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THE PRIMITIVE COHOMOLOGY OF THETA DIVISORS

ELHAM IZADI AND JIE WANG

Dedicated to Herb Clemens

Abstract. The primitive cohomology of the theta divisor of a principally polarized abelian variety

of dimension g is a Hodge structure of level g−3. The Hodge conjecture predicts that it is contained

in the image, under the Abel-Jacobi map, of the cohomology of a family of curves in the theta

divisor. We survey some of the results known about this primitive cohomology, prove a few general

facts and mention some interesting open problems.
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Introduction

Let A be an abelian variety of dimension g and let Θ ⊂ A be a theta divisor. In other words,

Θ is an ample divisor such that h0(A,Θ) = 1. We call the pair (A,Θ) a principally polarized

abelian variety or ppav, with Θ uniquely determined up to translation. In this paper we assume Θ

is smooth.
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2 ELHAM IZADI AND JIE WANG

The primitive cohomology K of Θ can be defined as the kernel of Gysin push-forwardHg−1(Θ,Z)→
Hg+1(A,Z) (see Section 1 below). We shall see that K inherits an integral Hodge structure of level

g − 3 from the cohomology of Θ.

Recall that the level of an integral or rational Hodge structure H is defined to be

l(H) := max{|p− q| : Hp,q 6= 0}

where Hp,q is the (p, q) component of the Hodge decomposition of HC. Alternatively, we define the

coniveau of H to be

γ(H) := min{q : Hp,q 6= 0}.

Thus

l(H) + 2γ(H) = weight of H.

We will always designate a Hodge structure by its lattice or rational vector space H, the splitting

HC := H⊗ C = ⊕p+q=mHp,q being implicit.

The general Hodge conjecture says that KQ is contained in the image of the cohomology of a

proper algebraic subset of Θ. More precisely, let X be a smooth projective algebraic variety and m

and p two positive integers with 2p ≤ m. Grothendieck’s version of the general Hodge conjecture

[Gro69] can be stated as

Conjecture 1. GHC(X,m,p): For every rational sub-Hodge structure V of Hm(X,Q) with level

≤ m − 2p, there exists a closed algebraic subset Z of X of pure codimension p such that V ⊂
Ker{Hm(X,Q)→ Hm(X \ Z,Q)}.

In the case of KQ, we have X = Θ, m = g − 1 and p = 1. We are therefore looking for a divisor

in Θ.

The general Hodge conjecture for KQ can be answered positively for g ≤ 5. Here we survey these

results and the tools used to obtain them. We also say a few words about higher dimensional cases

and mention other interesting problems related to the primitive cohomology group K.

There are relatively few examples of lower level sub-Hodge structures of the cohomology of alge-

braic varieties that are not already contained in the images of the cohomology groups of subvarieties

for trivial reasons. Some of the most interesting such examples are provided by abelian varieties,

such as abelian varieties of Weil type (see, e.g., [Iza10]).

For a smooth hypersuface Y of degree d in Pg, the primitive cohomology Hg−1(Y,Q)0 is a sub-

Hodge structure of coniveau at least 1 if and only if Y is Fano, since Hg−1,0(Y ) ∼= H0(Y,KY ). Thus,

if Y is of general type or Calabi-Yau, i.e. d ≥ g+ 1, H0(Y,Q)0 is of coniveau 0. On the other hand,

the general Hodge conjecture is true for Fano hypersurfaces with coniveau 1 primitive cohomology

group (see, e.g.,[Voi11]).
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1. General considerations

There is a strong relation between the cohomology of A and Θ. For instance, one has the Lefschetz

hyperplane theorem:

Theorem 1.1. Let j : Θ ↪→ A be the inclusion. Then

j∗ : Hk(Θ,Z) −→ Hk(A,Z) j! : Hk(Θ,Z) −→ Hk+2(A,Z)

j∗ : Hk(A,Z) −→ Hk(Θ,Z) j! : Hk+2(A,Z) −→ Hk(Θ,Z)

are isomorphisms for k < g − 1, are isomorphisms for k > g − 1.

Also j∗ and j! are surjective for k = g − 1, j∗ and j! are injective for k = g − 1. The maps j! and j!

are defined to be

j! := PΘ.j
∗.P−1

A , j! := P−1
A .j∗.PΘ,

where PΘ : Hk(Θ,Z) −→ H2g−2−k(Θ,Z), PA : Hk(A,Z) −→ H2g−k(A,Z) are the Poincaré duality

maps. We also have

∪θ = j!.j
∗,

where ∪θ is the cup product with the fundamental class of Θ.

Proof. See, e.g., [AF59]. �

It is well-known (see, e.g., [IS95] Proposition 1.1) that the integral cohomology and homology

groups of Θ and A are torsion-free.

The cohomology of Θ is therefore determined by that of A except in degree g − 1. Following

[IS95] and [ITW], define

K := ker{j! : Hg−1(Θ,Z)−→→ Hg+1(A,Z)}

so that its dual lattice is (see [IS95] Proposition 1.3)

K∗ = coker{j∗ : Hg−1(A,Z) ↪→ Hg−1(Θ,Z)}.

Lemma 1.2. The rank of K is

rank(K) = g!− 1

g + 1

(
2g

g

)
.

Proof. It follows easily from Theorem 1.1 that the rank of K is

rank(K) = hg+1(A)− hg(A) + (−1)g−1(χtop(Θ)− χtop(A)).

Using the exact sequence

0 −→ TΘ −→ TA|Θ −→ OΘ(Θ) −→ 0,

we see that the total Chern class c(TΘ) of the tangent bundle of Θ satisfies the identity

c(TΘ)(1 + θ|Θ) = 1.
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Therefore

χtop(Θ) = deg cg−1(TΘ) = (−1)g−1g!.

As hg+1(A) =
(

2g
g+1

)
and hg(A) =

(
2g
g

)
, we find

rank(K) = g!− 1

g + 1

(
2g

g

)
as claimed. �

The integral lattices K and K∗ inherit Hodge structures from Hg−1(Θ,Z). One can use Griffiths’

residue calculus [Gri69] to compute all the Hodge summands of K as follows.

Put U := A \ Θ and let i : U → A be the natural inclusion. Also, for an integer k ∈ {0, . . . , g},
let

Hg−k(A,Q)prim := ker{∪θk+1 : Hg−k(A,Q) −→ Hg+k+2(A,Q)}
be the (g− k)-th primitive cohomology group of A. The Gysin exact sequence (see [Voi03, p. 159])

−→ Hg−2(Θ,Q)
j!−→ Hg(A,Q)

i∗−→ Hg(U,Q)
Res−→ Hg−1(Θ,Q)

j!−→ Hg+1(A,Q) −→

induces a short exact sequence of mixed Hodge structures

0 −→ Hg(A,Q)prim −→ Hg(U,Q)
Res−→ KQ −→ 0.

Thus for 0 ≤ p ≤ g, the induced sequence on the Hodge filtration

0 −→ Hg−p,p(A)prim −→
F g−pHg(U)

F g−p+1Hg(U)
−→ Kg−p−1,p −→ 0(1.1)

is exact.

Griffiths’ residue calculus implies that there is an exact sequence

H0(Ωg−1
A (pΘ))

d−→ H0(ωA((p+ 1)Θ))
αp−→ F g−pHg(U) −→ 0(1.2)

where the leftmost map is the exterior derivative and the middle map sends a rational g-form on A

with a pole of order ≤ p+ 1 on Θ to its De-Rham class in U (c.f. [Voi03, pp. 160-162]).

Denote

αp : H0(Θ,OΘ((p+ 1)Θ)) ∼=
H0(ωA((p+ 1)Θ))

H0(ωA(pΘ))
−→ F g−pHg(U)

F g−p+1Hg(U)

the induced map.

Lemma 1.3. The Hodge structure on K satisfies Kg−1,0 = 0 and dimC Kg−2,1 = 2g − 1 − g(g+1)
2

.

Thus K and K∗ have level g − 3 (g ≥ 3). For p ≥ 2, we have an exact sequence

H0(Θ,OΘ(Θ))⊗H0(Θ,OΘ(pΘ)) −→ H0(Θ,OΘ((p+ 1)Θ))
αp−→ F g−pHg(U)

F g−p+1Hg(U)
−→ 0,

i.e. F g−pHg(U)
F g−p+1Hg(U)

is isomorphic to the Koszul cohomology group K0,p+1(Θ,OΘ(Θ)) ∼= K0,p+1(Θ, KΘ)

(see, e.g., [Gre84a]).
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Proof. When p = 0, 1, the image of the exterior derivative in (1.2) is zero. We conclude from (1.2)

that H0(ωA(Θ)) ∼= F gHg(U) ∼= C and

H0(Θ,OΘ(2Θ))∼=
F g−1Hg(U)

F gHg(U)
.

Therefore, by (1.1), Kg−1,0 = 0. Since h0((Θ,OΘ(2Θ)) = 2g−1 by Riemann-Roch and hg−p,p(A)prim =
g(g+1)

2
, we obtain from (1.1) that dimC Kg−2,1 = 2g − 1− g(g+1)

2
.

Let Qp+1 ∈ H0(OA((p+1)Θ)) be such that Qp+1

θp+1 dz1∧ ...∧dzg ∈ F g−p+1Hg(U) where {dz1, ..., dzg}
form a basis of H0(A,Ω1

A). Thus, by (1.2), there exists Qp ∈ H0(OA(pΘ)) such that the rational

form (
Qp+1 − θQp

θp+1

)
dz1 ∧ ... ∧ dzg = dγ

for some γ =
∑g

i=1( si
θp

)dz1 ∧ ... ∧ d̂zi ∧ ... ∧ dzg, with si ∈ H0(OA(pΘ)).

We directly compute

dγ =

g∑
i=1

(−1)i

(
∂si
∂zi
θ + (−p)si ∂θ∂zi

θp+1

)
dz1 ∧ ... ∧ dzg.

Comparing the two sides, we see that

Qp+1 − θQp =

g∑
i=1

(−1)i
(
∂si
∂zi

θ + (−p)si
∂θ

∂zi

)
.

Restricting the above equality to Θ, we obtain

Qp+1|Θ = (−p)
g∑
i=1

(−1)i
(
si
∂θ

∂zi

)
|Θ ∈ H0(Θ,O((p+ 1)Θ)).

Since { ∂θ
∂zi

: i = 1, ..., g} form a basis of H0(Θ,OΘ(Θ)) (see, e.g, [Gre84b, p. 92]), we conclude our

proof. �

For g ≤ 2, K = 0. For g = 3, the lattice K has rank 1 and level 0, i.e., it is generated by a Hodge

class of degree 2. By the Lefschetz (1, 1)-theorem, this is a rational linear combination of classes

of algebraic cycles. In fact, in this case, one can write an explicit cycle generating K as follows.

The abelian variety (A,Θ) = (JC,ΘC) is the Jacobian of a curve of genus 3. The theta divisor is

isomorphic to the second symmetric power C(2) of C and K is generated by the class θ − 2η where

η is the cohomology class of the image of C in C(2) via addition of a point p of C:

C ↪→ C(2)

t 7→ t+ p.

For higher values of g, the following equivalent formulation of the Hodge conjecture has been useful

(see e.g. [Iza10]).
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Conjecture 2. There exists a nonsingular projective family of curves in Θ

Z q−→ Θ

↓r

S

whose base is a (possibly reducible) nonsingular projective variety S of dimension g − 3 such that

the image of Hg−3(S,Q) by the Abel-Jacobi map q!r
∗ of the family contains KQ.

For g = 4, 5, a positive answer was given to the above conjecture by using the “largest” sub-Hodge

structure H of coniveau 1 of Hg−1(Θ,Z) defined as follows (see [IS95] and [ITW]).

First consider the image of Hg−3(Θ,Z) = j∗Hg−3(A,Z) under cup product with the cohomolgy

class θ of Θ. This is also a sub-Hodge structure of level g − 3 and satisfies the Hodge conjecture

since it is contained in the image, for instance, of the cohomology of an intersection of a translate

of Θ with Θ.

Put

P g−1 := Hg−1(A,Z)prim = ker{∪θ2 : Hg−1(A,Z) −→ Hg+3(A,Z)}.

Choosing a symplectic basis {α1, . . . , αg, β1, . . . , βg} of H1(A,Z), it is immediately seen that the

wedge products γi1 ∧ . . . ∧ γig−1 form a Z-basis of P g−1 where γi = αi or βi and i1 < . . . < ig−1. It

follows that the dual of the embedding

P g−1 ↪→ Hg−1(A,Z)

is a surjection

Hg+1(A,Z)−→→ (P g−1)∗

after identifying Hg+1(A,Z) with the dual of Hg−1(A,Z) using the intersection pairing.

The Hodge structure H can then be defined as the kernel of the composition

H := ker{Hg−1(Θ,Z)
j!
−→→ Hg+1(A,Z)−→→ (P g−1)∗}.

It follows from the results of [Haz94] that, for (A,Θ) generic (i.e., outside a countable union of

Zariski closed subsets of the moduli space Ag), any rational sub-Hodge structure of Hg−1(A,Q) of

coniveau 1 or more is contained in θ ∪Hg−3(A,Q). Therefore any rational sub-Hodge structure of

Hg−1(Θ,Q) of coniveau 1 or more is contained in HQ = H⊗Q.

Note that HQ = KQ ⊕ θ ∪ Hg−3(A,Q). Therefore the Hodge conjecture for HQ is equivalent to

the Hodge conjecture for KQ.

We discuss the cases g = 4 and 5 in Sections 4 and 5. In Sections 2 and 3 below we review two

of the main tools used in the proofs for g = 4, 5: Prym varieties and n-gonal constructions.
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2. Useful facts about Prym varieties

Let Rg+1 be the coarse moduli space of admissible (in the sense of [Bea77]) double covers of stable

curves of genus g+1. The moduli spaceRg+1 is a partial compactification of the moduli space of étale

double covers of smooth curves. Beauville [Bea77] showed that the Prym map Pg : Rg+1 −→ Ag
is proper. The prym map Pg associates to each admissible double cover (π : X̃ −→ X) of a stable

curve X of genus g + 1 its Prym variety

P (X̃,X) := Im(1− σ∗ : J(X̃) −→ J(X̃))

= Ker0(ν : J(X̃) −→ J(X))

where σ is the involution interchanging the two sheets of π, ν : Pic(X̃) −→ Pic(X) is the norm

map and by Ker0(ν) we mean the component of the identity in the kernel of ν. For general back-

ground on the Prym construction we refer to [Bea77] and [Mum74]. The Prym maps P4 and P5 are

surjective [Bea77].

There is a useful parametrization of the Prym variety of a covering. Consider the following

subvarieties of Pic2g(X̃)

A+ := {D ∈ Pic2g(X̃) : ν(D) ∼= ωX , h
0(D) even}

A− := {D ∈ Pic2g(X̃) : ν(D) ∼= ωX , h
0(D) odd}

Both are principal homogeneous spaces over A. The divisor Θ is a translate of

Θ+ = {L ∈ A+ : h0(L) > 0}.

For each D ∈ A− we have an embedding (see [Iza95, p. 97])

φD : X̃ −→ A+ ⊂ J(X̃) ; x 7→ D(Lx − σ(Lx))

where Lx is an effective Cartier divisor of degree 1 on X̃ with support x. The image X̃D of such a

morphism is called a Prym-embedding of X̃ or a Prym-embedded curve.

Note that X̃D ⊂ Θ+ if and only if h0(D) ≥ 3. The set of Prym-embeddings of X̃ in Θ+ is therefore

parametrized by

λ(X̃) := {D ∈ A− : h0(D) > 1}.

The involution σ : X̃ → X̃ induces an involution, also denoted σ:

σ : λ(X̃) −→ λ(X̃) ; D 7−→ σ∗D.

We put

λ(X) := λ(X̃)/σ.

Note that σ has finitely many fixed points in A−, hence at most finitely many fixed points in λ(X̃).
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3. The n-gonal construction

Suppose given an étale double cover κ : X̃ → X of a smooth curve X of genus g + 1. Suppose

also given a non-constant map X → P1 of degree n.

Sending a point of P1 to the sum of the points of X above it, allows us to think of P1 as a

subscheme of X(n), where X(n) is the n-th symmetric power of X. Let C̃ ⊂ X̃n be the curve defined

by the fiber product diagram

C̃ ↪→ X̃(n)

↓ ↓ κ(n)(3.1)

P1 ↪→ X(n).

In other words, the curve C̃ parametrizes the 2n points lifting the same point of P1. The involution

σ also induces an involution on C̃, still denoted σ. The curve C̃ has two connected components C̃1

and C̃2 which are exchanged under σ if n is odd. If n is even, σ leaves each component globally

invariant (see e.g. [Bea82]).

4. The case g = 4

Since dim(A4) = 10 and dim(R5) = 12, the fiber P−1
4 (A) for A generic in A4 is a smooth surface.

When Θ is smooth, the fiber is always a surface and the generic elements of any component of the

fiber are double covers of smooth curves (see [Iza95] pages 111, 119 and 125).

If A is neither decomposable nor the Jacobian of a hyperelliptic curve, then λ(X̃) is a curve and

the Prym variety of the double cover λ(X̃) → λ(X) is isomorphic to (A,Θ) (see [Iza95] p. 119).

Sending λ : (X̃,X) to (λ(X̃), λ(X)) defines an involution λ acting on the fibers of the Prym map

P4.

To (A,Θ) ∈ A4 with smooth Θ, one can associate a smooth cubic threefold T ([Iza95], [Don92]).

The quotient of the fiber P−1
4 (A) by the involution λ can be identified with the Fano surface F of

lines on T .

Let F be the scheme parametrizing the family of Prym–embedded curves inside Θ.

It follows that the fiber of the natural projection

F −→ P−1
4 (A)

over the point (X̃,X) ∈ P−1
4 (A) is the curve λ(X̃). In particular, the dimension of F is three. In

general, F might be singular, but for A general F is smooth, see [IS95, Section 3].
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Let C → F be the tautological family over F with the natural map to Θ+:

C
q
//

r

��

Θ+

F .

Theorem 4.1. ([IS95]) For (A,Θ) general inA4, the image of the Abel-Jacobi map q!r
∗ : H5(F ,Q)→

H3(Θ+,Q) is equal to HQ.

It is in fact proved in [IS95] that for any (A,Θ) with Θ smooth, the image of F in the intermediate

Jacobian of Θ generates the abelian subvariety associated to H.

5. The case g = 5

The spaces A5 and R6 both have dimension 15 and P5 is surjective. So P5 is generically finite

and its degree was computed in [DS81] to be 27.

In [ITW], we use the 5-gonal construction to construct a family of curves in Θ as follows.

Let X be a smooth curve of genus 6 with an étale double cover X̃ of genus 11. For a pencil M

of degree 5 on X consider the curve BM defined by the pull-back diagram

BM ⊂ X̃(5)

↓ ↓
P1 = |M | ⊂ X(5).

By [Bea82, p. 360] the curve BM has two isomorphic connected components, say B1
M and B2

M . Put

M ′ = |KX −M |. Then, for any D ∈ BM ⊂ X̃(5) and any D′ ∈ BM ′ ⊂ X̃(5), the push-forward to X

of D +D′ is a canonical divisor on X. Hence the image of

BM ×BM ′ −→ Pic10 X̃

(D,D′) 7−→ OX̃(D +D′)

is contained in A+∪A−. If we have labeled the connected components of BM and BM ′ in such a way

that B1
M ×B1

M ′ maps into A+, then B2
M ×B2

M ′ also maps into A+ while B1
M ×B2

M ′ and B2
M ×B1

M ′

map into A−. By construction, the images of B1
M ×B1

M ′ and B2
M ×B2

M ′ lie in Θ+.

To obtain a family of curves in Θ+, we globalize the above construction.

The scheme G1
5(X) parametrizing linear systems of degree 5 and dimension at least 1 on X has

a determinantal structure which is a smooth surface for X sufficiently general (see, e.g., [ACGH85,

Chapter V]). The universal family P 1
5 of divisors of the elements of G1

5 is a P1 bundle over G1
5 with

natural maps

P 1
5 −→ X(5)

↓
G1

5
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whose pull-back via X̃ → X gives us the family of the curves BM as M varies:

B −→ X̃(5)

↓ ↓
P 1

5 −→ X(5)

↓
G1

5.

The parameter space of the connected components of the curves BM is an étale double cover G̃1
5 of

G1
5. If we make a base change,

B1 ∪B2
//

��

B

��

G̃1
5

// G1
5 ,

the family of curves B splits into to components B1 and B2, where B1
r→ G̃1

5 is the tautological

family, i.e, the fiber of B1 over a point (|M |, Bi
M) ∈ G̃1

5 is exactly the curve Bi
M .

The family of curves F is then defined to be the fiber product

F //

��

B1

ι◦r
��

B1
r // G̃1

5,

where ι is the involution on G̃1
5 sending (|M |, Bi

M) to (|M ′|, Bi
M ′).

For X sufficiently general, we obtain a family F of smooth curves of genus 25 over a smooth

threefold B1 in the theta divisor Θ+ of A+ ∼= P (X̃,X):

F
q
//

r
��

Θ+

B1.

The main result of [ITW] is

Theorem 5.1. For a general Prym variety P (X̃,X), the image of the Abel-Jacobi map q!r
∗ :

H4(B1,Q)→ H4(Θ+,Q) is equal to HQ.

Note that H4(B1,Q) is a level 2 Hodge structure isomorphic to H2(B1,Q) under the Lefschetz

isomorphism. Combining Theorem 5.1 with the main result of [Haz94], we obtain

Corollary 5.2. For (A,Θ) in the complement of countably many proper Zariski closed subsets of

A5, the general Hodge conjecture holds for Θ.
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As far as we are aware, the primitive cohomology of the theta divisor of an abelian fivefold is

the first nontrivial case of a proof of the Hodge conjecture for a family of fourfolds of general

type. The proof was considerably more difficult than the case of of the theta divisor of the abelian

fourfold worked out in [IS95] and required a difficult degeneration to the case of a Jacobian. The

computation of the Abel-Jacobi map was broken into computations on different graded pieces of

the limit mixed Hodge structures of F and Θ, see [ITW] for the full details.

6. Higher dimensional cases

As is often the case with deep conjectures such as the Hodge conjecture, the level of difficulty

goes up exponentially with the dimension of the varieties concerned or, perhaps more accurately,

with their Kodaira dimension.

In higher dimensions a general principally polarized abelian variety is no longer a Prym variety.

It is however, a Prym-Tyurin variety [Wel87]. This is, up to now, the most promising generalization

of Prym varieties. For any curve C generating the abelian variety A as a group, pull-back on the

first cohomology induces a map A → JC which has finite kernel. Assume given a curve C and a

symmetric correspondence D ⊂ C×C. Denote ΘC a Riemann theta divisor on JC, i.e., a translate

of the variety Wg−1 ⊂ Picg−1C of effective divisor classes. Also denote by D the endomorphism

JC → JC induced by D. We have the following

Definition 6.1. We say that (A,Θ) is a Prym-Tyurin variety for (C,D) if there exists a positive

integer m such that D satisfies the equation

(D − 1)(D +m− 1) = 0

and there is an isomorphism A ∼= im(D − 1) inducing an algebraic equivalence Θ ≡ mΘC |im(D−1).

The integer m is called the index of the Prym-Tyurin variety.

To find a family of curves in Θ that would give an answer to the Hodge conjecture for HQ or KQ

(as in the cases g = 4, 5), we need an explicit Prym-Tyurin structure on (A,Θ). In particular, we

need to know at least one value of the index m. In general, there is very little known about the

indices of ppav. In dimension 6 however, we have the following (see [ADFIO]).

Theorem 6.2. For (A,Θ) general of dimension 6, there is a Prym-Tyurin structure (C,D) of index

6 on (A,Θ).

Furthermore, there is a morphism π : C → P1 of degree 27 such that the Galois group of the

associated Galois cover X → P1 is the Weyl group W (E6). The morphism π has 24 branch points

and above each branch point there are 6 simple ramification points in C. If P ∈ P1 is not a branch

point of π, the action of W (E6) on π−1(P ) gives an identification of π−1(P ) with the set of lines on

a smooth cubic surface such that the restriction of the correspondence D to π−1(P )× π−1(P ) can

be identified with the incidence correspondence of lines on a smooth cubic surface.
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Prym-Tyurin structures for correspondences obtained from covers with monodromy group Weyl

groups of Lie algebras were constructed by Kanev [Kan95] (also see [LR08]) who also proved irre-

ducibility results for some of the Hurwitz schemes parametrizing such covers [Kan06]. In particular,

Kanev proved that the Hurwitz scheme parametrizing covers as in the above theorem is irreducible.

7. Open problems

Irreducibility: It would be interesting to know whether the Hodge structure K is irreducible.

This is trivially true in dimensions up to 3 and follows from the results of [IS95] in dimension

4. In dimension 5 this would simplify the computation of the Abel-Jacobi map hence shorten

the proof of [ITW].

E6 structure when g = 5: The monodromy group of the Prym map R6 → A5 is the Weyl

group W (E6) of the exceptional Lie algebra E6 (see [Don92, Theorem 4.2]). Also, the lattice

K has rank 78 for g = 5 which is equal to the dimension of E6. So one might wonder whether

it is possible to define a natural isomorphism between KC := K⊗ C and E6.

Generalization of the n-gonal construction: As we saw the 5-gonal (or pentagonal) con-

struction is used in the construction of the family of curves in dimension 5 and the 4-gonal

(or tetragonal) construction is important for understanding the family of curves in dimension

4. Therefore, one can ask whether there is a good generalization of the n-gonal construction

for correspondences (in analogy with double covers) that would allow one to construct a

good family of curves in higher dimensions.

Catalan numbers: The g-th Catalan number can be directly defined as

Cg :=
1

g + 1

(
2g

g

)
and is the solution to many different counting problems (see, e.g., [Kos08]). For instance,

Cg is the number of permutations of g letters that avoid the pattern 1, 2, 3. This means

that, if we represent a permutation σ by the sequence s(σ) := (σ(1), σ(2), . . . , σ(g)), then

the sequence s(σ) does not contain any strictly increasing subsequence of length 3. Or,

g! − Cg = dim(KQ) is the number of permutations of g letters that contain the pattern

1, 2, 3 (i.e., s(σ) does contain a strictly increasing subsequence of length 3). An interesting

question would be to find degenerations of Θ, i.e., K, that illustrate some of these counting

problems. For instance, a degeneration of Θ and K that would exhibit a natural basis of K
indexed by the permutations of g letters that contain the pattern 1, 2, 3.
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