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Abstract

This study uses a cost-function-based model of production processes in the U.S. agricultural sector to

represent producers’ input and output decisions, and the implied costs of reductions in risk associated with

leaching and runoff from agricultural chemical use.  The model facilitates evaluation of the statistical

significance of measured shadow values of “bad” outputs and their input- and output-specific components.  Of

special interest are the impacts on pesticide demand and its quality and quantity aspects.  The shadow values of

risk reduction are statistically significant, and imply increased demand for “effective” pesticides that come

mainly from embodied technology leading to improvements in quality.
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Introduction

The benefits and costs of chemical1 use in U.S. agriculture, in terms of the augmentation of effective

production and the increased risk from toxicity, have long been debated.  Clearly, such chemicals have both

private and social value, in that they allow farmers (producers) to expand output (and revenue) which, in turn,

ensures a greater supply of agricultural products for both U.S. consumers and export.  But there are also private

and social costs – from the private (purchase) costs incurred by producers to risks associated with leaching and

runoff.

While the private cost of applied chemicals obviously includes their per unit price, the true economic

cost for pesticides is represented by the per unit price of pesticide abatement.  This abatement cost includes

research developments embodied in the pesticide input (through its chemical composition), that both augment

its effective impact and reduce risk.  The associated research costs are primarily reflected in the purchase price

(and thus borne by the user), but are also partially paid for by taxpayers through general R&D expenditures.

Social costs accrue from the use of the environment as a “free” input, as producers dispose of excess pesticides,

potentially imposing risk and damage to both human health and the broader ecological environment.

The benefits to producers of using the environment as a free input take the form of higher output, or

lower input costs for a given amount of production, than if producers were required to reduce the “bad” outputs

associated with production.  That is, lowering risk implies either decreasing marketed outputs (since “bad”

outputs are joint with “good” outputs) or increasing inputs (by substitution for the chemical input or alternative

waste disposal).  Thus, policy legislation requiring reduction of risks will impose private costs on the

agricultural community.

In this study we explore these relationships using a detailed cost-function-based model of the production

structure of U.S. agriculture.  The analysis is performed using a rich state-level (48 states for 1960-96) panel

data set from the USDA/ERS with a multi

                                                
1 When referring to agricultural “chemicals” from this point forward we are referring to fertilizers and pesticides, though much of the
analysis focuses on the effects of pesticide use.
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-output and -input base, and including measures of pesticide use and human and fish risk associated with

leaching and runoff.

The costs of risk reduction may be represented by shadow values for the bad outputs.  These shadow

values are characterized as the foregone marginal benefits of being able to use the environment freely, or,

conversely, the amount farmers would be willing, on the margin, to pay for the ability to use the environment.

The magnitude of these economic benefits can therefore be examined by estimating the costs that would be

incurred in lowering risk for a given level of output.  This, in turn, involves substitution among outputs and

inputs.  Thus, shadow values depend on both the technological substitution possibilities and the input demand

and output supply behavior underlying agricultural production processes.

Measuring the shadow values of risk from agricultural chemical use and their link to the demand for

pesticides and other components of the production structure requires a detailed estimable model of agricultural

production.  Such a model permits a detailed analysis of output and input supply, demand, and composition

changes associated with substitution among netputs in agricultural processes – all of which aid in assessing

costs and benefits of chemical use.  Econometric implementation of the model allows statistical inference about

the determinants of costs associated with reductions in bad outputs (risk) and effective production of good

(marketed) outputs.

We find shadow values of risk factors to be significant, larger for leaching than for runoff, and

increasing in magnitude over time.  This implies that substantive (and increasing) costs would be imposed on

the agricultural sector by legislation requiring reductions in human-toxic risk from leaching and runoff.  The

results also indicate that these potential costs to farmers are associated with increases in effective pesticide use –

as well as higher levels of most other inputs except land – for a given level of agricultural output.  The implied

costs of augmented pesticide use stem from chemical composition changes undertaken to improve the

abatement power of pesticides and to diminish risk.  This embodied innovation represents increased, but costly,

pesticide quality.
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The Methodology: model and measures

Measuring the costs and benefits of agricultural chemical use and associated environmental damage involves

explicitly modeling the production structure, recognizing the wide variety of output (revenue) and input (cost)

patterns exhibited in the data.  Our state-level data set includes information on the production of two “good”

outputs (crops and animals) and four associated “bad” outputs (human and fish risk from leaching and runoff),

and the use of six inputs (including pesticides and fertilizer).  The data thus facilitate the representation of a

wide range of output and input substitution and composition relationships.

  We base our analysis on a cost-function characterization of input demand in U.S. agricultural

production that not only encompasses our broad array of inputs, but also incorporates the deviations between

pounds of pesticides used and quality-adjusted “effective” pesticide use.  For empirical implementation, this

cost function is augmented by price determination equations2 to represent profit maximization over “good”

outputs, and by spatial and temporal fixed effects to accommodate differences across states and time periods.

This detailed modeling framework allows us to explore a rich set of interactions among chemical application,

environmental damage (risk), output production, and input demand.

More specifically, our cost function takes the general form TC = TC(Y,B,w,D,t) where Y is a vector of

outputs (crops, YC, and animal products, YA); B is a vector of “bad” outputs or proxies for risk factors from

human-toxic leaching and runoff (BHL, BHR);3 w is a vector of input prices (land, LD; labor, L; capital, K;

pesticides, P; fertilizers, F; and other materials, M); D is a vector of dummy variables corresponding to fixed

effects for each state, specific time periods, the corn states as a group, the cotton states; and t is a time trend.

                                                
2 Preliminary investigation using a profit function framework resulted in slopes of the materials demand equation and crop
and animal output supply equations that violated standard regularity conditions.  This could be due to presence of negative
profits implied in the U.S. agricultural sector when adjustments to land, capital and other inputs are made to recognize
their effective values.  The alternative pm = MCm equations (where MC is the marginal cost and pm the market price of
output Ym) take the form of pricing rather than output choice equations.  This may seem more valid in an imperfectly
competitive market framework where the price is set where marginal revenue is equal to marginal cost.  But when such a
model was estimated, the gap between marginal revenue and output price was insignificantly different from zero,
suggesting that the data represent true economic prices facing agricultural producers.  We retained these equations for
estimation because omitting them reduced the robustness of the marginal cost estimates.
3 The data construction procedures for these indexes are summarized in Kellogg et al.  In preliminary estimation fish stock
risk from leaching and runoff were also included as bad outputs, but when both types of leaching and runoff were
included the shadow values for fish risk were invariably insignificant (and sometimes not the expected sign), so they were
dropped.
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B is included in the cost function on the realization that bad outputs are produced jointly with Y, or,

conversely, that the environment is used as an unpaid input by producers disposing effluent.4  Production of

bads allows more effective marketed or good outputs Y to be produced for a given level of inputs, or,

alternatively, less input costs for a given amount of Y.  Thus, requirements to reduce risk are costly to producers

in terms of net output – output per unit of input or cost – reductions.  That is, for any level of output they lead to

increased input costs due to substitution toward non-chemical inputs, or toward less risky, but more costly

substitute chemicals.

The associated shadow values (SV) of the bad outputs, or the (input) cost benefit from allowing risk,

may be measured as the vector of cost effects BTC = SVB.  For example, the marginal benefit to the firm of

permitting leaching that may cause risk to human health (BHL) is SVBHL = ∂TC/∂BHL < 0.  Analogously, for any

Bk component, this becomes SVBk = ∂TC/∂Bk.  These shadow values reflect the marginal amount the producer

would be willing to pay for the right to increase BHk.  From the reverse perspective, SVBk represents the input

costs that would be incurred on the margin if a decrease in BHk were legislated.

In our framework, these shadow values incorporate the behavioral motivations underlying cost-efficient

production choices, as well as technological substitution possibilities.  SVBk should thus be interpreted in the

context of a private value to producers, since it represents the amount that expenditure on other inputs would

have to increase (at a given output level) if the environment couuld not be freely used.5  In terms of social costs,

therefore, SVBk indicates the amount a marginal reduction in risk must be thought to benefit society overall to

justify legislation requiring BHk reductions.

The first-order cost relationships determining the shadow values, ∂TC/∂Bk=SVBk, may be decomposed

into their input-specific effects, or the individual impacts of Bk “production” on the demand for the various

inputs.  In particular, the linkage between bad output production and chemical use may be explored in terms of

the impact of risk reduction on pesticide and fertilizer demand decisions.

                                                
4 This is similar to the development of the notion that reduction of bad outputs is costly in the context of a technological
representation in Ball et al.
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Because bad outputs (risk factors) are apparently directly related to the use of chemical inputs, it would

seem that decreases in P and F would be associated with declines in Bk (while increases in most other inputs

may be required to reduce risk).  It turns out, however, that improvements in the quality of the chemical inputs

that lead to increased use of effective (quality-adjusted) P are associated with decreases in Bk.

The link between pesticide use and risk factors is represented by using the 1st order Shephard’s lemma

result that pesticide input demand may be captured by P = ∂TC/∂wP (where wP is the market price of P).  Then

the elasticity of this demand relationship with respect to a change in Bk (a 2nd order cost effect) is constructed to

reflect the dependence of effective pesticide use on the ability to dispose of waste in the form of leaching or

runoff.

The use of Shephard’s lemma implies that the price and quantity of P have been measured in effective

units, so that the cost derivative reflects the true economic quantity of pesticide abatement.  If wP (or P) are not

measured appropriately, the application of Shephard’s lemma could be invalid.

In this case we could write the cost derivative as SQP = ∂TC/∂wP, where SQ denotes the “shadow

quantity” or true economic/effective quantity of P, that may or may not be well represented by its measured

level.  Or, if the quantity instead of price of P were included as an argument in TC(•) (as are the Bk factors), the

shadow would be SVP = ∂TC/∂P.  In equilibrium with correctly measured quantities and prices, SQP=P and

SVP=wP, but with mis-measurement deviations would instead be evident between the shadow and measured

quantities or prices.6

Since an important issue in the literature on pesticide use and productivity is the appropriate

measurement of pesticide abatement price and quantity, this distinction between true and measured price or

quantity provides the basis for adapting the measured pesticide data to accommodate quality changes.

                                                                                                                                                                                    
5 Note that since the producer does not have to pay directly for use of the environment the shadow value represents a clear
net benefit for him/her as long as SVBk<0 (risk increases are cost diminishing).  But this also implies there will be a
tendency to overuse the environment due to the perspective that it’s a “free input.”
6 Such a deviation would imply that the optimization equation for P should not be used for estimation purposes.  Although
in our model the P optimization equation seems valid for estimation purposes, this development provides the basis for
identifying separate quantity and quality components of the effective pesticide quantity and price (based on the hedonic
analysis by Nehring and Grube underlying the pesticide data used for this study).
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However, in our study, preliminary empirical investigation indicated that the pesticide data justifiably represent

the true price and quantity of pesticide abatement.7

Relying on Shephard’s lemma, therefore, we can construct an elasticity to represent the pesticide

demand response to requirements for risk reduction as εP,Bk =     ∂ln P/∂ln Bk.  Although the overall cost

elasticity εTC,Bk = ∂ln TC/∂ln Bk = SVBk•Bk/TC should be negative, since SVBk<0 if risk reduction is costly, if P

and Bk are in some sense joint or complementary εP,Bk would instead be positive.  If so, an input bias in absolute

terms is implied; if overall input costs increase to reduce risk factors, but P declines, other inputs must increase

even more than would be implied by the total cost elasticity.  Even if the εP,Bk = ∂ln P/∂ln Bk measure is negative

but smaller (in absolute value) than the cost elasticity, reductions in risk are biased since the responses of

different inputs to Bk changes differ.

More generally, such elasticity measures can be constructed for any input to capture the input-specific

impacts of risk reduction.  Changes in input demand and thus composition depend on evaluation and

comparison of εxj,Bk = ∂ln xj /∂ln Bk elasticities, where xj = ∂TC(•)/∂wj for j=F,LD,L,K,M,P.  And if the

substitution patterns underlying the overall shadow value SVBk are biased, each εxj,Bk measure may well differ

from each other substantially – even possibly varying in sign.

The impacts on the marginal costs of the good outputs from restricting bad outputs may be measured

similarly.  The shadow value (true economic value or contribution to production) of an output Ym is represented

by its marginal cost: SVYm = MCm = ∂TC/∂Ym.   The elasticities εM Cm ,Bk = ∂ ln M Cm /∂ ln Bk indicate the impacts  of

r is k- r eduction on the mar ginal costs  of the outputs , pr oviding some indication of  producer s ’ motivations to adapt

output levels  and composition by equating output pr ice and marginal cos t to maximize profits.  That is, an incr ease

in M Cm  resulting fr om risk- reduction requirements  w ould s ugges t reduced pr oduction of Y m .

These marginal cos t elasticities als o pr ovide insights about cost (s cale and s cope)  economy changes

r es ulting f rom limitations  on r is k.  Becaus e the s hadow  value meas ur e S VB k indicates  the total and the average

                                                
7 In particular, although studies such as Lichtenberg and Zilberman, Chambers and Lichtenberg have often found that P
equations have the wrong slope or even sign, in our analysis this was not the case.  Using Shephard’s lemma seemed
justifiable both because regularity conditions on the demand equations were satisfied, and because estimation without
Shephard’s lemma imposed generated substantively equivalent results.
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cos t impact of a change in Bk, and economies  of  s cale are based on the r atio of  marginal to average costs , the

r elative impacts  of Bk on the mar ginal- to-  aver age- cos t r atio also influence scale economies .

I n addition, scope economies , bas ed on jointnes s among outputs , can be examined through 2nd or der  cos t

eff ects.  S cope economies (SC) are typically measured from a cost function model as S C=([ Σm TC( Y m )  - 

TC( Y ) ]/TC( Y ) ), w her e TC( Y m )  is the minimum cos t of producing Y m .  Thus, S C depends on the cos t-interaction

ter ms  for the outputs , or  the s econd der ivatives  ∂ 2TC/∂ Y m ∂ Y n or  ∂ M Cm /∂ Y n.
8  If the bad outputs are handled like

the good outputs, the scope economy impacts of Bk changes are captured by the εM Cm ,Bk elasticities.  These will

be negative if increases in the bad outputs  r educe the mar ginal costs of the good outputs, as  w ould be suggested by

jointnes s.

From another perspective, the relationships between input (pesticide) demand, “good outputs,” and bad

outputs, represented above through the εxj,Bk and εMCm,Bk elasticity measures, can alternatively be characterized

directly on the shadow values of the bad outputs.  The shadow value measures SVBk = ∂TC/∂Bk will be a

function of all arguments of the TC(•) function if the underlying cost relationship is approximated by form

flexible enough to construct the corresponding elasticities from 2nd order terms.  So, from Young’s theorem, the

impact of a change in, say, wj, on SVBk is symmetric to the effect of a change in Bk on the demand for xj;

∂SVBk/∂wj = ∂2TC/∂Bk∂wj = ∂2TC/∂wj∂Bk = ∂xj/∂Bk.  The elasticity representing this effect is thus εSVk,j = ∂ln

SVBk/∂ln wj.  Although the resulting indicators are not as conceptually appealing as the εxj,Bk =          ∂ln xj/∂ln Bk

elasticities, analogous and more interpretable relationships will hold for the variables that are not optimized

over in the cost function framework – the components of the Y and D vectors and the time trend, t.

For example, elasticities with respect to output levels, εSVk,Ym = ∂ln SVBk/∂ln Ym,  indicate how the value

of allowing risk – or unrestricted use of the environment for leaching and runoff – adapts in response to changes

in (the exogenous) demand for a particular commodity.  This intuitively appealing elasticity is analytically

symmetric to the effect on MCm of a change in risk.  εSVk,Ym>0 suggests that at higher Ym levels the cost of

                                                
8 See Paul for more elaboration of these types of measures.
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restricting risk to farmers in terms of input costs is heightened, or, in reverse, that output increases further

enhance the value of using the environment.

Similarly, the impacts of variations in the shift factor t and fixed effects D (representing geographic

location, specific output intensities, and structural changes in P and F) indicate time- and space-dependent

differences in the cost to producers of risk reduction.  These effects can be represented as elasticities of the SVBk

measures with respect to each of these variables: εSVk,t = ∂ln SVBk/∂t, and εSVk,Ds = ∂ln SVBk/∂Ds.

The various cost and demand relationships developed above are characterized through 1st and 2nd order

derivatives or elasticities of the cost function with respect to the arguments of TC(•).  However, divergence in

input demand patterns from those appropriately represented by Shephard’s lemma would complicate or

preclude the estimation and interpretation of these elasticities.  Even though in our data set such deviations from

standard assumptions of basic microeconomic theory did not emerge in the end, the knowledge that they might

stimulated preliminary empirical investigation of alternative models that recognize these potential difficulties.

The most common problem of this sort is the quasi-fixity of factors such as capital, land, and labor.  If

full adjustment to equilibrium input levels does not take place within the time frame of the data, Shephard’s

lemma will not appropriately represent input demand behavior.  This rigidity problem is often dealt with by

incorporating levels instead of prices in the TC(•) function for inputs with binding fixity constraints, with the

implied divergence from equilibrium demand (or, equivalently, variations from full utilization) represented by

the deviations between a factor’s shadow value (SVxj = ∂TC/∂xj) and its market price (wj).

Alternatively, the true/effective quantity demand of an input may be represented by directly adapting the

data to embody the discrepancy.  In particular, if the true (or shadow or virtual) price of the factor wj* is used as

an argument of TC(•) rather than an unadjusted market price, the validity of Shephard’s lemma is maintained.9

Although the data for this study were carefully constructed to reflect the input flow values, sensitivity

checks were carried out to determine the validity of the assumption of variable inputs.  These checks supported

our final empirical specification; the assumption seemed justified by the appropriate levels and shapes of the

                                                
9 See Fulginiti and Perrin for a detailed discussion of the conceptual basis and use of the virtual price framework.
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resulting demand equations.  In fact, when K, LD and/or L were not characterized as choice variables, so the

additional structure of the input demand equations was not incorporated, the results were not as justifiable as

when Shephard’s lemma was implemented.10

More to the point for this project, as alluded to above, previous studies of pesticides demand have

typically identified violations of standard regularity conditions in marginal product or input demand functions.

Such violations have been attributed to mis-measurement of the true pesticide input as a physical quantity (say,

pounds) rather than in terms of pest abatement services, rather than to constraints on behavior, or rigidities.  If

the actual input demanded by the farmer is true abatement (or increases in effective output from pest reduction,

that depends on the chemical composition of the pesticides), the input should be specified accordingly.11

In the data used for this study, however, careful adaptations were made to identify the impacts of

pesticide characteristics on their true or effective price, and thus their implicit quantity.  More specifically,

hedonic analysis was used by Nehring and Grube to accommodate pesticide application rates, toxicity (chemical

composition) and persistence in their measure of the true economic price of the quality-adjusted pesticides

input.  This adjusted pesticide price measure or virtual price, wP*, was used to deflate the pesticide expenditure

data to reflect real effective pesticide quantities, P*.12

Our empirical findings based on these data suggest that this adjustment was carried out in a manner

consistent with economic theory.  The use of Shephard’s lemma seems justified by both the correct (in terms of

required regularity conditions) and intuitively plausible estimates of demand behavior.  And when optimization

equations were not imposed for the P input, so its true shadow value (or quantity) could be indirectly imputed,

the resulting production structure pattern estimates remained substantively unchanged.

In addition, the distinction between wP and wP* (and thus P and P*) provides us a useful basis from

which to separately identify changes in the demand for physical pesticide quantity as compared to that for its

                                                
10 This is similar conceptually to the finding in Ball et al that “inefficiency” in their framework seemed virtually
nonexistent.  In addition, the cross-section dimension of the panel data, and the detailed input and output decomposition,
may better represent true utilization and equilibrium or long run substitution patterns that with more limited time series
data sets.
11 See, for example, Lichtenberg and Zilberman, and Chambers and Lichtenberg.
12 See Nehring and Grube [1997] for more details about these computations.
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quality or effectiveness.  Such an exercise can generate useful insights about the quantity/quality tradeoff itself

and the costs of increasing pesticide quality versus quantity associated with the reduction of risk factors.  This

distinction is particularly relevant since adaptations in the characteristics of the pesticide input captured in the

hedonic analysis incorporate (or embody) both general technical change, and requirements or desires to respond

to environmental concerns (induced innovation).

The virtual pesticide price can be written as wP* = ADJP•wP, where the AJPP quality index adapts the

price of P in terms of pounds (wP) to one embodying characteristics, quality, or effective pesticide application

according to the underlying hedonic representation.13  It follows that wP* can justifiably be used as a basis for

Shephard’s lemma; P* = ∂TC/∂wP*, where P* is effective pesticide demand.  But with the explicit wP* =

ADJP•wP specification, variations in the effective pesticide price can be divided into a combination of deviations

in the “quantity-price” versus the “quality-price.”  These relationships are also imbedded in the identify wPP =

wP*P* = VALP, so wP*/wP =  P/P*, where VALP is the dollar expenditure on pesticides, which can be used to

motivate and interpret these measures.

The multiplicative (or log-linear, as is typical for a hedonic equation) specification of wP* implies that

the contribution of a percentage increase in pesticide use (or price) is the same whether it stems from quality

(ADJP) or quantity (wP) changes.  At any point in time, given TC(wP*,…)=TC(ADJP•wP,…), the marginal cost of

changing the pesticide price (either the measured or quality-adjusted price) is reflected by differing (shadow)

quantities of the pesticide input.

So when focusing on the quality adjusted price, ∂TC/∂wP* = SQP* yields the shadow quantity of the true

effective pesticide input, which will equal P* if Shephard’s lemma holds.  If instead we take the derivative with

respect to the unadjusted pesticide price, using the equality wPP = wP*P*, we obtain ∂TC/∂wP = ADJP•∂TC/∂wP*

= (wP*/wP)•P* = (P/P*)•P* = P = SQP.  Thus the shadow quantities of the true effective – as compared to

measured – pesticide quantity differ only by the adjustment factor ADJP = wP*/wP =  P/P*.14  In turn, the impact

                                                
13 This is similar conceptually to the adaptation to capital to accommodate utilization as K*=uK or w*K=wK/u, along the
lines of Jorgenson and Griliches.
14 This also stems from the fact that the “shares” ∂ln TC/∂ln wP = P•wP/TC and ∂ln TC/∂ln wP* = P*•wP*/TC are identical
by definition.
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on costs of a change in only the quality component becomes ∂TC/∂ADJP = wP•∂TC/∂wP*, which can be

rewritten as VALP/ADJP – the quality-adjusted pesticide value.15    

Even though the differences in these shadow quantities depend only on the adjustment factor, they will

vary over time and across regions.  In fact, the pure quantity and quality-adapted measures could move in

opposite directions if the adjustment factor differs sufficiently.  For example, over time, if the adjustment factor

is growing rapidly enough, P (SQP) could drop even as P* (SQP*) rises.

This brings us back to the relationship between P and Bk posited above.  The supposition that declines in

risk require pesticide use to fall focuses on the P level, not the P* factor (that incorporates quality

characteristics).  In fact, decreases in risk could well be associated with increases in effective pesticide use, due

to the induced changes in quality, that incur their own cost on the producer.

That is, producers pay for quality that derives from technical change – perhaps derived from R&D

expenditures – embodied in P*, as well as other changes in composition explicitly related to risk potential.

These adaptations should be recognized as part of the cost of reducing risk.  A change in P* includes

adaptations in both quantity and quality, with separately identifiable cost implications, which can be

disentangled through their implied share in P*, as represented by ADJP.

The Results: econometric implementation and estimates

The cost function implied from the model overviewed in the previous section takes the general form TC

= TC(YA,YC,BHL,BHR,wP*,wK,wL,wLD,wM,wF,t,DP,DF,DCT, DCN,Ds), where the general vector representation has

been expanded to make the individual arguments of the function explicit.16  The vector of fixed effects includes

two dummy variables for structural shifts in pesticides and fertilizer use (DP, DF)
17 and two for the cotton and

                                                
15 Note that ADJP<1 since the quality contribution to the measured pesticide price is removed, VAL/ADJP will exceed the
measured value of the pesticide input.
16 The prices of the inputs other than P may also be thought of as effective or virtual prices, accommodating in the data the
stock/flow effects of fixities (for, say, K, LD), or other “quality” characteristics (such as education for labor), although we
will not make this explicit using *s since this is not the focus of the current analysis..
17 The DP dummy variable (with interaction terms for all wP* cross-effects) represents a 1984 break in the pesticide data
found with the hedonic research to indicate roughly the year in which most cropping sectors switched from or reduced use
of many of the old line chemicals to the new.  The DF dummy variable (with interaction terms for all wF cross-effects) for
the post-1979 time period represents results from chow tests that indicate this an important point of structural change in



13

corn states as groups (DCT, DCN). 18  To have state-specific intercepts in each estimating equation, 48 state-level

dummies (Ds) were used, with cross effects for each input price and output quantity.

Econometric implementation of the model and construction of parametric derivative and elasticity

measures first requires specifying a functional form for TC(•).  We choose to approximate the underlying cost

relationship with a generalized Leontief form, where the output levels and shift factors are included in quadratic

rather than square root form, as in Paul:

(1)  TC(Y,B,p,D,t)  =  δP1 pP*DP + δF1 pF DF+ ΣsΣi δsj pj Ds + Σjpj • (ΣsΣm δsm Ym Ds)

+ ΣjΣi (i≠j) αji pj
 .5 pi

.5 + Σj αjDP pj
 .5 pP*

.5 DP + Σj αjDF pj
 .5 pF

.5 DF

+ ΣjΣm (j≠M) δjm pj Ym + ΣmΣr δmPDr Ym pp* Dr + ΣmΣr δmFDr Ym pF Dr

+ ΣjΣk δjk pj Bk + Σk δkDP Bk pp* DP + Σk δkDF Bk pF DF

+ Σj δjt pj t + Σr δtPDr t pp* Dr + Σr δtFDr t pF Dr

+ Σjpj (ΣmΣn γmn Ym Yn + ΣmΣk γmk Ym Bk
  + ΣkΣl γlk Bk Bl

+  γtt t
2 + Σm γmt Ym t  + Σk γkt Bk t) ,

19

where (i,j) denote the input market or virtual prices of the inputs, (m,n) the good outputs, (k,l) the bad outputs,

and r the DP, DF, DCT and DCN fixed effects.  The estimating model derived from this function is based on a

system of six factor demand equations, two output pricing equations, and the function (1) itself.  In particular,

the factor demand estimating equations are defined via Shephard’s lemma; P*=∂TC/∂pP*, F=∂TC/∂pF,

K=∂TC/pK, L=∂TC/∂pL, LD=∂TC/∂pLD, and M=∂TC/∂pM.  The output pricing equations are defined according to

standard pm=MCm equalities representing optimization over outputs (where pm is the market price of Ym); pA =

∂TC/∂YA, pC = ∂TC/∂YC.

                                                                                                                                                                                    
the fertilizer input, reflecting the energy crisis.  Note also that the corn and cotton dummy interaction terms were not
included for the bad outputs (Bk) due to their continued insignificance in preliminary empirical investigation.
18 These fixed effects are intended to reflect important differences in production structure with respect to chemicals use in
these areas, since the corn areas tend to continue to use more old line chemicals with water quality but not toxicity issues,
and have lower pesticide prices, than do the cotton states.
19 Note that the j≠M requirement for the cross wj-Ym terms was due to the otherwise linear dependency from the wj

summation before the fixed effects for the Ym (the δsm parameters), and similarly for the i≠j for the input price cross-
terms.
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Because with competitive markets producers would be expected to choose output levels given observed

output prices, the behavioral implications of the output pricing specification initially seem questionable.

However, scale economy measures derived from a model estimated with no structure incorporated for output

choice were implausible.  And output supply equations from a profit function framework tended to have

perverse estimated curvature.  In addition, when the pricing equations from the cost function framework were

transformed into MRm=MCm expressions (where marginal revenue, MRm, is defined as pm+∂pm/∂Ym•Ym), to

allow for markup behavior, the estimated ∂pm/∂Ym “wedge” between pm and MRm was invariably insignificant.

An ex-post pricing mechanism clearly tends to dominate.  A possible reason is that prices in agricultural

markets are determined by the amount of output available after the growing period (for either a crop or animal

product).

   This equation system was estimated by non-linear seemingly unrelated (SUR) systems procedures

instead of instrumental variables (IV), which is often used to take into account potential output endogeneity or

errors in variables.  We opted not to use IV because of the care taken in data development, such that both the

input demand and output pricing equations appear well characterized.  The use of panel data and our

specification to correct for first-order autoregressive disturbances also could cause problems if lagged values of

exogenous variables are used as instruments, as is typically done.  Thus, SUR was retained for the final

estimation.

Adaptations were made to accommodate potential unknown sources of heteroskedasticity.  One such

“fix” – changing the input demand equations to input/output measures to reduce variations in scale across states

and time – did not affect the estimates substantively.  Instead we used the procedure in TSP that computes

White’s heteroskedastic-consistent covariance matrix to generate appropriate standard errors.

Durbin-Watson tests indicated that autocorrelated errors were present in the cost and input demand

equations.  Therefore, an AR(1) term was directly incorporated into the cost equation, and TC = TC(•) + ρ TC⋅εt-1

+ εt was estimated (where ρTC is the cost function-specific AR(1) parameter, and εt is the period t estimation

error for TC(•)).  Analogous adaptations were made to the input demand equations based in the general form Y
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= βX + ρY⋅εt-1 + εt.
20 While the inclusion of the AR(1) structure led to a non-linear system (increasing estimation

time substantially), the resulting estimates of the ρ’s were very significant, and standard statistical tests

indicated that the adjustment adapted for autocorrelation in the estimates.

The parameter estimates for this model are presented in the Appendix (with the coefficients on the state

dummies omitted to keep the table manageable).  Although in a model this complex, the individual parameter

estimates have limited interpretation, the overall statistical significance of the parameters is notable; even most

of the states dummies were significant.  Also, the R2s indicate excellent “fits” for the estimated equations – all

reaching at least 0.92.

The primary bad output and pesticide cost and benefit indicators computed from the estimated

parameters for the full data sample are presented in Table 1.  The reported estimates are (non-weighted)

averages across all states and time periods for each measure.  The t-statistics are based on computation of the

measures evaluated at the average (mean) values of the data.21  The measures were constructed for these data

using the delta method (essentially a generalized Wald test) by the ANALYZ command in TSP.  This procedure

computes the constraints underlying the hypothesis that the measure is equal to zero, as well as the associated

covariance matrix, evaluated at the estimated parameter vector for a given data point.

The primary measures for evaluating the marginal benefits of using the environment for disposal of

leaching and runoff are the shadow values SVBk for BHL and BHR.  These measures are both negative (indicating

that allowing higher risk factors is cost-saving for the producer) and statistically significant at approximately the

5% level on average for the whole sample (the SVHR and SVHL p-values are 0.051 and 0.034).22

Risk reduction is clearly pesticide-using in the sense that lowering risk requires more effective pesticide

use; εP*,HL <0 and εP*,HR < 0, and are significant both statistically and in terms of magnitude (especially for

                                                
20 Because of this specification, the first observation for each state was dropped for estimation.
21 Reporting estimates of the elasticities based on the mean values of the data seemed less justifiable conceptually than
estimating them for each data point.  However, for this data sample the implications from either procedure were very
equivalent in their substantive implications.
22 When additional leaching and runoff risk factors for fish stocks were also included, their shadow values were almost
invariably statistically insignificant, although when they were incorporated without the associated human risk factors their
estimates were similar to those for the HL and HR measures, suggesting that their costs are not separately identifiable for
these data.
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runoff).  This implies that the technology or innovations embodied in P* must increase substantively to reduce

risk.  That is, although P* may rise through either quantity or quality increases, this relationship clearly

indicates the dominance of the latter.  By contrast, the only input insignificantly related to both risk factors is

fertilizer.

The negative εK,HL and εK,HR measures also suggest that capital has a tendency to “substitute” for the

environment, in the sense that additional capital is required to reduce human risk factors, although εK,HL is

insignficant.  The M elasticities with respect to BHL and BHR are also negative and both relatively large and

significant.  In contrast, land seems, in a sense, “complementary” with risk; risk reduction implies lower land

use.  The indications for labor are mixed.

The input composition implications underlying these benefits of allowing risk, or marginal costs of

reducing risk to the producer, are quite biased.  The implied biases are indicated by comparing the size of these

elasticities to each other and to the overall or “average” cost elasticities εTC,HL=0.009 and and εTC,HR=0.008.  For

a BHL decrease, for example, P* is affected the most (human risk reduction from leaching is greatly P*-using), L

and M demands rise relative to other inputs, capital changes less than overall input use (a relative capital-saving

bias) and land use decreases (an absolute land-saving bias).  Thus, input composition adapts substantially to

accommodate risk reduction.

For the outputs, the elasticities εMCm,Bk are small, and most are positive, implying that scope economies

or jointness between the risk factors and outputs are limited.  At least for the animal inputs this makes intuitive

sense, in that they would have little linkage with leaching and runoff from chemical use.23  In particular, the

positive (but small and not quite significant at the 5% level with p levels of 0.083 and 0.06) εMCA,HL and εMCA,HR

elasticities indicate that reductions in human risk are consistent with somewhat lower marginal costs of animal

production, in turn implying some motivation toward producing A rather than C outputs.  In contrast, the

negative and significant εMCC,HR estimate indicates jointness between crop production and risk from runoff.

                                                
23 Of course risk from animal waste is also a major issue, at least in some states.  Although we do not currently have
measures of such factors, work is proceeding to generate such measures that will be used in later research to establish
these relationships.
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Next, implications about the level of P* demand versus P – i.e., quality versus quantity – are evident

from the SQP*, SQP, and SQADJP estimates in Table 1.  The fitted shadow value of P* is on average about twice as

large as the unadjusted P level24, implying an average measured quality adaptation factor of approximately 0.5.25

These relationships indicate that most of the measured variation in P* involves quality rather than quantity,

supporting the result that decreases in risk require increases in P* through quality changes.  In fact, in terms of

the value measures SQADJP and VAL the quality-based measure exceeds the one without the adjustment by a

factor of more than 2.5.

Some interesting implications may be derived from the bad output shadow value elasticities in Table 1.

The positive εSVHL,t elasticity suggests that SVHL is increasing (in absolute value, so the costs of reducing BHL are

greater) over time, whereas the reverse seems true for SVHR.26  Changes in the structure of the fertilizer input

(DF, post-1979) caused SVHL to increase even more, although in the post-1984 period (DP, that coincides with

changes in the form of pesticides) the cost of reducing BHL drops slightly.  By contrast, in both the post-1979

and post-1984 periods, SVHR seems somewhat higher in absolute value.  None of these relationships are,

however, statistically significant.

Consider also the impacts of shift factors, and output levels and composition, on the demand for the

effective pesticide input.  Note that all measured elasticities of P* demand are statistically significant and

positive except that for the fertilizer structural change (DF), which would not be expected to have a significant

effect on P*.  In particular, effective pesticide use seems to have increased significantly over time (εP*,t>0), and

especially after 1984 (εP*,DP>0).  P* demand is also more extensive in both the corn and cotton states relative to

others (εP*,DCN and εP*,DCT are positive).  And, the impacts of increases in crop production are quite dramatic – a 1

percent augmentation of crop output implies a 1.5 percent rise in P* (εP*,C≈1.5), so scale increases with respect

to the crop output are biased toward pesticide use.  In contrast, higher levels of animal outputs generate a much

                                                
24 In reverse, the SQADJP measure is nearly twice the SQP* value.
25 Note, however, that the (unweighted) average ADJP in the data is around 0.9.  Although the differences in these
measures depend entirely on ADJP, the actual deviation in the presented measures is based on an average of the shadow
values or quantities, which implicitly weights the ADJP numbers according to the shadow quantity itself.
26 Note that a negative value for the εSV,r elasticity implies a positive measure of ∂SVBK/∂r, since the derivative is
multiplied by the (negative) SVBK value to construct the elasticity.
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smaller (less than 50%) proportional change in pesticide inputs, possibly associated with greater crop

production for animal feed.

 Certain insights may be gained from alternative specifications estimated in preliminary investigation of

the data.  For example, a comparison specification using a pesticide demand equation (erroneously) defined in

terms of pounds of pesticide use and an unadjusted pesticide price (wP) was estimated.  The results (not tabled

here) indicated that SVHR is essentially zero (and insignificant), whereas SVHL is slightly larger (in absolute

value) than in the P* specification.  But SQP and SQP* are virtually the same (SQADJP is very low).  The

discrepancies for the P*-Bk relationships are more pronounced; BHL and BHR are positively rather than negatively

related to P demand, suggesting their jointness.  But this supports our finding that although effective P* use

increases for risk reduction, the pure quantity measure, P, decreases.  The impact of DP on P is smaller than for

P*; structural adaptations in the pesticide input (embodied innovations) increased the quality rather than

quantity component of P*.  P is also considerably smaller in the corn and cotton states than P*.

In another alternative specification, to gauge the relevance of the optimality assumption, the pesticide

demand equation was omitted (both for the base specification and for one in which P* instead of wP* was used

as an argument of TC(•)).  The resulting shadow measures (SQP* and SVP*, respectively) are very similar with or

without estimating the P* optimization equation, supporting the notion that Shephard’s lemma is valid for these

data.  The main differences across these specifications appeared in the implied P* demand elasticities, which are

magnified when the P* equation is not estimated (likely due to the small share of P* in costs).

For specifications in which P* instead of wP* was included as an argument of TC(•), SVP* is similar in

both cases, but SVP is approximately 0.4 (compared to 0.6 for SVP*) with the optimization equation, and

negative without it.  Also, εSVP,HL and εSVP,HR are both negative, in contrast to εSVP*,HL and εSVP*,HR suggesting that

decreasing risk is associated with increases in the imputed effective price – or shadow value – of pesticides.

Similarly to the results for the base model, these elasticities are much smaller when an optimization equation for

wP* is included than when it is not.
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It is also informative to compare some of the primary elasticity estimates across time periods and

regions.  For the time dimension, we report measures separated into pre- and post-1984, to represent the

structural break in pesticide composition, and the four decades covered in the data for the analysis – 1960s,

1970s, 1980s, and 1990s.  In addition to the corn- and cotton-state distinction, we define 10 regions (for the 48

contiguous states), according to the breakdown used by the USDA to report regional productivity data:

CN Corn States IL, IN, IA, MI, MN, MO,

NB, OH, WI, SD

CT Cotton States AL, AZ, AR, CA, GA, LA,

MS, NC, TN, TX

Region 1 Northeast CT, ME, MA, NH, RI, VT,

DE, MD, NJ, NY, PA

Region 2 Corn Belt IL, IN, IA, MO, OH

Region 3 Lake States MI, MN, WI

Region 4 Northern Plains KS, NE, ND, SD

Region 5 Appalachian KY, NC, TN, VA, WV

Region 6 Southeast AL, Fl, GA, SC

Region 7 Delta AR, LA, MS

Region 8 Southern Plains OK, TX

Region 9 Mountain AZ, CO, ID, MT, NV, NM,

VT, WY

Region 10 Pacific CA, OR, WA

The pre- and post-1984 εTC,HL and εTC,HR values in Table 2 indicate an upward trend in the proportional

agricultural sector marginal-cost-benefits of BHL disposal, but the reverse occurs for BHR.27  This is consistent

with the implications for the associated pesticide costs; pesticide-quality-enhancing costs of reducing BHL

                                                
27 It is important to present these in proportional (real) terms to see these trends, since the nominal trends reflected in the
SVBk values are somewhat misleading,  The tendency for the BHL value to increase is exacerbated if one looks instead at
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(represented by εP*,HL) are increasing over time, and of BHR (from εP*,HR) are declining.  These trends are also

evident in the values presented by decades

For the corn and cotton state division in Table 2 the cotton states have a far greater marginal cost of risk

reduction, at least for leaching, than do the corn states.  Leaching-risk reductions in the corn states seem

associated with lower effective pesticide use (which may stem from either quantity or quality differences,

whereas in the cotton states it is significantly higher.  By contrast, the costs of reducing runoff are significantly

larger in the corn states, with reductions in runoff related quite dramatically to increased effective pesticide

applications.28

Limiting the corn states to the corn belt in the more specific regional breakdown highlights a different

trend.  Leaching and effective pesticide use clearly “move together” in this area; εP*,HL>0.  This is also true for

the northern plains and Pacific states.  But εP*,HL is larger, and the associated (proportional) marginal cost of

reducing BHL is lower.  

The proportional cost of reducing BHL is highest in the southeast and the Appalachian regions, while the

(absolute) nominal values are higher in the northeast and mountain area.  The implied proportional change in

pesticide use follows closely, with the Appalachian and southeast states requiring more augmentation of P* than

the northeast to reduce leaching risk, and the mountain states significantly less.  By contrast, the cost of

reducing risk from runoff, both overall and for pesticides, is by far the greatest in the corn belt.  The states with

the next highest costs of reducing runoff are in the southeast, lake, and delta areas.  The northern plains require

less than one-third the pesticide adjustment of the corn belt states, and in the Pacific region almost no change in

effective pesticide use seems necessary.

The shadow quantity-quality tradeoffs in pesticides across time and region are evident from the

measures in Table 3.   Although the shadow quantity of P* is increasing over time, the difference between the

quantity- and quality- measures is lower before than after 1984.  From the decade breakdowns this reduction

                                                                                                                                                                                    
the SVBk values, and that for BHR appears slightly upward rather than downward as it is when looking at percentage
changes.
28 Note that in nominal terms (using the SVBk measures) the costs of runoff seem slightly higher in the cotton than in the
corn states.
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seem particularly noticeable in the 1980s.  The wrong signs on the fitted values for the quantity-based measures

in the early years of the sample (as well as for some regions) emphasize the importance of focusing on the

quality-adjusted or effective use of pesticide as an abatement factor, rather than the pure quantity measure.

In Table 4, effective pesticide demand elasticities are presented.  The εP*,t measures indicate that P* is on

an upward trend, given other production structure characteristics, at least since the 1970s, and more

dramatically so in the 1990s.   This increase is particularly marked in the northeast, whereas the southern plains

and Pacific states have experienced a decline in effective pesticide use over time (holding all other production

characteristics constant).  The impact of the changing structure of pesticides in the mid-1980s also seems to be

the most substantive in the northeast states.

The elasticities with respect to the outputs suggest that effective pesticide use increased at more than

double the rate of crop production in the pre-1984 period (εP*,C≈2.08), although less than proportionately

afterward (εP*,C≈0.60).  The linkage of pesticide use with animal production also changes over time; although

εP*,A<1.0 in the earlier period, εP*,A<0 in the later period.  For regions, less variation is evident, but the

exacerbating effect of production scale changes on effective pesticide demand is particularly striking in the corn

states.

Concluding Remarks

This study uses a detailed model of the production structure in U.S. agriculture to measure the potential

costs to agricultural producers of legislation pertaining to pesticide use and resulting human risk.  When

production plans are adjusted to reduce such risk, we find that the associated interactions among netputs involve

changes in output and input composition, and induced innovation to augment the pesticide quality.

Reducing human risk from leaching and runoff seems significantly to affect producers’ costs .  But a

primary determinant (and cost) of risk reduction stems from increases in effective pesticide quantities –
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pesticides that are both more effective against pests and more environmentally benign.  This effectiveness is

embodied in the pesticides themselves through R&D and associated technological change.29

These patterns may indicate that changes in human risk levels stemming from agricultural production

are not only related to the quality of pesticides used, but also are linked to adaptations in the composition of the

materials input (including primarily feed, seed and livestock), and labor (perhaps according to educational

attainment).  This suggests important further issues to pursue in subsequent research on the production structure

of the U.S. agricultural sector.
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 Table 1:  Shadow Value and Elasticity Measures, overall averages

measure estimate t-statistic

SVHL -0.0164 -2.118 SQP* 0.0884 1.955

SVHR -0.0004 -1.951 SQP 0.0440 3.816

εTC,HL -0.0090 -2.118 SQADJP 0.1682 3.816

εTC,HR -0.0077 -1.951 VAL 0.0660

εP*,HL -0.0243 -1.887 εSVHL,t 0.0175 1.058

εP*,HR -0.0644 -2.472 εSVHR,t -0.0104 -0.556

εSVHL,DF 0.0155 0.926

εF,HL 0.0035 0.175 εSVHR,DP -0.0030 -0.640

εF,HR -0.0151 -1.273 εSVHR,DF 0.0132 0.406

εLD,HL 0.0086 2.157 εSVHR,DP 0.0145 1.196

εLD,HR 0.0107 2.348

εL,HL -0.0205 -1.867 εP*,t 0.3750 5.162

εL,HR 0.0144 1.961 εP*,DF -0.0650 -0.981

εK,HL -0.0017 -1.063 εP*,DP 0.6482 -3.881

εK,HR -0.0074 -2.563 εP*,DCT 1.0128 7.724

εM,HL -0.0141 -1.850 εP*,DCN 0.9902 8.269

εM,HR -0.0255 -2.875 εP*,A 0.4591 2.441

εP*,C 1.5444 23.472

εMCA,HL 0.0039 1.731
εMCA,HR 0.0053 1.884
εMCC,HL 0.0055 1.295
εMCC,HR -0.0001 -1.943
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                  Table 2:  Bad Output Measures, temporal and spatial

overall average pre-1984 post-1984 corn states cotton states
εTC,HL -0.0090 εTC,HL -0.0070 εTC,HL -0.0130 εTC,HL -0.0033 εTC,HL -0.0184
εTC,HR -0.0077 εTC,HR -0.0095 εTC,HR -0.0044 εTC,HR -0.0192 εTC,HR -0.0086
εP*,HL -0.0243 εP*,HL -0.0210 εP*,HL -0.0302 εP*,HL 0.0252 εP*,HL -0.0333
εP*,HR -0.0644 εP*,HR -0.0888 εP*,HR -0.0218 εP*,HR -0.2079 εP*,HR -0.0387

1960s 1970s 1980s 1990s
εTC,HL -0.0033 εTC,HL -0.0099 εTC,HL -0.0092 εTC,HL -0.0148
εTC,HR -0.0131 εTC,HR -0.0084 εTC,HR -0.0047 εTC,HR -0.0039
εP*,HL -0.0073 εP*,HL -0.0294 εP*,HL -0.0299 εP*,HL -0.0312
εP*,HR -0.1708 εP*,HR -0.0434 εP*,HR -0.0222 εP*,HR -0.0180

northeast corn belt lake states northern plains appalachian
εTC,HL -0.0088 εTC,HL -0.0007 εTC,HL -0.0077 εTC,HL -0.0031 εTC,HL -0.0177
εTC,HR -0.0031 εTC,HR -0.0264 εTC,HR -0.0134 εTC,HR -0.0068 εTC,HR -0.0080
εP*,HL -0.0534 εP*,HL 0.0406 εP*,HL -0.0035 εP*,HL 0.0130 εP*,HL -0.0691
εP*,HR -0.0200 εP*,HR -0.3059 εP*,HR -0.0817 εP*,HR -0.1004 εP*,HR -0.0595

southeast delta southern plains mountain pacific
εTC,HL -0.0399 εTC,HL -0.0079 εTC,HL -0.0020 εTC,HL -0.0022 εTC,HL -0.0015
εTC,HR -0.0116 εTC,HR -0.0111 εTC,HR -0.0031 εTC,HR -0.0009 εTC,HR -0.0004
εP*,HL -0.0827 εP*,HL -0.0153 εP*,HL -0.0001 εP*,HL -0.0173 εP*,HL 0.0119
εP*,HR -0.0461 εP*,HR -0.0334 εP*,HR -0.0204 εP*,HR -0.0085 εP*,HR -0.0020
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Table 3:  P, P* and ADJP measures, temporal and spatial

overall average pre-1984 post-1984 corn states cotton states
SQP* 0.0884 SQP* 0.0654 SQP* 0.1297 SQP* 0.1631 SQP* 0.1385
SQP 0.0440 SQP 0.0170 SQP 0.0903 SQP 0.0233 SQP 0.0906
SQADJP 0.1682 SQADJP -0.0238 SQADJP 0.5423 SQADJP 0.1975 SQADJP 0.2410

VAL 0.0660 VAL 0.0353 VAL 0.1223 VAL 0.1258 VAL 0.1084

1960s 1970s 1980s 1990s
SQP* 0.0333 SQP* 0.0737 SQP* 0.1162 SQP* 0.1407
SQP -0.0540 SQP 0.0439 SQP 0.1056 SQP 0.0822
SQADJP -0.0491 SQADJP -0.0231 SQADJP 0.0797 SQADJP 0.8470

VAL 0.0115 VAL 0.0379 VAL 0.0890 VAL 0.1434

northeast corn belt lake states northern plains appalachian
SQP* 0.0227 SQP* 0.2042 SQP* 0.1361 SQP* 0.1088 SQP* 0.0490
SQP 0.0169 SQP 0.0903 SQP -0.0178 SQP -0.0021 SQP 0.0449
SQADJP -0.0211 SQADJP 0.4373 SQADJP -0.0398 SQADJP 0.3696 SQADJP -0.0528

VAL 0.0124 VAL 0.1590 VAL 0.1040 VAL 0.0778 VAL 0.0388

southeast delta southern plains mountain pacific
SQP* 0.0923 SQP* 0.1356 SQP* 0.1641 SQP* 0.0334 SQP* 0.1717
SQP 0.0326 SQP 0.1097 SQP 0.0731 SQP 0.0448 SQP 0.1156
SQADJP 0.0168 SQADJP -0.0065 SQADJP 0.8150 SQADJP -0.0157 SQADJP 1.1566

VAL 0.0761 VAL 0.0948 VAL 0.0994 VAL 0.0192 VAL 0.1602
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                   Table 4:  Pesticide Demand Elasticities, temporal and spatial

overall average pre-1984 post-1984 corn states cotton states
εP*,t 0.3750 εP*,t 0.2894 εP*,t 0.5535 εP*,t 0.2733 εP*,t 0.1378

εP*,DP 0.6482 εP*,DP 0.0000 εP*,DP 1.9446 εP*,DP 0.0233 εP*,DP 0.0509

εP*,A 0.4591 εP*,A 0.9228 εP*,A -0.3845 εP*,A 0.9127 εP*,A 0.8292

εP*,C 1.5444 εP*,C 2.0756 εP*,C 0.5918 εP*,C 2.2566 εP*,C 1.6210

1960s 1970s 1980s 1990s
εP*,t 0.3797 εP*,t 0.2365 εP*,t 0.3865 εP*,t 0.5505

εP*,DP 0.0000 εP*,DP 0.0000 εP*,DP 0.4412 εP*,DP 2.7034

εP*,A 1.8036 εP*,A 0.4967 εP*,A -0.1167 εP*,A -0.5010

εP*,C 3.3367 εP*,C 1.4237 εP*,C 0.7855 εP*,C 0.4967

northeast corn belt lake states northern plains appalachian
εP*,t 1.0342 εP*,t 0.2211 εP*,t 0.2558 εP*,t 0.1889 εP*,t 0.1495

εP*,DP 2.0302 εP*,DP 0.0130 εP*,DP 0.0261 εP*,DP 0.0314 εP*,DP 0.3765

εP*,A -0.2273 εP*,A 0.6795 εP*,A 0.4577 εP*,A 1.7253 εP*,A 0.3135

εP*,C 0.8552 εP*,C 2.2025 εP*,C 1.9123 εP*,C 2.8125 εP*,C 1.5313

southeast delta southern plains mountain pacific
εP*,t 0.0921 εP*,t 0.1046 εP*,t -0.0183 εP*,t 0.3272 εP*,t -0.0044

εP*,DP 0.0821 εP*,DP 0.0250 εP*,DP 0.0696 εP*,DP 0.7494 εP*,DP 0.0309

εP*,A 0.6362 εP*,A 0.7404 εP*,A 1.1438 εP*,A 0.4592 εP*,A 0.1894

εP*,C 1.0910 εP*,C 1.2780 εP*,C 1.5082 εP*,C 1.7100 εP*,C 1.3918

26



                        Appendix Table A1:  Coefficient Estimates 
Estimate t-statistic Estimate t-statistic Estimate t-statistic

δF1 -0.139 -5.74 αPFCN 0.036 3.55 δHLDP 0.0005 0.77
δP1 -0.190 -6.32 αFDP -0.002 -0.83 δLDHR 0.00004 1.68
αLDL -0.013 -2.09 δLDA -0.971 -76.43 δLHR 0.0001 3.08
αLDK 0.082 8.12 δLA -0.921 -54.45 δKHR -0.0001 -5.42
αLDF -0.004 -0.91 δKA -0.900 -66.55 δFHR -0.0001 -2.88
αLDDF 0.012 3.61 δFA -0.905 -58.76 δHRDF -0.00001 -0.89
αLDFCT -0.025 -3.48 δADF 0.015 4.90 δMHR -0.0006 -8.24
αLDFCN -0.007 -0.97 δPA -0.931 -65.03 δPHR -0.0001 -3.61
αLDM -0.034 -3.74 δADP -0.001 -0.56 δHLDP -0.00003 -2.18
αLDP 0.006 1.19 δAPCT 0.026 2.43 γAA -0.0003 -0.43
αLDDP -0.012 -3.21 δAPCN -0.014 -1.29 γCC -0.0011 -3.13
αLDPCT 0.001 0.09 δAFCT -0.013 -1.07 γHLHL 0.00003 1.86
αLDPCN 0.013 1.50 δAFCN -0.029 -2.44 γHRHR 0.00000001 1.41
αLK 0.012 1.65 δLDC -0.623 -87.22 γAt -0.0018 -26.53
αLF -0.022 -1.93 δLC -0.584 -55.48 γCt -0.0018 -28.78
αLDF 0.013 1.30 δKC -0.576 -88.39 γHLt -0.0001 -1.54
αLFCT 0.026 1.47 δFC -0.571 -69.82 γHRt 0.000001 1.27
αLFCN 0.075 4.46 δCDF 0.004 2.00 γAHL 0.0003 2.20
αLM 0.234 8.70 δPC -0.613 -84.63 γCHL 0.0005 3.62
αLP 0.016 2.30 δCDP -0.001 -0.49 γHLHR 0.000005 2.20
αLDP -0.001 -0.15 δCPCT 0.021 4.48 γAHR 0.00001 2.43
αLPCT 0.014 1.21 δCPCN 0.009 2.43 γCHR -0.00001 -2.85
αLPCN -0.0004 -0.04 δCFCT -0.011 -1.81 γAC -0.0016 -2.60
αKF 0.019 3.40 δCFCN -0.006 -1.23 ρ 0.835 85.77
αKDF 0.034 10.25 δLDt 0.004 5.67 ρL 0.607 54.85
αKFCT 0.024 2.08 δLt -0.009 -10.71 ρF 0.786 59.89
αKFCN 0.016 1.30 δKt -0.013 -9.63 ρM 0.883 114.40
αKM -0.066 -5.01 δFt -0.003 -4.17 ρP 0.967 294.84
αKP 0.031 3.90 δtDF 0.005 4.62 ρLD 0.896 108.39
αKDP 0.018 4.09 δMt -0.023 -8.54 ρK 0.954 284.05
αKPCT 0.028 1.68 δPt 0.003 2.29
αKPCN -0.004 -0.20 δtDP 0.005 4.22 Equation: R-squared
αFM 0.047 4.07 δtPCT 0.010 4.84
αMDF 0.0004 0.03 δtPCN 0.022 10.52 TC 0.989
αMFCT 0.161 6.27 δtFCT 0.004 4.75 L 0.974
αMFCN 0.169 6.16 δtFCN 0.007 8.89 F 0.932
αMP -0.019 -2.16 δLDHL 0.002 1.18 M 0.970
αMDP 0.043 4.15 δLHL -0.009 -3.52 P* 0.966
αMPCT 0.088 4.46 δKHL -0.002 -1.14 LD 0.999
αMPCN 0.042 1.87 δFHL 0.0001 0.06 K* 0.996
αFP 0.008 2.25 δHLDF -0.001 -1.60 MCA 0.942
αPDF 0.013 3.38 δMHL -0.012 -2.56 MCC 0.920

αPFCT 0.007 0.79 δPHL -0.002 -1.85
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