution.

Strong vertical correlation can be easily observed from

all surface distributions as well as from the comparison of

specific conductivity curves at different depths. Additionally,

from the surface distributions it can be clearly observed

that there exists a vertical stratification with three different

zones. Two zones on either end represent individual streams

from San Joaquin river and Merced river while the middle

one represent the confluence mixing zone.

Fig. 3c shows the flow distribution (cm/s) as measured

by Argonaut-ADV along the cross-section of the second

transect on the morning of August 25. As expected, there is

near zero flow close to each bank and close to the river floor,

while there is a uniform flow in the middle of the river.

B. Temporal Trends

Fig. 5 shows temporal variation of specific conductivity

as observed during several experiments. Fig. 5a shows the

distribution of specific conductivity at a depth of 1.2 meters

across raster scans performed on August 23 and August 24
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Fig. 5: Temporal trends for specific conductivity at the first transect

at the first transect. This displays the long term temporal

trends over consecutive days for the distribution of specific

conductivity. As can be observed, there is considerable

difference not just across different times during the day but

also across same time for consecutive days.

To analyze the short term temporal trends of the

phenomena distribution, we selected a set of 7 locations at a

depth 1.2 meters below the water surface. At each location

we increased the dwell time to 5 minutes. Fig. 5b shows

the mean value during the dwelling time of 5 minutes at

different locations along the cross-section of river. Fig. 5c

shows the corresponding time series measured at a distance

of 15, 30 and 40 meters during the duration of 5 minutes.

As is clear from the plots, there is considerable temporal

variation even in a short duration of 5 minutes, especially

towards the far side of the river. It can be observed that the

time series for each spatial point has different characteristics

(much more extreme excursions in the middle than at the

edges). This further motivates adaptive dwelling time based

on dynamics in the phenomena distribution.

C. Adaptive Sampling

Fig. 6 shows the distribution of specific conductivity when

a sparse sampling density is considered at the first transect.

Fig. 6a displays the distribution of specific conductivity

when sparse density is considered along the cross-section,

keeping the density along the depth same. Fig. 6b represents

the distribution of specific conductivity when sparse density

is considered along the depth keeping the density along

the cross-section same. Each of these two scans present an

interpolation from a subset of locations from dense raster

scan, performed on morning of August 23 are considered.

These surface distributions visually appear similar to those

created using the complete set of observation locations.

This is a preliminary indication that the phenomena shows

a smooth distribution with no abrupt peaks. Thus, a model

based approach can be effectively used to perform sparse

sampling without neglecting the spatiotemporal dynamics.

Since the phenomena displayed vertical stratification, an

intuitive adaptive approach would be to reduce the observa-

tion density along the y axis by a larger magnitude compared

to reduction in observation density along the x axis. This

simple experiment was executed on August 24 around the

same time as the dense scan demonstrated in Fig. 3a. It re-

sulted in observations at a total of 85 locations. Additionally,

we observed that dwelling time at each observation location

can be reduced to 15 seconds without significant reduction

in prediction accuracy. With this reduced dwelling time total

experiment time, including the observation and travel time,

for this scan was approximately 36 minutes. Fig. 6c displays

the surface distribution produced using data observations

from this scan. The difference in the interpolated surface,

when compared to the surface distributions created from

experiments on August 23, can be attributed to the temporal

variations in the phenomena distribution. These temporal

variations are discussed in detail in Section IV-B.

As a preliminary testing of a model based adaptive

approach, we trained a GP using a subset of locations from

the raster scan performed on August 23. Next NIMS-RD

performed observations at the greedily selected subset of

locations. Consequently the phenomena is reconstructed by

predicting the values at the unobserved locations using the

learned model and observed values. Finally the complete

set of values, predicted and sampled, are interpolated to

generate the surface distribution. Fig. 7a and Fig. 7b display

the predicted surface when 30 and 50 locations are selected

respectively out of a total of 250 locations. These locations

are selected greedily based on Mutual Information criterion

discussed in Section III. Total time duration for observing

at 30 locations was approximately 20 minutes while for

50 locations it was approximately 31 minutes. This is

considerably smaller when compared with 158 minutes

for the complete raster scan. Thus, learning a model for

phenomena distribution and accordingly performing an

adaptive sensing could save a lot of experimental time.

To estimate the accuracy of prediction using the GP

based approach, we need ground truth about the phenomena

distribution as the reference. To estimate this ground truth

data, we neglected the temporal variation across consecutive

days and used the data from the raster scan experiment

at approximately the same time the previous day. Fig. 7c

represents the distribution of specific conductivity as was

sampled during the raster scan, at approximately the same

time during the previous day. The predicted surface using

the GP based approach appears visually similar to the

actual phenomenon distribution. Still, there is considerable

difference between the predicted surface and the ground

truth. This could be attributed to several reasons. The primary

reason based on our analysis is the temporal variation in the

phenomena distribution. The model was learned based on a
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(a) Sparse sampling across the transect
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(b) Sparse sampling along the depth
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(c) sparse sampling using the NIMS system

Fig. 6: Effect of sparse sampling on specific conductivity at the first transect

raster scan performed at the previous day during a different

time of the day. The model in its current form, does not

take into account the temporal variations in the phenomena

distribution. This may lead to inaccuracy in estimating the

subset of observation locations in predicting the phenomena

at unobserved locations. Another reason for the non smooth

surface distribution can be the bilinear interpolation used

for creating these surfaces. These are only the preliminary

results from one of the several adaptive experimental design

approaches we intend to study during our future deployments

for modeling the distribution of several phenomena.

D. Physical Sampling

The physical sampling device was used to collect water

samples from several locations along the cross-section

of the first transect. Several lab tests show detectable

amounts of boron and phosphate, elements interesting to

the environmental scientists but can not be detected using

the currently available suite of sensors. Additionally, we

also tested the collected samples for nitrate concentration

and the measurements were well in accordance with the

measurements taken by ISUS sensor in the river. This

further validated the calibration of the sensor and precision

of the autonomous collection of physical water samples.

V. LESSONS LEARNED

The application of autonomous robotic sensing in complex

river system environments presents a wide range of chal-

lenges that are not encountered in laboratory systems. While

the described experimental campaign, employing the NIMS

robotic system, has provided data of immediate value to

the urgent environmental investigations, it has also provided

lessons that will advance next versions of the actuated

sensing systems (such as NIMS). Specific structure in the

observed phenomena motivated the requirements for adaptive

experiment design and efficient robotic system to effectively

sense larger spatial domains without discounting the spa-

tiotemporal dynamics.

Campaign experience had shown that selection of specific

deployment sites should be done very carefully accounting

for all the system constraints. For a cable based robotic sys-

tem requiring support infrastructure, availability of suitable

anchoring system should be the primary concern for the

choice of deployment site. This requires detailed inspection

of each of the sites prior to the deployment to ensure avail-

ability of necessary infrastructure. It also permits advance

installation of the anchoring system, adapting to the unfore-

seen circumstances. For our campaign, the deployment sites

were inundated by flood waters merely a few months prior to

this deployment rendering the soil incapable to support heavy

system infrastructure. Each of the two deployment sites were

chosen based on the availability of natural (trees) or man

made (steel towers) infrastructure used in addition to our

anchoring system to support the heavy cable based system.

Cable based robotic system in the real environment may

interfere with the routine work of the individuals using the

same environment. In our case, some of the fishermen used

to go around in the boats in the river later in the day. Setting

up the system each morning and taking it down in the

evening is a cumbersome process that should be avoided.

This is another criterion that should be kept in mind while

selecting the possible sites for the deployment. At out first

transect (where we performed most of our experiments)

we supported our cable infrastructure with another cable,

at more suitable height, running between the the two steel

towers that were already in place.

The use of cable based robotic system introduces high

precision in transport. However, to exploit this capability

over long transects (spanning over 50 meters), deployment

design limits must be incorporated. First, the essential

horizontal and the vertical drive cables enabling the

corresponding motion of the sensing node, require an

appropriate tension. A low tension on either of these cables

would cause non-deterministic cable motion due to a slipping

action encountered at the cable actuators. High tension at the

cable results in extra load on the motor system. This results

in excessive motor actuator heating and ultimately a need

to disable these devices during operation for protection.

To avoid this problem, the NIMS design incorporates

tensioning spring at one end of the horizontal cable. This

provides sufficient tension on the cable, while at the same

time ensures that the tension does not overheat the motors.

Nature brings with it the severe conditions that cause

degradation to equipment resulting in in-field failure, not

typically encountered in laboratory environment. This is

critical to avoid, since the value of acquired data is high and

critical to the end users. First, electronic components and

infrastructure components must be protected from moisture

and be also equipped to withstand indefinite immersion

in potentially corrosive water solutions. Further sources of

failure are associated with the integrity of data transmission
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(c) Raster scan

Fig. 7: Predicted distribution of specific conductivity at the cross-section of the first transect using Gaussian Process based modeling and
comparison with the distribution sampled by raster scan around the same time, the previous day

cables and connectors. An essential step is the introduction

of redundancy in the data capture. This was accomplished

by applying both real time monitoring (relying on data

transmission cables) as well as the simultaneous archiving of

data in the sensor systems themselves using the nonvolatile

memory storage. Finally, reliability of sensor node power

systems presents yet another concern. Thus, in addition

to local energy storage in primary batteries, power is also

supplied to sensors to provide a long-term, reliable power

source. All of these design features proved to be essential

for the success of the campaign described here.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described a case study for an autonomous,

high resolution robotic aquatic sensing and its deployment in

an important river system. Experimental investigations were

directed to resolve important phenomena in river environ-

ment. Several experiments varying from deterministic, dense

uniform scans for estimating spatial trends to experiments

for estimating the temporal trends were performed during

the campaign at San Joaquin river. Specific structure in the

observed phenomena (vertical stratification) motivated the

requirement for adaptive experimental design in addition to

efficient robotic system to effectively sense larger spatial

domains without discounting the spatiotemporal dynamics.

From an environmental science perspective, this campaign

produced coupled velocity and water quality assessments

at previously unobservable spatial resolution. Coupled dis-

tributions enable precise estimation of chemical fluxes and

mass balances, which assist environmental scientist to better

understand and model contaminant mixing, reaeration, and

other hydraulics-based processes [9], [18] Physical water

samples were collected using the autonomous robotic system,

from several locations and depths in the river providing a

measure of contaminant concentration for those components

not detectable by the available sensor suite.

Important lessons learned during the campaign provided

a rich set of insights into the preparation for any future

campaign in aquatic monitoring. These are currently

used for guiding further advances in autonomous NIMS,

and can be applied to any cable based robotic sensing

systems. Additionally, preliminary analysis from adaptive

experimental design further motivated the development and

verification of other adaptive approaches, optimized for river

system monitoring, that is currently underway. To make the

system completely autonomous, efforts are also directed to

make several associated operations such as calibration and

depth profiling also autonomous.
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