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ABSTRACT OF THE DISSERTATION

A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations

by

Esteban Adan Navas

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, December 2015

Dr. Qi S. Zhang , Chairperson

Relevant results and theory in the Axially Symmetric Navier-Stokes Equations are reviewed.

Then we obtain pointwise, a priori bounds for the r, θ and z components of the vorticity

of axially symmetric solutions to the three-dimensional Navier-Stokes equations, which im-

proves on an earlier bound in [1]. Finally, we show that, for any Leray-Hopf solution, v, we

can use the θ component of vorticity to bound the velocity and derive

|v(x, t)| ≤ C| ln r|1/2

r2
, 0 < r ≤ 1/2,

where r is the distance from the z axis.
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Chapter 1

Introduction

In this dissertation we prove a priori bounds on the vorticity and velocity of solu-

tions to the 3-dimensional axially symmetric Navier-Stokes Equations, which are a special

case of the more general Navier-Stokes Equations (NSE). In cylindrical coordinates the axial

symmetry translates to θ-derivatives of the velocity being equal to zero. To begin with, we

give a derivation of the (NSE) in cylindrical coordinates, from which the axially symmetric

version easily follows. Definitions of the vorticity and stream functions are recorded.

In Chapter 3 we present the main theorem and review work published in 2008

by Chen, Strain, Tsai, and Yau [4], and a similar result with different approach by Koch,

Nadirashvili, Seregin, and Sverak [12]. This includes regularity criteria for the axisymmetric

(NSE), motivating our main results.

With the given results and framework, in Chapters 3 and 4 we introduce the setup

and notation for the present results, including scaling of certain norms on hollow parabolic

shells in R3. Using a refined cutoff function, we do our analysis first on the θ-component
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of vorticity, which is used to control the r and z-components of velocity. This estimate

follows by a sharp embedding theorem proved by Kozono and Taniuchi [13] in 2000 and use

of Poincare’s Inequality on a ball, followed by a Nash-Moser iteration.

In Chapter 5 we work on the r and z-components of voriticity. These estimates

follow by a similar cutoff argument and grouping of the other two equations of vorticity;

control of the θ component of vorticity yields control of these components of vorticity.

Nash-Moser iteration is utilized again to prove similar a priori bounds.

Finally, the connection between vorticity and velocity is explored, showing how

voriticity can be used to control the L∞-norm of velocity. This proves our main theorem.
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Chapter 2

The Axially Symmetric

Navier-Stokes Equations

2.1 The Navier-Stokes Equations

The vector form of the general NSE is the following:

ρ(
∂v

∂t
+ v · ∇ v) = −∇p+ ν∆v (2.1)

∇ · v = 0

We take the density and viscosity, ρ and ν, of the fluid to have values of 1, for simplicity.

By a solution to the NSE, we mean solving for the unknown functions v and p, where v is

the velocity vector vield of the fluid, v = (v1(x, t), v2(x, t), v3(x, t)) : R3 × [0, T ]→ R3. And

p is the unknown scalar-valued pressure function p(x, t). Initial data will be made explicit

in the statement of the main theorem.
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The operator ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) is the gradient and the operator ∆ = ∂2

∂x21
+ ∂2

∂x22
+

∂
∂x23

is the Laplacian; both operators as written are in rectangular coordinates. The second

equation in the above system is the continuity equation, stating that the divergence of the

velocity field must be 0.

Note that the vector form of the NSE actually represents a system of four equa-

tions: the first three arising from the first vector equation (one for each velocity field

component v1, v2, and v3), and the last one the continuity equation. Therefore we can

write our system as:

∂vi
∂t

+ v1
∂vi
∂x1

+ v2
∂vi
∂x2

+ v3
∂vi
∂x3

= − ∂p

∂xi
+ ∆vi 1 ≤ i ≤ 3

∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3
= 0

2.2 Derivation of the Axially Symmetric Navier-Stokes Equa-

tions

The Axially Symmetric Navier-Stokes Equations (ASNSE) are a special case of

the NSE. If we convert the NSE to cylindrical coordinates by letting x = (x1, x2, x3) =

(r cos θ, r sin θ, z) and r =
√
x2

1 + x2
2, then our unknown velocity function v = v1i+v2j+v3k

becomes:

v(x, t) = vr(r, z, t)er + vθ(r, z, t)eθ + vz(r, z, t)ez ,

4



where

er =
(x1

r
,
x2

r
, 0
)

= (cos θ, sin θ, 0)

eθ =
(
−x2

r
,
x1

r
, 0
)

= (− sin θ, cos θ, 0)

ez = (0, 0, 1)

are the cylindrical unit vectors. We can rewrite the NSE using this change of variables to

cylindrical coordinates by utilizing the Chain Rule in several variables. That is, the Navier

Stokes equations (using vi = ∂xi
∂t for each i = 1, 2, 3),

∂v

∂t
+

dx1

dt

∂v

∂x1
+

dx2

dt

∂v

∂x2
+

dx3

dt

∂v

∂x3
= −∇p+ ∆v

becomes the following in cylindrical coordinates:

∂v

∂t
+

dr

dt

∂v

∂r
+

dθ

dt

∂v

∂θ
+

dz

dt

∂v

∂z
= −∇p+ ∆v

Therefore, using vr = dr
dt , vθ = r dθ

dt , and vz = dz
dt , we have:

∂v

∂t
+ vr

∂v

∂r
+
vθ
r

∂v

∂θ
+ vz

∂v

∂z
= −∇p+ ∆v

The rest of the derivation follows by computing the vector partial derivatives ∂v
∂t ,

∂v
∂r , ∂v

∂θ and ∂v
∂z in terms of the velocity v = vrer + vθeθ + vzez, then collecting all er, eθ,

and ez terms. To compute these partial derivatives, we use the product rule for a scalar

multiplying a vector (e.g. vr and er), which gives:

∂v

∂t
=
∂vr
∂t

er +
∂vθ
∂t

eθ +
∂vz
∂t

ez

vr
∂v

∂r
= vr

∂vr
∂r

er + vr
∂vθ
∂r

eθ + vr
∂vz
∂r

ez

vθ
r

∂v

∂θ
=
vθ
r

(
∂vr
∂θ
− vθ

)
er +

vθ
r

(
vr +

∂vθ
∂θ

)
eθ +

vθ
r

∂vz
∂θ

ez

vz
∂v

∂z
= vz

∂vr
∂z

er + vz
∂vθ
∂z

eθ + vz
∂vz
∂z

ez
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On the right hand side of the equation we have ∆v = ∆(vrer) + ∆(vθeθ) + ∆(vzez). These

terms are expanded using the cylindrical gradient and Laplacian operators:

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2

Therefore,

−∇p =
∂p

∂r
er +

∂p

∂θ
eθ +

∂p

∂z
ez

∆(vrer) =

(
∆− 1

r2

)
vrer +

2

r2

∂vr
∂θ

eθ

∆(vθeθ) = − 2

r2

∂vθ
∂θ

er +

(
∆− 1

r2

)
vθeθ

∆(vzez) = ∆vzez

Since we assume our solutions are axially symmetric, they do not depend on θ,

hence every θ-derivative term involving velocity and pressure goes to 0. Thus, writing

b = (vr, 0, vz), after summing we arrive at the Axially Symmetric Navier-Stokes equations:

(
∆− 1

r2

)
vr − (b · ∇)vr +

v2
θ

r
− ∂p

∂r
− ∂vr

∂t
= 0(

∆− 1

r2

)
vθ − (b · ∇)vθ +

vθvr
r
− ∂vr

∂t
= 0 (2.2)

∆vz − (b · ∇)vz −
∂p

∂r
− ∂vr

∂t
= 0

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0

The last equation is the divergence-free condition written in cylindrical coordinates, notably

lacking the θ-derivative of velocity.
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2.3 The Vorticity Equations for Axially Symmetric Solutions

Results on a related function in fluid dynamics, the voriticity, ω, also yield results

about the velocity, v. Therefore, the main theorem of this paper is stated in terms of the

voriticity, and most of the analysis is done using the corresponding vorticity equations. If

we compute ω = curl v in the (r, θ, z) variables, for an axially symmetric velocity field v,

then the vorticity ω = ω1e1 + ω2e2 + ω3e3 can be rewritten as ωrer + ωθeθ + ωzez, with

ωr = −∂vθ
∂z

, ωθ =
∂vr
∂z
− ∂vz

∂r
, ωz =

∂vθ
∂r

+
vθ
r
.

By taking the curl of the Navier-Stokes equaitons, we derive a new set of equations

in the function ω = curl v = ∇ × v, that does not depend on the pressure. The resulting

general form of the vorticity equations, with density and viscosity equal to 1, is:

∂ω

∂t
− (v · ∇)ω = (ω · ∇)v −∆ω

Expanding the notation slightly, we have

∂ω

∂t
−
(

dx1

dt

∂ω

∂x1
+

dx2

dt

∂ω

∂x2
+

dx3

dt

∂ω

∂x3

)
=

(
ω1

∂v

∂x1
+ ω2

∂v

∂x2
+ ω3

∂v

∂x3

)
−∆ω

This system of equations can be converted to cylindrical coordinates, by writing

v and ω in the cylindrical basis. Then the remaining details follow the same pattern as

the ASNSE derivation; after explicitly computing all relevant partial derivatives using the

product rule, and collecting all er, eθ and ez terms, we derive the Vorticity Equations for

7



Axially Symmetric velocity fields:(
∆− 1

r2

)
ωr − (b · ∇)ωr + ωr

∂vr
∂r

+ ωz
∂vr
∂z
− ∂ωr

∂t
= 0(

∆− 1

r2

)
ωθ − (b · ∇)ωθ + 2

vθ
r

∂vθ
∂z

+ ωθ
vr
r
− ∂ωθ

∂t
= 0 (2.3)

∆ωz − (b · ∇)ωz + ωz
∂vz
∂z

+ ωr
∂vz
∂r
− ∂ωz

∂t
= 0

2.4 Equations for ωθ
r and rvθ

The equation we work on the most is a modified version of the second equation in

(2.3). Writing Ω = ωθ
r , we have:

∆Ω− (b · ∇)Ω +
2

r

∂Ω

∂r
− ∂Ω

∂t
+

2vθ
r2

∂vθ
∂z

= 0, ∇ · b = 0 (2.4)

This equation follows by substituting rΩ for ωθ in the rotational equation for vorticity:(
∆− 1

r2

)
(rΩ)− (b · ∇)(rΩ) +

2vθ
r

∂vθ
∂z

+
vr
r

(rΩ)− ∂(rΩ)

∂t
= 0.

Using the product rule for the terms with spatial derivatives,

∆(rΩ) = r
∂2Ω

∂r2
+ 3

∂Ω

∂r
+ r

∂2Ω

∂z2
,

(−b · ∇)(rΩ) = −vrΩ− r(b · ∇)Ω,

− 1

r2
(rΩ) = −Ω

r
,

vr
r

(rΩ) = vrΩ,

− ∂

∂t
(rΩ) = −r∂Ω

∂t
.

We sum the above along with the inhomogeneous term 2vθ
r
∂vθ
∂z to get:

r
∂2Ω

∂r2
+
∂Ω

∂r
+ r

∂2Ω

∂z2
− r(b · ∇)Ω + 2

∂Ω

∂r
− r∂Ω

∂t
+

2vθ
r

∂vθ
∂z

= 0

8



Grouping terms and dividing by r yields (2.3).

A similar equation for rvθ can be derived using Γ = rvθ:

∆Γ− (b · ∇)Γ− 2

r

∂Γ

∂r
− ∂Γ

∂t
= 0 (2.5)

This equation differs from equation (2.2) by the opposite sign on the inhomogeneous term.

We do not work directly with (2.5), though it can be used to prove, among other important

results ([4], [5]), that rvθ is uniformly bounded ([3], [20]).

9



Chapter 3

Background and Notation

3.1 Previous Results

In the 1960s, O.A. Ladyzhenskaya [14], Ukhovskii and Yudovich [23] proved that

finite energy solutions to (2.2) are smooth for all time, under the no-swirl assumption vθ = 0.

A simpler proof can be found in [19].

With nonzero swirl, long time smoothness of solutions to (2.2) is not known. It

is known that any singularities can only be found along the z-axis, since by axisymmetry

a singularity off of this axis would generate a circle of singularities. From the partial

regularity theory, this could not happen because the Hausdorff measure of such a singular

set is nonzero, contradicting the results in [2].

Recently in [4] and [5], C.-C. Chen, R. M. Strain, T.-P. Tsai, and H.-T. Yau proved

a lower bound on the possible blow-up rate of axisymmetric solutions. They proved that v

is bounded in BR × [−T0, 0] for any ball of radius R > 0, if v satisfies the scaling invariant

10



bound:

|v(x, t)| ≤ C

(r2 − t)1/2
(x, t) ∈ R3 × (−T0, 0).

Under this assumption, which guarantees the first blow up time is no earlier than t = 0,

they were able to show that |vθ(t, r, z)| ≤ Crα−1 for some small α > 0, which is enough to

prove v is regular for every point on the z-axis.

H. Koch, N. Nadirashvili, G. Seregin, and V. Sverak published a similar result

later in 2008, following as a corollary of Louiville theorems they had established for bounded

ancient solutions of (2.1). Using the same notation as before, if v is a weak solution to (2.2)

and satisifies the bound:

|v(x, t)| ≤ C

r
, (x, t) ∈ R3 × (0, T ), (3.1)

then v is a bounded mild solution in R3 × (0, T ). Hence, they show, v is a smooth solution

with pointwise bounds on all derivatives in R3 × (τ, T ) for any fixed τ > 0. Seregin and

Sverák later proved in [21] a local version of the results in [12]. They ruled out Type I

singularities, defined as singularities that also satisfy the bound (3.1). More recent progress

has been in ruling out singularities given an even less strict bound on v(x, t) than (3.1).

For instance, building on results in [6], in [16] the authors showed the bound |rvθ(x, t)| ≤

C| ln r|−2, for any 0 < r ≤ δ0 and some δ0 ∈ (0, 1/2), is enough to guarantee regularity.

In [24] singularities were ruled out by relaxing the bound even further to |rvθ(x, t)| ≤

C| ln r|−3/2.

Further results in this direction can be found in [17], where Z. Lei and Q. S. Zhang

ruled out any singularities given vrer+vzez ∈ L∞([0, T ],BMO−1). This extends the results

11



in [4] and [12], since the condition vz ≤ Cr−1 implies the axisymmetric stream function,

Lθ, is bounded, which by a main result in [17] is enough to prove regularity of solutions

(see [15] for details).

The main focus of this paper is on establishing an a priori bound on solutions to

(2.2). We establish the pointwise bound |v(x, t)| ≤ C
√

ln r/r2, which in lieu of (3.1) brings

us closer to proving regularity of solutions. A precise statement of the main theorem follows

in the section.

3.2 Statement of the Main Theorem

Theorem 3.1 Suppose v is a smooth, axially symmetric solution of the three-dimensional

Navier-Stokes equations in R3 × (−T, 0) with initial data v0 = v(·,−T ) ∈ L2(R3). Assume

further rv0,θ ∈ L∞(R3) and let R = min{1/2,
√
T/2}.

Then for all (x, t) ∈ R3 × (−R2, 0), the following bound holds:

|vr(x, t)|+ |vz(x, t)| ≤
C
√
| ln r|
r2

, r ∈ (0, R].

Here r is the distance from x to the z-axis, and C is a constant depending only on the initial

data.

The proof of the theorem is based on the following pointwise bound on the vorticity.

Theorem 3.2 Suppose v is a smooth, axially symmetric solution of the three-dimensional

Navier-Stokes equations in R3 × (−T, 0) with initial data v0 = v(·,−T ) ∈ L2(R3), and ω

is the vorticity. Assume further rv0,θ ∈ L∞(R3), and let R = min{1/2,
√
T/2}. Then the

following a priori estimate holds.

12



There is a constant C, depending only on the initial data, such that the following

holds for all (x, t) ∈ R3 × (−R2, 0) with r ∈ (0, R]:

|ωθ(x, t)| ≤
C ln(1/r)

r7/2

 sup
s∈[t−r2,t]

(∫
B(x,4r)

(v2
r + v2

z)(y, s)dy

)1/2

+ r1/2(‖rv0,θ‖L∞(R3) + 1)

2

×

(∫ t

t−r2

∫
B(x,4r)

ω2
θ(y, s)dyds

)1/2

+ r1/2(‖rv0,θ‖L∞(R3) + 1)

 .

A similar a priori bound holds for the r- and z-components of vorticity.

Theorem 3.3 Suppose v satisfies the conditions in Theorem 3.2 and ω is its vorticity. Let

R = min{1/2,
√
T/2}. Then the following a priori estimate holds.

There is a constant C, depending only on the initial data, such that the following

holds for all (x, t) ∈ R3× (−R2, 0) with r ∈ (0, R], and δ, δ′ any small numbers greater than

zero:

|ωr(x, t)|+ |ωz(x, t)| ≤
C ln2(1/r)

r13/2

×
[
r3 ln(1/r) sup

s∈[t−r2,t]

(∫
B(x,4r)

(v2
r + v2

z)(y, s)dy

)
+ r7/2

(∫ t

t−r2

∫
B(x,4r)

v10/3(y, s)dyds

)4

+

(∫ t

t−r2

∫
B(x,4r)

ω2
θ(y, s)dyds

)4

+ r4
]

×

(∫ t

t−r2

∫
B(x,4r)

ω2
r (y, s)dyds

)1/2

+

(∫ t

t−r2

∫
B(x,4r)

ω2
z(y, s)dyds

)1/2
 .

Smoothness of solutions is assumed for technical simplicity. The first two theorems

are proved in the recently accepted paper [15] by Z. Lei, Q. S. Zhang and the author, and

there is some overlap here with their results. In Theorem 3.3 we prove a priori bounds on

ωr and ωz using similar techniques, which expands on some of the findings in [15].
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The latter two theorems are an improvement on J. Burke Loftus and Q. Zhang in

[1], in which they used 3-dimensional Sobolev embedding and Nash-Moser iteration to prove

|ωθ(x, t)| ≤ C/r5. They also proved bounds on ωr and ωz, though there was a significant

loss of accuracy between these bounds and the bound on ωθ. The gap has been improved

by the results in this writing, but more work needs to be done to make the bounds on ωr

and ωz as good as the bound on ωθ.

Here we mention other related papers on the axially symmetric Navier-Stokes

equations. J. Neustupa and M. Pokorny proved in [20] that regularity of either vr or vθ

implies regularity of the other two components of the velocity. Q. Jiu and Z. Xin proved

regularity assuming smallness of zero-dimension scaled norms in [11]. D. Chae and J. Lee

in [3] proved regularity assuming smallness of another particular zero-dimensional integral.

A family of singular axially symmetric solutions with singular initial data was constructed

in [22] by G. Tian and Z. Xin, whereas T. Hou and C. Li found a special class of globally

smooth solutions in [8]. An extension was proved in [7] by T. Hou, Z. Lei and C. Li.

3.3 Outline of the Proof

The proof of the main result begins with the a priori bound on the rotational

component of velocity: r|vθ(·, t)| ∈ L∞. See Proposition 3.1. Using the equation for

Ω = ωθ/r, we then prove Theorem 3.2 by first localizing equation (2.4) to scaled (blown up)

dyadic balls away from the axis of symmetry. Using dimension reduction and the structure

of the equations, we improve on [1] by estimating the oscillation of the angular stream

function. Finally, after Moser’s iteration, we re-scale back to small parabolic cylinders to

14



finish the proof.

Theorem 3.3 is proved similarly to Theorem 3.2. The gap between these two

estimates is removed with dimension reduction and bounding the velocity derivatives by

the angular vorticity. Theorem 3.1 is proved at the end in Chapter 6 by using the localized

Biot-Savart law. Since we are working with solutions that are axisymmetric, the L2-integrals

of velocity in small dyadic regions are shown to be smaller than usual. This combined with

the a priori bound for ωθ implies the pointwise bound on |vr|+ |vz|.

3.4 Notation and Scaling

Instead of the balls B(x, 4r) in the statement of our theorem, our proof will be

carried out over comparable cylindrical regions, allowing us to conveniently reduce our

computations to a 2-dimensional setting. Specifically, let (x, t) = (x1, x2, x3, t) be the point

in Theorem 3.2 and let R > 0, S > 0, 0 < A < B be constants. Denote

CAR,BR = {(x1, x2, x3) : AR ≤ r ≤ BR, 0 ≤ θ ≤ 2π, |x3| ≤ BR} ⊂ R3 (3.2)

to be the hollowed out cylinder centered at the origin with inner radius AR, outer radius

BR, and height 2BR. Note that these shells become larger when AR becomes smaller or

when BR becomes larger.

Denote PAR,BR,SR to be the parabolic region

PAR,BR,SR = CAR,BR × (−S2R2, 0). (3.3)

If R = 1 then we simply write CA,B and PA,B,S . We prove our a priori bound for ωθ close

to the x3-axis, in the region P2k,3k, 3k
4

with 0 < k ≤ min{1/2,
√
T/2}. Using the scaling
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property of solutions to the Navier-Stokes equations, we shift from these small shells to the

cube P2,3, 3
4
.

Recall that the pair (v(x, t), p(x, t)) is a solution to (NS) if and only if for any

k > 0 the re-scaled pair (ṽ(x, t), p̃(x, t)) is also a solution, where ṽ(x, t) = kv(kx, k2t) and

p̃(x, t) = k2p(kx, k2t). If (x, t) is a point in the parabolic region P2k,3k, 3
4
k, and we replace

(x, t) with x̃ = x
k and t̃ = t

k2
, then the new point (x̃, t̃) is in P2,3, 3

4
. Thus, if (v, p) is a solution

to the axially symmetric Navier-Stokes equations for (x, t) ∈ P2k,3k, 3k
4

, then (ṽ(x̃, t̃), p̃(x̃, t̃))

is a solution to the equations for (x̃, t̃) ∈ P2,3, 3
4
.

Blowing up to the region P2,3, 3
4

makes our computations much easier, however,

doing so affects certain quantities. These include r and the L∞t L
2
x-norms of velocity and

vorticity. Let D be any domain in R3 and kD = {x : x = ky, y ∈ D}. Then the following
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changes must be considered when re-scaling back to P2k,3k, 3k
4

:

r =
√
x2

1 + x2
2 : r̃ =

√(x1

k

)2
+
(x2

k

)2
=
r

k

||v(x, t)||L2(kD×(−(kR)2,0)) :

||ṽ(x̃, t̃)||L2(D×(−R2,0)) =

(∫ 0

−R2

∫
D
|ṽ(x̃, t̃)|2dx̃dt̃

) 1
2

=

(∫ 0

−(kR)2

∫
kD
|kv(x, t)|2 1

k5
dxdt

) 1
2

=
1

k
3
2

||v(x, t)||L2(kD×(−(kR)2,0)).

b(x, t) = (vr, 0, vz) :

b̃(x, t) = (kvr(kx, k
2t), 0, kvz(kx, k

2t)) = kb(kx, k2t), (x, t) ∈ Pk,4k,k

⇒ b̃(x̃, t̃) = kb(x, t).

||b(x, t)||L∞(−(kR)2,0;L2(kD)) :

||̃b(x̃, t̃)||L∞(−R2,0;L2(D)) = sup
−R2≤t̃<0

(∫
D
|̃b(x̃, t̃)|2dx̃

) 1
2

sup
−(kR)2≤t<0

(∫
kD
|kb(x, t)|2 1

k3
dx

) 1
2

=
1

k
1
2

||b(x, t)||L∞(−(kR)2,0;L2(kD)).

ω(x, t) : ω̃(x, t) = k2ω(kx, k2t), (x, t) ∈ P2,3, 3
4
⇒ ω̃(x̃, t̃) = k2ω(x, t)

||ω(x, t)||L2(kD×(−(kR)2,0)) :

||ω̃(x̃, t̃)||L2(kD×(−(kR)2,0)) =

(∫ 0

−R2

∫
D
|ω̃(x̃, t̃)|2dx̃dt̃

) 1
2

(∫ 0

−(kR)2

∫
kD
|k2ω(x, t)|2 1

k5
dxdt

) 1
2

=
1

k
1
2

||ω(x, t)||L2(kD×(−(kR)2,0)).
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Another re-scaled quantity we will need for the proof of Theorem 3.3 is:

||v(x, t)||
L

10
3 (kD×(−(kR)2,0))

:

||ṽ(x̃, t̃)||
L

10
3 (D×(−R2,0))

=

(∫ 0

−R2

∫
D
|ṽ(x̃, t̃)|

10
3 dx̃dt̃

) 3
10

=

(∫ 0

−(kR)2

∫
kD
|kv(x, t)|

10
3

1

k5
dxdt

) 3
10

=
1

k
1
2

||v(x, t)||
L

10
3 (kD×(−(kR)2,0))

.

Γ̃(x̃, t̃) = r̃ṽθ(x̃, t̃) can be shown to be a solution to (2.5) and Ω̃(x̃, t̃) = ω̃θ(x̃,t̃)
r̃ a solution to

(2.3) in the variables (x̃, t̃) ∈ P2,3, 3
4
.

By the scaling invariance of rvθ, the boundedness of rvθ in the following result

guarantees r̃ṽθ is also uniformly bounded.

Proposition 3.1 ([3] and [20]) Suppose v is a smooth, axially symmetric solution of the

three-dimensional Navier-Stokes equations with initial data v0 ∈ L2(R3). If rv0,θ ∈ Lp(R3),

then rvθ ∈ L∞(0, T ;Lp(R3)). In particular, if p =∞,

|vθ(x, t)| ≤
||rv0,θ||L∞(R3)√

x2
1 + x2

2

.

A proof can be found in [3], Section 3, Proposition 1. It follows by multiplying equation

(2.5) by |Γ|p−2Γ, where Γ = rvθ, then integrating by parts and using Gronwall’s inequality.
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Chapter 4

A Priori Bound on ωθ

The proof of this theorem follows by first using a refined cutoff function to establish

an energy estimate on our scaled hollow parabolic cylinders, from which we can use Nash-

Moser Iteration to get a local bound for ωθ. We then re-scale back to the original parabolic

cylinders, which gives us an upper bound on the growth of ωθ near the z-axis.

4.1 Choice of Cutoff Function and Energy Estimates

We first rewrite equation (2.4) in terms of the positive portion above Λ = ||vθ||L∞(P1,4,1):

Ω+(x, t) =


Ω(x, t) + Λ Ω(x, t) ≥ 0,

Λ Ω(x, t) < 0.

By assumption Ω is smooth and Ω+ is Lipshitz, and on integration by parts all boundary

terms go to 0. Also Ω+(x, t) ≥ Λ and all derivatives of Ω+ are zero on the set where

Ω(x, t) < 0. For any q > 1, we have the equation for Ω
q
+ by direct computation:

∆Ω
q
+ − (b · ∇)Ω

q
+ +

2

r
∂rΩ

q
+ − ∂tΩ

q
+ = −

qΩ
q−1
+

r2

∂v2
θ

∂z
+ q(q − 1)Ω

q−2
+ |∇Ω+|2. (4.1)
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For 5
8 ≤ σ2 < σ1 ≤ 1, define P (σi) = C(σi)× (−σ2

i , 0) to be a hollowed out parabolic shell,

with i = 1, 2 and C(σi) defined by

C(σi) = {(r, θ, z) : (5− 4σi) < r < 4σi, 0 ≤ θ ≤ 2π, |z| < 4σi}

We choose our cut-off function ψ = φ(y)η(s) satisfying

supp φ ⊂ C(σ1); φ(y) = 1 for all y ∈ C(σ2); 0 ≤ φ ≤ 1;

|∇φ|
φδ
≤ c1

σ1 − σ2
for δ ∈ (0, 1) to be chosen later in the proof;

supp η ⊂ (−σ2
1, 0]; η(s) = 1, for all s ∈ [−σ2

2, 0]; 0 ≤ η ≤ 1;

|η′| ≤ c2

(σ1 − σ2)2
.

Let f = Ω
q
+ and use fψ2 as a test function in (4.1) to get

∫
P (σ1)

(∆f − (b · ∇)f − ∂sf +
2

r
∂rf)fψ2dyds

=

∫
P (σ1)

q(q − 1)Ω
q−2
+ |∇Ω+|2fψ2dyds−

∫
P (σ1)

qΩ
q−1
+

r2

∂v2
θ

∂z
fψ2dyds

= q(q − 1)

∫
P (σ1)

Ω
−2
+ |∇Ω+|2f2ψ2dyds−

∫
P (σ1)

qΩ
2q−1
+

r2

∂v2
θ

∂z
ψ2dyds

≥ −
∫
P (σ1)

qΩ
2q−1
+

r2

∂v2
θ

∂z
ψ2dyds

The inequality at the end follows from positivity of the integral in the previous line.

From here, we integrate the first term with ∆f = ∇ · ∇f by parts and rearrange

the terms in the inequality to get:

∫
P (σ1)

∇(fψ2)∇fdyds

≤
∫
P (σ1)

(
−b · ∇f(fψ2)− ∂sf(fψ2) +

2

r2
∂rf(fψ2) +

qΩ
2q−1
+

r2

∂v2
θ

∂z
ψ2

)
dyds. (4.2)
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To get an energy inequality bounding the L2-norm of the derivative |∇(fψ)|2, we use the

product rule to write |∇(fψ)|2 = |∇(fψ)|2 − |∇ψ|2f2. Therefore, replacing the left side of

(4.2) with |∇(fψ)|2 and adding by |∇ψ|2, we get

∫
P (σ1)

|∇(fψ)|2dyds ≤
∫
P (σ1)

(
− b · ∇f(fψ2)− ∂sf(fψ2) +

2

r
∂rf(fψ2)

+
qΩ

2q−1
+

r2

∂v2
θ

∂z
ψ2 + |∇ψ|2f2

)
dyds

Using integration by parts on the term with the time derivative gives

∫
P (σ1)

−(∂sf)fψ2dyds = −1

2

∫
P (σ1)

∂s(f
2)ψ2dyds

= −1

2

(∫
C(σ1)

f2ψ2(y, 0)dy −
∫
C(σ1)

f2ψ2(y,−σ2
1)dy

)
− 1

2

∫
P (σ1)

∂s(ψ
2)f2dyds.

Since our choice of cutoff function ψ has ψ2 = (φη)2, η(0) = 1, η(−σ2
1) = 0, and 0 ≤ φ ≤ 1,

we get

∫
P (σ1)

|∇(fψ)|2dyds+
1

2

∫
C(σ1)

f2(y, 0)φ2(y)dy

≤
∫
P (σ1)

−b · ∇f(fψ2)dyds+

∫
P (σ1)

(η∂sη + |∇ψ|2)f2dyds (4.3)

+

∫
P (σ1)

2

r
∂rf(fψ2)dyds+

∫
P (σ1)

qΩ
2q−1
+

r2

∂v2
θ

∂z
ψ2dyds

:= T1 + T2 + T3 + T4

4.2 Estimating T1, the Drift Term

This term is bounded by following an argument in [25], which treated a parabolic

equation with a similar drift term. We write our velocity b in terms of its stream function

and integrate by parts, then reduce the spatial dimension of T1 in our hollow domains, since
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r is bounded by two constants. The benefit from reducing our dimension is gaining access

to an embedding proved in [9], which allows us to prove a sharper 2-dimensional estimate

on the drift term, compared to a priori estimates on vorticity previously established in [1].

Since div b = 0,

T1 =

∫
P (σ1)

−b · (∇f)(fψ2)dyds

=
1

2

∫
P (σ1)

−bψ2 · ∇(f2)dyds =
1

2

∫
P (σ1)

div (bψ2)f2dyds

=
1

2

∫
P (σ1)

div b(ψf)2dyds+
1

2

∫
P (σ1)

b · ∇(ψ2)f2dyds

=

∫
P (σ1)

b · (∇ψ)ψf2dyds.

Many of the computations will be carried out on the 2-dimensional shells

C(σ1) = {(r, z)|(r, θ, z) ∈ C(σ1)},

P (σ1) = {(r, z, s)|(r, θ, z, s) ∈ P (σ1)}. (4.4)

Integration over these domains will be in the variable y defined by

y = (r, z), dy = drdz, for dy = rdrdzdθ.

Let Lθ be the angular component of the stream function in cylindrical coordinates,

which can be used to rewrite the components of the velocity b = vrer + vzez as

vr = −∂zLθ, vz =
1

r
∂r(rLθ)

Let a = a(t) be a function depending only on time, to be chosen later. Using integration
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by parts and the divergence free property of b, we have

T1 =

∫
P (σ1)

b · (∇ψ)(ψf2)dyds

=

∫
P (σ1)

(vr∂rψ + vz∂zψ)(ψf2)dyds

= 2π

∫
P (σ1)

∂r(rLθ − a)(∂zψ)(ψf2)drdzds− 2π

∫
P (σ1)

∂z(rLθ − a)(∂rψ)(ψf2)drdzds

= −2π

∫
P (σ1)

(rLθ − a)∂r[(∂zψ)(ψf2)]drdzds

+ 2π

∫
P (σ1)

(rLθ − a)∂z[(∂rψ)(ψf2)]drdzds. (4.5)

We will need an energy estimate on ∇(fψ). However, this is not compatible with

the outer r or z-derivatives in the last line of (4.5). Therefore we multiply and divide by

the cut-off function, ψ, then differentiate. Working on the first term, we have

∫
P (σ1)

(rLθ − a)∂r[(∂zψ)(ψf2)]drdzds

=

∫
P (σ1)

(rLθ − a)∂r

[
(∂zψ)

(ψf)2

ψ

]
drdzds

=

∫
P (σ1)

(rLθ − a)

[
∂r∂zψ

(ψf)2

ψ
+ ∂zψ

(
ψ∂r(ψf)2 − (ψf)2∂rψ

ψ2

)]
drdzds

=

∫
P (σ1)

(rLθ − a)
[
∂r∂zψ(ψf2) + 2f∂zψ∂r(ψf)− ∂zψ∂rψf2

]
drdzds.

(4.6)

A similar computation gives the following for the second term of (4.5):

∫
P (σ1)

(rLθ − a)∂r[(∂zψ)(ψf2)]drdzds (4.7)

=

∫
P (σ1)

(rLθ − a)
[
∂z∂rψ(ψf2) + 2f∂rψ∂z(ψf)− ∂rψ∂zψf2

]
drdzds.

Hence, substituting (4.6) and (4.7) into (4.5) gives, along with properties of our cut-off
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function,

T1 = −2π

∫
P (σ1)

(rLθ − a)[∂r∂zψ(ψf2) + 2f∂zψ∂r(ψf)]drdzds

+ 2π

∫
P (σ1)

(rLθ − a)[∂z∂rψ(ψf2) + 2f∂rψ∂z(ψf)]drdzds

≤ C sup
t∈(−σ2

1 ,0)

||rLθ − a||L∞(C(σ1))

(∫
P (σ1)

(|∂z∂rψ|+ |∂r∂zψ|)ψf2drdzds

+ c

∫
P (σ1)

|f ||∇⊥ψ · ∇(ψf)|drdzds
)

≤ C sup
t∈(−σ2

1 ,0)

||rLθ − a||L∞(C(σ1))

(∫
P (σ1)

f2drdzds

+
c

(σ1 − σ2)

∫
P (σ1)

|f ||∇(ψf)|drdzds
)
. (4.8)

Here we used the Cauchy-Schwarz inequality and the notation ∇ = (∂r, ∂z) for the 2-

dimensional gradient, ∇⊥ = (−∂z, ∂r) for the rotation of ∇ with respect to the r and z

variables.

Finally, we apply Young’s Inequality to (4.8) to get

T1 ≤ C sup
t∈(−σ2

1 ,0)

||rLθ − a||L∞(C(σ1))

[ ∫
P (σ1)

f2drdzds

+
c

(σ1 − σ2)

( ε
2

∫
P (σ1)

f2drdzds+
1

2ε

∫
P (σ1)

|∇(ψf)|2drdzds
)]
.

Choosing ε =
4c supt∈(−σ2

1 ,0) ||rLθ − a||L∞(C(σ1))

(σ1 − σ2)
, we thus obtain our first estimate on the

drift term:

T1 ≤
1

8

∫
P (σ1)

|∇(ψf)|2dyds

+ C
supt∈(−σ2

1 ,0)

(
||rLθ − a(t)||2

L∞(C(σ1))
+ 1
)

(σ1 − σ2)2

∫
P (σ1)

f2dyds. (4.9)
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4.3 Refining the Estimate on the Drift Term

An estimate for ||rLθ − a(t)||L∞(C(σ1)) can be derived using the embedding by

Hou-Li in [9] and Poincaré’s inequality.

Choose a 2 dimensional cut-off function φ = φ(r, z) ∈ C∞0 (R2) such that φ = 1

in C(σ1), supp φ ∈ C(9σ1/8), 0 ≤ φ ≤ 1, and |∇φ| + |∆2φ| ≤ C. Here ∆2 = ∂2
r + ∂2

z is

the 2-dimensional Laplacian with respect to the r and z variables. Therefore, referring to

embedding (1.10) of [9],

||rLθ − a(t)||L∞(C(σ1)) ≤ ||(rLθ − a(t))φ||L∞(C(9σ1/8))

≤ C
(
||∇((rLθ − a(t))φ)||L2(R2) + ||(rLθ − a(t))φ||L2(R2) + 1

)
×[

log (||∆2((rLθ − a(t))φ)||L2(R2) + ||(rLθ − a(t))||L2(C(9σ1/8)) + e)
] 1

2

Choose a(t) to be the average of Lθ(·, t) on C(9σ1/8) under the 2-dimensional volume

element drdz. Then, applying the 2-dimensional Poincaré inequality, we get

||rLθ − a(t)||L∞(C(σ1)) ≤ C(||∇(rLθ)||L2(C(9σ1/8)) + 1)× (4.10)[
log(||∆2((rLθ − a(t))φ)||L2(R2) + C||∇(rLθ)||L2(C(9σ1/8)) + e)

] 1
2
.
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A computation on the Laplacian term gives

∆2((rLθ − a(t))φ) = ∆2(rLθ)φ+ 2∇(rLθ) · ∇φ+ (rLθ − a(t))∆2φ

= φ(∂2
r + ∂2

z )(rLθ) + 2∇(rLθ) · ∇φ+ (rLθ − a(t))∆2φ

= φr
(
∂2
rLθ + ∂2

zLθ +
2

r
∂rLθ

)
+ 2∇(rLθ) · ∇φ+ (rLθ − a(t))∆2φ

= φr
(
∂2
rLθ + ∂2

zLθ +
1

r
∂rLθ −

1

r2
Lθ

)
+ φ

(
∂rLθ +

1

r
Lθ

)
+ 2∇(rLθ) · ∇φ

+ (rLθ − a(t))∆2φ

= −φrωθ + φvz + 2∇(rLθ) · ∇φ+ (rLθ − a(t))∆2φ. (4.11)

We used the fact that ΨLθ = ωθ
r , where Ψ is the linear elliptic operator Ψ = 1

r
∂
∂r (1

r
∂
∂r ) +

1
r2

∂2

∂z2
.

At any point (x, t), we also have

|∇(rLθ)|2 = |∂r(rLθ)|2 + r2|∂zLθ|2 = r2

[∣∣∣∣1r ∂r(rLθ)
∣∣∣∣2 + |∂zLθ|2

]
= r2|b|2, (4.12)

which, combined with (4.11), admits the bound

|∆2((rLθ − a(t))φ)| ≤ |rωθ + vz|+ 2r|b|+ C|rLθ − a(t)|.

Using the 2-dimensional Poincaré inequality again, the Laplacian term in (4.10) has upper

bound:

||∆2((rLθ − a(t))φ)||L2(R2)

≤ C||ωθ||L2(C(9σ1/8)) + C||b||L2(C(9σ1/8)) + C||(rLθ − a(t))||L2(C(9σ1/8))

≤ C||ωθ||L2(C(9σ1/8)) + C||b||L2(C(9σ1/8)) + C||∇(rLθ)||L2(C(9σ1/8))

≤ C||ωθ||L2(C(9σ1/8)) + 2C||b||L2(C(9σ1/8)).
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Substituting this and (4.12) back into (4.10), we get

||rLθ − a(t)||L∞(C(σ1))

≤ C(||v(·, t)||L2(C(9σ1/8)) + 1)
[

log(C||ωθ(·, t)||L2(C(9σ1/8)) + C||v(·, t)||L2(C(9σ1/8)) + e)
] 1

2
.

Using this estimate in (4.9), the following bound has thus been established for the drift

term:

T1 ≤
1

8

∫
P (σ1)

|∇(ψf)|2dyds

+ C
supt∈(−σ2

1 ,0)

[
log(||ωθ(·, t)||L2(C(9σ1/8)) + ||v(·, t)||L2(C(9σ1/8)) + e)

]
(σ1 − σ2)2

∫
P (σ1)

f2dyds.

For simplicity of notation in the iteration, we will use K to mean:

K = K(v, ω) ≡ sup
t∈(−σ2

1 ,0)

[
log(||ωθ(·, t)||L2(C(9σ1/8)) + ||v(·, t)||L2(C(9σ1/8)) + e)

]
.

Therefore,

T1 ≤
1

8

∫
P (σ1)

|∇(ψf)|2dyds+ C
K

2
(v, ω)

(σ1 − σ2)2

∫
P (σ1)

f2dyds (4.13)

4.4 Bounding the Integrals T2 and T3

The term T2 =

∫
P (σ1)

(η∂sη + |∇ψ|2)f2dyds is easily dealt with using properties

of the cutoff function. Since

|∇ψ|2 = |η∇φ|2 ≤
(
|∇φ|
φδ

)2

≤ c2
1

(σ1 − σ2)2

and

|η∂sη| ≤ |∂sη| ≤
c2

(σ1 − σ2)2
,
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we get

|T2| ≤
C

(σ1 − σ2)2

∫
P (σ1)

f2dyds ≤ C

(σ1 − σ2)2

∫
P (σ1)

f2dyds. (4.14)

For T3 =
∫
P (σ1)

2
r∂rf(fψ2)dyds, we first rewrite ∂rf(f) as 1

2∂r(f
2), then integrate

by parts. Since integration over P (σ1) avoids any possible singularities of solutions of the

axially symmetric Navier Stokes equations (by staying away from the z-axis), all functions in

the integrand are bounded and smooth. Therefore, the following computations are justified:

T3 =

∫
P (σ1)

2

r
∂rf(fψ2)dyds =

∫
P (σ1)

1

r
∂r(f

2)ψ2rdrdθdzds

=

∫
P (σ1)

∂r(f
2)ψ2drdθdzds = −

∫
P (σ1)

∂r(ψ
2)f2drdθdzds

= −
∫
P (σ1)

2

r
er · ∇ψ(ψf2)dyds.

Taking absolute values and using the Cauchy-Schwarz inequality for vectors on the integrand

gives

|T3| ≤
∫
P (σ1)

2

r
|∇ψ|ψf2dyds

Since r is bounded by two constants in P (σ1), combined with properties of the cutoff

function we thus arrive at a bound on T3:

|T3| ≤
C

(σ1 − σ2)

∫
P (σ1)

f2dyds ≤ C

(σ1 − σ2)

∫
P (σ1)

f2dyds. (4.15)

4.5 Bounding T4, the Inhomogenous Term

We finish bounding the integrals on the right of (4.3) by estimating T4, which arose

from the inhomogeneous term, 2vθ
r2

∂vθ
∂z . Note that these inequalities have been derived for
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the function f = Ω
q
+, where Ω+ was defined in section 4.1 by cutting off all parts of Ω(x, t)

that were less than Λ:

Ω+(x, t) =


Ω(x, t) + Λ Ω(x, t) ≥ 0,

Λ Ω(x, t) < 0.

Therefore, Ω+ ≥ Λ, where Λ = ||vθ||L∞(P1,4,1) ≤ ||rv0,θ||L∞(R3) <∞.

Using integration by parts yields

T4 =

∫
P (σ1)

qΩ
2q−1
+

r2

∂v2
θ

∂z
ψ2dyds

=−
∫
P (σ1)

∂

∂z

(Ω
2q
+ ψ

2

Ω+

) q
r2
v2
θdyds

=−
∫
P (σ1)

∂

∂z
(fψ)2 1

Ω+

q

r2
v2
θdyds+

∫
P (σ1)

(Ω
q
+ψ)2 1

Ω
2
+

∂Ω+

∂z

q

r2
v2
θdyds

=−
∫
P (σ1)

∂

∂z
(fψ)2 1

Ω+

q

r2
v2
θdyds

+
1

2

∫
P (σ1)

1

Ω+

[∂(Ω
2q
+ ψ

2)

∂z
− Ω

2q
+

∂ψ2

∂z

] 1

r2
v2
θdyds

=−
∫
P (σ1)

∂

∂z
(fψ)2 1

Ω+

q − (1/2)

r2
v2
θdyds−

1

2

∫
P (σ1)

1

Ω+

Ω
2q
+

∂ψ2

∂z

1

r2
v2
θdyds.

Considering that |vθ|Λ ≤ 1, utilizing Λ ≤ Ω+, and r =
√
y2

1 + y2
2 ≥ 1 for all y ∈ P (σ1), we

continue by fixing ε3 > 0. Apply Young’s inequality with exponents both being 2 to get

|T4| ≤
∫
P (σ1)

2q|vθ‖f |ψ
∣∣∣∂(fψ)

∂z

∣∣∣dyds+
c3

σ1 − σ2

∫
P (σ1)

f2|vθ|dyds

≤
∫
P (σ1)

∣∣∣ 2qΛ

(2ε3)
1
2

fψ
∣∣∣× ∣∣∣(2ε3)

1
2
∂(fψ)

∂z

∣∣∣dyds+
c3Λ

σ1 − σ2

∫
P (σ1)

f2dyds

≤ c12Λ2q2

ε3

∫
P (σ1)

f2dyds+ ε3

∫
P (σ1)

|∇(fψ)|2dyds+
c3Λ

σ1 − σ2

∫
P (σ1)

f2dyds.

Thus

|T4| ≤
1

4

∫
P (σ1)

|∇(fψ)|2dyds+ C

[
Λ2q2 +

Λ

σ1 − σ2

] ∫
P (σ1)

f2dyds. (4.16)

29



4.6 Combining Estimates T1 − T4 and Embedding Estimates

Combining the results from the previous two sections on the integrals T1 − T4, we

substitute (4.13), (4.14), (4.15) and (4.16) into (4.3) to get

∫
P (σ1)

|∇(fψ)|2dyds+
1

2

∫
C(σ1)

f2(y, 0)φ2(y)dy

≤ 3

4

∫
P (σ1)

|∇(fψ)|2dyds+ C

[
CK

2
(v, w)

(σ1 − σ2)2
+ 1 + Λ2q2 +

1

(σ1 − σ2)2

]∫
P (σ1)

f2dyds

We can rewrite this inequality, since q > 1 and 0 < σ1 − σ2 < 1, as

∫
P (σ1)

|∇(fψ)|2dyds+

∫
C(σ1)

f2(y, 0)φ2(y)dy (4.17)

≤ Cq2

(σ1 − σ2)2

(
K

2
(v, w)(C1,4) + Λ2 + 1

)∫
P (σ1)

f2dyds.

The above energy estimate will be iterated using embeddings on BMO functions, which will

now be derived.

Apply Lemma 1 in Section 2 of [13] to (fφ)2,

||(fφ)2||L2(C(σ1)) ≤ C||fφ||L2(C(σ1))||fφ||BMO(C(σ1)), (4.18)

and recall the definition of BMO:

||fφ||BMO(C(σ1)) = sup
B(x,r)⊂C(σ1)

{
1

|B(x, r)|

∫
B(x,r)

|fφ− (fφ)x,r|dy

}
.

This supremum is taken over all 2-dimensional balls contained in C(σ1), and the term (fφ)x,r

is the average of fφ over the ball B(x, r). Applying Hölder’s inequality and Poincare’s
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Inequality on the ball, we bound the inside of the BMO norm:

1

|B(x, r)|

∫
B(x,r)

|fφ− (fφ)B(x,r)|dy

≤ 1

|B(x, r)|

(∫
B(x,r)

1dy

) 1
2
(∫

B(x,r)
|fφ− (fφ)x,r|2dy

) 1
2

≤ Cr

|B(x, r)|
1
2

(∫
B(x,r)

|∇(fφ)|2dy

) 1
2

≤ C||∇(fφ)||L2(C(x,r))

Therefore, substituting this into (4.18) gives the embedding we will use to iterate (4.17):

||fφ||L4(C(σ1)) ≤ C||fφ||
1
2

L2(C(σ1))
||∇(fφ)||

1
2

L2(C(σ1))
. (4.19)

4.7 L2 − L∞ Estimate on ωθ using Moser’s Iteration

Embedding (4.19) implies

∫
C(σ1)

(fφ)4dy ≤ C
∫
C(σ1)

(fφ)2

∫
C(σ1)

|∇(fφ)|2dy.

We multiply by η4(s) on both sides and integrate with respect to time to get

∫ 0

−σ2
1

∫
C(σ1)

(fψ)4dyds

≤ C
∫ 0

−σ2
1

∫
C(σ1)

(fψ)2dyds

∫ 0

−σ2
1

∫
C(σ1)

|∇(fψ)|2dyds

≤ C sup
−σ2

1≤s≤0

(∫
C(σ1)

(fψ)2dy

)∫
P (σ1)

|∇(fψ)|2dyds (4.20)

Energy estimate (4.17) holds for all s in the interval −σ2
1 ≤ s < 0 as the upper limit of the

time cut-off function, hence it controls both integrals in the above embedding. Therefore,
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substituting (4.17) into the embedding and using properties of the cut-off function gives∫
P (σ2)

f4dyds ≤ C

[
q2

(σ1 − σ2)2

(
K

2
+ Λ2 + 1

)∫
P (σ1)

f2dyds

]2

.

The term K is the shortened form of K(v, w). Since f = Ω
q
+, this shows∫

P (σ2)
Ω

4q
+ dyds ≤ C

[
q2

(σ1 − σ2)2

(
K

2
+ Λ2 + 1

)∫
P (σ1)

Ω
2q
+ dyds

]2

. (4.21)

For i = 0, 1, 2, . . . , in (4.21), take q = 2i and replace σ1 by σi = 1 −
∑i

j=1 2−j−2

and σ2 by σi+1 = 1−
∑i+1

j=1 2−j−2. We set
∑i

j=1 2−j−2 = 0 for the case i = 0. Then (4.21)

generalizes to(∫
P (σi+1)

Ω
2i+2

+ dyds

)1/2

≤ c1c
i+1
2 22i

(
K

2
+ Λ2 + 1

)∫
P (σi)

Ω
2i+1

+ dyds. (4.22)

If we take the 1/2-th power of (4.22) then we get

(∫
P (σi+1)

Ω
2i+2

+ dyds
)1/22

≤ c
1
2
1 c

i+1
2

2 2
2i
2

(
K

2
+ Λ2 + 1

) 1
2

(∫
P (σi)

Ω
2i+1

+ dyds

) 1
2

≤ c
1
2

+1

1 c
[ i+1

2
+i]

2 2[ 2i2 +2(i−1)]
(
K

2
+ Λ2 + 1

) 1
2

+1
∫
P (σi−1)

Ω
2(i−1)+1

+ dyds, (4.23)

where the second line is the result of applying (4.22) to the first line of (4.23). We continue

this iterative process of taking the 1/2-th power of the above inequality, then applying

(4.22), until we reach the L2-norm of Ω+ over P 1,4,1 (enlarging the domain of integration if

necessary):(∫
P (σi+1)

Ω
2i+2

+ dyds

) 1

2i+1

≤ c
∑ 1

2j

1 c

∑ j+1

2j−1

2 2
2
∑ j−1

2j−1

(
K

2
+ Λ2 + 1

)∑ 1

2j−1

∫
P 1,4,1

Ω
2
+dyds.

Each sum in the powers of the constants are from j = 1 to j = i + 1. Letting

i→∞, each resulting infinite series converges. Therefore,

sup
P

2,3, 34

Ω
2
+ ≤ C

(
K

2
+ Λ2 + 1

)2
∫
P 1,4,1

Ω
2
+dyds.
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We can repeat this argument on Ω− =


−Ω + Λ Ω ≤ 0

Λ Ω > 0

to derive a similar L2 − L∞

bound for Ω−:

sup
P2,3, 3

4

Ω
2
− ≤ C

(
K

2
+ Λ2 + 1

)2
∫
P 1,4,1

Ω
2
−dyds.

Thus,

sup
P2,3, 3

4

Ω2 ≤ C
(
K

2
+ Λ2 + 1

)2
∫
P 1,4,1

Ω2dyds.

In the region P 1,4,1, since r is bounded by two constants, the functions Ω = ωθ/r and ωθ

are equivalent. Therefore, the above estimate implies

sup
P2,3, 3

4

ω2
θ ≤ C

(
K

2
+ Λ2 + 1

)2
∫
P 1,4,1

(ω2
θ + Λ2)dyds. (4.24)

4.8 Re-scaling back to small Parabolic Cylinders; proof of

Theorem 3.2

All of our computations so far were done on blown up parabolic cylinders, for the

function ω̃θ. That is, bringing back the tilde notation, we have shown

sup
(x̃,t̃)∈P

2,3, 34

ω̃2
θ(x̃, t̃) ≤ C

(
K + Λ̃ + 1

)4

∫
P 1

2 ,5,1

ω̃2
θ(x̃, t̃)dx̃dt̃+ Λ̃2

 . (4.25)
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Here x̃ = x
k and t̃ = t

k3
, and we have enlarged the domain of integration for convenience.

Furthermore,

K = K(ṽ, w̃)

≡ sup
t̃∈(−1,0)

[
(||ṽ(·, t̃)||L2(C(9/8)) + 1)(log1/2(||ω̃θ(·, t̃)||L2(C(9/8)) + ||ṽ(·, t̃)||L2(C(9/8)) + e)

]
≤ sup

t̃∈(−1,0)

[
(||ṽ(·, t̃)||L2(C 1

2 ,5
) + 1)(log1/2(||ω̃θ(·, t̃)||L2(C 1

2 ,5
) + ||ṽ(·, t̃)||L2(C 1

2 ,5
) + e)

]
.

This inequality holds because C(9/8) ⊂ C 1
2
,5. Recall the effects of re-scaling on the L2

xL
∞
t

norms of velocity and vorticity:

||̃b(x̃, t̃)||L∞(−1,0;L2(C 1
2 ,5

)) = k−
1
2 ||b(x, t)||L∞(−k2,0;L2(C k

2 ,5k
)),

||ω̃(x̃, t̃)||L∞(−1,0;L2(C 1
2 ,5

)) = k
1
2 ||ω(x, t)||L∞(−k2,0;L2(C k

2 ,5k
)),

and

||ω̃(x̃, t̃)||L2(P 1
2 ,5,1

) = k−
1
2 ||ω(x, t)||L2(P k

2 ,5k,k
).

Hence, returning to C k
2
,5k from C 1

2
,5, we have

K ≤ sup
k∈[−k2,0]

(
1

k1/2
||b||L2(C k

2 ,5k
) + 1

)
log1/2

(
k1/2||ωθ(·, t)||L2(C k

2 ,5k
)

+ k−1/2||v(·, t)||L2(C k
2 ,5k

) + e
)

In [1] it was proved that for any x ∈ C k
2
,5k,

|ωθ(x, t)| ≤
C

k5
,

where C depends only on the initial value. Therefore,

K ≤ C(k−1/2||b||L∞(−k2,0;L2(C k
2 ,5k

)) + 1) log1/2(
1

k
+ e) (4.26)
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The last term left to re-scale is Λ, which is scaling invariant, since by Proposition 3.1,

Λ̃ =

 sup
P 1

2 ,5,1

|ṽθ(x̃, t̃)|


= ||rvθ(x,−T )||L∞(R3) = ||rv0,θ||L∞(R3).

Substuting this and (4.26) into (4.25) gives, for k ∈ (0, 1],

sup
(x,t)∈P

2k,3k, 3k4

k4ω2
θ(x, t)

≤ C
(

(k−1/2‖b‖L∞(−k2,0;L2(C k
2 ,5k

)) + 1) log1/2(
1

k
+ e) + ‖rv0,θ‖L∞(R3) + 1

)4

×
(∫

P k
2 ,5k,k

k4ω2
θ(x, t)

1

k5
dxdt+ ‖rv0,θ‖2L∞(R3)

)

≤ C

k3

(
‖b‖L∞(−k2,0;L2(C k

2 ,5k
)) log1/2(

1

k
+ e) + k1/2‖rv0,θ‖L∞(R3) + k1/2

)4

×
(
‖ωθ‖2L2(P k

2 ,5k,k
) + k‖rv0,θ‖2L∞(R3)

)
.

Thus, after dividing by k4 and taking the square root, Theorem 3.2 is proved:

‖ωθ(x, t)‖L∞(P
2k,3k, 3k4

)

≤ C

k7/2

(
‖b‖L∞(−k2,0;L2(C k

2 ,5k
)) log1/2(

1

k
+ e) + k1/2‖rv0,θ‖L∞(R3) + k1/2

)2

×
(
‖ωθ‖L2(P k

2 ,5k,k
) +
√
k‖rv0,θ‖L∞(R3)

)
.

�

35



Chapter 5

A Priori Bounds on ωr and ωz

We prove here similar pointwise estimates for the other components of vorticity in

the cylindrical system, ωr and ωz, which satisfy the equations:
∆ωr − (b · ∇)ωr + ωr

(
∂vr
∂r −

1
r2

)
+ ωz

∂vr
∂z −

∂ωr
∂t = 0,

∆ωz − (b · ∇)ωz + ωz
∂vz
∂z + ωr

∂vr
∂r −

∂ωz
∂t = 0.

(5.1)

Following the derivation in [1], we let V be the matrix:

V =

 ∂vr
∂r −

1
r2

∂vz
∂r

∂vr
∂z

∂vz
∂z


Then the max norm of the matrix V can be estimated using a lemma proved in the above

paper:

Lemma 5.1 Let v = v(x, t) be a divergence free, axisymmetric, smooth vector field in

Q1,4 = C1,4,1×[−T, T ] for fixed T > 0. Then for all q > 1 there exists a constant c = c(q) > 0
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such that:

||∇vr||Lq(Q2,3) +
∣∣∣∣∣∣vr
r

∣∣∣∣∣∣
Lq(Q2,3)

+||∇vz||Lq(Q2,3)

≤ c(||(curl v)θ||Lq(Q1,4) + ||v||Lq(Q1,4)).

5.1 Energy Estimates for ωr and ωz

Once again we choose ψ = φ(y)η(s) to be the cut-off function satisfying:

supp φ ⊂ C(σ1); φ(y) = 1 for all y ∈ C(σ2);
|∇φ|
φδ
≤ c1

σ1 − σ2
for δ ∈ (0, 1), 0 ≤ φ ≤ 1;

supp η ⊂ (−σ2
1, 0]; η(s) = 1 for all s ∈ [−σ2

2, 0]; |η′| ≤ c2

(σ1 − σ2)2
; 0 ≤ η ≤ 1.

Taking ω2q−1
r ψ2 as a test function in (5.1), we get:

0 =

∫
P (σ1)

(
∆ωr − b · ∇ωr + ωr

(
∂vr
∂r
− 1

r2

)
+ ωz

∂vr
∂z
− ∂ωr

∂s

)
ω2q−1
r ψ2dyds

=

∫
P (σ1)

ω2q−1
r ψ2∆ωrdyds

−
∫
P (σ1)

1

q
b · ∇(ωqr)(ω

q
rψ

2)dyds−
∫
P (σ1)

1

q
∂s(ω

q
r)(ω

q
rψ

2)dyds

+

∫
P (σ1)

(
∂vr
∂r
− 1

r2

)
(ω2q
r ψ

2) +

(
∂vr
∂z

)
ωzω

2q−1
r ψ2dyds.

We work the first term on the right hand side as we did in (4.2) for ωθ, using integration

by parts, direct calculations and algebraic manipulations:
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∫
P (σ1)

ω2q−1
r ψ2∆ωrdyds = −

∫
P (σ1)

∇(ω2q−1
r ψ2) · ∇ωrdyds

= −
∫
P (σ1)

(2q − 1)(ω2q−2
r ∇ωr) · ∇ωrψ2 + ω2q−1

r ∇ωr · ∇(ψ2)dyds

= −
∫
P (σ1)

(2q − 1)(ωq−1
r ∇ωr) · (ωq−1

r ∇ωr)ψ2 +∇(ψ2)ωqr(ω
q−1
r ∇ωr)dyds

= −2q − 1

q2

∫
P (σ1)

∇(ωqr) · ∇(ωqr)ψ
2dyds− 1

q

∫
P (σ1)

ωqr∇(ωqr) · ∇(ψ2)dyds

≤ −1

q

∫
P (σ1)

∇(ωqr) · (∇(ωqr)ψ
2 +∇(ψ2)ωqr)dyds, since

1

q
<

2q − 1

q2

= −1

q

∫
P (σ1)

∇(ωqr) · ∇(ωqrψ
2)dyds

= −1

q

∫
P (σ1)

(|∇(ωqrψ)|2 − |∇ψ|2ω2q
r )dyds,

which implies:

∫
P (σ1)

|∇(ωqrψ)|2dyds

≤ −
∫
P (σ1)

b · ∇(ωqr)(ω
q
rψ

2)dyds−
∫
P (σ1)

∂s(ω
q
r)(ω

q
rψ

2)dyds+

∫
P (σ1)

|∇ψ|2ω2q
r dyds

+ q

∫
P (σ1)

[(
∂vr
∂r
− 1

r2

)
(ω2q
r ψ

2) +

(
∂vr
∂z

)
ωzω

2q−1
r ψ2

]
dyds. (5.2)

Similarly, using ω2q−1
z ψ2 as a test function in the equation for ωz in (5.1),

∫
P (σ1)

|∇(ωqzψ)|2dyds

≤ −
∫
P (σ1)

b · ∇(ωqz)(ω
q
zψ

2)dyds−
∫
P (σ1)

∂s(ω
q
z)(ω

q
zψ

2)dyds+

∫
P (σ1)

|∇ψ|2ω2q
z dyds

q

∫
P (σ1)

[(
∂vz
∂z

)
(ω2q
z ψ

2) +

(
∂vz
∂r

)
ωrω

2q−1
z ψ2

]
dyds. (5.3)

We let f = |ωr|q + |ωz|q, and |V | be the max norm of the matrix V , and add (5.2)
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and (5.3) to get:

∫
P (σ1)

|∇(fψ)|2dyds ≤ 2

∫
P (σ1)

(−b · ∇f(fψ2)− ∂sf(fψ2) + |∇ψ|2f2 + qc|V |f2ψ2)dyds,

where we used the Cauchy-Schwartz inequality. Using the same steps as in (4.2), we get a

similar estimate to (4.3):

∫
P (σ1)

|∇(fψ)|2dyds+
1

2

∫
C(σ1)

f2(y, 0)φ2(y)dy

≤ −
∫
P (σ1)

2b · ∇f(fψ2)dyds+ 2

∫
P (σ1)

(η∂sη + |∇ψ|2)f2dyds

+ cq

∫
P (σ1)

|V |f2ψ2dyds

:= T1 + T2 + T3. (5.4)

5.2 Bounding T3

The T1 and T2 terms in (5.4) can be treated using the methods in Chapter 4. We

therefore shift our focus to T3. This integral was bounded in [1]:

T3 ≤ ε2||(fψ)2||
L

5
3 (P (σ1))

+ q4||V ||4
L

10
3 (P (σ1))

∫
P (σ1)

f2dyds.

Using dimension reduction, enlarging the domain of the velocity derivative norm to P 1,4,1,

and bounding the L5/3-norm of (fψ)2 by its L2-norm, we have the following bound for T3:

T3 ≤ ε2||(fψ)2||L2(P (σ1)) + cq4||V ||4
L

10
3 (P 1,4,1)

∫
P (σ1)

f2dyds. (5.5)
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5.3 Combining Estimates and Embedding

At this time we utilize the estimates for T1 and T2 (estimates 4.13 and 4.14,

respectively), along with T3 in the previous section. Energy estimate (5.4) then becomes:∫
P (σ1)

|∇(fψ)|2dyds+
1

2

∫
C(σ1)

f2(y, 0)φ2(y)dy

≤ 1

8

∫
P (σ1)

|∇(ψf)|2dyds+ 2ε2||(fψ)2||L2(P (σ1))

+ C

[
K

2
(v, w)

(σ1 − σ2)2
+

1

(σ1 − σ2)2
+ q4||V ||4

L
10
3 (P (σ1))

]∫
P (σ1)

f2 dyds

After absorbing the first term on the right, we get:∫
P (σ1)

|∇(fψ)|2dyds+

∫
C(σ1)

f2(y, 0)φ2(y)dy (5.6)

≤ Cq

(σ1 − σ2)2

(
K

2
(v, w) + ||V ||4

L
10
3 (P (σ1))

+ 1

)∫
P (σ1)

f2 dyds+ 2ε2||(fψ)2||L2(P (σ1)),

noting 0 < σ1 − σ2 < 1 and q > 1.

Now, recall (4.20) in Moser’s iteration in Section 4.7, which follows from embedding

(4.18), Poincare’s inequality, and properties of the cut-off function:∫ 0

−σ2
1

∫
C(σ1)

(fψ)4dyds ≤ C sup
−σ2

1≤s≤0

(∫
C(σ1)

(fψ)2dyds

)∫
P (σ1)

|∇(fψ)|2dyds

As in Chapter 4, here we apply estimate (5.6), which controls both integrals in the embed-

ding since it holds for every s in the interval −σ2
1 ≤ s < 0:where τ = σ1 − σ2∫

P (σ1)
(fψ)4dyds ≤ Cq2

(σ1 − σ2)2

[(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∫
P (σ1)

f2dyds

+ 2ε2||(fψ)2||L2(P (σ1))

]2

Taking the square root on both sides gives us an inequality bounding ||(fψ)2||L2(P (σ1)) on

the left. Therefore we choose ε2 = 1
4 and absorb this ε2 term to the left. Upon removing
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the square root, we have the key to our iteration:

∫
P (σ1)

(fψ)4dyds ≤ Cq2

(σ1 − σ2)2

[(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∫
P (σ1)

f2dyds

]2

(5.7)

5.4 L2 − L∞ Estimate on ωr and ωz using Moser’s Iteration

Recall that f = |ωr|q+|ωz|q. Making this substitution in (5.7) and using properties

of the cut-off function, we get:

∫
P (σ2)

(|ωr|q + |ωz|q)4dyds

≤ C

[
c1q

2

(σ1 − σ2)2

(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∫
P (σ1)

(|ωr|q + |ωz|q)2dyds

]2

We define h(x, t) = max(|ωr|, |ωz|) and observe that since hq ≤ |ωr|q + |ωz|q ≤ 2hq, we can

replace the integrands containing f with h:

∫
P (σ2)

h4qdyds ≤ C

[
q2

(σ1 − σ2)2

(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∫
P (σ1)

h2qdyds

]2

. (5.8)

The rest of this argument follows exactly the same as in section 4.7, but with h

in place of Ω+ and Ω−. For i = 0, 1, 2, . . . in (5.8), again we take q = 2i and replace σ1 by

σi = 1 −
∑i

j=1 2−i−j and σ2 by σi+1 = 1 −
∑i+1

j=1 2−j−2. We take σi =
∑i

j=1 2−j−2 for the

case i = 0. Then (5.8) generalizes to:(∫
P (σi+1)

h2i+2
dyds

)1/2

≤ c1c
i+1
2 22i

(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∫
P (σi)

h2i+1
dyds (5.9)
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If we take the 1/2-th power of (5.9) then we get

(∫
P (σi+1)

h2i+2
dyds

)1/22

≤ c
1
2
1 c

i+2
2

2 2
2i
2

(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

) 1
2

(∫
P (σi)

h2i+1
dyds

) 1
2

≤ c
1
2

+1

1 c
[ i+1

2
+i]

2 2[ 2i2 +2(i−1)]
(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

) 1
2

+1 ∫
P (σi−1)

h2(i−1)+1
dyds,

(5.10)

where we applied (5.9) to the first line of (5.10). We repeat this process of taking the 1/2-th

power of the above inequality, then applying (5.9), until we reach the L2-norm of h over

P 1,4,1:

(∫
P (σi+1)

h2i+2
dyds

) 1

2i+1

≤ c
∑ 1

2j

1 c

∑ j+1

2j−1

2 2
2
∑ j−1

2j−1

(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)∑ 1

2j−1
∫
P 1,4,1

h2dyds.

Note that all the sums in the exponents are from j = 1 to j = i + 1. Letting

i→∞, the exponent series all converge. Therefore,

sup
P

2,3, 34

(ω2
r + ω2

z) ≤ C
(
K

2
+ ||V ||4

L
10
3 (P 1,4,1)

+ 1

)2
(∫

P 1,4,1

ω2
rdyds+

∫
P 1,4,1

ω2
zdyds

)
.

(5.11)

5.5 Controlling the Velocity Derivatives

Recall the definition of V :

V =

 ∂vr
∂r −

1
r2

∂vz
∂r

∂vr
∂z

∂vz
∂z

 .
The same argument in [1] is used to control ||V ||4

L
10
3 (P 1,4,1)

, but with better accuracy due

to the results from Chapter 4. By Lemma 5.1 in [1], with P 1,4,1 as the domain on the left
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and P 1
2
,5,1 on the right, we have:

||V ||4
L

10
3 (P 1,4,1)

≤ c
(
||ωθ||

L
10
3 (P 1

2 ,5,1
)

+ ||v||
L

10
3 (P 1

2 ,5,1
)

+ 1
)4
. (5.12)

The L10/3-norm of ωθ is controlled using (4.21), after choosing q = 1 and taking the 1
4th

power on each side:

||Ω+||L4(P (σ2)) ≤ C
1

(σ1 − σ2)2

(
K

2
+ Λ2 + 1

) 1
2 ||Ω+||L2(P (σ1)).

With P (σ2) = P 1,4,1 and P (σ1) = P 1
2
,5,1, we have estimates on Ω+ and Ω−:

||Ω+||
L

10
3 (P 1,4,1)

≤ c||Ω+||L4(P 1,4,1) ≤ C
(
K + Λ + 1

)
||Ω+||L2(P 1

2 ,5,1
)

and

||Ω−||
L

10
3 (P 1,4,1)

≤ c||Ω−||L4(P 1,4,1) ≤ C
(
K + Λ + 1

)
||Ω−||L2(P 1

2 ,5,1
).

Combining these two estimates gives the same bound for Ω. Writing Ω = ωθ
r , we

have

||ωθ||
L

10
3 (P 1,4,1)

≤ C(K + Λ + 1)||ωθ||L2(P 1
2 ,5,1

),

where we used the equivalence of ωθ
r and ωθ in the blown up two-dimensional shells P 1,4,1

and P 1
2
,5,1 (with r bounded by two constants). Thus, ||V ||4

L
10
3 (P 1,4,1)

satisfies the bound:

||V ||4
L

10
3 (P 1,4,1)

≤ C
(

(K + Λ + 1)4||ωθ||4L2(P 1
2 ,5,1

)
+ ||v||4

L
10
3 (P 1

2 ,5,1
)

+ 1
)

The domain was enlarged proportionally to make the right-hand side more uniform. Sub-

stituting this back into (5.11) with the enlarged domain P 1
2
,5,1 on the right, we have

sup
P

2,3, 34

(ω2
r + ω2

z) ≤ A

∫
P 1

2 ,5,1

ω2
rdyds+

∫
P 1

2 ,5,1

ω2
zdyds

 ,

43



where

A = C
(
K

2
+
(
K + Λ + 1

)4
||ωθ||4L2(P 1

2 ,5,1
)

+ ||v||4
L

10
3 (P 1

2 ,5,1
)

+ 1
)2
.

5.6 Re-scaling; proof of Theorem 3.3

Recall our ”tilde” notation and that what has actually been shown to this point

is:

sup
(x̃,t̃)∈P

2,3, 34

(ω̃2
r + ω̃2

z)(x̃, t̃) ≤ Ã

∫
P 1

2 ,5,1

ω̃2
r (x̃, t̃)dx̃dt̃+

∫
P 1

2 ,5,1

ω̃2
z(x̃, t̃)dx̃dt̃

 , (5.13)

where x̃ = x
k , t̃ = t

k2
, ω̃r(x̃, t̃) = k2ωr(kx̃, k

2t̃), ω̃z(x̃, t̃) = k2ωz(kx̃, k
2t̃), and

Ã = C
(
K

2
(ṽ, ω̃) +

(
K(ṽ, ω̃) + Λ̃ + 1

)4
||ω̃θ||4L2(P k

2 ,5k,k
) + ||ṽ||4

L
10
3 (P k

2 ,5k,k
)

+ 1
)2
.

From the scaling in Section 3.2 and estimate (4.26) on K(v, w), we have:

||ṽ(x̃, t̃)||
L

10
3 (P k

2 ,5k,k
)

= k−
1
2 ||v(x, t)||

L
10
3 (P k

2 ,5k,k
)
,

||ω̃(x̃, t̃)||L2(P k
2 ,5k,k

) = k−
1
2 ||ω(x, t)||L2(P k

2 ,5k,k
),

and

K
2
(ṽ, w̃) ≤ C(k−1/2||b||L∞(−k2,0;L2(C k

2 ,5k
)) + 1)2 log(

1

k
+ e).

We apply Theorem 3.2, for (x, t) ∈ P k
2
,5k,k:

|ωθ(x, t)| ≤ Ck−
7
2 log(

1

k
+ e),

where C depends only on the initial value.
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Therefore, rescaling and substituting estimates (4.26) and (??), we find that Ã

scales in the following way:

Ã ≤ C
(

(k−1/2||b||L∞(−k2,0;L2(P k
2 ,5k,k

)) + 1)2 log(
1

k
+ e)

+
(
k−1/2 log

1
2 (

1

k
+ e) + Λ + 1

)4
k−2||ωθ||4L2(P k

2 ,5k,k
) + k−2||v||4

L
10
3 (P k

2 ,5k,k
)

+ 1
)2
.

Finally, after rescaling on (5.13) and substituting the estimate on Ã, we have, for

any k ∈ (0, 1],

sup
P
2k,3k, 3k4

k4
(
ω2
r (x, t) + ω2

z(x, t)
)

≤ C
(

(k−
1
2 ||b||L∞(−k2,0;L2(P k

2 ,5k,k
)) + 1)2 log(

1

k
+ e)

+ (k−
1
2 log

1
2 (

1

k
+ e) + Λ + 1)4k−2||ωθ||4L2(P k

2 ,5k,k
) + k−

1
2 ||v||4

L
10
3 (P k

2 ,5k,k
)

+ 1
)2

×

∫
P k

2 ,5k,k

k4ω2
r (x, t)

1

k5
dxdt+

∫
P k

2 ,5k,k

k4ω2
z(x, t)

1

k5
dxdt


≤ C

k9

(
(k3/2||b||L∞(−k2,0;L2(P k

2 ,5k,k
)) + k2)2 log(

1

k
+ e)

+ (log
1
2 (

1

k
+ e) + k1/2Λ + k1/2)4||ωθ||4L2(P k

2 ,5k,k
) + k7/2||v||4

L
10
3 (P k

2 ,5k,k
)

+ k4
)2

×
(
||ωr||2L2(P k

2 ,5k,k
) + ||ωθ||2L2(P k

2 ,5k,k
)

)
.

Thus, after dividing by k4 and taking the square root on both sides, we have proved the
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third part of the main theorem:

||ωr(x, t)||L∞(P
2k,3k, 3k4

) + ||ωz(x, t)||L∞(P
2k,3k, 3k4

)

≤ C

k13/2

(
(k3/2||b||L∞(−k2,0;L2(P k

2 ,5k,k
)) + k2)2 log(

1

k
+ e)

+ (log
1
2 (

1

k
+ e) + k1/2Λ + k1/2)4||ωθ||4L2(P k

2 ,5k,k
) + k7/2||v||4

L
10
3 (P k

2 ,5k,k
)

+ k4
)2

×
(
||ωr||2L2(P k

2 ,5k,k
) + ||ωθ||2L2(P k

2 ,5k,k
)

)
.

�
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Chapter 6

Vorticity to Velocity

Now that the local bound on ωθ has been established, in this chapter it is shown

how the vorticity can control local growth of the velocity, v = vrer + vθeθ + vzez. Since vθ

a priori satisfies a good local estimate, we can work on just the vr and vz terms, which are

used to define the θ-component of vorticity, with ωθ = ∂vr
∂z −

∂vz
∂r . Recalling our notation

b = vrer + vzez, we establish the following inequality for all p ≥ 1:

sup
Br0 (x)

|b| ≤ Cr−3/p
0 ||b||Lp(B2r0 (x)) + Cr0 sup

B2r0 (x)
|ωθ| (6.1)

6.1 Vorticity as the Laplacian of b

The cylindrical curl of b is

∇× b = ωθeθ (6.2)
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Using the following identity for any smooth vector field: ∇(∇· b)−∇× (∇× b) = ∆b, along

with the divergence-free condition on b, we compute the curl of (6.2) to be:

∇× (∇× b) = −∆b

Therefore, replacing ∇× b with ωθeθ, we have established that

−∆b = ∇× (ωθeθ) (6.3)

6.2 Inversion of −∆(φb) for a Cutoff Function φ

To derive the local estimate on the r- and z-components of velocity, we use a cutoff

argument on (6.3) by first inverting the Laplacian using a Green’s function on R3, denoted

by Γ(x, y) = c0
|x−y| . The point y = (y1, y2, y3) = (r̃ cos θ̃, r̃ sin θ̃, z̃) is any point in R3, while

x = (x1, x2, x3) = (r cos θ, r sin θ, z) is fixed.

Choose a smooth cutoff function φ on R3 with support contained in the ball B2r0 =

B(x, 2r0), 0 ≤ φ ≤ 1 in B2r0 , φ ≡ 1 in Br0 , and having the following properties:

|∇ · φ| ≤ C

r0
, |∆φ| ≤ C

r2
0

Then supp(∇φ) ⊂ B2r0 \Br0 . Computing the Laplacian gives:

∆(φb) = b∆φ+ 2∇φ · ∇b+ φ∆b

We use (6.3) to replace ∆b, and then solve for φb by integration against the Green’s function
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over R3:

φb =

∫
R3

Γ(x, y)
(

∆yφ b+ 2∇yφ · ∇yb− φ curly (ωθeθ)
)
dy

=

∫
R3

Γ(x, y)∆yφ b dy + 2

∫
R3

Γ(x, y)∇yφ · ∇yb dy −
∫
R3

Γ(x, y)φ curly(ωθeθ) dy

= I1 + I2 + I3 (6.4)

The y-dependence of φ and b in the integrands is surpressed, and will remain so

for most of the derivation of (6.1).

6.3 Bounding an Integral by supB2r0
(x) |ωθ|

From here, we present detailed computations on bounding each integral in (6.4).

Starting with the more complicated term, I3, a quick computation of the cylindrical curl of

ωθeθ gives, with the axial symmetry assumption:

curly (ωθeθ) = −∂ωθ
∂z̃

er̃ +

(
ωθ
r̃

+
∂ωθ
∂r̃

)
ez̃

Hence, I3 becomes

I3 =

∫
R3

Γ(x, y)φ
∂ωθ
∂z̃

er̃ dy −
∫
R3

Γ(x, y)φ
ωθ
r̃
ez̃ dy +

∫
R3

Γ(x, y)φ
∂ωθ
∂r̃

ez̃ dy, (6.5)
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which expands, after integration by parts, to

I3 = −
∫
R3

∂

∂z̃
(Γ(x, y)φ er̃)ωθ dy −

∫
R3

Γ(x, y)φ
ωθ
r̃
ez̃ dy

+

∫
R3

∂

∂r̃

 r̃ φ(r̃, θ̃, z̃)√
(r̃ cos θ̃ − r cos θ)2 + (r̃ sin θ̃ − r sin θ)2 + (z̃ − z)2

ez̃

ωθ dr̃dθ̃dz̃

= −
∫
R3

(
z̃ − z
|x− y|3

φ+
∂z̃φ

|x− y|

)
ωθer̃ dy −

∫
R3

Γ(x, y)φ
ωθ
r̃
ez̃ dy (6.6)

+

∫
R3

|x− y|2(φ+ r̃∂r̃ φ)− φ[(x̃1 − x1)x̃1 + (x̃2 − x2)x̃2]

|x− y|3
ωθ
r̃
ez̃ dy

We simplify (6.6) by rearranging the cutoff function and |x − y|2 term in the

numerator of the third integral:

I3 = −
∫
R3

(
z̃ − z
|x− y|3

φ+
∂z̃φ

|x− y|

)
ωθer̃ dy −

∫
R3

Γ(x, y)φ
ωθ
r̃
ez̃ dy

−
∫
R3

(x̃2
1 + x̃2

2 − x̃1x1 − x̃2x2)

|x− y|3
φωθ
r̃

ez̃ dy +

∫
R3

Γ(x, y)

(
φ

r̃
+ ∂r̃φ

)
ωθez̃ dy

= −
∫
R3

(
z̃ − z
|x− y|3

φ+
∂z̃φ

|x− y|

)
ωθer̃ dy +

∫
Br0

Γ(x, y)
1

r̃
∂r̃(r̃φ)ωθez̃ dy

−
∫
R3

(x̃2
1 + x̃2

2 − x̃1x1 − x̃2x2)

|x− y|3
φωθ
r̃

ez̃ dy (6.7)

The following two terms in (6.7): z̃ − z and x̃2
1 + x̃2

2 − x̃1x1 − x̃2x2, are both bounded by

|x − y| and |x − y|2, respectively. Since the cylindrical basis vectors have norm 1, we can
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finally bound I3:

|I3| ≤
∫
R3

(
|x− y|
|x− y|3

|φ|+ |∂z̃φ|
|x− y|

)
|ωθ| dy +

∫
R3

|Γ(x, y)|
∣∣∣∣1r̃ ∂r̃(r̃φ)

∣∣∣∣ |ωθ| dy
+

∫
R3

|x− y|2

|x− y|3
|φ||ωθ|
r̃

dy

=

∫
R3

(
|φ|

|x− y|2
+
|∂z̃φ|
|x− y|

)
|ωθ| dy +

∫
R3

|Γ(x, y)|
∣∣∣∣1r̃ ∂r̃(r̃φ)

∣∣∣∣ |ωθ| dy
+

∫
R3

1

|x− y|
|φ||ωθ|
r̃

dy,

which becomes, after grouping together the cutoff terms:

|I3| ≤
∫
R3

|φ|
|x− y|2

|ωθ| dy +

∫
Br0

(
|∂z̃φ|+

∣∣∣∣1r̃ ∂r̃(r̃φ)

∣∣∣∣) |Γ(x, y)||ωθ| dy

=

∫
R3

|φ|
|x− y|2

|ωθ| dy +

∫
R3

(
|∂z̃φ|+

∣∣∣∣1r̃ ∂r̃(r̃φ)

∣∣∣∣) |ωθ|
|y − x|

dy (6.8)

We know that |∂z̃φ| +
∣∣1
r̃∂r̃(r̃φ)

∣∣ ≤ |∇φ|. Moreoever, our cutoff function is sup-

ported in Br0 , with ∇φ supported in B2r0 \ Br0 and |∇φ| ≤ C
r0

. We can therefore bound

(6.8) by supB2r0 (x) |ωθ|:

|I3| ≤
∫
Br0

|ωθ(y)|
|y − x|2

dy +

∫
Br0

C

r0

|ωθ(y)|
|y − x|

dy

≤ C sup
B2r0 (x)

|ωθ|

(∫
B2r0

1

|y − x|2
dy +

∫
Q9r0/8

1

|y − x|
dy

)

Here we enlarged the domain of the second integral from Br0 to Q9r0/8 = Q(x, 9r0/8), a

cylinder of radius 9r0/8 and height 9r0/4, such that Br0 ⊂ Q9r0/8 ⊂ B2r0 .
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Now we expand each integral, using spherical coordinates for the ball and cylin-

drical coordinates for the cylinder, thus arriving at our final bound for I3:

|I3| ≤ C sup
B2r0 (x)

|ωθ|

(∫ 2π

0

∫ π

0

∫ 2r0

0

1

ρ̃2
ρ̃2 sin(φ̃)dρ̃dφ̃dθ̃ +

∫ 2π

0

∫ 9r0
8

− 9r0
8

∫ 9r0
8

0

1

r̃
r̃ dr̃dz̃dθ̃

)

≤ Cr0 sup
B2r0 (x)

|ωθ| (6.9)

6.4 Bounding the remaining Integrals

For the terms I1 and I2, we integrate by parts and use properties of our cutoff

function to bound the integrals in terms of the Lp-norm of b in the ball B2r0(x). The details

are as follows, beginning with integration by parts:

I1 + I2 =

∫
R3

Γ(x, y)∆yφ b dy + 2

∫
R3

Γ(x, y)∇yφ · ∇yb dy

=

∫
R3

Γ(x, y)∆yφ b dy − 2

∫
R3

∇y · (Γ(x, y)∇yφ)b dy.

Surpressing the y-variable in the Laplacian and gradient symbols, we compute

∇ · (Γ(x, y)∇φ) and combine the resulting integrals:

I1 + I2 =

∫
R3

Γ(x, y)∆φ b dy − 2

∫
R3

∇Γ(x, y) · ∇φ b dy − 2

∫
R3

Γ(x, y)∆φ b dy

= −
∫
R3

Γ(x, y)∆φ b dy − 2

∫
R3

∇Γ(x, y) · ∇φ b dy

Therefore, using properties of the cutoff function φ, in particular ∇φ having support in

B2r0 \Br0 , we get the bound

|I1|+ |I2| ≤
∫
R3

|Γ(x, y)| |∆φ| |b| dy + 2

∫
R3

|∇Γ(x, y)| |∇φ| |b| dy

=

∫
B2r0\Br0

|Γ(x, y)| |∆φ| |b| dy + 2

∫
B2r0\Br0

|∇Γ(x, y)| |∇φ| |b| dy (6.10)
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We have that y 6= x in B2r0(x) \ Br0(x). This fact, along with the previous

calculations of ∂Γ/∂r̃, ∂Γ/∂z̃ and a similar calculation on 1
r̃
∂Γ
∂θ̃

, shows that Γ(x, y) and

∇Γ(x, y) have the following bounds:

|Γ(x, y)| = c0

|y − x|
≤ C

r0
and |∇Γ(x, y)| ≤ C

|y − x|2
≤ C

r2
0

(6.11)

Combining (6.10) and (6.11) with properties of the cutoff function gives:

|I1|+ |I2| ≤
C

r3
0

∫
B2r0\Br0

|b(y)| dy +
C

r3
0

∫
B2r0\Br0

|b(y)| dy

=
C

r3
0

∫
B2r0\Br0

|b(y)| dy.

Lastly, by Hölder’s inequality,

|I1|+ |I2| ≤
C

r3
0

(∫
B2r0\Br0

|b(y)|p dy

) 1
p
(∫

B2r0\Br0
1 dy

)1− 1
p

=
C

r3
0

(cr3
0)

1− 1
p ||b||Lp(B2r0\Br0 )

≤ Cr
− 3
p

0 ||b||Lp(B2r0 (x)). (6.12)

Putting (6.4), (6.9), and (6.12) all together, we have thus shown

sup
Br0 (x)

|b| ≤ Cr−3/p
0 ||b||Lp(B2r0 (x)) + Cr0 sup

B2r0 (x)
|ωθ| (6.13)
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Chapter 7

Proof of the Main Theorem

We pick a point x = (x1, x2, x3) in R3 and let r = |x′| =
√
x2

1 + x2
2 be the distance

from x to the x3-axis. Theorem 3.2 asserts that we can bound ωθ pointwise by

|ωθ(x, t)| ≤
C ln (1/r)

r7/2

When this is substituted into (6.13), with p = 2 we have

|b(x, t)| ≤ Cr−3/2
0 ||b||L2(B2r0 (x)) + Cr0r

−7/2| ln r| (7.1)

Using our axial symmetry assumption, (7.1) actually has greater decay as r → 0. The idea

is that we are free to choose r0, so we consider r0 < r ≤ 1/2 (since we only need to worry

about the bound close to the z axis) and choose r0 to depend on r in an optimal way.
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7.1 Proof of Theorem 3.1

First we consider a torus at height x3, with radius r, generated by rotating the

ball B(x, r0) around the curve

(y1, y2, y3) =

{
(y1, y2, y3)

∣∣√y2
1 + y2

2 = r, y3 = x3

}
.

Dividing the circumference of this curve by the diameter of the balls B(x, r0), we can fit

2πr/(2r0) ∼ r/(2r0) many disjoint balls of radius r0 (rounding up to the nearest integer),

whose union are contained in the torus.

Since the function b is axially symmetric, the value of the integral of |b|2 over each

ball is the same, hence

r

2r0

(∫
Br0 (x)

|b(y)|2dy

)
≤
∫
R3

|b(y)|2dy.

Writing this in terms of the L2-norm, we have the bound

||b||L2(B2r0 (x)) ≤ C
(

2r0

r

) 1
2

||b||L2(R3),

With this extra decay on ||b||L2(B2r0 (x)), we substitute into (7.1):

|b(x, t)| ≤ Cr−3/2
0 ||b||L2(B2r0 (x)) + Cr0r

−7/2| ln r|

≤ C
(

2r−2
0

r

) 1
2

||b||L2(R3) + Cr0r
−7/2| ln r|

Setting the terms involving r0 and r equal to each other (or optimizing in the r0 variable

using single-variable calculus) suggests the best choice of r0 to be r0 = r3/2| ln r|−1/2. When

we substitute this choice of r0, we finish the proof of Theorem 3.1:

|b(x, t)| ≤ C
(

2r−3| ln r|
r

) 1
2

||b||L2(B2r0 (x)) + Cr3/2| ln r|−1/2r−7/2| ln r|

= Cr−2| ln r|1/2.
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