UC Davis
Agriculture and Resource Economics Working Papers

Title

Effective Costs and Chemical Use in US Effective Costs and Chemical Use in US of Using the
Environment as a "Free" Input

Permalink

https://escholarship.org/uc/item/6g35w6nZ

Authors

Morrison Paul, Catherine J.
Ball, V. Eldon
Felthoven, Ronald G.

Publication Date
2000-05-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6g35w6nz
https://escholarship.org/uc/item/6g35w6nz#author
https://escholarship.org
http://www.cdlib.org/

Department of Agricultural and Resource Economics
University of California Davis

Effective Costs and Chemical Use in US
Agricultural Production: Benefits and Costs
of Using the Environment as a “Free” Input

by

Catherine J. Morrison Paul, V. Eldon Ball, Ronald G. Felthoven, and Richard Nehring

May, 2000

Working Paper No. 00-025

Copyright @ 2000 by Catherine J. Morrison Paul, V. Eldon Ball, Ronald G. Felthoven, and Richard Nehring

All Rights Reserved. Readers May Make Verbatim Copies Of This Document For Non-Commercial Purposes By
Any Means, Provided That This Copyright Notice Appears On All Such Copies.

California Agricultural Experiment Station
Giannini Foundation for Agricultural Economics



Preliminary, May 2000, draft pestbo19.doc

Effective Costs and Chemical Usein US Agricultural Production:

Benefits and Costs of Using the Environment asa “Free”’ Input
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Abstract

This study uses a cost-function-based model of production processes in the U.S. agricultural sector to
represent producers’ input and output decisions, and the implied costs of reductions in risk associated with
leaching and runoff from agricultural chemical use. The model facilitates evaluation of the statistical
significance of measured shadow values of “ bad” outputs and their input- and output-specific components. Of
special interest are the impacts on pesticide demand and its quality and quantity aspects. The shadow values of
risk reduction are statistically significant, and imply increased demand for “ effective” pesticides that come
mainly from embodied technology leading to improvements in quality.



I ntroduction

The benefits and costs of chemical® usein U.S. agriculture, in terms of the augmentation of effective
production and the increased risk from toxicity, have long been debated. Clearly, such chemicals have both
private and social value, in that they allow farmers (producers) to expand output (and revenue) which, in turn,
ensures a greater supply of agricultural products for both U.S. consumers and export. But there are also private
and social costs—from the private (purchase) costs incurred by producers to risks associated with leaching and
runoff.

While the private cost of applied chemicals obviously includes their per unit price, the true economic
cost for pesticides is represented by the per unit price of pesticide abatement. This abatement cost includes
research devel opments embodied in the pesticide input (through its chemical composition), that both augment
its effective impact and reduce risk. The associated research costs are primarily reflected in the purchase price
(and thus borne by the user), but are also partially paid for by taxpayers through general R& D expenditures.
Social costs accrue from the use of the environment asa“free” input, as producers dispose of excess pesticides,
potentially imposing risk and damage to both human health and the broader ecological environment.

The benefits to producers of using the environment as a free input take the form of higher output, or
lower input costs for a given amount of production, than if producers were required to reduce the “bad” outputs
associated with production. That is, lowering risk implies either decreasing marketed outputs (since “bad”
outputs are joint with “good” outputs) or increasing inputs (by substitution for the chemical input or aternative
waste disposal). Thus, policy legislation requiring reduction of risks will impose private costs on the
agricultural community.

In this study we explore these relationships using a detailed cost-function-based model of the production
structure of U.S. agriculture. The analysis is performed using a rich state-level (48 states for 1960-96) panel

data set from the USDA/ERS with a multi

! When referring to agricultural “chemicals” from this point forward we are referring to fertilizers and pesticides, though much of the
analysis focuses on the effects of pesticide use.
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-output and -input base, and including measures of pesticide use and human and fish risk associated with
leaching and runoff.

The costs of risk reduction may be represented by shadow values for the bad outputs. These shadow
values are characterized as the foregone marginal benefits of being able to use the environment freely, or,
conversely, the amount farmers would be willing, on the margin, to pay for the ability to use the environment.
The magnitude of these economic benefits can therefore be examined by estimating the costs that would be
incurred in lowering risk for agiven level of output. This, in turn, involves substitution among outputs and
inputs. Thus, shadow values depend on both the technological substitution possibilities and the input demand
and output supply behavior underlying agricultural production processes.

Measuring the shadow values of risk from agricultural chemical use and their link to the demand for
pesticides and other components of the production structure requires a detailed estimable model of agricultural
production. Such amodel permits adetailed analysis of output and input supply, demand, and composition
changes associated with substitution among netputs in agricultural processes— all of which aid in assessing
costs and benefits of chemical use. Econometric implementation of the model allows statistical inference about
the determinants of costs associated with reductions in bad outputs (risk) and effective production of good
(marketed) outputs.

We find shadow values of risk factors to be significant, larger for leaching than for runoff, and
increasing in magnitude over time. Thisimpliesthat substantive (and increasing) costs would be imposed on
the agricultural sector by legidation requiring reductions in human-toxic risk from leaching and runoff. The
results also indicate that these potential costs to farmers are associated with increases in effective pesticide use —
aswell as higher levels of most other inputs except land —for agiven level of agricultural output. Theimplied
costs of augmented pesticide use stem from chemical composition changes undertaken to improve the
abatement power of pesticides and to diminish risk. This embodied innovation represents increased, but costly,

pesticide quality.



The Methodology: model and measures

Measuring the costs and benefits of agricultural chemical use and associated environmental damage involves
explicitly modeling the production structure, recognizing the wide variety of output (revenue) and input (cost)
patterns exhibited in the data. Our state-level data set includes information on the production of two “good”
outputs (crops and animals) and four associated “bad” outputs (human and fish risk from leaching and runoff),
and the use of six inputs (including pesticides and fertilizer). The data thus facilitate the representation of a
wide range of output and input substitution and composition relationships.

We base our analysis on a cost-function characterization of input demand in U.S. agricultural
production that not only encompasses our broad array of inputs, but also incorporates the deviations between
pounds of pesticides used and quality-adjusted “ effective” pesticide use. For empirical implementation, this
cost function is augmented by price determination equations” to represent profit maximization over “good”
outputs, and by spatial and temporal fixed effects to accommodate differences across states and time periods.
This detailed modeling framework allows us to explore arich set of interactions among chemical application,
environmental damage (risk), output production, and input demand.

More specifically, our cost function takes the general form TC = TC(Y,B,w,D,t) where Y is avector of
outputs (crops, Y, and animal products, Y ,); B isavector of “bad” outputs or proxies for risk factors from
human-toxic leaching and runoff (B, B,g);* W isavector of input prices (land, LD; labor, L; capital, K;
pesticides, P, fertilizers, F; and other materials, M); D isavector of dummy variables corresponding to fixed

effects for each state, specific time periods, the corn states as a group, the cotton states; and t is a time trend.

2 Preliminary investigation using a profit function framework resulted in slopes of the materials demand equation and crop
and animal output supply equations that violated standard regularity conditions. This could be due to presence of negative
profits implied in the U.S. agricultural sector when adjustments to land, capital and other inputs are made to recognize
their effective values. The alternative p,, = MC,, equations (where MC is the marginal cost and py, the market price of
output Y,) take the form of pricing rather than output choice equations. This may seem more valid in an imperfectly
competitive market framework where the price is set where marginal revenue is equal to marginal cost. But when such a
model was estimated, the gap between marginal revenue and output price was insignificantly different from zero,
suggesting that the data represent true economic prices facing agricultural producers. We retained these equations for
estimation because omitting them reduced the robustness of the marginal cost estimates.
® The data construction procedures for these indexes are summarized in Kellogg et al. In preliminary estimation fish stock
risk from leaching and runoff were also included as bad outputs, but when both types of leaching and runoff were
included the shadow values for fish risk were invariably insignificant (and sometimes not the expected sign), so they were
dropped.
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B isincluded in the cost function on the realization that bad outputs are produced jointly with Y, or,
conversely, that the environment is used as an unpaid input by producers disposing effluent.* Production of
bads allows more effective marketed or good outputs Y to be produced for a given level of inputs, or,
alternatively, lessinput costs for a given amount of Y. Thus, requirements to reduce risk are costly to producers
in terms of net output — output per unit of input or cost —reductions. That is, for any level of output they lead to
increased input costs due to substitution toward non-chemical inputs, or toward less risky, but more costly
substitute chemicals.

The associated shadow values (SV) of the bad outputs, or the (input) cost benefit from allowing risk,
may be measured as the vector of cost effects V,TC = SV;. For example, the marginal benefit to the firm of
permitting leaching that may cause risk to human health (B, ) is SV, = 1TC/B,,, <0. Analogoudly, for any
B, component, this becomes SV, = 1TC/{B,. These shadow values reflect the margina amount the producer
would be willing to pay for theright to increase B,,,. From the reverse perspective, SV, represents the input
costs that would be incurred on the margin if adecrease in B, were legislated.

In our framework, these shadow values incorporate the behavioral motivations underlying cost-efficient
production choices, as well as technological substitution possibilities. SV, should thus be interpreted in the
context of a private value to producers, since it represents the amount that expenditure on other inputs would
have to increase (at a given output level) if the environment couuld not be freely used.® In terms of social costs,
therefore, SV, indicates the amount a marginal reduction in risk must be thought to benefit society overall to
justify legislation requiring B, reductions.

The first-order cost relationships determining the shadow values, TC/{Bx=SVgk, may be decomposed
into their input-specific effects, or the individual impacts of By “production” on the demand for the various
inputs. In particular, the linkage between bad output production and chemical use may be explored in terms of

the impact of risk reduction on pesticide and fertilizer demand decisions.

* This is similar to the development of the notion that reduction of bad outputs is costly in the context of a technological
representation in Ball et al.



Because bad outputs (risk factors) are apparently directly related to the use of chemical inputs, it would
seem that decreases in P and F would be associated with declines in By (while increases in most other inputs
may be required to reduce risk). It turns out, however, that improvements in the quality of the chemical inputs
that lead to increased use of effective (quality-adjusted) P are associated with decreases in By.

The link between pesticide use and risk factors is represented by using the 1% order Shephard' s lemma
result that pesticide input demand may be captured by P = §TC/w, (where w; is the market price of P). Then
the elasticity of this demand relationship with respect to achange in B, (a 2™ order cost effect) is constructed to
reflect the dependence of effective pesticide use on the ability to dispose of waste in the form of leaching or
runoff.

The use of Shephard’slemmaimplies that the price and quantity of P have been measured in effective
units, so that the cost derivative reflects the true economic quantity of pesticide abatement. If w, (or P) are not
measured appropriately, the application of Shephard’s lemma could be invalid.

In this case we could write the cost derivative as SQ, = TC/w,, where SQ denotes the * shadow
quantity” or true economic/effective quantity of P, that may or may not be well represented by its measured
level. Or, if the quantity instead of price of P wereincluded as an argument in TC() (as are the B, factors), the
shadow would be SV = TC/{P. In equilibrium with correctly measured quantities and prices, SQ,=P and
SV =w,, but with mis-measurement deviations would instead be evident between the shadow and measured
quantities or prices.®

Since an important issue in the literature on pesticide use and productivity is the appropriate
measurement of pesticide abatement price and quantity, this distinction between true and measured price or

quantity provides the basis for adapting the measured pesticide data to accommodate quality changes.

® Note that since the producer does not have to pay directly for use of the environment the shadow value represents a clear
net benefit for him/her as long as SVg<0 (risk increases are cost diminishing). But this also implies there will be a
tendency to overuse the environment due to the perspective that it’s a “free input.”

¢ Such a deviation would imply that the optimization equation for P should not be used for estimation purposes. Although
in our model the P optimization equation seems valid for estimation purposes, this development provides the basis for
identifying separate quantity and quality components of the effective pesticide quantity and price (based on the hedonic
analysis by Nehring and Grube underlying the pesticide data used for this study).



However, in our study, preliminary empirical investigation indicated that the pesticide data justifiably represent
the true price and quantity of pesticide abatement.’

Relying on Shephard’ s lemma, therefore, we can construct an elasticity to represent the pesticide
demand response to requirements for risk reduction as e, =  fIn P/TIn B,. Although the overall cost
elasticity e;cg, = In TC/fIn B, = SVg,-B,/TC should be negative, since SV, <0 if risk reduction is costly, if P
and B, are in some sense joint or complementary e, would instead be positive. If so, an input bias in absolute
termsisimplied; if overal input costs increase to reduce risk factors, but P declines, other inputs must increase
even more than would be implied by the total cost elasticity. Even if the e,5, = fln P/fln B, measure is negative
but smaller (in absolute value) than the cost elasticity, reductionsin risk are biased since the responses of
different inputs to B, changes differ.

More generally, such elasticity measures can be constructed for any input to capture the input-specific
impacts of risk reduction. Changes in input demand and thus composition depend on evaluation and
comparison of g, = TInx; /In B, elasticities, where x; = TC(-)/fw; for j=F,LD,L ,K,M,P. And if the
substitution patterns underlying the overall shadow value SV, are biased, each g, 5, measure may well differ
from each other substantially — even possibly varying in sign.

The impacts on the marginal costs of the good outputs from restricting bad outputs may be measured
similarly. The shadow value (true economic value or contribution to production) of an output Y , is represented
by itsmarginal cost: SV, = MC,, = TC/1Y,,. Theelaticities g, g = IN MC_/fIn B, indicate the impacts of
risk-reduction on the marginal costs of the outputs, providing some indication of producers’ motivations to adapt
output levels and composition by equating output price and marginal cost to maximize profits. That is, an increase
in MC,,, resulting from risk-reduction requirements would sugges reduced production of Y ..

These marginal cost elasticities also provide insights about cost (scale and scope) economy changes

resulting from limitations on risk. Because the shadow value measure SV, indicates the total and the average

" In particular, although studies such as Lichtenberg and Zilberman, Chambers and Lichtenberg have often found that P
equations have the wrong slope or even sign, in our analysis this was not the case. Using Shephard’s lemma seemed
justifiable both because regularity conditions on the demand equations were satisfied, and because estimation without
Shephard’s lemma imposed generated substantively equivalent results.



cost impact of achange in B,, and economies of scale are based on the ratio of marginal to average costs, the
relative impacts of B, on the marginal- to- average-cost ratio a so influence scale economies.

In addition, scope economies, based on jointness among outputs, can be examined through 2™ order cost
effects. Scope economies (SC) are typically measured from a cost function model as SC=([S,, TC(Y ) -
TC(Y)])/TC(Y)), where TC(Y ,,)) isthe minimum cost of producing Y. Thus, SC depends on the cost-interaction
terms for the outputs, or the second derivatives T°TC/TY, Y, or IMC,/TY .2 If the bad outputs are handled like
the good outputs, the scope economy impacts of B, changes are captured by the g, g €lasticities. These will
be negative if increasesin the bad outputs reduce the marginal costs of the good outputs, as would be suggested by
jointness.

From another perspective, the rel ationships between input (pesticide) demand, “good outputs,” and bad
outputs, represented above through the g5, and e, g €lasticity measures, can alternatively be characterized
directly on the shadow values of the bad outputs. The shadow value measures SV, = TC/B, will be a
function of all arguments of the TC(.) function if the underlying cost relationship is approximated by form
flexible enough to construct the corresponding elasticities from 2™ order terms. So, from Y oung’ s theorem, the
impact of achangein, say, w;, on SV, is symmetric to the effect of a change in B, on the demand for x;;

SV /w, = PTC/B,Iw, = P TC/Tw, 1B, = Ix/1B,. The elasticity representing this effect isthus eg,,; = fn
SV /fiinw,. Although the resulting indicators are not as conceptually appealing asthe g g, = fin x,/1In B,
elasticities, analogous and more interpretabl e relationships will hold for the variables that are not optimized
over in the cost function framework — the components of the Y and D vectors and the time trend, t.

For example, elasticities with respect to output levels, ey, v, = 1IN SV, /TINY ,, indicate how the value
of allowing risk — or unrestricted use of the environment for leaching and runoff — adapts in response to changes
in (the exogenous) demand for a particular commodity. Thisintuitively appealing elasticity is anaytically

symmetric to the effect on MC,, of achangeinrisk. ey, y,~0 suggests that at higher Y, levels the cost of

® See Paul for more elaboration of these types of measures.



restricting risk to farmersin terms of input costs is heightened, or, in reverse, that output increases further
enhance the value of using the environment.

Similarly, the impacts of variations in the shift factor t and fixed effects D (representing geographic
location, specific output intensities, and structural changesin P and F) indicate time- and space-dependent
differencesin the cost to producers of risk reduction. These effects can be represented as elasticities of the SV,
measures with respect to each of these variables: ey, = 1IN SV, /1t, and ey, s = TN SV, /TD..

The various cost and demand rel ationships devel oped above are characterized through 1% and 2™ order
derivatives or elasticities of the cost function with respect to the arguments of TC(-). However, divergencein
input demand patterns from those appropriately represented by Shephard’ s lemma would complicate or
preclude the estimation and interpretation of these elasticities. Even though in our data set such deviations from
standard assumptions of basic microeconomic theory did not emerge in the end, the knowledge that they might
stimulated preliminary empirical investigation of alternative models that recognize these potential difficulties.

The most common problem of this sort is the quasi-fixity of factors such as capital, land, and labor. 1f
full adjustment to equilibrium input levels does not take place within the time frame of the data, Shephard’s
lemmawill not appropriately represent input demand behavior. Thisrigidity problem is often dealt with by
incorporating levelsinstead of pricesin the TC(-) function for inputs with binding fixity constraints, with the
implied divergence from equilibrium demand (or, equivaently, variations from full utilization) represented by
the deviations between afactor’ s shadow value (SV,; = 1TC/1x;) and its market price (w,).

Alternatively, the true/effective quantity demand of an input may be represented by directly adapting the
data to embody the discrepancy. In particular, if the true (or shadow or virtual) price of the factor w;* isused as
an argument of TC(.) rather than an unadjusted market price, the validity of Shephard’slemmais maintained.’

Although the data for this study were carefully constructed to reflect the input flow values, sensitivity
checks were carried out to determine the validity of the assumption of variable inputs. These checks supported

our final empirical specification; the assumption seemed justified by the appropriate levels and shapes of the

% See Fulginiti and Perrin for a detailed discussion of the conceptual basis and use of the virtual price framework.



resulting demand equations. In fact, when K, LD and/or L were not characterized as choice variables, so the
additional structure of the input demand equations was not incorporated, the results were not as justifiable as
when Shephard’ s lemma was implemented. ™

More to the point for this project, as alluded to above, previous studies of pesticides demand have
typically identified violations of standard regularity conditionsin marginal product or input demand functions.
Such violations have been attributed to mis-measurement of the true pesticide input as a physical quantity (say,
pounds) rather than in terms of pest abatement services, rather than to constraints on behavior, or rigidities. If
the actual input demanded by the farmer is true abatement (or increases in effective output from pest reduction,
that depends on the chemical composition of the pesticides), the input should be specified accordingly.™

In the data used for this study, however, careful adaptations were made to identify the impacts of
pesticide characteristics on their true or effective price, and thus their implicit quantity. More specificaly,
hedonic analysis was used by Nehring and Grube to accommodate pesticide application rates, toxicity (chemical
composition) and persistence in their measure of the true economic price of the quality-adjusted pesticides
input. This adjusted pesticide price measure or virtual price, wy*, was used to deflate the pesticide expenditure
datato reflect real effective pesticide quantities, P*.*

Our empirical findings based on these data suggest that this adjustment was carried out in a manner
consistent with economic theory. The use of Shephard’s lemma seems justified by both the correct (in terms of
required regularity conditions) and intuitively plausible estimates of demand behavior. And when optimization
equations were not imposed for the P input, so its true shadow value (or quantity) could be indirectly imputed,
the resulting production structure pattern estimates remained substantively unchanged.

In addition, the distinction between w, and w,* (and thus P and P*) provides us a useful basis from

which to separately identify changes in the demand for physical pesticide quantity as compared to that for its

9 This is similar conceptually to the finding in Ball et al that “inefficiency” in their framework seemed virtually
nonexistent. In addition, the cross-section dimension of the panel data, and the detailed input and output decomposition,
may better represent true utilization and equilibrium or long run substitution patterns that with more limited time series
data sets.
1 See, for example, Lichtenberg and Zilberman, and Chambers and Lichtenberg.
12 See Nehring and Grube [1997] for more details about these computations.
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quality or effectiveness. Such an exercise can generate useful insights about the quantity/quality tradeoff itself
and the costs of increasing pesticide quality versus quantity associated with the reduction of risk factors. This
distinction is particularly relevant since adaptations in the characteristics of the pesticide input captured in the
hedonic analysis incorporate (or embody) both general technical change, and requirements or desires to respond
to environmental concerns (induced innovation).

The virtual pesticide price can be written aswy* = ADJ.- w,, where the AJP; quality index adapts the
price of Pinterms of pounds (w;) to one embodying characteristics, quality, or effective pesticide application
according to the underlying hedonic representation.® It follows that w.* can justifiably be used as a basis for
Shephard’ s lemma; P* = TC/fw,*, where P* is effective pesticide demand. But with the explicit wy* =
ADJ.-w; specification, variations in the effective pesticide price can be divided into a combination of deviations
in the “quantity-price” versus the “quality-price.” These relationships are also imbedded in the identify wP =
wWpP* = VAL, sow.*/w, = P/P*, where VAL, isthe dollar expenditure on pesticides, which can be used to
motivate and interpret these measures.

The multiplicative (or log-linear, asistypical for a hedonic equation) specification of w.* implies that
the contribution of a percentage increase in pesticide use (or price) isthe same whether it stems from quality
(ADJy) or quantity (wp) changes. At any point in time, given TC(w,*,...)=TC(ADJ.- W,...), the marginal cost of
changing the pesticide price (either the measured or quality-adjusted price) is reflected by differing (shadow)
quantities of the pesticide input.

So when focusing on the quality adjusted price, 1TC/wy* = SQ,. yields the shadow quantity of the true
effective pesticide input, which will equal P* if Shephard’slemmaholds. If instead we take the derivative with
respect to the unadjusted pesticide price, using the equality w.P = w,.P*, we obtain TC/fw, = ADJ. TC/flw*
= (Wp*Iwp)-P* = (PIP*)-P* = P=SQ,. Thusthe shadow quantities of the true effective — as compared to

measured — pesticide quantity differ only by the adjustment factor ADJ, = w*/w, = P/P*.* In turn, the impact

3 This is similar conceptually to the adaptation to capital to accommodate utilization as K*=uK or w*x=w/u, along the
lines of Jorgenson and Griliches.
1 This also stems from the fact that the “shares” fin TC/fIn wp = P-wp/TC and §In TC/fIn wp* = P*.wp*/TC are identical
by definition.
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on costs of a change in only the quality component becomes TC/fADJ, = w,- TC/wy*, which can be
rewritten as VAL JADJ, — the quality-adjusted pesticide value.”

Even though the differences in these shadow quantities depend only on the adjustment factor, they will
vary over time and across regions. In fact, the pure quantity and quality-adapted measures could movein
opposite directions if the adjustment factor differs sufficiently. For example, over time, if the adjustment factor
is growing rapidly enough, P (SQp) could drop even as P* (SQs.) rises.

This brings us back to the relationship between P and B, posited above. The supposition that declinesin
risk require pesticide use to fall focuses on the P level, not the P* factor (that incorporates quality
characteristics). Infact, decreasesin risk could well be associated with increases in effective pesticide use, due
to the induced changes in quality, that incur their own cost on the producer.

That is, producers pay for quality that derives from technical change — perhaps derived from R&D
expenditures — embodied in P*, aswell as other changes in composition explicitly related to risk potential.
These adaptations should be recognized as part of the cost of reducing risk. A changein P* includes
adaptations in both quantity and quality, with separately identifiable cost implications, which can be
disentangled through their implied share in P*, as represented by ADJ..

The Results: econometric implementation and estimates

The cost function implied from the model overviewed in the previous section takes the general form TC
=TC(Y oY &.Bu,BrrWe* W, , W W, 5,Wy,WE,t,Dp,De,Der, Doy, Do), Where the general vector representation has
been expanded to make the individual arguments of the function explicit.’® The vector of fixed effectsincludes

two dummy variables for structural shiftsin pesticides and fertilizer use (D, D;)*" and two for the cotton and

> Note that ADJp<1 since the quality contribution to the measured pesticide price is removed, VAL/ADJp will exceed the

measured value of the pesticide input.

' The prices of the inputs other than P may also be thought of as effective or virtual prices, accommodating in the data the

stock/flow effects of fixities (for, say, K, LD), or other “quality” characteristics (such as education for labor), although we

will not make this explicit using *s since this is not the focus of the current analysis..

Y The Dp dummy variable (with interaction terms for all wp* cross-effects) represents a 1984 break in the pesticide data

found with the hedonic research to indicate roughly the year in which most cropping sectors switched from or reduced use

of many of the old line chemicals to the new. The D dummy variable (with interaction terms for all wg cross-effects) for

the post-1979 time period represents results from chow tests that indicate this an important point of structural change in
12



corn states as groups (D, Dey)- ® To have state-specific intercepts in each estimating equation, 48 state-level
dummies (D,) were used, with cross effects for each input price and output quantity.

Econometric implementation of the model and construction of parametric derivative and elasticity
measures first requires specifying afunctional form for TC(-). We choose to approximate the underlying cost
relationship with a generalized L eontief form, where the output levels and shift factors are included in quadratic
rather than square root form, asin Paul:

(1) TC(Y,B,p,D,t) = dp; pp*Dp + dey P Dt SSidg pDs+ SP; - (SsSi s Ym DY)
+SS @@ P+ Sapeh ° Pt ° Det+ S ajpep ° Pe° De

+ SSm M) Bm B Ym + SnSt Apor Y Py Dy + SiS; Arenr Y Pe Dy

+ 55, dy p, By + Sy dypp B P,* Dp + Sy dyor By Pr Dr

+5dpt+S dppr t p* Dy + S, Ay t P Dy

+ S0, (SuSn G Ym Yo + SiSk Gk Y By + SS9k B B

+ 0P+ S0 Ymt + Scde Bet),2°
where (i,j) denote the input market or virtual prices of the inputs, (m,n) the good outputs, (k,I) the bad outputs,
and r the Dy, D, D and D, fixed effects. The estimating model derived from this function is based on a
system of six factor demand equations, two output pricing equations, and the function (1) itself. In particular,
the factor demand estimating equations are defined via Shephard' s lemma; P*=TC/Yp.*, F=1TC/1pe,
K=TC/p,, L=YTC/p., LD=TTC/p,p, and M=JTC/qp,,. The output pricing equations are defined according to
standard p,,=MC,, equalities representing optimization over outputs (where p,, isthe market priceof Y ,); p, =

TTC/ITY s, Pc = TTC/TY ..

the fertilizer input, reflecting the energy crisis. Note also that the corn and cotton dummy interaction terms were not
included for the bad outputs (B) due to their continued insignificance in preliminary empirical investigation.
8 These fixed effects are intended to reflect important differences in production structure with respect to chemicals use in
these areas, since the corn areas tend to continue to use more old line chemicals with water quality but not toxicity issues,
and have lower pesticide prices, than do the cotton states.
¥ Note that the j M requirement for the cross wj-Y, terms was due to the otherwise linear dependency from the w;
summation before the fixed effects for the Y, (the dy, parameters), and similarly for the it j for the input price cross-
terms.
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Because with competitive markets producers would be expected to choose output levels given observed
output prices, the behavioral implications of the output pricing specification initially seem questionable.
However, scale economy measures derived from amodel estimated with no structure incorporated for output
choice were implausible. And output supply equations from a profit function framework tended to have
perverse estimated curvature. In addition, when the pricing equations from the cost function framework were
transformed into MR, =MC,, expressions (where marginal revenue, MR, is defined as p,,+1p,/1Y - Y ), tO
alow for markup behavior, the estimated Tp,/TY ., “wedge” between p,, and MR, was invariably insignificant.
An ex-post pricing mechanism clearly tends to dominate. A possible reason isthat pricesin agricultural
markets are determined by the amount of output available after the growing period (for either a crop or animal
product).

This equation system was estimated by non-linear seemingly unrelated (SUR) systems procedures
instead of instrumental variables (1V), which is often used to take into account potential output endogeneity or
errorsin variables. We opted not to use IV because of the care taken in data development, such that both the
input demand and output pricing equations appear well characterized. The use of panel data and our
specification to correct for first-order autoregressive disturbances also could cause problemsiif lagged values of
exogenous variables are used as instruments, asis typically done. Thus, SUR was retained for the fina
estimation.

Adaptations were made to accommodate potential unknown sources of heteroskedasticity. One such
“fix” — changing the input demand equations to input/output measures to reduce variations in scale across states
and time — did not affect the estimates substantively. Instead we used the procedure in TSP that computes
White' s heteroskedasti c-consistent covariance matrix to generate appropriate standard errors.

Durbin-Watson tests indicated that autocorrelated errors were present in the cost and input demand
equations. Therefore, an AR(1) term was directly incorporated into the cost equation, and TC=TC(-) +r ;€ 4
+ e was estimated (where r ;. is the cost function-specific AR(1) parameter, and g is the period t estimation

error for TC(.)). Analogous adaptations were made to the input demand equations based in the general form 'Y
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=bX +r e, +e.” Whiletheinclusion of the AR(1) structure led to anon-linear system (increasing estimation
time substantially), the resulting estimates of the r ’s were very significant, and standard statistical tests
indicated that the adjustment adapted for autocorrelation in the estimates.

The parameter estimates for this model are presented in the Appendix (with the coefficients on the state
dummies omitted to keep the table manageable). Although in amodel this complex, the individual parameter
estimates have limited interpretation, the overall statistical significance of the parameters is notable; even most
of the states dummies were significant. Also, the R%sindicate excellent “fits” for the estimated equations — all
reaching at least 0.92.

The primary bad output and pesticide cost and benefit indicators computed from the estimated
parameters for the full data sample are presented in Table 1. The reported estimates are (non-wei ghted)
averages across all states and time periods for each measure. The t-statistics are based on computation of the
measures evaluated at the average (mean) values of the data® The measures were constructed for these data
using the delta method (essentially a generalized Wald test) by the ANALY Z command in TSP. This procedure
computes the constraints underlying the hypothesis that the measure is equal to zero, as well as the associated
covariance matrix, evaluated at the estimated parameter vector for a given data point.

The primary measures for evaluating the marginal benefits of using the environment for disposal of
leaching and runoff are the shadow values SV, for B,;, and B, z. These measures are both negative (indicating
that allowing higher risk factorsis cost-saving for the producer) and statistically significant at approximately the
5% level on average for the whole sample (the SV, and SV,,, p-values are 0.051 and 0.034).

Risk reduction is clearly pesticide-using in the sense that lowering risk requires more effective pesticide

use; -, <0 and e,z <0, and are significant both statistically and in terms of magnitude (especially for

20 Because of this specification, the first observation for each state was dropped for estimation.
2 Reporting estimates of the elasticities based on the mean values of the data seemed less justifiable conceptually than
estimating them for each data point. However, for this data sample the implications from either procedure were very
equivalent in their substantive implications.
22 \When additional leaching and runoff risk factors for fish stocks were also included, their shadow values were almost
invariably statistically insignificant, although when they were incorporated without the associated human risk factors their
estimates were similar to those for the HL and HR measures, suggesting that their costs are not separately identifiable for
these data.
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runoff). Thisimpliesthat the technology or innovations embodied in P* must increase substantively to reduce
risk. That is, athough P* may rise through either quantity or quality increases, this relationship clearly
indicates the dominance of the latter. By contrast, the only input insignificantly related to both risk factorsis
fertilizer.

The negative g, and g ,,x measures also suggest that capital has atendency to “substitute” for the
environment, in the sense that additional capital is required to reduce human risk factors, although e ,,, is
insignficant. The M elasticities with respect to B,,, and B,; are also negative and both relatively large and
significant. In contrast, land seems, in a sense, “complementary” with risk; risk reduction implies lower land
use. Theindications for labor are mixed.

The input composition implications underlying these benefits of alowing risk, or marginal costs of
reducing risk to the producer, are quite biased. The implied biases are indicated by comparing the size of these
elasticities to each other and to the overall or “average” cost elasticities e, =0.009 and and e ,z=0.008. For
aB,, decrease, for example, P* is affected the most (human risk reduction from leaching is greatly P*-using), L
and M demands rise relative to other inputs, capital changes less than overall input use (arelative capital-saving
bias) and land use decreases (an absolute land-saving bias). Thus, input composition adapts substantially to
accommodate risk reduction.

For the outputs, the elasticities g, g are small, and most are positive, implying that scope economies
or jointness between the risk factors and outputs are limited. At least for the animal inputs this makes intuitive
sense, in that they would have little linkage with leaching and runoff from chemical use.®® In particular, the
positive (but small and not quite significant at the 5% level with p levels of 0.083 and 0.06) €ca 1. aNd €yca 1r
elasticities indicate that reductions in human risk are consistent with somewhat lower marginal costs of animal
production, in turn implying some motivation toward producing A rather than C outputs. In contrast, the

negative and significant e, 4 estimate indicates jointness between crop production and risk from runoff.

2 Of course risk from animal waste is also a major issue, at least in some states. Although we do not currently have
measures of such factors, work is proceeding to generate such measures that will be used in later research to establish
these relationships.
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Next, implications about the level of P* demand versus P —i.e., quality versus quantity — are evident
from the SQ,. SQp, and SQ, estimatesin Table 1. The fitted shadow value of P* is on average about twice as
large as the unadjusted P level®, implying an average measured quality adaptation factor of approximately 0.5.%
These relationships indicate that most of the measured variation in P* involves quality rather than quantity,
supporting the result that decreases in risk require increases in P* through quality changes. In fact, in terms of
the value measures SQ,p;» and VAL the quality-based measure exceeds the one without the adjustment by a
factor of more than 2.5.

Some interesting implications may be derived from the bad output shadow value elasticitiesin Table 1.
The positive ey, ; €lasticity suggests that SV, isincreasing (in absolute value, so the costs of reducing B,,, are
greater) over time, whereas the reverse seemstrue for SV,,;.* Changes in the structure of the fertilizer input
(D, post-1979) caused SV, to increase even more, although in the post-1984 period (D5, that coincides with
changes in the form of pesticides) the cost of reducing B,,, drops dlightly. By contrast, in both the post-1979
and post-1984 periods, SV, seems somewhat higher in absolute value. None of these relationships are,
however, statistically significant.

Consider also the impacts of shift factors, and output levels and composition, on the demand for the
effective pesticide input. Note that all measured elasticities of P* demand are statistically significant and
positive except that for the fertilizer structural change (Dg), which would not be expected to have a significant
effect on P*. In particular, effective pesticide use seemsto have increased significantly over time (e, >0), and
especially after 1984 (e.. ,>0). P* demand is also more extensive in both the corn and cotton states relative to
others (€. ,cy @nd €. cr are positive). And, the impacts of increases in crop production are quite dramatic —a 1
percent augmentation of crop output impliesa 1.5 percent risein P* (e, -»1.5), S0 scale increases with respect

to the crop output are biased toward pesticide use. In contrast, higher levels of animal outputs generate a much

In reverse, the SQap;r Measure is nearly twice the SQp- value.
% Note, however, that the (unweighted) average ADJp in the data is around 0.9. Although the differences in these
measures depend entirely on ADJp, the actual deviation in the presented measures is based on an average of the shadow
values or quantities, which implicitly weights the ADJP numbers according to the shadow quantity itself.
% Note that a negative value for the esy, elasticity implies a positive measure of 1SVgk/1lr, since the derivative is
multiplied by the (negative) SVgk value to construct the elasticity.
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smaller (less than 50%) proportional change in pesticide inputs, possibly associated with greater crop
production for animal feed.

Certain insights may be gained from aternative specifications estimated in preliminary investigation of
the data. For example, a comparison specification using a pesticide demand equation (erroneously) defined in
terms of pounds of pesticide use and an unadjusted pesticide price (wp) was estimated. The results (not tabled
here) indicated that SV, is essentially zero (and insignificant), whereas SV, is dlightly larger (in absolute
value) than in the P* specification. But SQ, and SQ,. are virtually the same (SQ,p 5 isVvery low). The
discrepancies for the P*-B, relationships are more pronounced; B,,, and B, are positively rather than negatively
related to P demand, suggesting their jointness. But this supports our finding that although effective P* use
increases for risk reduction, the pure quantity measure, P, decreases. The impact of D, on P is smaller than for
P*; structural adaptations in the pesticide input (embodied innovations) increased the quality rather than
quantity component of P*. Pisalso considerably smaller in the corn and cotton states than P*.

In another alternative specification, to gauge the relevance of the optimality assumption, the pesticide
demand equation was omitted (both for the base specification and for one in which P* instead of wy* was used
as an argument of TC(-)). The resulting shadow measures (SQ,. and SV ., respectively) are very similar with or
without estimating the P* optimization equation, supporting the notion that Shephard’ s lemmaisvalid for these
data. The main differences across these specifications appeared in the implied P* demand elasticities, which are
magnified when the P* equation is not estimated (likely due to the small share of P* in costs).

For specificationsin which P* instead of w,. wasincluded as an argument of TC(.), SV issimilar in
both cases, but SV is approximately 0.4 (compared to 0.6 for SV,..) with the optimization equation, and
negative without it. Also, eg,p. aNd €g,p4r are both negative, in contrast to egp. . aNd ey,p g SUggeESting that
decreasing risk is associated with increases in the imputed effective price — or shadow value — of pesticides.
Similarly to the results for the base model, these elasticities are much smaller when an optimization equation for

w,* isincluded than when it is not.
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It is also informative to compare some of the primary elasticity estimates across time periods and
regions. For the time dimension, we report measures separated into pre- and post-1984, to represent the
structural break in pesticide composition, and the four decades covered in the data for the analysis — 1960s,
1970s, 1980s, and 1990s. In addition to the corn- and cotton-state distinction, we define 10 regions (for the 48

contiguous states), according to the breakdown used by the USDA to report regional productivity data:

CN Corn Sates IL, IN, 1A, MI, MN, MO,
NB, OH, WI, SD

CT Cotton Sates AL, AZ, AR, CA, GA, LA,
MS, NC, TN, TX

Region 1 Northeast CT, ME, MA, NH, RI, VT,
DE, MD, NJ, NY, PA

Region 2 Corn Belt IL, IN, 1A, MO, OH

Region 3 Lake States MI, MN, Wi

Region 4 Northern Plains KS, NE, ND, SD

Region 5 Appalachian KY, NC, TN, VA, WV

Region 6 Southeast AL, Fl,GA, SC

Region 7 Delta AR, LA, MS

Region 8 Southern Plains OK, TX

Region 9 Mountain AZ, CO, ID, MT, NV, NM,
VT, WY

Region 10 Pacific CA, OR, WA

The pre- and post-1984 e, and e, Valuesin Table 2 indicate an upward trend in the proportional
agricultural sector marginal-cost-benefits of B, disposal, but the reverse occurs for B,..”” Thisis consistent

with the implications for the associated pesticide costs; pesticide-quality-enhancing costs of reducing B,

"It is important to present these in proportional (real) terms to see these trends, since the nominal trends reflected in the
SV values are somewhat misleading, The tendency for the By, value to increase is exacerbated if one looks instead at
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(represented by €., ) are increasing over time, and of B, (from e.. ) are declining. These trends are also
evident in the values presented by decades

For the corn and cotton state division in Table 2 the cotton states have afar greater marginal cost of risk
reduction, at least for leaching, than do the corn states. Leaching-risk reductions in the corn states seem
associated with lower effective pesticide use (which may stem from either quantity or quality differences,
whereas in the cotton states it is significantly higher. By contrast, the costs of reducing runoff are significantly
larger in the corn states, with reductions in runoff related quite dramatically to increased effective pesticide
applications.®

Limiting the corn states to the corn belt in the more specific regional breakdown highlights a different
trend. Leaching and effective pesticide use clearly “move together” in this area; e, >0. Thisisalso true for
the northern plains and Pacific states. But .., islarger, and the associated (proportional) marginal cost of
reducing B, islower.

The proportional cost of reducing By is highest in the southeast and the Appalachian regions, while the
(absolute) nominal values are higher in the northeast and mountain area. The implied proportional change in
pesticide use follows closely, with the Appalachian and southeast states requiring more augmentation of P* than
the northeast to reduce leaching risk, and the mountain states significantly less. By contrast, the cost of
reducing risk from runoff, both overall and for pesticides, is by far the greatest in the corn belt. The states with
the next highest costs of reducing runoff are in the southeast, lake, and delta areas. The northern plains require
less than one-third the pesticide adjustment of the corn belt states, and in the Pacific region almost no change in
effective pesticide use seems necessary.

The shadow quantity-quality tradeoffs in pesticides across time and region are evident from the
measuresin Table 3. Although the shadow quantity of P* isincreasing over time, the difference between the

quantity- and quality- measuresislower before than after 1984. From the decade breakdowns this reduction

the SV, values, and that for Byr appears slightly upward rather than downward as it is when looking at percentage
changes.
%8 Note that in nominal terms (using the SVg, measures) the costs of runoff seem slightly higher in the cotton than in the
corn states.
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seem particularly noticeable in the 1980s. The wrong signs on the fitted values for the quantity-based measures
in the early years of the sample (as well as for some regions) emphasize the importance of focusing on the
quality-adjusted or effective use of pesticide as an abatement factor, rather than the pure quantity measure.

In Table 4, effective pesticide demand elasticities are presented. The e.., measures indicate that P* is on
an upward trend, given other production structure characteristics, at |east since the 1970s, and more
dramatically sointhe 1990s. Thisincreaseis particularly marked in the northeast, whereas the southern plains
and Pacific states have experienced a decline in effective pesticide use over time (holding all other production
characteristics constant). The impact of the changing structure of pesticides in the mid-1980s also seemsto be
the most substantive in the northeast states.

The elasticities with respect to the outputs suggest that effective pesticide use increased at more than
double the rate of crop production in the pre-1984 period (e,. -»2.08), although less than proportionately
afterward (e.. »0.60). The linkage of pesticide use with animal production also changes over time; although
e ,<1.0intheearlier period, e.. ,<0 in the later period. For regions, less variation is evident, but the
exacerbating effect of production scale changes on effective pesticide demand is particularly striking in the corn
states.

Concluding Remarks

This study uses a detailed model of the production structure in U.S. agriculture to measure the potential
costs to agricultural producers of legislation pertaining to pesticide use and resulting human risk. When
production plans are adjusted to reduce such risk, we find that the associated interactions among netputs involve
changes in output and input composition, and induced innovation to augment the pesticide quality.

Reducing human risk from leaching and runoff seems significantly to affect producers costs. But a

primary determinant (and cost) of risk reduction stems from increases in effective pesticide quantities —
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pesticides that are both more effective against pests and more environmentally benign. This effectivenessis
embodied in the pesticides themselves through R& D and associated technological change.”

These patterns may indicate that changes in human risk levels stemming from agricultural production
are not only related to the quality of pesticides used, but also are linked to adaptations in the composition of the
materials input (including primarily feed, seed and livestock), and labor (perhaps according to educational
attainment). This suggests important further issues to pursue in subsequent research on the production structure

of the U.S. agricultural sector.
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Table 1: Shadow Value and Elasticity Measures, overall averages

measure estimate t-statistic

SV -0.0164 -2.118 SQp= 0.0884  1.955
SVir -0.0004 -1.951 SQep 0.0440 3.816
€rcHL -0.0090 -2.118 SQaowp 0.1682  3.816
€rc Hr -0.0077  -1.951 VAL 0.0660
€bx 1L -0.0243 -1.887 EsvHLt 0.0175 1.058
€+ HR -0.0644 -2.472 EsvHR.t -0.0104 -0.556
€5vHL,DF 0.0155 0.926
€ HL 0.0035 0.175 €svHr,DP -0.0030 -0.640
€ HR -0.0151 -1.273 €5vHR,DF 0.0132 0.406
€p,HL 0.0086 2.157 €5vHR,DP 0.0145 1.196
€ pHR 0.0107 2.348
€L HL -0.0205 -1.867 Bt 0.3750  5.162
€L HR 0.0144  1.961 &+ oF -0.0650 -0.981
B HL -0.0017 -1.063 Epp 0.6482 -3.881
& HR -0.0074  -2.563 &+ peT 1.0128  7.724
emHL -0.0141  -1.850 0+ peN 0.9902  8.269
EMHR -0.0255 -2.875 Eox 0.4591  2.441
&+ c 1.5444  23.472
EmcaHL 0.0039 1.731
eMmcAHR 0.0053 1.884
mcc HL 0.0055  1.295

€vicc HR -0.0001 -1.943



Table 2: Bad Output Measures, temporal and spatial

overall average

€rcHL -0.0090
€rcHr -0.0077
€ L -0.0243
€ HrR -0.0644
1960s

€rc HL -0.0033
€rcHRr -0.0131
€bx 1L -0.0073
€+ 1R -0.1708
northeast

€rc HL -0.0088
€rcHr -0.0031
€ HL -0.0534
€ 1R -0.0200
southeast

€rcHL -0.0399
€rcHr -0.0116
€ HL -0.0827
€+ 1R -0.0461

pre-1984

€rcHL -0.0070
€rcHrR -0.0095
€« HL -0.0210
€« HR -0.0888
1970s

€rc HL -0.0099
€rcHr -0.0084
€ 1L -0.0294
€+ 1R -0.0434
corn belt

€rcHL -0.0007
€rcHRr -0.0264
€ HL 0.0406
€+ 1R -0.3059
delta

€rc HL -0.0079
€rcHRr -0.0111
€« HL -0.0153
€ HR -0.0334

post-1984

€rcH -0.0130
€rcHrR -0.0044
€bx 1L -0.0302
€ HR -0.0218
1980s

€rc HL -0.0092
€rcHr -0.0047
(ST -0.0299
€+ HR -0.0222
lake states

€rcHL -0.0077
€rcHr -0.0134
€bx 1L -0.0035
€bx 1R -0.0817

southern plains

€rc HL -0.0020
€rcHr -0.0031
€ HL -0.0001
€+ HR -0.0204

corn states

€rcHL -0.0033
€rcHr -0.0192
€ L 0.0252
€ HrR -0.2079
1990s

€rcHL -0.0148
€rcHr -0.0039
€bx 1L -0.0312
€+ 1R -0.0180

northern plains

€rc HL -0.0031
€rc R -0.0068
€ HL 0.0130
€ 1R -0.1004
mountain

€rcHL -0.0022
€rcHr -0.0009
€ HL -0.0173
€+ HR -0.0085

cotton states

€rcHL -0.0184
€rcHrR -0.0086
€« HL -0.0333
€« HR -0.0387
appalachian

€rc HL -0.0177
€rcHRr -0.0080
€ HL -0.0691
€+ 1R -0.0595
pacific

€rc HL -0.0015
€rcHRr -0.0004
€« HL 0.0119
€ HR -0.0020



Table 3: P, P* and ADJP measures, temporal and spatial

overall average

SQe~  0.0884
SQp 0.0440
SQapr  0.1682
VAL  0.0660
1960s

SQp~ 0.0333
SQp -0.0540
SQapr -0.0491
VAL  0.0115
northeast

SQp- 0.0227
SQp 0.0169
SQappr -0.0211
VAL  0.0124
southeast

SQp= 0.0923
SQp 0.0326
SQaor  0.0168
VAL  0.0761

pre-1984

SQp+ 0.0654
SQp 0.0170
SQapsr -0.0238
VAL  0.0353
1970s

SQp~ 0.0737
SQp 0.0439
SQapsr -0.0231
VAL  0.0379
corn belt

SQp- 0.2042
SQp 0.0903
SQuo»  0.4373
VAL  0.1590
delta

SQp= 0.1356
SQp 0.1097
SQapbwr  -0.0065
VAL  0.0948

post-1984

SQp- 0.1297
SQp 0.0903
SQapr  0.5423
VAL 0.1223
1980s

SQe=  0.1162
SQp 0.1056
SQaoe  0.0797
VAL 0.0890
lake states

SQe=  0.1361
SQ  -0.0178
SQap» -0.0398
VAL 0.1040

southern plains

SQp= 0.1641
SQp 0.0731
SQaor  0.8150
VAL  0.0994

corn states

SQe  0.1631
SQp 0.0233
SQao»  0.1975
VAL  0.1258
1990s

SQe  0.1407
SQp 0.0822
SQao»  0.8470
VAL  0.1434

northern plains

SQr~  0.1088
SQr  -0.0021
SQuo»  0.3696
VAL  0.0778
mountain

SQp+ 0.0334
SQp 0.0448
SQaor  -0.0157
VAL  0.0192

cotton states

SQp- 0.1385
SQp 0.0906
SQapyp 0.2410
VAL 0.1084
appalachian

SQp- 0.0490
SQp 0.0449
SQapr  -0.0528
VAL 0.0388
pacific

SQp+ 0.1717
SQp 0.1156
SQaor  1.1566
VAL 0.1602
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Table 4: Pesticide Demand Elasticities, temporal and spatial

overall average

€t 0.3750
€+ pp 0.6482
SN 0.4591
€ c 1.5444
1960s

€t 0.3797
€+ pp 0.0000
€ A 1.8036
€ c 3.3367
northeast

€t 1.0342
S 2.0302
SN -0.2273
€ c 0.8552
southeast

€t 0.0921

€+pp 0.0821
G 0.6362
G 1.0910

pre-1984

€t 0.2894
€+ pp 0.0000
SN 0.9228
€ c 2.0756
1970s

G t 0.2365
€+ pp 0.0000
SN 0.4967
€ c 1.4237
corn belt

€t 0.2211
€ pp 0.0130
S A 0.6795
€ 2.2025
delta

€t 0.1046

€+pp 0.0250
G 0.7404
G 1.2780

post-1984
€t 0.5535
€+ pp 1.9446

SN -0.3845
G- 0.5918

1980s

€t 0.3865
€ pp 0.4412
SN -0.1167

€ c 0.7855
lake states

Ept 0.2558
€+ pp 0.0261
S9N 0.4577
6 c 1.9123

southern plains
€ ¢ -0.0183
€+ Dp 0.0696
€+ A 1.1438
G c 1.5082

corn states

€t 0.2733
S 0.0233
SN 0.9127
S2Y 2.2566
1990s

S8 0.5505
€+ pp 2.7034
SN -0.5010
G c 0.4967

northern plains

Ept 0.1889
€ pp 0.0314
SN 1.7253
S 2.8125
mountain

Ept 0.3272

€+op 0.7494
Een 0.4592
G 1.7100

cotton states

€ t 0.1378
€~ pp 0.0509
€+ A 0.8292
€+ c 1.6210
appalachian

€ t 0.1495
€ pp 0.3765
€px A 0.3135
Eoxc 1.5313
pacific

€ ¢ -0.0044

€+pp 0.0309
G 0.1894
G 1.3918
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Appendix Table Al: Coefficient Estimates

Estimate  t-statistic Estimate  t-statistic Estimate t-statistic
(03} -0.139 -5.74 ApreN 0.036 3.55 Chiop 0.0005 0.77
Oy -0.190 -6.32 Arpp -0.002 -0.83 OLoHr 0.00004 1.68
AipL -0.013 -2.09 dioa -0.971 -76.43 (o 0.0001 3.08
aipk 0.082 8.12 Aia -0.921 -54.45 Okrr -0.0001 -5.42
aipr -0.004 -0.91 Cka -0.900 -66.55 Orir -0.0001 -2.88
A pprF 0.012 3.61 Oen -0.905 -58.76 Ciror -0.00001 -0.89
AipreT -0.025 -3.48 daor 0.015 4.90 Owrr -0.0006 -8.24
AipreN -0.007 -0.97 Con -0.931 -65.03 Oprir -0.0001 -3.61
Aipm -0.034 -3.74 daop -0.001 -0.56 Chiop -0.00003 -2.18
aipp 0.006 1.19 dapcr 0.026 2.43 G -0.0003 -0.43
A ppp -0.012 -3.21 dapen -0.014 -1.29 Gc -0.0011 -3.13
AippcT 0.001 0.09 darcr -0.013 -1.07 Ghine 0.00003 1.86
AipreN 0.013 1.50 daren -0.029 -2.44 GHRrHR 0.00000001 141
aik 0.012 1.65 dioc -0.623 -87.22 Ot -0.0018 -26.53
acr -0.022 -1.93 dc -0.584 -55.48 Gt -0.0018 -28.78
aipr 0.013 1.30 Ok -0.576 -88.39 Gt -0.0001 -1.54
Aircr 0.026 1.47 Oc -0.571 -69.82 GHrt 0.000001 1.27
airen 0.075 4.46 depr 0.004 2.00 Oani 0.0003 2.20
aim 0.234 8.70 Cbc -0.613 -84.63 Ger 0.0005 3.62
aip 0.016 2.30 depp -0.001 -0.49 GHLHr 0.000005 2.20
aipp -0.001 -0.15 Ceper 0.021 4.48 OaHr 0.00001 2.43
aipct 0.014 1.21 Oepen 0.009 2.43 &EHR -0.00001 -2.85
aipcn -0.0004 -0.04 Oerer -0.011 -1.81 O -0.0016 -2.60
akr 0.019 3.40 Aeren -0.006 -1.23 r 0.835 85.77
Akpr 0.034 10.25 ot 0.004 5.67 Mo 0.607 54.85
agrct 0.024 2.08 0 -0.009 -10.71 e 0.786 59.89
AkreN 0.016 1.30 Ot -0.013 -9.63 M'm 0.883  114.40
Akm -0.066 -5.01 O -0.003 -4.17 e 0.967 294.84
Agp 0.031 3.90 Chor 0.005 4.62 Moo 0.896  108.39
Akpp 0.018 4.09 it -0.023 -8.54 Ik 0.954  284.05
Agpct 0.028 1.68 o 0.003 2.29
AkpeN -0.004 -0.20 Chop 0.005 4.22 Equation: R-squared
Arm 0.047 4.07 Gecr 0.010 4.84
ampr 0.0004 0.03 Cheen 0.022 10.52 TC 0.989
awmrct 0.161 6.27 Checr 0.004 4.75 L 0.974
AmreN 0.169 6.16 Cheen 0.007 8.89 F 0.932
awp -0.019 -2.16 oHe 0.002 1.18 M 0.970
Ampp 0.043 415 O -0.009 -3.52 p* 0.966
Ampct 0.088 4.46 i -0.002 -1.14 LD 0.999
AmpeN 0.042 1.87 e 0.0001 0.06 K* 0.996
App 0.008 2.25 Chior -0.001 -1.60 MCa 0.942
Appr 0.013 3.38 (o ying -0.012 -2.56 MCc 0.920
Aprct 0.007 0.79 o -0.002 -1.85
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