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Rule Induction and Interference in the Absence of Feedback:
A Classifier System Model
Lewis G. Roussel, Robert C. Mathews, and Barry B. Druhan
Louisiana State University
Department of Psychology

ABSTRACT

This study extends the work of Druhan et al. (1989) and Mathews et al. (1989b) by applying their com-
putational model of implicit learning to the task of learning artificial grammars (AG) without feedback.
The ability of two induction algorithms, the forgetting algorithm which learns by inducing new rules
from presented exemplars and the genetic algorithm which heuristically explores the space of possible
rules, to induce the grammar rules through experience with exemplars of the grammar is evaluated and
compared with data collected from human subjects performing the same AG task. The computational
model, based on Holland et al.’s (1986) induction theory represents knowledge about the grammar as a
set of partially valid condition-action rules that compete for control of response selection. The induc-
tion algorithms induce new rules that enter into competition with existing rules. The strengths of rules
are modified by internally generated feedback. Strength accrues to those rules that best represent the
structure present in the presented exemplars. We hypothesized that the forgetting algorithm would suc-
cessfully learn to discriminate valid from invalid exemplars when the set of exemplars was high in fam-
ily resemblance. We also proposed that the genetic algorithm would perform better than chance but not
as well as the forgetting algorithm. Results supported those hypotheses. Interestingly, the Mathews et
al. (1989a) subjects performed no better than chance on the same AG learning task. We concluded that
this discrepancy between the simulation results and the human data is caused by interference from
unconstrained hypotheses generation of our human subjects. Support for this conclusion is two-fold:
(1) subjects are able to learn the AG when the task is designed so that hypothesis generation is inhi-
bited, and (2) informal inspection of verbal protocols from human subjects indicates they are generating
and maintaining hypotheses of little or no validity.

INTRODUCTION

Some models have been proposed to account for learning in situations where external
feedback is either missing or unreliable (eg., Fried & Holyoak, 1984; Billman & Heit,
1988). Generally, these models work by detecting environmental regularity in the form
of either frequency cues or feature covariation. Models of implicit learning, which

also operate by detecting and encoding structural features in the input, would seem to
be perfectly capable of learning in such an environment. A model (THIYOS) based on
a classifier system has been found useful for modeling implicit learning of artificial
grammars when external feedback is present (Mathews, Druhan, & Roussel, 1989). We
are encouraged by this result because the induction model of Holland, Holyoak, Nis-
bett, and Thagard (1986) from which THIYOS is derived is claimed to be relevant to a
wide range of task domains, from conditioning to stereotyping. This paper will present
evidence that THIYOS can leam in the absence of external feedback.

Recently Mathews et al. (1989b) applied three different induction algorithms to learn-
ing artificial grammars (AG) with THIYOS. The AG task consisted of a series of tri-
als in which THIYOS attempted to select the valid string from a list of five alterna-
tives and was given feedback about the correct choice after each trial. On each trial
four of the strings contained from one to four violations (incorrect letters). The simu-
lation data suggested that the effectiveness of the algorithm depends on how data
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driven the task is. One of the algorithms, termed "forgetting”, was shown to be supe-
rior for learning an AG in this multiple choice task because it best exploits clues to the
underlying rule structure provided by new exemplars across trials.

Although the Mathews et al. (1989b) data were collected under conditions of continues
feedback about correctness of choices, we hypothesized that the forgetting algorithm
would operate well in such a data driven task even without feedback. Given that all of
the choices contain grammatical features (e.g., valid bigrams or trigrams), even when
wrong choices are selected valid rules could be generated by the forgetting algorithm.
Further, valid rules should win out across trials over less valid rules because valid
features will apply more often in the entire population of choices. To test this
hypothesis, THIYOS was modified to operate without feedback and then applied to the
task of learning the same two artificial grammars studied previously by Mathews et al.
(1989b). After a brief description of the leaming task and THIYOS, the experiment
and results will be discussed along with some comparisons of simulation data with
data collected from human subjects who also tried to learn the grammars without feed-
back.

THE LEARNING TASK

On each trial a set of five letter-strings were presented. The strings on each trial con-
sisted of one completely valid string, one string with one letter that could not occur in
a particular position, one string with two wrong letters, one with three, and one with
four invalid letters. The object was to select which of the five choices was the correct
string. No feedback about the correctness of the choice was given. This procedure
continued for 200 trials and was repeated three times with three sets of stimulus items.
Data from human subjects learning the grammar under identical conditions were col-
lected in a previous study (Mathews, Buss, Stanley, Blanchard-Fields, Cho, and
Druhan, 1989). Subjects in that study participated in three sessions distributed over a
three week period. Each session consisted of 200 trials. The stimulus items used in
the simulations were identical to those in the Mathews, et al. study. The initial block
of ten trials each week contained all new items and then each successive block of trials
contained five old items repeated from previous trials that week and five new items.

In sessions 2 and 3, most items (old or new) occurred in previous sessions.

Both grammars used in the Mathews, et al. (1989a) study were used in this study. The
finite state grammar is illustrated in figure la. A valid string is any sequence of letters
generated by following a pattern of arrows from left to right. Strings generated by this
grammar tend to share many features, that is they have a high level of family resem-
blance among exemplars. The biconditional grammar is illustrated in figure 1b. It
contains three letter association rules that determine what pairs of letters must occur in
corresponding positions in the first and second halves of the string. As illustrated in
figure 1b, the three association rules are S goes with V, C goes with P, and T goes
with X. The first four letters in a valid string can be any combination of the six
letters, but once they are selected, they completely determine what the second set of
four letters must be (see figure 1b). Exemplars of the biconditional grammar do not
share any common sequences of initial or final letter patterns and, therefore, they have
a lower level of family resemblance among exemplars.

THE MODEL
The computational model described here is essentially a classifier system model with
certain modifications that make it amenable to modeling artificial grammars in general
and the particular task specifically (see Holland et al., 1986). Classifier systems are a
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Finite State Grammar
EXAMPLES

, SCRTVPS
1 SCPYPXTVV
— x ~ SCTSSXS
(B} —== (54 CVCTSSXS
T P CVCTTTVPS
A - CVCPTTTVV
(S CXPTVPXVV
‘ > CXPTTVPS
CXTSSSXS

Biconditional Grammar Zyimoles
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P & b STXCCXTP
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CIPXPXC
T2ST.XCVX
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Figure 1a and 1b.

type of production system model with some specific processing assumptions. First, the
productions, condition-action pairs, are composed of strings of equal length. Each
condition-action pair is called simply a "classifier". Each element can be thought of as
representing a unique feature of the object or event being described by the classifier.
Complex objects or events can be coded by adding conditions to the condition side of
the classifier--each classifier has only one action.

Rules are represented as condition-action pairs, in which both the conditions and the
actions are fixed length strings of letters, numbers, "#"s, and "_"s. The exemplars of
the grammar to be learned are represented in a similar fashion such that the lengths of
the string, action string, and the exemplar string are all equal. In order to determine
whether a rule applies, its condition side is matched position by position against the
exemplar string. The "#"s are a sort of wildcard character that will match anything.
In addition, the "#"s act as variables in that they can pass information through from a
message to an action. Consider the following example: the rule "if the string begins
with SCT then choose it" would be represented in THIYOS as:

"#HSCTHA######0###00 | 02CHOOSE HEHBH#"
condition acton

The five alternative strings are placed on the message list in a similar format. For
example, the above rule would match an exemplar on the message list such as:
"01SCTVPXVV___#10###". Numbers at the beginning of the strings are tags which
differentiate strings coming from the input interface from those going to the output
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interface. In the exemplar string, the "1" and "0" in the 14th and 15th positions indi-
cate that it is choice number 1 for the given trial, and that it has zero violations. Since
the corresponding positions in the condition and action side of the classifier contain
"#"’s, the "1" and "0" are passed through from the exemplar to the action. Since the
action of this classifier is tagged for the output interface, it would tell the system to
choose letter string number 1. The execution cycle performs one trial per cycle by
iterating through the following steps:

1) Read in the five alternative exemplars from the input interface, and place
them on the message list.

2) Compare the condition sides of all rules to each message on the message
list and record all matches.

3) Calculate a bid for each classifier on the interim list using the parameters
of strength, specificity, and support.

4) Select the w highest bidders and allow these classifiers to post their mes-
sages on an interim message list. (The size of the set (w) reflects the
model’s assumptions about working memory limitations.)

5) Recalculate the bids for all classifiers on the interim list and post their
messages on a new message list. This rebidding is necessary because some
classifiers lose the support of classifiers that failed to make it to the interim
list.

6) All rules on the new message list loose a portion of their strength as pay-
out for the privilege of posting their messages.

7) Process the contents of the new message list through an output interface
which strips off messages tagged for output. The highest bidder and all
rules whose messages agree with the highest bidder are rewarded by incre-
menting their strength.

8) Depending on which learning algorithm is being applied, a new rule(s) is
created by that algorithm and added to the system.

9) Replace the old message list with the new one.

10) Reduce the strength of all rules in the system. This step simulates the
forgetting of rules which seldom or never compete and apply.

11) Return to step 1.

This process continues until all trials have been completed.

Within the Induction framework of Holland, et al. (1986) an algorithm termed the

"bucket brigade" is used to allocate activation or strength to good rules in the system
across different time steps based on strength, specificity, and support. A similar
mechanism is used here with some necessary modifications. In the current model each
trial is processed in discrete fashion. No chaining between rules takes place (e.g.,
Holland et al., 1986). Therefore the calculation of support was modified to represcnt
the level of agreement among rules on a single time-step rather than the relevance of a
rule to the context of the previous time-step (see Druhan & Mathews, 1989, for a more
detailed discussion). Strength is a numerical measure of the level of success a rule has
had in representing the environment. Specificity is a measure of how complete that
representation is (Holland et al., 1986). The learning algorithms

We examined two algorithms for creating rules. The first, the genetic algorithm, is
inspired from genetics and involves mutation and crossover of different parts of exist-
ing rules. The second, the forgetting algorithm, makes new rules from presented
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exemplars by retaining a subset of features of that item and creating a new rule that
says to select strings with those features.

The genetic algorithm. The genetic algorithm uses two methods or “operators” for
altering existing rules to make new rules. The first, crossover, splits pairs of rules into
two parts and recombines the parts to make new rules. Candidates for crossover are
selected from those rules posting messages on the current trial. These candidates are
copies, ranked by strength and paired off so that the strongest two go together, and the
next stronges pair, etc.. Then a random split point is selected in each pair of classifiers
and the copies are split and recombined by exchanging their initial and final portions.
Thus two new rules are created from each pair of rules and the original or parent rules
are left intact in the set of rules.

The second genetic operator, mutation, creates a copy of a randomly selected original
rule and randomly changes one character, making a new rule. The mutation rate is set
very low in this simulation; each existing rule in the rule set mutates with a probabil-
ity of 0.001. The purpose of mutation is to keep some "new blood" in the rule system.
Without mutation, crossover might tend to inbreed certain types of rules and
effectively lock out discovery of radical different rules.

The genetic algorithm is best characterized as top-down or conceptually driven. Its
search through the space of possible rules is guided mainly by the knowledge con-
tained in its existing rule set. Input serves only to qualify the goodness of that
knowledge by strengthening those rules created by the algorithm that have posted their
messages. Therefore we hypothesized that, in the absence of external feedback, the
genetic algorithm would eventually succeed in inducing a representation of the gram-
mar but would proceed slowly.

The forgetting algorithm. The forgetting algorithm extracts features from the choice
selected by the simulation on the current trial and makes it a new rule. In this algo-
rithm features of the choice are included in the new rule probabilistically. A serial
po}sition curve is used to set the probabilities of incorporating features into the new
rule.

One interesting aspect of the forgetting algorithm concerns the tradeoff between
remembering too much versus too little of an exemplar. If all the features of the
exemplar were incorporated into the new rule it could only be applied to that one
exemplar. On the other hand remembering too little about a past exemplar and creating
a new rule based on only one feature of the exemplar would tend to produce rules that
have little or no validity. Thus, it is better to forget part of the exemplars one sees in
creating new rules--hence the name forgetting algorithm.

The forgetting algorithm is data driven in that it induces rules based solely on the
input. Because all items to choose from are either valid or distortions of valid items,
all share features in common with valid strings across trials and, consequently, what-
ever structure that exists in the input will be captured in the set of induced rules. This
suggests that "forgetting” should perform well in the present task even though external
feedback is absent.

THE SIMULATION
The two algorithms were applied to the two grammars, finite state and biconditional.
The genetic algorithm needs rules to "mate" and produce "offspring" so a set of initial
rules was constructed and entered into THIYOS at the start of each run. This initial set
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of rules represents the basic knowledge that any subject would bring to the task. This
knowledge consists of the set of all possible rules for string selection based on single
letters in a specific position (e.g., "choose strings that have an "S" in position 3").
Runs of the forgetting algorithm were initiated with the same set of initial rules.

RESULTS

The dependent variable is the number of errors (incorrect strings) selected in trials 11
through 200 of each session (trials 1 through 10 were not included in the analyses
because the distribution of old versus new items in those trials differed from all other
trials). Since each trial consisted of five choices, there is a 0.80 probability of com-
mitting an error by chance. Therefore, chance performance is 152 errors per session.

The mean performance for each condition is plotted in figure 2. In an analysis of vari-
ance (ANOVA) of the error data the overall group (algorithm) effect was significant
for both grammars with F(1,18)=56.26, p<0.0001 and F(1,18)=11.23, p<0.0036 for the
finite state grammar and the biconditional respectively. For the finite state grammar the
forgetting algorithm performed better than genetic. Both were significantly better than
chance by session three. For the biconditional grammar, the same pattern, forgetting
better than genetic, was obtained. Again, both were significantly better than chance by
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session three.

Data from Mathews, et al. (1989a, experiment 1) were included in a second analysis to
determine how well the simulation fit the human data. Subjects had been trained with
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the same stimulus items used in the simulation. These subjects had performed the
same multiple choice task under no-feedback conditions. The human subjects per-
formed at chance for all three sessions and for both grammars (see figure 2).

DISCUSSION

Two general conclusions can be drawn. First, THIYOS combined with either of the
two learning algorithms studied was able to perform better than chance in the grammar
learning task even though the simulation received no feedback. This supports our
hypothesis that the forgetting algorithm should be able to operate in the absence of
feedback. The genetic algorithm was also successful but always performed less well
than forgetting.

The second conclusion to be drawn concerns the performance of our human subjects:
they were unable to learn about these artificial grammars when feedback was absent.
This is a puzzle about which one can intelligently speculate in the light of the results
from other artificial grammar (AG) learning experiments.

A tentative explanation for this discrepancy between the simulation results and data
from human subjects would be that the performance of human subjects is hampered
because their explicit, conscious strategies interfere with implicit learning. That
interference is responsible for the poor performance of the subjects, is supported by
several studies. Reber and his colleagues (e.g., Reber, 1976; Reber, Kassin, Cantor, &
Lewis, 1980) demonstrated that subjects performed poorly in an AG learning task
when given instructions to search for rules. He attributed this interference to explicit
processing mechanisms. In the Reber et al. (1980) study, presenting the stimuli in a
structured display that revealed the family resemblance of the items resulted in better
performance with explicit processing whereas presenting the items in a random fashion
(unstructured condition) resulted in better performance with implicit processing. The
present multiple choice task is similar to the unstructured condition because the five
choices on a particular trial are selected randomly and share little family resemblance.
Therefore it is reasonable to expect that explicit processes could interfere with learning
in the present task.

On going work in our laboratory using a different paradigm for studying implicit learn-
ing indicates that subjects can acquire knowledge about the Mathews et al. finite state
grammar without feedback during training. The paradigm is based on the Hebb effect.
Subjects were presented letter strings, one per trial, and asked to hold each in memory
while performing a distractor task. After the distractor task they attempted to recall as
many letters of the string as possible. The subjects were not told that every third string
was a valid string while all others were random strings. No feedback was given.
Results indicate that subjects improved in recall of valid strings relative to recall of
random strings across trials (showing a Hebb effect on valid strings) and they subse-
quently performed above chance on a string discrimination task. Thus humans can
learn the finite state grammar without feedback when they are not explicitly forming
hypotheses during learning.

Finally, when feedback is absent, there is little to guide the hypothesis generating
processes toward solution. More importantly, without feedback, the hypothesis gen-
erating mechanism is virtually unrestrained. Completely wrong hypotheses can be
generated and strengthened across trials. Verbal protocols of our human subjects taken
after the experiment support this conclusion. Typically, subjects generated invalid
rules such as "pick strings that look like words" or pick strings that have letters lower
in the alphabet”. We are currently testing the notion that such invalid rules can block
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the implicit learning mechanism by introducting one or more of their bad rules in a
THIYOS simulation. We predict that their rules may gain strength and prevent the
generation of valid rules.

If such simple mechanisms as the forgetting algorithm are capable of exploiting struc-
tured stimulus domains without error correcting feedback, we should expect that living
systems would have evolved similar capacities. The fact that the process was com-
pletely stopped by unrestrained hypothesis testing in our human subjects is quite
interesting and it adds further impetus to the postulation of two distinct learning
mechanisms.
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