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ABSTRACT OF THE DISSERTATION 

 

Climate drivers of microbial decomposition in southern California 

By 

Nameer R. Baker 

Doctor of Philosophy in Ecology and Evolutionary Biology 

 University of California, Irvine, 2016 

Associate Professor Steven D. Allison, Chair 

 

The overall aim of my dissertation was to determine how microbial decomposers 

may respond to future climate change in the American Southwest. In my first chapter, I 

investigated how attenuation of ambient ultraviolet radiation (UV) affected microbial litter 

decomposition during a one-year field study. Using flow cytometry to quantify bacteria, 

microscopy to quantify fungi, and assays to quantify potential extracellular enzyme activity, 

I determined that attenuation of ambient UV reduced decomposition rates and the 

effectiveness of extracellular enzymes produced by microbial decomposers in plant litter.  

In my second chapter, I observed how microbial decomposer communities varied 

with climate and litter chemistry across a regional climate gradient that extends from cold, 

wet conditions to hot, dry conditions. Changes along this gradient emulate the potential 

impacts of future climate change in the American Southwest. I determined that differences 

in microbial activity were not driven directly by precipitation, but rather by differences in 

protein degradation rates, enzyme turnover, and the availability of carbon substrates. 
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In my third chapter, I transplanted grassland microbial communities into five sites 

along the same regional climate gradient to simulate climate change effects on microbial 

properties and decomposition rates in the field. The transplant design allowed me to 

determine if grassland microbial communities were constrained in their ability to respond 

to climate forcing. I found that temperature and precipitation interact to limit 

decomposition rates in the coldest and driest sites. I also found that grassland microbial 

communities were not constrained in their ability to degrade litter in any site along the 

gradient.  

Together, the results of my dissertation research indicate that transitions from 

forests to both grasslands and scrublands in southern California marks a significant shift in 

litter chemistry and enzyme dynamics, while the transitions from grasslands to drier 

scrublands and deserts and from cold subalpine sites to milder montane forests may be the 

most significant for rates of C-cycling.  In a more arid future, shifts in climate and resulting 

shifts in plant communities in these transition zones are therefore likely have the most 

significant effects on future decomposer activity and C-cycling rates. 
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INTRODUCTION 

Human impacts on the biosphere have become a significant driver of the interacting 

processes that make up the Earth System (Crutzen, 2002). As a result of these rapid 

changes across the globe, communities of organisms are likely to experience novel climates 

and environments in the future (IPCC, 2014). Improving our ability to accurately predict 

future climates and environments has therefore become an overarching goal of much 

ecological research. Microbial communities mediate crucial pathways in the 

biogeochemical cycles that drive the Earth System, making their response to climate 

change a vital question in need of answering if we are to accurately forecast future climate 

scenarios (Singh et al., 2010). Resolving the consequences of interactions between climate 

change and microbe-mediated process rates will be especially important in the American 

Southwest, where future climate is consistently predicted become more arid (Garfin et al., 

2014; Seager et al., 2007). This is of note because decomposition dynamics in drier 

ecosystems are difficult to predict using established decomposition models that have 

primarily been developed through the study of more mesic ecosystems (Meentemeyer, 

1978; Throop and Archer, 2009; Whitford et al., 1981). 

Soil and litter microbial communities mediate the flux of carbon dioxide (CO2) from 

terrestrial ecosystems back into the atmosphere. Microbial decomposers break down dead 

plant tissues (litter) and soil organic matter into more labile carbon (C) compounds that 

are eventually respired as CO2 (Anderson, 2011). During litter decomposition, microbes 

secrete extracellular enzymes that attack specific substrates, breaking them down into 

accessible forms of carbon, nitrogen, and phosphorus that can then be absorbed and 

assimilated into microbial biomass (Allison et al., 2007). The kinetics of these enzymatic 
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reactions should lead to increased reaction rates as temperature increases, causing a 

positive feedback to the global C cycle (Davidson and Janssens, 2006). However, the exact 

response of different enzyme classes to temperature change is not well understood. This is 

in part because the two parameters that determine the rate of an enzymatic reaction, Vmax 

and Km, can have opposing effects on the temperature response of a given enzyme-

catalyzed reaction. Vmax describes the maximum rate of enzyme activity at a given 

temperature, and usually increases with increasing temperature. Km is inversely 

proportional to the enzyme’s affinity for its substrate at a given temperature, and may 

increase as temperature increases (Davidson et al., 2006).  

Rising CO2 concentrations in the atmosphere will contribute to future warming and 

altered precipitation patterns in regions around the globe, though the exact magnitudes 

and locations of changes in climate are not certain (IPCC, 2014). These climate changes 

could have significant effects on such microbial community functions as litter 

decomposition (Anderson, 2011; Bissett et al., 2013; Raich and Schlesinger, 2002). 

Microbial decomposer communities are known to be sensitive to changes in temperature 

and moisture (Allison and Treseder, 2008; Frey et al., 2013; Schimel and Schaeffer, 2012), 

but are also expected to be exposed to novel litter chemistries in the future as plant 

communities shift with changing climate (Keiser et al., 2013). Changes in litter inputs could 

potentially alter the structure or functional capabilities of microbial decomposer 

communities (Saleska et al. 2002), especially since microbial communities appear adapted 

to degrade specific litter chemistries (Keiser et al., 2011; Strickland et al., 2009). 

For my dissertation, I investigated effect of climate on microbial decomposer 

communities and decomposition rates in southern California. In my first chapter, I 
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manipulated the amount of ultraviolet radiation that decomposing litter samples 

experienced over the course of one year to determine how photodegradation affects 

decomposition as well as decomposer communities. In my second chapter, I observed how 

microbial communities varied with climate along a regional elevation gradient that extends 

from cool, wet sites to hot, dry sites in a manner that realistically emulates the predicted 

future shift to a more arid climate in the American Southwest. In my third chapter, I 

transplanted microbial communities from the intermediate grassland site to all of the sites 

along the gradient to compare how climate and microbial community composition drive 

the response of microbial decomposers to simulated climate change. 
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CHAPTER 1 

Ultraviolet photodegradation facilitates microbial litter decomposition  

in a Mediterranean climate 

 

Baker, N.R, Allison, S.D., 2015. Ultraviolet photodegradation facilitates microbial litter 
decomposition in a Mediterranean climate. Ecology 96(7), 1994-2003. doi:10.1890/14-
1482.1 

 

Introduction 

Litter decomposition is a key contributor to the global annual flux of ~68 Pg carbon 

(C)  that enters the atmosphere from heterotrophic respiration (Raich and Schlesinger, 

2002). Much early work on litter decomposition was performed in mesic ecosystems, 

where temperature, moisture, and litter chemistry are primary drivers of decomposition 

rates (Meentemeyer, 1978; Parton et al., 1987). However, models built around these three 

drivers consistently underestimate rates of decomposition in more xeric “dryland” 

ecosystems, such as semi-arid Mediterranean grasslands and arid deserts (Whitford et al., 

1981). Multiple hypotheses have been proposed for the unexplained mechanisms 

contributing to this discrepancy: foraging by subterranean micro-arthropods (Johnson and 

Whitford, 1975), persistence of microbe-sustaining microclimates as a result of high 

overnight humidity (Dirks et al., 2010; Nagy and Macauley, 1982; Whitford et al., 1981), 

and photodegradation by solar radiation (Moorhead and Reynolds, 1989; Pauli, 1964). 

Photodegradation in terrestrial ecosystems as a result of ultraviolet radiation (UV), in 

particular, has become the focus of a growing body of literature in the last decade 

(reviewed in King et al. 2012 and Song et al. 2013). 
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 Photodegradation is thought to take on added importance in dryland ecosystems 

through a variety of mechanisms. First, litter in dryland ecosystems is subject to a greater 

intensity of solar radiation because there are fewer days of cloud cover and lower levels of 

shade than in more productive ecosystems (Pauli, 1964). Second, in grassland ecosystems, 

litter is formed through the senescence of standing grass. This standing litter may be 

subject to photodegradation before it comes in contact with the soil microbial community 

(Austin and Vivanco, 2006). Third, the presumed inhibition of microbial activity by dry 

climates should reduce the importance of microbial decomposition and increase the 

importance of abiotic drivers such as photodegradation (Gallo et al., 2009). On the other 

hand, the elevated intensity of photodegradation in more xeric ecosystems may lead to 

microbial communities that are adapted to the effects of UV (Caldwell et al., 2007). If 

photodegradation can facilitate microbial decomposition through its effects on litter 

chemistry, it could enhance decomposition of litter by microbial communities that are 

adapted to dryland climates (Gallo et al. 2006, Henry et al. 2008, Foereid et al. 2010). 

 Though solar radiation in general (Gallo et al., 2009; Henry et al., 2008) and UV in 

particular have been found to increase rates of litter mass loss in previous studies (Austin 

and Vivanco, 2006; Brandt et al., 2010; Day et al., 2007; Lin and King, 2014), the exact 

mechanism has yet to be established. It is thought that lignin-like compounds in litter 

should be the most susceptible to photodegradation, due to the presence of aromatic rings 

that can absorb UV wavelengths. There has been some evidence for this mechanism in the 

lab (Austin and Ballaré, 2010; Brandt et al., 2009; Lee et al., 2012) and in the field (Day et 

al., 2007; Gallo et al., 2009; Gehrke et al., 1995; Rozema et al., 1997), but recent field studies 
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have shown mixed (Brandt et al., 2010, 2007) or nonexistent (Lin and King, 2014) effects of 

UV on the lignin fraction in litter.  

 UV is thought to affect litter mass loss through two primary pathways that lead to 

depolymerization – direct photolysis and indirect photolysis. During direct photolysis, a 

photosensitive organic molecule such as lignin absorbs photons and is fragmented or 

rearranged by the infusion of energy, potentially resulting in a less chemically complex 

compound that is easier to degrade or leach out of the system (King et al., 2012). Indirect 

photolysis is similar, except that after absorbance of photons by photosensitive 

compounds, the resulting energy is transferred to “reactive intermediates” such as O, OH-, 

H2O2 or reduced metals, which can then alter organic compounds such as cellulose 

(reviewed in Lanzalunga and Bietti 2000). Both direct and indirect photolysis could affect 

litter mass loss by making organic compounds in litter more bio-available for microbial 

decomposers (King et al 2012).  

 In dryland ecosystems in particular, extended dry periods should result in the build-

up of microbially-available substrates in litter (Hon and Feist, 1981), potentially facilitating 

wet season decomposition (Henry et al. 2008). Foereid et al. (2010) found evidence for 

facilitation in a lab study, but field studies have yet to determine how UV affects microbial 

properties in litter. UV could have detrimental effects on microbial communities, as it is 

known to damage microbial DNA (Rohwer and Azam, 2000) and  suppress growth of 

terrestrial microbes (Hughes et al., 2003). On the other hand, UV facilitation of microbial 

communities could be especially important in semi-arid Mediterranean ecosystems with 

marked seasonality. In the dry summer months, UV might alter litter chemistry and 

stimulate mass loss while inhibiting microbial activity. These changes in litter chemistry 
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could then facilitate microbial decomposition during the wet winter months with lower UV 

radiation. Microbial communities in dryland ecosystems might also be adapted to UV 

radiation, and there is some evidence that UV exposure alters microbial community 

composition (Caldwell et al., 2007). Long-term exposure could select for microbes that are 

more capable of withstanding UV radiation or better able to use photodegraded litter 

compounds.  

We tested three hypotheses in a litterbag experiment whereby UV exposure and 

litter chemistry were both manipulated at two levels. First, we hypothesized that UV 

photodegradation would enhance litter mass loss in a Mediterranean ecosystem, 

potentially as a result of direct or indirect photolysis of organic compounds in litter (King 

et al., 2012). Second, we hypothesized that UV would preferentially degrade the lignin 

fraction in litter, as its aromatic structure is known to absorb UV wavelengths (Austin and 

Ballaré, 2010) and is thought to undergo chemical changes when exposed to solar radiation 

(Lanzalunga and Bietti, 2000). Finally, we hypothesized that the net result of UV is 

inhibition of microbial activity, given previous observations that UV can damage microbial 

DNA (Rohwer and Azam, 2000), slow the growth of microbial communities (Hughes et al., 

2003), and result in altered microbial community composition (Caldwell et al., 2007).  

 

Materials and Methods 

Site description and field manipulation 

 To test our hypotheses, we used a litterbag study with a split-plot design. Twelve 1 

m2 plots were paired into six split-plots at the UCI Arboretum in Irvine, CA, USA (33°39´ N, 

117°51´ W). The Arboretum is situated 30 m above sea level and has a mean annual 
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temperature of 17°C and mean annual precipitation of 30 cm. Local vegetation consists of 

coastal sage scrub. 

Each set of paired plots consisted of one ambient plot (hereafter referred to as the 

“UV-pass” treatment) and one plot covered with polyester UV-blocking film supported by a 

PVC frame (hereafter referred to as the “UV-block” treatment). This film blocked 68% of all 

UV while allowing 90% transmittance of visible light, as measured by a UV photometer on-

site. PVC frames were 1 m on each side and set up 40 cm above the soil surface, with strips 

of UV-blocking film 20 cm wide used to cover the plot area under the frame. Gaps 1 cm 

wide between strips of film allowed precipitation to infiltrate to the plot area, and the 

distance between the frame and soil surface was chosen to limit the potentially strong 

greenhouse effects of film coverage found by Uselman et al. (2011). Ambient plots had no 

PVC frame or film covering.  

Within each paired plot, two types of litterbags were deployed – four containing 

litter of  Avena species (A. barbata and A. fatua) with 7.38% (± 0.05%) lignin by mass, and 

four containing litter of Elymus condensatus (Giant wild rye), a grass species with 13.05% 

(± 0.08%) lignin by mass. Avena litter contained 4.79% (± 0.10%) crude protein and 4.08% 

(± 0.03%) ethanol soluble carbohydrates, while Elymus litter contained 3.81% (± 0.09) and 

2.44 % (± 0.19), respectively. Both litter types were more similar in cellulose and 

hemicellulose content than they were in lignin content (Table 1.2). Hereafter, Avena litter 

is referred to as “low lignin” and Elymus litter is referred to as “high lignin.” Both litter 

types were collected in late June of 2012 as standing, senesced litter from Loma Ridge 

(33°44´ N, 117°42´ W, 365 m elevation), a Mediterranean grassland managed by the Irvine 

Ranch Conservancy 16 km northeast of the field site in Irvine. Litter of each type was 
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collected by clipping standing litter at least 20 cm above the soil surface to minimize prior 

soil contact, then homogenized by clipping to <5 cm lengths and mixing. A sub-sample was 

weighed and oven-dried to determine moisture content. The equivalent of 1.9 g dry weight 

of litter (including ash content) was then added to litterbags for each litter type and 

deployed in the field on July 18, 2012. Each litterbag was made of two types of mesh: a 1.5 

mm aluminum mesh used for the side exposed to the sun, and a 0.5 mm nylon bridal mesh 

used for the side exposed to the soil surface. 

Four litterbags of both litter types were deployed into each of the six paired plots, 

resulting in 4 x 2 x 6 x 2 = 96 total litterbags. One litterbag of each litter type was then 

collected randomly from each of the paired plots at the end of the first dry season (October 

2, 2012), the middle of the wet season (January 18, 2013), the end of the wet season (June 

4, 2013), and the end of the second dry season (September 17, 2013), for a total of five time 

points (including the initial deployment) over a period of 15 months.  

Collected litter was weighed to determine mass loss before being ground into 

fragments <0.5 cm in length and sub-sampled for extracellular enzyme assays, a bacterial 

cell count assay, and a fungal hyphae staining assay. The remainder of the litter was 

weighed and oven-dried to determine moisture content.  

 

Extracellular enzyme assays 

 Litter was assayed for potential activity of eight enzyme classes using fluorescently 

labeled substrates (for hydrolytic enzymes) or colorimetric assays (for oxidative enzymes) 

according to methods detailed in German et al. (2012). The enzyme classes assayed 

consisted of hydrolytic cellulose and starch degradation (β-glucosidase, cellobiohydrolase, 
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and α-glucosidase; or BG, CBH, and AG), hydrolytic hemicellulose degradation (β-

xylosidase; or BX), hydrolytic chitin-degradation (N-acetylglucosaminidase; or NAG), 

peptide degradation (leucine-aminopeptidase; or LAP), and oxidative degradation 

(peroxidase and phenol oxidase; or PER and PPO). Negative potential activities were 

converted to zero values for statistical analyses. 

 

Bacterial cell density  

 Methods for estimating bacterial cell density were identical to those used in Allison 

et al. (2013). In brief, ground litter was suspended in a phosphate-buffered, 1% 

glutaraldehyde solution on the day of sample collection to “fix” bacterial cells for storage. 

Within two weeks, 0.1 M tetrasodium pyrophosphate was added to each sample, and 

samples were sonicated to dislodge bacterial cells. Filtered extracts of sonicated litter were 

stained with 1x SYBR-Green and then analyzed with an Accuri flow cytometer to determine 

cell counts from fluorescing bacterial cells.  

 

Fungal hyphal length 

 Methods for measuring fungal hyphal length were identical to those used in Allison 

et al. (2013). In brief, ground litter was suspended in 0.395% (w/V) sodium 

hexametaphosphate and vigorously stirred before being vacuum-filtered and stained with 

acid fuchsin. Two filters were made for each litter sample and affixed to a glass slide. 

Hyphae were counted with a Nikon Eclipse E400 microscope at 100X magnification using 

the grid-intercept method (Giovanetti and Mosse, 1980; Newman, 1966) and 50 grids per 
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filter. Hyphal counts were converted to estimates of hyphal length in meters per gram of 

dry litter using a modified procedure of Sylvia (1992). 

 

Litter chemistry 

 Oven-dried litter was sent to Cumberland Valley Analytical Services for near-IR 

spectroscopy, whereby reflectance of near-infrared wavelengths of light from each sample 

are matched to a verified database of spectra for plant materials with known chemical 

composition as determined by wet chemistry (Shepherd et al., 2005). Relative amounts of 

the following organic compounds were determined as proportions of total dried litter 

mass: lignin, cellulose (acid detergent fiber – lignin), hemicellulose (neutral detergent fiber 

– acid detergent fiber), ash, and non-ash dry mass (1 – ash fraction). The proportion of total 

litter mass attributable to different C compounds will be referred to as concentration in the 

text. The concentration of non-ash dry mass was multiplied by the recovered dry mass at 

each time point to determine the mass loss from the organic portion of litter. The same 

calculation was used to determine mass loss for each carbon compound (lignin, cellulose, 

and hemicellulose). The total mass or mass lost from each carbon compound will be 

referred to as content in the text. 

 

Statistical methods 

 Effects of UV treatment, litter type, and sampling date on non-ash dry mass, litter 

chemistry, litter moisture, and bacterial cell counts were analyzed using mixed-model 

ANOVA with the identity of each pair of split-plots as a random factor. We originally 

compared this simple model with a more complex model whereby plot identity was a 
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random factor within which UV, litter type, and time were nested, but AIC comparison 

showed no significant differences between the two models. The simpler model had a lower 

AICc (51.7 vs. 60.3), AIC (42.6 vs. 47.5), BIC (85.0 vs. 97.0), and log-likelihood (-3.3 vs. -2.7), 

allowing us to employ it with a high degree of confidence. Tukey contrasts were used to 

determine the effect of UV within litter types at each time point. 

Because litter moisture content was found to be significantly affected by UV 

treatment (Figure A1, Table A1) and is known to be a strong control on decomposition 

processes in Mediterranean ecosystems, the model was run for all variables as an ANCOVA 

with litter moisture content as the covariate. Data were checked for normality using the 

Shapiro-Wilk test, and non-normal data were log-transformed or square root-transformed 

to improve normality when possible. Litter non-ash dry mass, lignin content, bacterial cell 

abundance, and observed potential β-glucosidase activity met assumptions of normality 

after being log transformed. Potential activities for β-xylosidase, phenol oxidase and N-

acetylglucosaminidase met assumptions of normality after being square root transformed. 

Potential peroxidase activity exhibited improved normality after square-root 

transformation, although a significant but tolerable deviation from normality was still 

evident. Litter hemicellulose content and potential activities of cellobiohydrolase and 

leucine-aminopeptidase were still not normally distributed after transformation, but visual 

inspection of residuals suggested that deviations from normality were tolerable for 

untransformed data. Litter cellulose content, hyphal lengths, and potential α-glucosidase 

activity met assumptions of normality without data transformation.   

To analyze enzymatic controls over decomposition, we tested for correlations 

between potential activities of different enzyme classes and the concentrations of their 
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target carbon compounds at each time point. We also tested for correlations between 

potential enzyme activities at one time point and the rate of change in the content 

attributable to their target carbon compounds by the next time point. If there was a 

significant correlation, then we used linear regressions to determine how much variation in 

the rate of change in the content of each carbon compound could be attributed to potential 

extracellular enzyme activity. These regressions assume that enzyme activity causes the 

change in mass of target substrate. All statistical analyses were conducted in the R software 

environment version 3.0.2 (R Development Core Team, 2016). 

 

Results 

Litter mass loss and moisture content 

Litter mass loss was affected by both litter type (p<0.001, F1,72=112.1) and by UV 

treatment (p<0.001, F1,72=60.9) (Table 1.1, Figure 1.1). Low lignin litter lost the most 

mass across both UV treatments, with an average of 23.2% mass loss by June 2013. High 

lignin litter lost an average of 11.0% of original mass across both UV treatments over the 

same time period. There was no significant interaction between litter type and UV 

treatment. High lignin litter lost 16.2% of original mass by June 2013 under UV-pass, but 

exhibited negligible (<1%) mass loss under UV-block. Low lignin samples showed a similar 

pattern (29.0% mass loss in UV-pass samples vs. 17.4% mass loss in UV-block samples), 

but post-hoc tests within dates were only marginally significant (Figure 1.1). Mass loss 

was not significantly affected by UV treatment after the first dry season (July 2012 to 

September 2012), for either high lignin or low lignin samples, with differences in litter 

mass only appearing during or after the wet season (January 2013 and later time points). 
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With the exception of the high lignin, UV-block treatment, all litter samples exhibited mass 

loss at each time point over the course of the experiment until the final September 2013 

time point. September 2013 samples had higher concentration of ash, indicating that soil 

deposition over the course of the second dry season obscured mass loss from litter and 

likely introduced organic compounds into litterbags, with the net result being increased 

similarity between all treatments at the final time point.  

Litter moisture content ranged from 7 to 14% of litter mass (Figure A1). UV-block 

significantly reduced litter moisture content by 0.47 percentage points (p=0.04, F1,73=4.4), 

and moisture content was significantly lower by 0.67 percentage points in low lignin litter 

compared to high lignin litter (p<0.001, F1,73=13.1; Table A1, Figure A1). Litter moisture 

also varied significantly over time with the lowest values in January 2013 (p<0.001, 

F3,73=94.3). 

 

Carbon fractions 

High lignin litter began the study with 13.05 ± 0.08% lignin by mass and low lignin 

litter began the study with 7.38 ± 0.06%. Lignin content was significantly affected by litter 

type (p<0.001, F1,72=371.9), but UV treatment had only a marginally significant effect (p 

=0.090, F1,72=2.96). The significant increase in lignin content over time (Tables 1.1, 1.2) is 

likely due to the deposition over time of particulate matter containing organic compounds, 

either microbial by-products or plant detritus, that have a lignin-like near-IR signal.  Litter 

cellulose content was significantly affected by litter type (p<0.001, F1,72=137.9) and UV 

treatment (p<0.001, F1,72=74.5). There was a significant interaction between UV treatment 

and litter type on cellulose content because UV had a stronger effect on cellulose content in 
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high lignin litter than in low lignin litter (Tukey p=0.017 for UV effect in low lignin litter, 

p<0.001 in high lignin litter, Figure A2). Litter hemicellulose content was not significantly 

affected by litter type, but was significantly affected by UV treatment (p<0.001, F1,72=25.5) 

(Table 1.1). Both litter types had reduced cellulose and hemicellulose content under UV-

pass compared to UV-block (Table 1.2).  

 

Bacterial cell counts 

Neither litter type nor UV treatment had a significant effect on bacterial cell counts 

(Table 1.1, Figure 1.2A). Bacterial abundance across and within all treatments was 

significantly higher on June 4, 2013 when compared to all other time points (Tukey 

p<0.001).  

 

Fungal hyphal length 

 In contrast to bacteria, fungal hyphal length was significantly affected by both UV 

treatment (p=0.024, F1,72=5.3) and litter type (p=0.004, F1,72=8.7) (Table 1.1, Figure 1.2B). 

The UV-pass treatment did not, in general, have a negative effect on fungal hyphal length 

across litter types when compared to UV-block, and UV treatment had no discernible effect 

on fungal hyphal length in high lignin litter. We did find a significant three-way interaction 

between UV treatment, litter type, and sampling date (p=0.017, F3,72=3.6), likely because 

fungal hyphal length in UV-pass samples was greater in our low lignin samples during the 

wet season compared to UV-block samples (25.0 ±1.7 m/g hyphae in low lignin litter under 

UV-pass vs. 15.4 ± 1.8 m/g under UV-block in January 2013; Tukey p<0.001). By contrast, 

UV-block samples did not attain peak fungal abundance until the end of the wet season.  
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Potential extracellular enzyme activities 

Potential extracellular enzyme activities varied with time, litter type, and 

occasionally by UV treatment (Table 1.1). In general, potential enzyme activities were 

lower in high lignin litter compared to low lignin litter, and lower during the dry season 

compared to the wet season (Figure 1.3). The main effect of UV treatment was only 

significant for potential leucine-aminopeptidase activity (p=0.017, F1,72=6.0). There were 

significant interactions with UV for the four enzymes depicted in Figure 1.3, in addition to 

peroxidase (trends similar to phenol oxidase) and N-acetylglucosaminidase (trends similar 

to leucine-aminopeptidase). Leucine-aminopeptidase exhibited significantly higher (Tukey 

p<0.001) potential activity under UV-pass compared to UV-block across all time points in 

high lignin litter only (Figure 1.3D). UV-block had marginally significant negative effects 

on potential activity of α-glucosidase (p=0.070, F1,72=3.4) and N-acetylglucosaminidase 

(p=0.085, F1,72=3.0).  

Potential activities of β-glucosidase and cellobiohydrolase were significantly 

positively correlated with percent mass of cellulose in low lignin litter, but only under UV-

pass. Potential activities of peroxidase and phenol oxidase were significantly positively 

correlated with percent mass of lignin in both litter types under UV-pass, but, with the 

exception of phenol oxidase in low lignin litter, not under UV-block (Table 1.3).  

Potential activities of three enzymes were significantly positively correlated with 

the rate of change in the content of their target carbon compounds, but only in litter under 
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UV-pass. β-xylosidase was positively correlated with the rate of change in hemicellulose 

content in low lignin litter, and phenol oxidase was positively correlated with the rate of 

change in lignin content in high lignin litter. Peroxidase activity was positively correlated 

with the change in lignin content in both litter types (Table 1.4). 

 

Discussion 

Our first hypothesis was that UV-block would reduce mass loss in both high and low 

lignin litter. Our results supported this hypothesis: reducing UV transmittance by 68% in 

the UV-block treatment significantly reduced mass loss in high lignin litter, and reduced 

mass loss to a marginally significant extent in low lignin litter (Fig. 1). This effect was 

significant even after accounting for a slight but significant negative effect of UV-block on 

litter moisture. Several previous studies have shown that attenuating solar radiation 

through shading can reduce litter mass loss in arid (Gallo et al., 2009) and semiarid (Henry 

et al., 2008) ecosystems. A number of studies have also found, as we did, that reducing UV 

can reduce litter mass loss rates in semiarid ecosystems. Austin and Vivanco (2006), Day et 

al. (2007), Brandt et al. (2007, 2010), and Lin and King (2014) all found that blocking UV 

reduced litter mass loss in the field anywhere from 3% over 5 months (Day et al., 2007) to 

33% over 18 months (Austin and Vivanco, 2006). Taken together, these results confirm 

that UV can increase litter mass loss in dryland ecosystems. 

Contrary to our second and third hypotheses, our study indicates that UV 

photodegradation does not result in enhanced mass loss from the lignin fraction, nor does 

it inhibit microbial decomposition. Instead, UV photodegradation appears to facilitate 

microbial decomposition by increasing the efficiency of extracellular enzymes produced by 
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microbial communities. Lignin mass loss in our litter was not affected by UV treatment, 

with UV blocking instead reducing the loss of litter cellulose and hemicellulose (Tables 1.1, 

1.2). In addition, the net effect of UV-pass on litter microbial communities does not appear 

to be inhibitory - we found no effect of UV treatment on bacterial abundance (Fig. 2A), a 

potentially positive effect of UV-pass on fungal abundance (Fig. 2B), and no consistent 

effect of UV treatment on potential extracellular enzyme activity. Instead, we found that 

litter-degrading extracellular enzymes may be more effective under UV-pass. We found 

correlations between potential enzyme activity and both substrate availability and 

substrate degradation in litter under UV-pass, and no such correlations under UV-block. 

Our results indicate that the functioning of Mediterranean grassland microbial 

communities may be dependent on ambient UV.  

Though most studies of photodegradation have hypothesized that UV acts directly 

upon the lignin fraction in litter, it should be noted that these studies have not established a 

direct link between UV exposure and lignin degradation. Although lab studies suggest that 

that lignin-like model compounds are photo-chemically active and absorb light in the 

ultraviolet range (Austin and Vivanco, 2006; Lanzalunga and Bietti, 2000), it is unclear to 

what extent photodegradation affects the physical and chemical structure of lignin. 

Kirschbaum et al. (2011) exposed grass litter and pine needles to UV equivalent to midday 

levels continuously for 60 days and found no direct effect of UV on either litter mass loss or 

concentration of lignin. Over the course of 10 weeks in the laboratory, Brandt et al. (2009) 

tested the effects of UV exposure on five different litter types with initial lignin 

concentrations varying from 6.2 to 24.6%. After standardizing for exposed surface area, 
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they found that lignin concentration had no effect on CO2 efflux from litter, though mass 

loss was significantly greater in litter exposed to UV than in controls. 

Whereas evidence for a direct effect of UV on the lignin fraction has been elusive in 

the lab, some field studies indicate that UV may influence the lignin content of litter. 

Separate studies by Gehrke et al. (1995) and Rozema et al. (1997) found that artificially 

enhancing levels of UVB radiation in the field caused the lignin content in litter to 

accumulate more slowly over time. In a California annual grassland, Henry et al. (2008) 

found that the rate of decrease in the concentration of lignin in grass litter over the course 

of a summer was roughly twice as rapid as rates of total mass loss. This indicates that mass 

loss during the dry season was preferentially occurring through the lignin fraction, 

ostensibly as a result of photodegradation. Day et al. (2007) found a similar result when 

exposing Larrea tridentata litter with very high lignin concentrations to 85% ambient and 

15% ambient UVB, with greater attenuation of UVB corresponding to higher lignin content 

in samples at the end of the study. While it is possible that UV degraded lignin directly in 

these studies, it is also possible that increased microbial activity under near-ambient 

radiation confounded their results, given that microbial by-products can be classified as 

lignin-like compounds when analyzing litter chemistry (Berg and Laskowski, 2005; Berg 

and McClaugherty, 1987). Rather than direct photolysis, reactive intermediates resulting 

from indirect photolysis of litter compounds also may have contributed to lignin 

degradation observed in these studies (King et al. 2012). 

In contrast to these field studies, we did not find that litter lignin was significantly 

affected by UV treatment. Instead, our results showed a significant, strong effect of UV 

treatment on litter cellulose and hemicellulose content. Notably, we found that this effect 
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was greater in high lignin litter. Cellulose could be cleaved through photo-excitation of the 

α-glycosidic bond linking cellulose chains to one another, producing simpler cellulose 

chains and releasing CO (Schade et al., 1999). Such direct photolysis of cellulose has not 

been extensively studied in the lab, but our results and others indicate that direct and 

indirect photolysis of non-lignin compounds such as cellulose and hemicellulose could be a 

significant mechanism through which UV affects litter decomposition. Gehrke et al. (1995), 

Rozema et al. (1997) and Day et al. (2007) found a significant reduction in cellulose 

concentration or combined cellulose and hemicellulose concentration in litter exposed to 

higher levels of UV. Brandt et al. (2007, 2010) also found no effect of UV treatment on the 

concentration of lignin in litter, but a significant, if small, negative effect of UV on the 

combined cellulose and hemicellulose concentration in their 2007 study, and a highly 

significant effect of UV on hemicellulose concentration in their 2010 study. Our results also 

fall in line with a study by Lin and King (2014), where attenuated UV reduced losses of 

hemicellulose content by 29% without having a significant effect on lignin  content. 

Likewise, Gallo et al. (2009) found that cottonwood litter mass loss was partially driven by 

photo-mineralization of cellulose.  

In addition to the aforementioned mechanisms of direct and indirect photolysis of 

cellulose and hemicellulose, it is likely that the effects of UV on mass loss could also result 

from degradation of the lignocellulose matrix without significantly affecting lignin mass 

loss. UV breakdown of lignin shielding other C compounds could make previously-occluded 

cellulose, hemicellulose, and soluble C available to microbial decomposers, facilitating 

enhanced microbial decomposition of litter (Gallo et al., 2006). Based on NMR analyses of 

litter that had been photodegraded in the field during their 2014 study, Lin et al. (in review, 
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Biogeochemistry) found that UV significantly reduced hemicellulose content, providing a 

mechanism for the direct photodegradation of hemicellulose by UV. Additionally, they 

found that inter-unit ether linkages of lignin polymers were degraded under UV without 

causing lignin mass loss, suggesting a mechanism whereby UV could weaken the 

lignocellulose matrix. Our results are also consistent with this potential mechanism, as 

cellulose mass loss was more affected by UV treatment in high lignin litter than it was in 

low lignin litter. 

In contrast to our original third hypothesis, we found little evidence for inhibition of 

microbial activity by UV. Bacterial and fungal abundances did not increase in litter under 

UV-block. Instead, UV-block treatment negatively affected fungal abundance during the wet 

season in our low lignin litter. In addition, potential activities of six of eight extracellular 

enzymes were not affected by UV treatment, indicating that ambient UV does not generally 

inhibit extracellular enzyme activity (Fig. 3). These results are somewhat surprising given 

the known detrimental effects of UV on microbial DNA (Rohwer and Azam, 2000) and 

microbial community growth (Hughes et al., 2003). Rather, UV might promote microbial 

decomposition through biochemical interactions. We observed significant correlations 

between potential enzyme activities and the concentrations of their target carbon fractions, 

but almost exclusively under UV-pass (Table 1.3). We also only found significant 

correlations between the mass loss of a carbon fraction and its associated enzyme activity 

at the previous time point under UV-pass, and mainly for oxidative enzymes that target 

more complex organic compounds (Table 1.4). In other words, investment in enzymes 

targeting the most complex compounds in litter only had a significant effect on the mass 

change of those compounds when litter was exposed to ambient levels of UV. This result 
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falls in line with previous findings by Gallo et al. (2009) and Brandt et al. (2010) that the 

amount of potential enzymatic activity required to degrade a litter cohort is greater when 

UV is blocked. 

There have been several other studies, in addition to our own, that indicate that 

facilitation of microbial decomposition by photodegradation may occur when microbial 

communities are allowed to interact with photodegraded litter. Foereid et al. (2010) found 

that litter exposed to light for 289 days had much higher rates of CO2 efflux in lab 

incubations when compared to litter that had only been exposed to radiation treatment for 

43 days. Henry et al. (2008) found that wet season decomposition was significantly greater 

when litter had been exposed to ambient radiation during the preceding summer dry 

period. Similarly, Lin and King (2014) found that shaded litter exposed to attenuated UV 

exhibited carbon fraction dynamics similar to shaded litter exposed to ambient UV, but 

with significantly slower litter mass loss rates, indicating that decomposition of shaded 

litter in contact with the microbial community may be facilitated by UV photodegradation 

and the resulting release of soluble C in the surface litter layer. The results of our study 

suggest a mechanism that could explain UV facilitation of litter decomposition in these 

studies. Photodegradation of cellulose, hemicellulose, or the lignocellulose matrix, might 

allow extracellular enzymes to break down their substrates more effectively.  

 

Conclusions 

Our study shows that UV photodegradation has a positive effect on both litter 

decomposition rates and microbial decomposer activity. UV blocking reduces litter mass 

loss, but does not have a significant direct effect on litter lignin content. Instead, UV 
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blocking significantly reduces the degradation of cellulose and hemicellulose, potentially by 

limiting the direct or indirect photolysis of cellulose or the lignocellulose matrix that would 

otherwise occur under ambient UV. UV blocking does not appear to increase bacterial or 

fungal abundance, and may in fact be detrimental for microbial decomposition, as 

extracellular enzymes produced by the microbial decomposer community were more 

effective at degrading their target substrates under ambient UV. These results indicate that 

UV photodegradation is an important driver of litter decomposition through its effects on 

non-lignin compounds and facilitation of microbial activity. These mechanisms of litter 

decomposition will likely become more important in the American Southwest if this region 

experiences a more arid climate in the future. 
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Table 1.1 P-values from ANCOVA for each dependent variable with respect to UV treatment, litter type, time 
of sampling, and all possible interactions with litter moisture content as a covariate. Significant (p<0.05) p-
values are in bold. Ndf  and Ddf are the degrees of freedom for the numerator and denominator of the F-
statistic, respectively. 

Variable H2O UV Litter (L) Time (T) UV:L UV:T L:T UV:L:T 
Non-ash dry mass <0.001 <0.001 <0.001 <0.001 0.084 0.370 0.750 0.946 

Lignin (g) <0.001 0.090 <0.001 <0.001 0.016 0.064 <0.001 0.346 
Cellulose (g) <0.001 <0.001 <0.001 <0.001 0.025 0.006 0.023 0.912 

Hemicellulose (g) 0.068 <0.001 0.963 <0.001 0.300 <0.001 <0.001 0.016 
Bacterial cells 0.522 0.151 0.223 <0.001 0.533 0.297 0.042 0.508 

Fungal hyphae 0.609 0.024 0.004 <0.001 0.115 <0.001 <0.001 0.017 
BG activity 0.884 0.444 <0.001 <0.001 0.132 0.212 <0.001 0.217 

CBH activity 0.143 0.406 <0.001 <0.001 0.107 0.026 0.002 0.030 
AG activity 0.036 0.070 <0.001 <0.001 0.072 0.340 0.252 0.281 
BX activity <0.001 0.230 <0.001 <0.001 0.194 <0.001 0.008 0.113 

PPO activity 0.021 0.822 <0.001 <0.001 0.918 <0.001 0.059 <0.001 
PER activity 0.935 0.233 <0.001 <0.001 0.733 0.415 0.001 0.041 
NAG activity <0.001 0.085 <0.001 <0.001 0.028 0.061 0.042 0.170 
LAP activity <0.001 0.017 0.109 <0.001 0.001 0.008 0.020 0.343 

Ndf, Ddf 1, 72 1, 72 1, 72 3, 72 1, 72 3, 72 3, 72 3, 72 
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Table 1.2 Carbon fraction content across all treatments presented as grams of dry litter mass at the 
beginning of the study and in June 2013. Bold values indicate when means under UV-block were significantly 
different (p<0.05, Tukey test) from means of the same litter type under UV-pass. Low lignin samples are L-, 
and high lignin samples are L+. UV block samples are UV-, and UV pass samples are UV+. 

 Lignin (g) Cellulose (g) Hemicellulose (g) 
Treatment Initial June 2013 Initial June 2013 Initial June 2013 

L–, UV+ 0.139±0.001 0.167±0.011 0.738±0.006 0.587±0.025 0.587±0.005 0.284±0.016 
L–, UV– - 0.181±0.015 - 0.670±0.035 - 0.338±0.012 
L+, UV+ 0.244±0.001 0.230±0.013 0.827±0.003 0.678±0.019 0.484±0.004 0.267±0.023 
L+, UV– - 0.263±0.023 - 0.803±0.028 - 0.348±0.018 
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Table 1.3 Pearson coefficients and p-values for the correlation between C fraction concentration and 
potential enzyme activity of the enzyme class that degrades that fraction. Bold text indicates significant 
correlations between enzyme activity and carbon fraction concentration. 
 BG(Cellulose) CBH(Cellulose) BX(Hemicell.) PER(Lignin) PPO(Lignin) 
Treatment Corr. p Corr. p Corr. p Corr. p Corr. p 
L–, UV+ +0.475 0.011 +0.423 0.025 +0.243 0.213 +0.690 <0.001 +0.551 0.002 
L–, UV– –0.043 0.823 –0.096 0.612 –0.096 0.612 +0.333 0.083 +0.517 0.005 
L+, UV+ –0.017 0.927 –0.313 0.092 +0.198 0.293 +0.510 0.004 +0.484 0.007 
L+, UV– +0.018 0.925 –0.224 0.233 +0.092 0.628 +0.146 0.440 +0.236 0.210 
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Table 1.4 Pearson coefficients and p-values for the correlation between potential enzyme activity and the 
change in the carbon content attributable to the compound degraded by that enzyme class. R2 values for the 
linear regression of change in C content as a function of potential enzyme activity are shown for significant 
correlations and indicated by bold text. 
 ΔHemicellulose(BX at t-1) ΔLignin(PER at t-1) ΔLignin(PPO at t-1) 
Treatment Corr. R2 p Corr. R2 p Corr. R2 p 
L–, UV+ –0.452 0.163 0.040 –0.448 0.159 0.042 –0.136 - 0.556 
L–, UV– –0.058 - 0.799 –0.058 - 0.799 –0.127 - 0.574 
L+, UV+ –0.227 - 0.287 –0.497 0.213 0.013 –0.616 0.351 0.001 
L+, UV– –0.028 - 0.896 -0.167 - 0.437 -0.237 - 0.265 
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Figure 1.1 Dry mass of the non-ash component of litter, in grams. Significant differences between UV treatments 

within litter types and sampling dates according to Tukey tests are denoted with asterisks (p<0.05) or daggers 

(p<0.10). Low lignin samples (L-) are shown with dotted lines, and high lignin samples (L+) with solid lines. UV 

pass treatments (UV+) are shown in black, and UV block (UV-) treatments are in grey. Symbols represent means ± 

SE. The double-headed line above the plot indicates the duration of the wet season . 
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Figure 1.2 Microbial abundance. A) Bacterial cell counts measured by flow cytometry, in 108 cells per gram of 
dry litter. Low lignin samples are shown with dotted lines, and high lignin samples with solid lines. UV pass 
treatments are shown in black, and UV block treatments are in grey. Symbols represent means ± SE. B) 
Length of fungal hyphae in meters per gram dry litter.  
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Figure 1.3 Potential extracellular enzyme activities in nanomoles of substrate per hour per gram of dry litter 
for 4 representative enzymes: A) cellobiohydrolase (CBH); B) β-xylosidase (BX); C) phenol oxidase (PPO); 
and D) leucine-aminopeptidase (LAP).  
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CHAPTER 2 

Extracellular enzyme kinetics and thermodynamics  

across five biomes in southern California 

 

Introduction 

A substantial fraction of ecosystem respiration is generated by microbial 

decomposers in soils and litter (Raich and Schlesinger, 2002). Many microbes secrete 

extracellular enzymes (EE) capable of degrading complex biological polymers into bio-

available compounds that fuel metabolism and respiration (Burns et al., 2013; Sinsabaugh 

et al., 1994). Abiotic climate variables such as moisture and temperature affect these 

microbial processes by altering diffusion, reaction rates, and osmotic potential. In addition 

to these direct effects, climate indirectly shapes microbial communities by exerting strong 

control on the composition of plant communities (IPCC, 2014), thereby determining 

substrate availability for microbial decomposers (Saleska et al., 2002).  

EE catalysis of complex organic substrate degradation is the rate-limiting step for 

returning C from soils to the atmosphere (Sinsabaugh and Shah, 2011), though physical 

protection of C and diffusion constraints can supersede the importance of enzyme catalysis 

in mineral soils (Schimel and Schaeffer, 2012). In the last few decades, decomposition 

dynamics have been related to microbial activity and assays of EE potential in a host of 

studies (Allison et al. 2007; also see refs in Burns et al., 2013 and Sinsabaugh et al., 2008), 

but investigations of how EE characteristics vary in xeric ecosystems is lacking. In a 2008 

global meta-analysis of EE potential in soils, 10% or fewer of the sites  were located in 
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dryland ecosystems (Sinsabaugh et al., 2008), even though drylands make up ~40% of 

terrestrial ecosystems by land area (MEA, 2005).   

This knowledge gap is significant because decomposition models validated in mesic 

ecosystems and built around temperature, moisture, and litter chemistry consistently 

underestimate rates of decomposition in more xeric drylands ecosystems, such as semiarid 

Mediterranean grasslands and arid deserts (Whitford et al., 1981).  As such, conclusions 

drawn from decomposition dynamics and EE potentials observed in mesic ecosystems may 

not be applicable to more xeric ecosystems. This uncertainty complicates efforts to predict 

future carbon dynamics, especially given that xeric ecosystems are projected become 

hotter and drier, particularly in the American Southwest (Garfin et al., 2014; Seager et al., 

2007). 

EE kinetics can be described by the Michaelis-Menten model, whereby activity (V) of 

an individual enzyme is described as a saturating function of substrate (S) concentration as 

follows:  

V = Vmax[S]/(Km + [S]) 

where Vmax is the enzyme’s maximum reaction rate and Km, the half-saturation 

constant, is the substrate concentration at which the reaction rate is one-half Vmax. In 

assays of EEs from ecological systems, Vmax and Km are measured as apparent parameters, 

appVmax and appKm. appVmax does not represent the reaction rate of a single enzyme, but 

instead indicates the overall concentration of enzymes in a sample that degrade a 

particular suite of substrates (Wallenstein et al., 2011). appKm does not represent a single 

enzyme’s substrate affinity, but instead reflects relative substrate availability because the 

fluorescently labeled substrates added during EE assays compete for the active sites with 
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naturally occurring substrates already present in environmental samples (Chróst, 1990). 

For simplicity, appVmax and appKm are hereafter presented as Vmax and Km throughout the text. 

Because enzyme concentrations in situ are controlled by feedbacks between 

microbial activity and substrate availability, conditions that are conducive to high EE Vmax 

should therefore also be conducive to high Km. A recent meta-analysis of EE studies showed 

that Vmax and Km of microbial EEs scale consistently with one another globally, though most 

of those studies took place in aquatic or mesic ecosystems (Sinsabaugh et al., 2014).  

While we expect EE kinetic parameters to vary as a function of microbial activity, 

thermodynamic theory predicts that Vmax and Km will also increase with increasing 

temperature (Davidson and Janssens, 2006), which has potential implications for future C-

cycling. Increasing temperature can allow more reactants to attain their activation energy, 

increasing Vmax. At the same time, the stability of the substrate-enzyme complex may be 

reduced, causing decreased substrate affinity and higher observed Km (Johns and Somero, 

2004; Sørensen et al., 2015). 

Increases in temperature should have a larger effect on the kinetic parameters of 

EEs from colder environs (Davidson et al., 2006), especially if enzymes are locally adapted 

(Belotte 2003). In support of this hypothesis, Koch et al. (2007) found that EE temperature 

sensitivities increased at lower temperatures in alpine soils assayed across three seasons, 

and both they and Wallenstein et al. (2009) found that EE temperature sensitivity declined 

over the growing season in alpine and arctic tundra soils, respectively. However, this 

hypothesis has never been tested along a regional climate gradient, where microbial 

communities are unlikely to be dispersal limited (Kivlin et al., 2011), and local climate 

variation is likely to be a strong filter. 
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The goal of this study is to use a climate gradient across xeric ecosystems of 

southern California to determine how microbial EEs might respond to long-term climate 

change. Along this gradient, temperature and moisture co-vary, such that colder, wetter 

sites at high elevations contrast with hotter, drier sites at lower elevations. As such, moving 

to lower elevations mimics the shift to more arid climates expected in the American 

Southwest. We aimed to quantify the environmental drivers of enzyme kinetic parameters 

along the climate gradient to advance knowledge of biogeochemical mechanisms in xeric 

ecosystems. Based on the above theory, we formulated the following hypotheses (Figure 

2.1):  

1. Bacterial abundance, EE appVmax, and EE appKm will increase with increasing 

precipitation, as microbial activity is limited by moisture and substrate availability, and 

in turn limits EE production. 

2. Vmax and Km of enzymes from colder, wetter sites will be more temperature sensitive, 

and enzymes assayed in the wet season will be more temperature sensitive than those 

assayed in the dry season. 

We tested these hypotheses by measuring microbial properties, litter substrates, and 

enzyme kinetics along a climate gradient spanning 12.5 °C and 300 mm precipitation in 

southern California.  

 

Methods 

Site description 

 To test how EE kinetic parameters and thermodynamics varied with climate, we 

assayed plant litter from five sites representing five biomes in southern California – 
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subalpine forest (lat, long: 33.824, -116.755), montane forest (33.808, -116.772), pinyon-

juniper scrubland (33.605, -116.455), coastal grassland (33.737, -117.695), and Colorado 

desert (33.652, -116.372). All five sites are located on granitic parent material and 

experience Mediterranean precipitation patterns (cool, wet winters; hot, dry summers). 

The gradient spans a range of ~12.5 °C in mean annual temperature (MAT), from 10.3±1.8 

°C at the subalpine site to 22.8±0.8 °C at the desert site. The montane forest (hereafter 

referred to as “forest”) site experienced the greatest mean annual precipitation in the form 

of rainfall over the five years prior to this study (402.0±118.1 mm), and the desert 

experienced the least (99.7±29.3 mm), though the subalpine forest (hereafter referred to as 

“subalpine”) site also receives a significant amount of precipitation in the form of snow 

(Personal observation). All sites other than the subalpine site have eddy covariance towers 

that collect air temperature, soil temperature, rainfall, and solar radiation data (Goulden et 

al., 2006). Two iButton temperature sensors (Maxim Integrated) were also installed at each 

site on January 18, 2015 to collect surface temperature at 90 minute intervals until the final 

sampling date on December 2, 2015.  

 

Sampling 

 Local plant litter was collected from each of the five sites on June 7, and December 2, 

2015. Using gloves, 5 g litter was collected from the soil surface of each site by lightly 

raking across the surface to collect loose material and using clippers to detach senescent 

grass litter from root bundles if necessary. Litter replicates were collected from six 0.5 m2 

plots established within a 50 m2 sampling area at each site. Collected litter was stored in 

coolers and transported to UC Irvine, where it was ground into fragments <0.5cm in length 
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and sub-sampled for EE assays and a bacterial cell count assay. The remainder of the litter 

was weighed and oven-dried to determine moisture content. 

 

Litter chemistry 

 Oven-dried litter was sent to Cumberland Valley Analytical Services for near-IR 

spectroscopy, whereby reflectance spectra of near-infrared wavelengths of light are 

matched to a verified database of spectra for plant materials with known chemical 

composition as determined by wet chemistry (Shepherd et al., 2005). Relative amounts of 

the following organic compounds were determined as proportions of total dried litter 

mass: lignin, cellulose (acid detergent fiber – lignin), hemicellulose (neutral detergent fiber 

– acid detergent fiber), structural carbohydrates (non-fiber carbohydrates – starch/sugar), 

and crude protein. The structural carbohydrate fraction includes plant cell components 

such as pectins, but also microbial cell wall components such as β-glucans and 

peptidoglycans (CVAS, personal communication).  

 

Extracellular enzyme assays, kinetics, and thermodynamics 

 For simplicity, appVmax and appKm at 22 °C are presented as Vmax and Km throughout 

the text, though we recognize that our results are measures of apparent EE kinetics rather 

than actual kinetics.   

Litter was assayed for Vmax, Km, and the temperature sensitivities of Vmax and Km for 

seven hydrolytic enzyme classes using fluorescently labeled substrates based on German et 

al. (2012). 125µL of fluorometric substrate solution was combined with 125µL of litter 

homogenate in each microplate well. Assays were incubated for 4h at 4, 10, 16, 22, 28, or 
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34°C. Each enzyme was assayed at a range of substrate concentrations for each 

temperature (Table B1). Negative potential activities were converted to zero values before 

further analyses. 

 EE kinetic parameters were calculated for each enzyme class and incubation 

temperature by fitting observed EE activity at each substrate concentration to the 

Michaelis-Menten equation. Regressions were performed in the R software environment 

3.3.1 (R Development Core Team, 2016) using the nls function. Confidence intervals were 

determined for Vmax and Km values using the nlstools package. Fits of Vmax with lower 

bounds or upper bounds less or greater than twice the estimate of Vmax were discarded; to 

account for greater variability in calculated fits of Km, fits with lower bounds or upper 

bounds less or greater than four times the estimate of Km were discarded. 

 Temperature sensitivities of EE kinetic parameters for each enzyme class were 

determined by linear regression of ln Vmax or ln Km against incubation temperature. 

Regressions were performed using the lm function in R. Regressions with R2 < 0.50 were 

discarded. Slopes were converted to Q10 values as in Wallenstein et al. (2009) using the 

formula: 

Q10 = exp(slope x 10) 

 

Bacterial cell density  

 Methods for estimating bacterial cell density were identical to those used in Allison 

et al. (2013). In brief, ground litter was suspended in a phosphate-buffered, 1% 

glutaraldehyde solution on the day of sample collection to “fix” bacterial cells for storage. 

Within two weeks, 0.1 M tetrasodium pyrophosphate was added to each sample, and 
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samples were sonicated to dislodge bacterial cells. Filtered extracts of sonicated litter were 

stained with 1x SYBR-Green and then analyzed with an Accuri flow cytometer to determine 

cell counts from fluorescing bacterial cells. Bacterial cell counts from June 2015 samples 

could not be assayed because of technical issues with the flow cytometer; as such, cell 

counts from litter collected in identical fashion on October 16, 2014 are presented in the 

Supplemental Information (Figure B1) and were used to determine seasonal effects on 

bacterial cell density.  

 

Statistical methods 

 Effects of site and sampling date on bacterial abundance were analyzed using 

mixed-model ANOVA with the identity of each plot as a random factor. Because litter 

moisture is known to be a strong control on decomposition processes in Mediterranean 

ecosystems, the model was run as an ANCOVA with litter moisture content as the covariate. 

ANCOVA was also used to determine if there was a relationship between bacterial cell 

density and Vmax or Km across sites. Post hoc analysis of pairwise comparisons were done 

with Tukey contrasts using the lsmeans package in R.  

Effects of site and sampling date on ln Vmax, ln Km, Vmax temperature sensitivity, and 

Km temperature sensitivity of all EE classes were determined through canonical 

discriminant analysis (CDA) with litter moisture content as a covariate, using the Wilks 

Lambda method to calculate the test statistic. Data for both sets of analyses were checked 

for normality visually and by the Shapiro-Wilk test, and non-normal data were natural log-

transformed to improve normality when necessary. Bacterial abundance met assumptions 

of normality after ln-transformation; ln Vmax and ln Km did not but passed visual inspection. 



 

39 
 

Temperature sensitivities of Vmax and Km did not meet assumptions of normality but were 

visually determined to be approximately normal when in base form, and as such were not 

transformed prior to statistical analyses.  

Recent mean annual air temperature at the subalpine site was extrapolated from a 

linear regression (R2 > 0.8) of elevation versus air temperature observed by the four eddy 

covariance towers and a Remote Area Weather Station (RAWS) located at the summit of 

Mt. San Jacinto (2626 m above sea level). Recent rainfall, solar radiation, and daily 

temperature range at the subalpine site could not be extrapolated from the RAWS data, but 

the values observed at Mt. San Jacinto are presented for the subalpine site to provide 

context given the proximity and likely similarity between the two locations.  

CDA indicated that most climate variables measured by the eddy covariance towers 

were positively correlated. As a result, air temperature was used for climate-related 

analyses because of our high confidence in extrapolated air temperature at the subalpine 

site. Linear regression was then used to determine if site air MAT explained a significant 

amount of the variation in Vmax and Km temperature sensitivities observed in either June or 

December 2015.  

 

Results 

Climate gradient 

Recent climate observed by the four flux towers followed a similar trend for air 

MAT, soil MAT, soil moisture, rainfall, and mean daily ranges for air and soil temperature. 

The desert and forest were at the two extremes for each variable, and the grassland and 

scrubland experienced similar, intermediate climate relative to the two extremes (Table 
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2.1). Based on flux tower data collected over the last six years, the desert experienced the 

hottest air and soil temperature, received the least rainfall, and experienced the greatest 

range of daily air and soil temperatures, on average. Plot-level temperature sensors 

indicated that from January to December of 2015, the desert site was the hottest, but the 

grassland was significantly hotter than the scrubland. In addition, over the course of the 

study, the grassland and scrubland experienced the greatest diurnal temperature ranges, 

on average, and the subalpine site experienced the least diurnal temperature variation. 

Extrapolating the subalpine site’s recent climate from that observed at lower and higher 

elevations indicates that it was likely the coldest site. 

 

Litter chemistry 

Litter chemistry was significantly affected by site (p<0.001, F4,24=40.3), season 

(p<0.001, F1,6=11.2), and interactions between site and season (p<0.001, F4,24=4.2)(Table 

2.2). CDA showed that differences in the relative amounts of structural carbohydrates, 

protein, and cellulose explained most of the variation in litter chemistry both between sites 

and between seasons.  When comparing differences in litter between sites, the first CDA 

axis explained 90.4% of the variation, and the absolute values of loading coefficients on this 

axis were 0.95, 0.93, and 0.85 for fractions of structural carbohydrates, crude protein, and 

cellulose, respectively. 

 Across seasons, structural carbohydrate content was highest in the subalpine and 

forest sites, intermediate in the desert, and lowest in the grassland and scrubland sites, at 

32.2±0.4, 22.2±1.2, and 14.1±0.7%, respectively. Crude protein content was highest in the 

scrubland and grassland, intermediate in the desert, and lowest in the subalpine and forest 
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sites, at 13.8±0.7, 10.0±0.5, and 2.3±0.3%, respectively. Cellulose content was greatest in 

the grassland and desert, intermediate in the scrubland, and lowest in the subalpine and 

forest sites, at 35.3±0.6, 27.9±1.0, and 23.4±0.3%, respectively. Relative fractions of 

cellulose, hemicellulose, lignin, crude protein, and structural and non-structural 

carbohydrates are presented in Table 2.3. 

 

Bacterial cell density 

Bacterial cell density varied by site (p<0.001, F4,44=6.8), season (p<0.001, 

F1,44=189.5), and as a result of an interaction between site and season (p<0.001, F4,44=7.2) 

(Table 2.2). Cell density was significantly higher in the subalpine, forest, and grassland 

sites than in the scrubland and desert sites in December 2015, with means of 3.9±0.7x109 

and 1.4±0.2 x109 cells/g dry litter, respectively (Figure 2.2A). Cell density was significantly 

higher in the subalpine, forest, and scrubland sites than in the grassland and desert sites in 

October 2014 (Tukey p <0.05), with mean abundance of 5.3±0.7x108 and 1.1±0.1x108 

cells/g dry litter, respectively (Figure B1). 

 

Potential extracellular enzyme activity 

There was no significant effect of season on Vmax of all enzyme classes when 

analyzed in conjunction. There was a significant effect of site (p<0.001, F4,28=28.2), and a 

significant interaction between site and season (p<0.001, F4,28=6.6)(Table 2.2). The first 

CDA axis explained >60% of the variance in Vmax, and loading coefficients for all seven EE 

classes along the first axis were greater than 0.79. Therefore Vmax results were combined 

across enzyme classes and sampling dates for pairwise comparisons of site-level 
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differences. Mean Vmax across all enzyme classes and seasons was highest in the grassland 

site, intermediate in the scrubland and desert sites, and lowest in the subalpine and forest 

sites (Tukey p<0.001), with mean values of 15.1±2.7, 7.7±1.9 and 1.5±0.3 µmol·hr-1·g-1, 

respectively (Figure 2.2B). There was no significant relationship between bacterial cell 

density and mean Vmax across or within sites (Figure B2). 

 

Potential extracellular enzyme affinity 

There was no significant effect of season on Km for all enzyme classes when analyzed 

in conjunction. There was a significant effect of site (p<0.001, F4,28=11.0), and there was a 

significant interaction between site and season (p<0.001, F4,28=4.2) (Table 2.2). The first 

CDA axis explained >55% of the cross-site variance in Km, with cellobiohydrolase (CBH, 

0.88), leucine aminopeptidase (LAP, 0.59) and β-glucosidase (BG, 0.52) Km distinguishing 

sites the most. The second CDA axis explained >35% of the remaining cross-site variance in 

Km, with N-acetyl-glucosaminidase (NAG, 0.91) and BG (0.73) Km as the main response 

variables. As such, mean apparent Km values across seasons for BG, CBH, LAP, and NAG 

were analyzed for site-level differences using pairwise comparisons. 

Mean BG Km across seasons was lowest in the subalpine site, intermediate in the 

desert site, and greatest in the forest, grassland, and scrubland sites (Tukey p<0.01), with 

mean values of 57±8, 96±5, and 247±21 µM, respectively (Figure 2.3A). Mean CBH Km 

across seasons was also lowest in the subalpine site, intermediate in forest, scrubland, and 

desert sites (Tukey p<0.001), and greatest in the grassland site, with mean values of 25±18, 

50±4, and 136±11 µM, respectively (Figure 2.3B). Mean LAP Km across seasons was lowest 

in the grassland, scrubland, and desert sites and highest in the subalpine and forest sites 
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(Tukey p<0.001), with mean values of 91±7 and 278±89 µM, respectively (Figure 2.3C). 

Mean NAG Km across seasons was lowest in the subalpine, forest, and desert sites, 

intermediate in the grassland site, and highest in the scrubland site (Tukey p<0.05), with 

mean values of 46±7, 86±7, and 144±37 µM, respectively (Figure 2.3D). There was no 

significant relationship between bacterial cell density and mean Km across or within sites 

(Figure B3). There was a significant positive relationship between CBH Km and cellulose 

content and a negative relationship between LAP Km and protein content across sites and 

seasons, but there was no significant relationship between Km and putative substrate 

content for AG, BG, or BX (Table 2.4). 

 

Temperature sensitivity of potential extracellular enzyme activity 

Temperature sensitivity of Vmax was positive for all EE classes assayed at all sites in 

both seasons (Table 2.5). There were significant effects of site (p<0.001, F4,28=9.3), season 

(p=0.001, F1,7=4.4), and an interaction between site and season (p=0.007, F4,28=2.0) on 

observed temperature sensitivity of EE Vmax for all enzyme classes when analyzed in 

conjunction (Table 2.2). The temperature sensitivity-MAT relationship was significantly 

negative for six of the seven EE classes assayed in the wet season, but was only significant 

(and positive) for LAP in the dry season (Table 2.6). The weak relationships during the dry 

season generally resulted from lower EE temperature sensitivities in the coldest sites and 

higher temperature sensitivities in the scrubland site when compared to the wet season. 
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Temperature sensitivity of apparent extracellular enzyme substrate affinity 

Temperature sensitivity of Km was positive for all EE classes assayed at all sites 

across both seasons, with the exception of AG in the subalpine site and LAP in the subalpine 

and forest sites (Table 2.7). There were significant effects of site (p<0.001, F4,20=6.5) on 

observed temperature sensitivity of EE Km of all enzyme classes when analyzed in 

conjunction, but there was no significant effect of season or interaction between site and 

season (Table 2.2). Temperature sensitivity of Km exhibited a significant relationship with 

MAT across seasons for 4 of the EE classes assayed: a positive relationship with LAP, BG, 

and NAG Km (in order of increasing slope and significance) and a negative relationship with 

BX Km (Table 2.6). 

 

Discussion 

The gradient presented in this study spans five biomes in southern California along 

which climate variables covary. Colder, wetter sites transition to hotter, drier sites in a 

manner that emulates future climate change in the American Southwest. By analyzing litter 

samples along the gradient, we determined that microbial communities differ in their EE 

kinetics in a manner consistent with differences in substrate availability and proteolytic 

activity, but not differences in bacterial abundance or local climate. We also observed that 

local microbial communities adapted to different litter chemistry and long-term climate 

exhibit significantly different EE temperature sensitivities. These sensitivities can be 

predicted in part by local mean annual temperature. As climate becomes more arid in the 

future, sites at the wetter end of our gradient will initially produce EEs that are relatively 

sensitive to increases in temperature, but as they transition to more xeric environments 
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like the grassland, scrubland and desert the microbial communities they support will 

potentially produce less sensitive EEs. In addition, EE dynamics of microbes undergoing the 

transition to xeric environments will be more consistent with accumulation of less active 

EEs that are potentially more dependent on increasingly episodic rainfall events. 

 

Climate and microbial activity 

We hypothesized that bacterial cell density in litter would be driven by differences 

in climate and substrate availability across the gradient, and that we would observe greater 

cell density in cooler, wetter sites. Our results did not directly support this hypothesis - 

bacterial abundance in the wet season was high in the two wettest sites, but not greater 

than in the grassland or desert after accounting for litter moisture (Figure 2.2A). Instead, 

our results may indicate that wetter sites may support greater bacterial abundance during 

the drier periods of the year, as bacterial abundance in October 2014 was greatest in the 

wettest sites (Figure B1), though an order of magnitude lower across sites when compared 

to December of 2015. 

We expected that bacterial cell density would be related to both the concentration of 

enzymes (Vmax) and the availability of substrates (as indicated by Km) in litter. Our results 

also failed to support this hypothesis – bacterial cell density did not explain a significant 

amount of the variation in mean Vmax or Km within or across sites at either time point 

(Figures B2 and B3). Mean Vmax for the EE classes assayed in this study differed 

significantly by site (Table 2.2), but the differences were not consistent with our initial 

hypothesis. Mean Vmax of all EEs in litter from the two highest elevation sites was orders of  
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magnitude lower than in the grassland, scrubland, and desert sites (Figure 2.2B), even 

though the three lower elevation sites experience less precipitation and have drier soils 

(Table 2.1).  

Differences in Km between sites varied by substrate class (Figure 2.3) and were 

likely driven in part by availability of substrates. We found that the Km of enzymes involved 

in the degradation of cellulose exhibited a significant positive relationship with the 

cellulose content in litter across our gradient, though we did not observe a significant 

relationship between other C-degrading EE classes and their putative substrates in litter 

(Table 2.4). Counter to our hypothesis, we observed a significant negative relationship 

between LAP Km and protein content, such that LAP substrate affinity appears to decrease 

when substrate is more available (Table 2.4). However, it is also possible that samples 

with high observed LAP Km contain abundant protein degradation products that compete 

with artificial substrates for EE active sites (Chróst, 1990). If so, protein turnover may be 

occurring more rapidly in these samples. The variation in overall Vmax and crude protein 

content across our gradient support this hypothesis: mean Vmax and crude protein content 

were greatest in sites that had the lowest observed LAP Km values, and were lowest in the 

sites that had the highest observed LAP Km values.  

Our results for bacterial abundance and Vmax are at odds with our understanding of 

the factors driving microbial decomposer activity and EE potential in more mesic 

ecosystems, but they mirror those of a prior study performed in the grassland site along 

our gradient. Alster et al. (2013) found that increases in microbial biomass over the wet 

season did not correspond with increases in EE Vmax, and that EE Vmax remained static from 

the end of the wet season to the middle of the dry season, despite significant reductions in 
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microbial biomass. These EE dynamics can be explained in part by the observation that 

proteolytic EEs were the only enzyme class to decline in Vmax under drought. Reduced 

proteolytic activity may allow EEs in arid and semiarid ecosystems to persist long after 

their production by ephemeral microbial decomposers, a mechanism supported by our LAP 

Km and crude protein results at some sites along our gradient. 

Our enzyme and protein accumulation results may help explain pulses of CO2 that 

are emitted by microbial communities in Mediterranean ecosystems, particularly 

grasslands, when exposed to rewetting after long dry periods. EEs persisting in microsites 

may degrade substrate during periods of elevated humidity or at dewpoint, resulting in 

accumulation of labile substrates during dry periods. After rewetting, these labile 

compounds combine with built up microbial necromass (Blazewicz et al., 2014) and soil 

organic matter released from aggregates (Fierer and Schimel, 2003) to produce large 

pulses of CO2 (Zhang et al., 2014). 

 

Temperature sensitivity of EE kinetics 

The results of our study support a growing consensus that EE kinetic parameters 

have positive temperature sensitivities (German et al., 2012; Lehmeier et al., 2013; Min et 

al., 2014; Stone et al., 2011). We show that these results hold true for EEs in litter, a 

substrate for which such intrinsic responses to temperature have rarely been explored (but 

see Bárta et al. 2014). Our hypothesis that cold-adapted EEs would show greater Vmax 

temperature sensitivity than warm-adapted enzymes was generally supported for EE in the 

wet season, but not the dry season. Significant relationships between temperature 

sensitivity of EE Vmax and MAT in the wet season were driven by a bimodal trend, whereby 
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the two high elevation, forested sites had higher temperature sensitivities, and the three 

lower elevation, grass and scrub-dominated sites had significantly lower temperature 

sensitivities (Table 2.5). During the dry season, this bimodal trend disappeared as the two 

higher elevation sites no longer exhibited higher temperature sensitivity of EE Vmax in 

comparison with the lower elevation sites.  

Previous studies have shown seasonal variation in EE temperature sensitivity of 

Vmax (Brzostek and Finzi, 2012; Fenner et al., 2005; Koch et al., 2007; Trasar-Cepeda et al., 

2007; Wallenstein et al., 2009) and others have shown site-to-site variation in temperature 

sensitivity of Vmax  (German et al., 2012; Khalili et al., 2011; Stone et al., 2011). Some of 

these studies indicate that EEs from colder biomes or seasons exhibit greater temperature 

sensitivity (Koch et al., 2007; Wallenstein et al., 2009), but a previous study of EE Vmax 

temperature sensitivity in soils across a latitudinal gradient found no relationship between 

site MAT and temperature sensitivities for all but one EE class (German et al., 2012). 

However, this study did not control for season when collecting soils, and our results 

indicate that ignoring seasonality may obscure potentially significant relationships 

between site MAT and EE thermodynamics. 

Our hypothesis that Km of cold-adapted EEs would show greater temperature 

sensitivity was not supported by our results. Instead, there are indications that Km 

temperature sensitivity exhibits a significant positive relationship with MAT, as BG, LAP, 

and NAG Km temperature sensitivities were generally higher in hotter sites. This is 

surprising, given that both theory and prior evidence indicate that the opposite should 

occur (Johns and Somero, 2004; Somero, 2004). It is possible that environmental variables 

other than mean annual temperature play a greater role in determining EE Km temperature 
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sensitivities – all major climatic variables were correlated along our gradient, so an 

apparent response to MAT could also be linked to MAP, solar radiation, or biotic factors 

that covary with climate. Vmax temperature sensitivity also exceeded Km temperature 

sensitivity for all EEs, at all sites, in both seasons. Therefore, it is possible that temperature 

effects on Vmax outweigh those on Km, both in lab assays and in response to natural 

selection. To our knowledge, this is the first study of seasonal variation in Km temperature 

sensitivity, though we did not observe significant seasonal variation in this EE parameter. 

 

Conclusion 

Our study shows that EE kinetics in southern California are not explained by 

bacterial abundance, but instead appear to be driven by interactions between substrate 

availability and proteolytic activity. Accumulation of EE relative to substrate in the more 

arid sites along our gradient may partially explain the pulses of CO2 emitted during 

rewetting events after the dry season, as EEs remain present while bacteria decline in 

abundance over the course of the dry season.  

As the American Southwest shifts to a more arid climate in the future, biomes will 

shift towards the hotter, drier end of our gradient. Our results indicate that litter will 

become more cellulosic, and litter will contain more protein – likely as a result of increased 

accumulation of EEs produced by litter-bound microbial communities. These shifts will 

increase the influence of rewetting events, making resource pulses more episodic and 

potentially more difficult to predict. The EEs produced by these communities may initially 

be very sensitive to temperature, particularly in subalpine and montane forests, but our 

results indicate that over time EEs produced by these communities will likely become less 



 

50 
 

sensitive to climate as microbes adapted to hotter, drier conditions become more 

prevalent.   

Our study also shows that the temperature sensitivity of EE kinetics varies 

seasonally, and that large-scale climate indices can explain variation in EE temperature 

sensitivities in the wet season, but not in the dry season. When taken in conjunction with 

evidence of extracellular enzyme accumulation across our gradient, our temperature 

sensitivity results suggest two lines of research for the next generation of carbon-cycling 

models that explicitly account for enzymatic decomposition (Sihi et al., 2015; Sulman et al., 

2014; Wieder et al., 2014). First, if EE potential in arid and semiarid systems indicates 

enzyme accumulation, not just activity, then we must determine when enzymes are 

seasonally most active in order to parameterize C-cycling models. Second, we must 

determine temperature sensitivities of EE kinetics during the seasons when EEs are most 

active in order to predict how enzyme-driven decomposition will be affected by future 

changes in temperature. 
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Table 2.1 Mean (± SE) historic climate parameters for the five sites used in this study, and plot-level temperature 
over the course of one year encompassing both sampling dates. 

Variable Subalpine Forest Grassland Scrubland Desert Period 
Air temperature (°C) 10.3±1.8 12.3±0.6 16.4±0.3 15.6±0.8 22.8±0.8 2009-14 
Air daily temp. range - 6.2±0.2 8.3±0.3 8.5±0.2 10.8±0.4 2009-14 
Soil temperature (°C) - 9.9±0.3 19.1±0.9 18.4±0.3 28.3±0.3 2008-12 
Soil daily temp. range - 2.6±0.1 4.6±0.8 5.5±0.7 10.9±0.2 2008-12 
Plot temperature (°C) 11.5±0.4 13.2±0.4 22.0±0.4 19.5±0.5 29.3±0.4 2015 
Plot daily temp. range 13.7±0.4 20.8±0.5 26.2±0.5 24.8±0.4 20.3±0.3 2015 

Rainfall (mm) ~265 402±118 242±76 193±33 100±24 2009-14 
Soil moisture (mL/cm3) - 8.6±0.3 7.3±0.8 7.3±0.5 4.6±0.1 2008-12 
Solar radiation (KW/m2) >1850 2640±500 2540±470 2770±520 2620±500 2006-13 

Elevation (m) 2250 1710 470 1280 275  
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Table 2.2 MANCOVA and ANCOVA results, run with gravimetric litter moisture (H2O) 
as a covariate. 
Response variable Site Season Site:Season H2O Normality 
Vmax <0.001 0.227 <0.001 <0.001 Log, visual 
Km <0.001 0.114 <0.001 0.004 Log, visual 
Vmax TS <0.001 0.001 <0.001 0.051 Base, visual 
Km TS <0.001 0.628 0.104 0.510 Base, visual 
Bacterial cells <0.001 <0.001 <0.001 0.007 Log, test 
Litter chemistry <0.001 <0.001 <0.001 0.694 Log, visual 
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Table 2.3 Mean (± SE) percentage of non-ash dry weight of litter attributed to cellulose, 
hemicellulose, lignin, crude protein, structural carbohydrates, and non-structural carbohydrates, in all 
five sites during the dry season (June 2015) and the wet season (December 2015). 

Dry season (June 2015) 
Compound Subalpine Forest Grassland Scrubland Desert 
Cellulose 24.1±0.7 24.1±0.4 36.3±1.5 28.0±0.7 35.6±1.4 
Hemicellulose 6.1±0.3 5.6±0.2 16.0±2.3 17.1±2.7 0.0 
Lignin 13.8±0.5 13.6±0.1 8.0±0.4 8.0±0.7 17.4±0.6 
Crude protein 2.9±0.5 1.9±0.2 11.9±0.9 12.8±0.9 9.1±0.8 
Struct. Carbs. 34.0±0.3 31.3±0.5 13.3±0.8 17.2±1.7 25.7±0.9 
Non-struct. Carbs. 8.9±0.9 12.6±0.5 8.8±1.6 10.5±0.3 5.0±1.1 

Wet season (December 2015) 
Compound Subalpine Forest Grassland Scrubland Desert 
Cellulose 23.1±0.5 22.2±0.7 36.0±1.0 27.6±4.3 33.1±0.5 
Hemicellulose 5.5±1.1 5.3±0.7 8.6±1.9 20.9±0.2 0.9±0.4 
Lignin 13.9±0.8 13.1±0.7 14.3±0.7 8.2±0.3 16.2±0.1 
Crude protein 2.8±0.7 1.5±0.3 16.5±1.1 14.9±2.6 11.0±0.2 
Struct. Carbs. 32.8±0.7 30.6±0.4 12.6±0.9 12.0±0.1 18.7±0.4 
Non-struct. Carbs. 11.6±1.3 16.0±0.8 5.1±0.8 11.0±0.7 4.9±0.2 
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Table 2.4 Pearson coefficients and p-values for the correlation between EE Km 
and percentage of litter composed of the fraction degraded by that EE class. R2 

values for the linear regression between the two variables are presented for 
significant relationships. 
Enzyme Substrate Correlation R2 p 
α-glucosidase Starches 0.12 - 0.383 
β-glucosidase Cellulose -0.14 - 0.312 
β-xylosidase Hemicellulose 0.18 - 0.193 
Cellobiohydrolase Cellulose 0.60 0.35 <0.001 
Leucine aminopeptidase Protein -0.60 0.35 <0.001 
 



 

 

 

5
5

 

Table 2.5 Mean (± SE) Q10 of Vmax for each EE class by site and season. n = number of samples. 
  Subalpine Forest Grassland Scrubland Desert 
Enzyme Season Q10 n Q10 n Q10 n Q10 n Q10 n 
AG Dry 1.78±0.17 6 2.82±0.19 5 2.10±0.06 6 2.88±0.37 4 2.35±0.16 6 
 Wet 2.71±0.45 6 3.94±0.94 6 2.07±0.04 6 2.51±0.27 6 2.28±0.06 6 
AP Dry 1.53±0.06 6 1.77±0.04 5 1.64±0.02 6 1.60±0.03 6 1.58±0.03 6 
 Wet 1.89±0.03 6 1.94±0.04 6 1.73±0.03 6 1.58±0.02 6 1.64±0.02 6 
BG Dry 1.99±0.06 6 2.26±0.04 5 1.80±0.03 6 2.42±0.12 6 2.04±0.02 6 
 Wet 2.33±0.07 6 2.38±0.07 6 1.89±0.04 6 1.95±0.05 6 2.05±0.02 6 
BX Dry 2.16±0.16 6 2.84±0.16 5 1.99±0.03 6 2.42±0.10 6 2.20±0.03 6 
 Wet 3.25±0.37 6 3.25±0.23 6 2.10±0.03 6 1.99±0.05 6 2.22±0.02 6 
CBH Dry 2.69±0.12 6 3.21±0.07 5 2.04±0.02 6 3.93±0.32 6 2.55±0.06 6 
 Wet 3.29±0.30 6 3.98±0.28 6 2.06±0.09 6 2.36±0.06 6 2.51±0.03 6 
LAP Dry 1.78±0.13 4 2.08±0.08 5 1.99±0.03 6 2.29±0.09 6 2.19±0.06 6 
 Wet 2.32±0.72 3 2.28±0.63 4 1.98±0.12 6 2.27±0.08 6 2.09±0.08 6 
NAG Dry 2.19±0.08 6 2.13±0.02 5 1.90±0.05 6 1.74±0.02 6 2.09±0.02 6 
 Wet 2.63±0.13 6 2.22±0.03 6 2.06±0.13 6 1.90±0.03 6 2.06±0.08 6 
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Table 2.6 Slope (± SE), R2, and p-values for linear regression of EE Vmax and Km Q10 against site mean annual 
temperature for each EE class by site and season. Bolded p-values are significant (<0.05). 
 Vmax, dry season Vmax, wet season Km, both seasons 
Enzyme Slope R2 p Slope R2 p Slope R2 p 
AG 0.019±0.025 - 0.450 -0.080±0.040 0.08 0.053 -0.004±0.024 - 0.879 
AP -0.001±0.005 - 0.766 -0.023±0.005 0.41 <0.001 -0.005±0.005 - 0.318 
BG -0.005±0.011 - 0.649 -0.028±0.008 0.27 0.002 0.039±0.007 0.39 <0.001 
BX -0.017±0.016 - 0.279 -0.094±0.025 0.30 <0.001 -0.057±0.014 0.27 <0.001 
CBH -0.030±0.032 - 0.351 -0.097±0.030 0.24 0.004 -0.013±0.014 - 0.368 
LAP 0.023±0.010 0.15 0.028 -0.018±0.030 - 0.530 0.084±0.014 0.62 <0.001 
NAG -0.010±0.008 - 0.261 -0.039±0.012 0.25 0.003 0.012±0.005 0.09 0.013 
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Table 2.7 Mean (± SE) Q10 of Km for each EE class by site, across seasons. n = number of samples. 
 Subalpine Forest Grassland Scrubland Desert 
Enzyme Q10 n Q10 n Q10 N Q10 n Q10 n 
AG 0.66±0.02 2 1.77±0.49 2 1.22±0.02 9 1.49±0.15 4 1.06±0.21 3 
AP 1.28±0.05 4 1.28±0.03 11 1.28±0.07 11 1.30±0.03 10 1.22±0.02 8 
BG 1.37±0.03 11 1.32±0.02 9 1.89±0.06 12 1.67±0.08 9 1.80±0.04 12 
BX 2.07±0.24 7 2.04±0.22 6 1.39±0.07 11 1.29±0.03 8 1.36±0.03 10 
CBH 1.98±0.34 6 1.89±0.18 9 2.06±0.05 11 2.11±0.11 8 1.80±0.07 12 
LAP 0.52±0.08 7 0.40±0.02 2 1.20±0.06 8 1.29±0.06 3 1.34±0.27 2 
NAG 1.43±0.06 10 1.60±0.04 11 1.52±0.04 12 1.40±0.03 11 1.65±0.02 11 
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Figure 2.1 Conceptual figure of hypotheses for variation in bacterial abundance, 
enzyme kinetic parameters, and temperature sensitivity of enzyme kinetics as a 
function of precipitation differences between each site along the gradient. Arrow 
indicates increases in precipitation as one goes from the desert to the scrubland, 
grassland, forest, and subalpine sites. 
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Figure 2.2  
A) Mean bacterial 
abundance in 
billions of cells per 
gram of dry litter 
by site in 
December 2015 
(n=6 for each site).  
B) Mean EE Vmax 
across all enzyme 
classes and both 
seasons (n=12 for 
each site).  
Error bars denote 
standard error. 
Depicted means 
and standard 
errors are back-
transformed from 
ln values. Means 
sharing the same 
letter are not 
statistically 
different (p > 0.05).  
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Figure 2.3 Mean EE Km in µM across seasons for the four EE classes whose Km most distinguished sites 
from one another: A) BG, B) CBH, C) LAP, and D) NAG (n=12 for each site). Error bars denote standard 
error. Depicted means and standard errors have been back-transformed from ln Km values. Means 
sharing the same letter are not statistically different (p > 0.05) 
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CHAPTER 3 

Grassland litter decomposition not constrained by community origin  

along a regional climate gradient 

 

Introduction 

In the American Southwest, anthropogenic climate change is causing a shift to hotter 

and drier conditions in the future (IPCC, 2014; Seager et al., 2007).  This shift could alter 

heterotrophic respiration generated by microbial decomposition of plant litter in those 

ecosystems (Raich and Schlesinger, 2002). To predict how microbial contributions to the 

carbon (C) cycle will change with climate, we must determine how microbial communities 

respond to changes in abiotic conditions as well as shifts in the chemistry of litter inputs as 

plant communities change (Aerts, 1997; Keiser et al., 2013). To incorporate these 

mechanistic changes into global C-cycling models, we must also determine whether 

different microbial communities are constrained in their responses to climate, or whether 

their responses can be generalized across regions, continents, or the entire Earth System 

(Keiser et al., 2011; Reed and Martiny, 2007; Strickland et al., 2009). 

Microbial decomposition is at its root an enzymatic process, as decomposer 

communities produce extracellular enzymes (EEs) to degrade the complex organic 

polymers in plant litter (Sinsabaugh et al., 1994).  The characteristics and quantity of 

different EEs produced by microbial decomposer communities are therefore key functional 

traits of those communities (Allison et al., 2007).  In a hotter, drier future, elevated 

temperatures should accelerate enzymatic reactions because of their inherent temperature 

sensitivity (Davidson and Janssens, 2006), but could also lead to drying and inhibition of 
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microbial processes (Allison and Treseder, 2008). Reduced moisture should limit microbial 

activity, but impacts on overall decomposition rates are less clear. This is because of the 

added importance of other abiotic drivers of decomposition in arid and semiarid 

ecosystems, such as thermal degradation and ultraviolet photodegradation (Throop and 

Archer, 2009) as well as hypothesized mechanisms that cause the pulse-like nature of CO2 

efflux following rewetting events in these ecosystems (Zhang et al., 2014).  

Microbial communities responding to future climate change may be constrained by 

their taxonomic composition if they are locally adapted and dispersal limited. If microbial 

communities are locally adapted, then changes in climate should cause shifts in the relative 

abundances of taxa in a microbial community. These changes could affect the community’s 

functional response as a whole, and may constrain the community’s ability to respond to 

future changes  (Reed and Martiny, 2007). Evans and Wallenstein (2011) found that long-

term exposure to different precipitation regimes resulted in significant “legacy” effects of 

precipitation treatment on CO2 respiration when field communities were subjected to 

drying and rewetting perturbations in the lab. These legacy effects presumably result from 

compositional constraints on a community’s ability to degrade litter of a particular origin. 

Similar legacy effects were found for microbial communities historically exposed to either a 

grass or hardwood environment that were reciprocally transplanted in a lab microcosm 

study (Keiser et al., 2011). These and other similar studies (Strickland et al., 2015, 2009) 

clearly indicate that microbial decomposer communities can shift their composition in 

response to long-term climate and litter chemistry, and that such shifts can constrain a 

community’s future response to perturbation. 
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We aim to test whether the functional traits of microbial communities are regionally 

constrained by community composition by observing microbial responses to 

transplantation along a regional climate gradient. The function we investigated was litter 

decomposition, and we measured differences in litter mass loss rates, bacterial abundance, 

EE kinetic parameters, EE temperature sensitivities, and litter chemistry to quantify 

functional responses. Using a climate gradient spanning 12.5 °C and 300 mm precipitation 

in southern California, we tested two non-exclusive hypotheses:  

1. Rates of decomposition will be controlled by differences in precipitation between sites. 

Litterbags in sites with greater precipitation will have greater microbial biomass and 

enzymatic activity, resulting in faster decomposition (Figure 3.1A). 

2. Microbial decomposers are locally adapted to climate. Litter decomposing in its native 

climate conditions will have greater microbial biomass and enzymatic activity, resulting 

in faster decomposition, while litter transplanted to foreign sites will have lower 

microbial activity and slower decomposition rates. Access to local microbes will 

enhance microbial activity and decomposition rates (Figure 3.1B).  

These hypotheses are not mutually exclusive; climate could drive mass loss rates 

across the gradient while local adaptation confers an advantage to native microbial 

communities (Figure 3.1C).  

 

Methods 

Site description 

To test how microbial communities and decomposition in the American Southwest 

will respond to future climate change, we transplanted litter from a coastal grassland to 
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five different biomes along a climate gradient in southern California – subalpine forest, 

montane forest, pinyon-juniper scrubland, coastal grassland, and Colorado desert. 

Temperature and moisture co-vary along the gradient, with colder, wetter sites at high 

elevations and hotter, drier sites at lower elevations. As such, moving to lower elevations is 

akin to experiencing more arid climates in a manner that emulates how future climate 

change is expected to progress in the American Southwest.  All five sites are located on 

granitic parent material and experience Mediterranean precipitation patterns (cool, wet 

winters; hot, dry summers). The gradient spans a range of ~12.5 °C in mean annual 

temperature, from 10.3±1.8 °C at the subalpine site to 22.8±0.8 °C at the desert site (Table 

C1). The montane forest (hereafter referred to as “forest”) site experienced the greatest 

mean annual precipitation in the form of rainfall over the five years prior to this study 

(402.0±118.1 mm), and the desert experienced the least (99.7±29.3 mm), though the 

subalpine forest (hereafter referred to as “subalpine”) site also receives a significant 

amount of precipitation in the form of snow (Personal observation). All sites other than the 

subalpine site have eddy covariance towers that collect air temperature, soil temperature, 

rainfall, and solar radiation data (Goulden et al., 2006). Two iButton temperature sensors 

(Maxim Integrated) were also installed at each site on January 18, 2015 to collect surface 

temperature at 90 minute intervals until the final sampling date on December 2, 2015. 

 

Litter collection and deployment 

On October 16, 2014, we collected ~800g of grass litter from the grassland site by 

clipping standing litter at least 20 cm above the soil surface to avoid litter with prior soil 

contact. Litter was collected from six different 1 m2 plots located within a 50 m2 sampling 
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region. This litter was clipped to <5 cm lengths and mixed. A sub-sample was weighed and 

oven-dried to determine gravimetric moisture content, and the equivalent of 2.1 g dry 

weight of litter (including ash content) was used to make litterbags. ~15 g of chopped 

grassland litter was ground to use as control inoculum. Local inoculum was also collected 

from each of the other four sites on October 16, 2014. Using gloves, ~15g litter was 

collected from the soil surface of each site by lightly raking across the surface to collect 

loose material, using clippers to detach senescent grass litter from root bundles if 

necessary. Collected material was ground and used as the inoculum. To determine the 

effect of community origin on observed responses to transplantation, 50 mg of grassland 

inoculum was added to half the bags as a control (control, –); the other half received 50 mg 

of inoculum native to the transplant destination site (inoculated, +), in addition to the 2.1 g 

of unsterilized grassland litter in each bag. Each litterbag was made of 0.2 µm nylon mesh 

that creates a “microbial cage” by preventing microbial dispersal into or out of the litterbag 

(Allison et al., 2013). 

   Four of each type of litterbag (-/+) were deployed into the six plots used to collect 

initial inocula at each of the five sites (4 x 2 x 6 x 5 = 240 total litterbags) on November 20, 

2014. One litterbag of each type was removed from each plot for destructive sampling on 

March 9, June 7, September 11, and December 2, 2015. Collected litterbags were stored in 

coolers and transported to UC Irvine, where litter was weighed to determine mass loss 

before being ground into fragments <0.5cm in length and sub-sampled for EE assays and a 

bacterial cell count assay. The remainder of the litter was weighed and oven-dried to 

determine moisture content. 
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EE assays, kinetics, and thermodynamics 

EE kinetics can be described by the Michaelis-Menten model, whereby activity (V) of 

an individual enzyme is described as a saturating function of substrate (S) concentration as 

follows:  

V = Vmax[S]/(Km + [S]) 

where Vmax is the enzyme’s maximum reaction rate and Km, the half-saturation constant, is 

the substrate concentration at which the reaction rate is one-half Vmax. In addition, 

thermodynamic theory predicts that Vmax and Km are positively sensitive to temperature 

(Davidson and Janssens, 2006). We note that in ecological systems, observed Vmax and Km 

are apparent kinetic parameters, not actual kinetic parameters (Wallenstein et al., 2011). 

 Local inoculum, initial grassland litter, and collected litterbags from June and 

December 2015 were assayed for Vmax, Km, and the temperature sensitivities of Vmax  and Km 

for seven hydrolytic enzyme classes using fluorescently labeled substrates according to 

methods detailed in Chapter 2. In brief, assays were incubated for 4h at 4, 10, 16, 22, 28, or 

34°C and performed over a range of substrate concentrations for each temperature (Table 

C2).  

EE kinetic parameters were calculated for each enzyme class and incubation 

temperature by fitting observed EE activity at each concentration of substrate to the 

Michaelis-Menten equation. Vmax and Km parameters calculated from 22 °C incubations are 

hereafter referred to as “Vmax” and “Km” in the text. Temperature sensitivities of EE kinetic 

parameters for each enzyme class were determined by linear regression of ln Vmax or ln Km 

against incubation temperature. Regressions were performed in R using the lm function. 
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Regressions with R2 < 0.50 were discarded. Slopes were converted to Q10 values as in 

Wallenstein et al. (2009) using the following formula: 

Q10 = exp(slope x 10). 

 

Litter chemistry 

Oven-dried litter was sent to Cumberland Valley Analytical Services for near-IR 

spectroscopy, whereby reflectance of near-infrared wavelengths of light from each sample 

are matched to a verified database of spectra for plant materials with known chemical 

composition as determined by wet chemistry (Shepherd et al., 2005). Relative amounts of 

the following organic compounds were determined as proportions of total non-ash dried 

litter mass: lignin, cellulose (acid detergent fiber – lignin), hemicellulose (neutral detergent 

fiber – acid detergent fiber), structural carbohydrates (non-fiber carbohydrates – starch 

and sugar), and crude protein. The structural carbohydrate fraction includes plant cell 

components such as pectins, but also microbial cell wall components such as β-glucans and 

peptidoglycans (CVAS, personal communication). The proportion of total litter mass 

attributable to different C compounds will be referred to as content in the text.  

 

Bacterial cell density  

Methods for estimating bacterial cell density were identical to those used in Allison 

et al. (2013). In brief, ground litter was suspended in a phosphate-buffered, 1% 

glutaraldehyde solution on the day of sample collection to “fix” bacterial cells for storage. 

Within two weeks, 0.1 M tetrasodium pyrophosphate was added to each sample, and 

samples were sonicated to dislodge bacterial cells. Filtered extracts of sonicated litter were 
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stained with 1x SYBR-Green and then analyzed with an Accuri flow cytometer to determine 

cell counts from fluorescing bacterial cells.  

 

Statistical methods 

Effects of site, sampling date, and inoculation on mass loss and bacterial abundance 

were analyzed using mixed-model ANOVA with the identity of each plot as a random factor. 

Because litter moisture is known to be a strong control on decomposition processes in 

Mediterranean ecosystems, the model was run as an ANCOVA with litter moisture content 

as the covariate. Post hoc analysis of pairwise comparisons was done with Tukey contrasts 

using the lsmeans package in R.  

Effects of site, sampling date, and inoculation on litter chemistry, and ln Vmax and ln 

Km of all EE classes were determined through MANOVA with litter moisture content as a 

covariate, using the Wilks Lambda method to calculate the test statistic. Canonical 

discriminant analysis (CDA) indicated that variation in LAP and BX Vmax explained the most 

variation in EE Vmax between both sites and sampling dates. CDA also indicated that Km 

values for all enzymes varied similarly across sites and sampling dates, and, as no site:date 

interaction was found by MANOVA, Km results are presented as mean Km across all 

enzymes assayed in final (December) samples only.  For Vmax and Km temperature 

sensitivity, mixed-model ANOVAs were also run for each enzyme class individually to allow 

for post hoc comparisons between litterbags from the December sampling date. 

Data for all three sets of analyses were checked for normality visually and by the 

Shapiro-Wilk test, and non-normal data were natural log-transformed to improve 

normality when necessary. Bacterial abundance met assumptions of normality after ln-
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transformation; ln Vmax and ln Km did not but passed visual inspection. Temperature 

sensitivities of Vmax and Km did not meet assumptions of normality but were visually 

determined to be most normal when in base form, and as such were not transformed prior 

to statistical analyses.  

 

Results 

Mass loss 

Mass loss varied by site (p<0.001, F4,188=55.3), sampling date (p<0.001, 

F3,188=179.9), and with inoculation treatment (p=0.002, F1,188=10.4)(Table 1). Litter in the 

forest and grassland site lost significantly more mass by December (35.0±1.4% and 

21.5±1.2% of dry mass, respectively) than did litter in the subalpine, scrubland, and desert 

sites. Mass loss occurred between all sampling dates other than from June to September 

2015, during which no mass loss was observed in any site (Figure 3.2A). Inoculated 

litterbags lost 25.3±1.5% dry mass by December, significantly less than the 28.8±1.9% 

mass loss observed in control litterbags (Figure 3.3A). 

  

Litter chemistry 

Over the course of the study, mass attributable to different chemical fractions in 

transplanted litter was affected by site (p<0.001, F24,326=13.3), sampling date (p<0.001, 

F6,93=20.2), and inoculation treatment (p<0.001, F6,93=5.5)(Table 3.1). Total litter mass 

loss was driven by losses from the cellulose and hemicellulose fractions, which on average 

lost 0.23±0.01 g and 0.15±0.01 g by December, respectively. Cellulose, hemicellulose, and 

the combined starch and sugar fractions declined in all sites over the course of the study 
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(Figure 3.4). Crude protein and lignin fractions, however, were only reduced in the 

grassland and forest sites, which experienced the most mass loss overall. The structural 

carbohydrate fraction increased by an average of 0.10±0.04 g by December in all litterbags, 

but increased more in the subalpine, scrubland, and desert sites (0.11±0.01 g) than in the 

forest and grassland sites (0.08±0.00 g).  

Based on CDA, which summarizes correlated changes in litter chemical fractions, 

inoculation most affected the mass of the structural carbohydrate and lignin fractions in 

litter. Absolute values of the loading coefficients on the CDA axis for structural 

carbohydrate and lignin mass were 0.74 and 0.67, respectively. By December, inoculated 

litterbags accumulated 0.11±0.01 g structural carbohydrates compared to 0.09±0.01 g in 

control litterbags (Figure 3.3B), and accumulated 0.006±0.003 g lignin compared to losses 

of 0.006±0.004 g lignin observed in control litterbags (Figure 3.3C).  

 

Bacterial cell density 

Bacterial cell density varied by site (p<0.001, F4,243=84.5), sampling date (p<0.001, 

F4,243=579.1), and with inoculation treatment (p<0.001, F1,243=27.0)(Table 3.1). Bacterial 

cell density was greatest in the forest site over the course of the study, at 3.8±0.6x109 cells 

per gram dry litter, intermediate and equivalent in the subalpine, grassland, and scrubland 

sites (mean across sites = 2.1±0.3x109), and lowest in the desert site, at 1.0±0.2x109. Cell 

density was greatest in December 2015, though there was a peak in scrubland cell density 

in September (Figure 3.2B). Inoculation significantly increased bacterial cell density from 

1.9±0.3x109 cells/g in control litterbags to 2.5±0.3x109 cells/g in inoculated litterbags 
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(Figure 3.3D). Inoculation increased cell density in all sites other than the scrubland, and 

had the greatest positive effect on cell density in litterbags transplanted to the desert site.  

 

EE potential Vmax 

There were significant effects of site (p<0.001, F28,322=11.1) and sampling date 

(p<0.001, F7,89=21.8) on Vmax of all enzyme classes when analyzed together, as well as a 

marginally significant effect of inoculation treatment (p=0.056, F7,89=2.1)(Table 3.1). CDA 

indicated that differences between sites and sampling dates were driven by differences in 

BX and LAP Vmax. The first CDA axis accounted for 57.3% of the variation in EE Vmax 

between sites, and the absolute values of the loading coefficients for BX and LAP Vmax were 

0.74 and 0.66, respectively. There was only one CDA axis for differences between sampling 

dates, and the absolute value of the loading coefficients for BX and LAP Vmax was 0.57 for 

both. BX Vmax remained near 29.1±0.6 µmol·hr-1·g-1 over the course of the experiment in the 

subalpine, scrubland, and desert sites, but decreased to 18.5±1.0 µmol·hr-1·g-1 by December 

in the grassland and forest sites (Figure 3.5A). Similar trends (higher observed activity in 

litterbags from the desert and subalpine relative those from the grassland and forest) were 

observed for two other C-degrading EEs, BG and CBH (Figure C1). LAP Vmax increased over 

the course of the study in all sites, and finished significantly higher in the forest, at 9.8±0.7 

µmol·hr-1·g-1, than in the other four sites, which averaged 5.8±0.3 µmol·hr-1·g-1 in December 

(Figure 3.5B).  

According to CDA, differences between inoculated and control litterbags were 

driven by differences in CBH Vmax and BG Vmax, which had loading coefficients on the only 

CDA axis with absolute values of 0.77 and 0.61, respectively. Inoculation increased mean 
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CBH Vmax over the course of the study from 35.7±0.9 µmol·hr-1·g-1 in control litterbags to 

39.1±1.3 µmol·hr-1·g-1 in inoculated litterbags (Figure 3.3E), and similarly increased BG 

Vmax from 64.9±1.6 µmol·hr-1·g-1 in control litterbags to 69.0±2.2 µmol·hr-1·g-1 in inoculated 

litterbags (Figure 3.3F). 

 

EE potential Km 

There were significant effects of site (p<0.001, F28,322=6.7) and sampling date 

(p<0.001, F7,89= 229.9) on Km of all enzyme classes when analyzed together, but no effect of 

inoculation treatment (Table 3.1). CDA indicated that differences in the Km of individual EE 

classes did not differentiate sites from one another, and that differences between sampling 

dates overwhelmed those between sites. Every EE Km had a loading coefficient with an 

absolute value greater than 0.65 on the first CDA axis when analyzing variation between 

sites, and all also had loading coefficients with absolute values greater than 0.75 on the 

second CDA axis. There was only one CDA axis when analyzing differences between 

sampling dates, and every EE Km had a loading coefficient greater than 0.83 on that axis. 

Therefore, mean EE Km across all EE classes was combined for comparisons between sites 

and sampling dates. Mean Km across all EE classes decreased from 288.1±21.5 µM in initial 

litter to 157.7±3.7 µM in June, then increased to 292.5±6.7 µM in December (Table 3.2). 

There were no significant differences in mean EE Km between litterbags collected from 

different sites in either June or December after accounting for the effects of litter moisture. 
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Temperature sensitivity of EE Vmax 

EE Vmax temperature sensitivities were significantly affected by site (p<0.001, 

F28,304=5.8) and sampling date (p<0.001, F7,84=5.8), but were not significantly affected by 

inoculation treatment (Table 3.1). Pairwise comparisons of Vmax temperature sensitivities 

in December litterbags between sites were used to determine if transplantation to a foreign 

site resulted in microbes producing EEs with different temperature sensitivities from those 

observed in litterbags from the grassland site (Table 3.3).  All EEs other than AP exhibited 

different Vmax temperature sensitivities after transplantation into at least one foreign site, 

usually the scrubland. EEs in transplanted litter that exhibited significantly different Vmax 

temperature sensitivities from those in litterbags from the grassland were always 

significantly less sensitive to temperature.  

 

Temperature sensitivity of EE Km 

EE Km temperature sensitivities for BG, BX, CBH, and NAG were significantly affected 

by site (p<0.001, F16,248=4.5) and sampling date (p<0.001, F4,81=19.3), but were not 

significantly affected by inoculation treatment. Km temperature sensitivities for AG, AP, and 

LAP could not be calculated for enough samples to allow them to be included in statistical 

analyses. Pairwise comparisons of Km temperature sensitivities in December litterbags 

between sites were used to determine if transplantation to a foreign site resulted in 

microbes producing EEs with different temperature sensitivities from those observed in 

litterbags from the grassland site (Table 3.4). Each of the four EEs that we were able to 

calculate Km temperature sensitivities for exhibited different Km temperature sensitivities 
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after transplantation in at least one site, though there were no discernible patterns as to 

which EEs or sites exhibited such differences. 

 

Discussion 

Mass loss and bacterial abundance 

We hypothesized that differences in microbial activity and litter mass loss rates in 

transplanted litterbags would be driven by differences in climate along the gradient, and in 

particular by differences in precipitation. Our results supported this hypothesis: though 

decomposer activity is not a linear function of precipitation, covarying differences in 

temperature and precipitation along our gradient likely combine to drive decomposer 

activity.  Even though the subalpine site likely receives the most precipitation (Table C1), 

litter there decomposed as slowly as in the desert and scrubland (Figure 3.2A). In addition, 

the forest receives significantly more rainfall than the grassland, yet similar mass loss was 

observed over the course of the study in both sites. It is likely that temperature and 

moisture interact to limit decomposer activity across our gradient – sub-zero temperatures 

and snow limit the positive effects of increased precipitation in the higher elevation forest 

and subalpine sites, whereas extreme high temperatures and reduced precipitation limit 

microbial activity in the scrubland and desert sites (Gliksman et al., 2016).  

All major chemical fractions of litter declined over the course of the experiment 

other than structural carbohydrates, which increased in litterbags from all sites (Figure 

3.4). Sites that experienced the most mass loss also experienced the greatest declines in 

cellulose, and the least gains in structural carbohydrates. The structural carbohydrate 

fraction is composed of pectins, β-glucans, and peptidoglycans, and it is possible that a 
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large proportion of the accumulating structural carbohydrate fraction is composed of 

microbial residues or necromass. These residues are more recalcitrant than cellulose or 

hemicellulose (Grandy and Neff, 2008; Miltner et al., 2012), and may represent C that has 

shifted into slower turnover pools (Khan et al., 2016). 

We expected that trends in bacterial cell density would mirror mass loss over the 

course of the study, as bacterial decomposers are responsible for a large majority of 

microbial activity and biomass in litter from the grassland site (Alster et al., 2013). 

However, bacterial cell density in grassland litterbags over the course of the study was 

similar to that observed in the subalpine and scrubland site, even though grassland 

litterbags experienced much greater mass loss (Figure 3.2B). Litterbags transplanted to 

the desert also had significantly lower bacterial abundance than in any other site over the 

course of the study, but experienced mass loss rates akin to those found in the subalpine 

and scrubland sites. It is possible that in the desert, fungi may contribute more to litter 

mass loss than do bacteria, given their greater tolerance for drought (Allison et al., 2013; 

Yuste et al., 2011), or that the contributions of abiotic processes such as photodegradation 

are enhanced (Austin, 2011). Regardless, our results indicate that bacterial cell density in 

general is not indicative of litter mass loss rates across our gradient.  

 

Inoculation effect 

Even though litter mass loss was lower when litter was transplanted to most foreign 

sites, the results of our inoculation treatment indicate that local adaptation of microbial 

communities was likely not the cause of this disparity, as inoculated litterbags 

unexpectedly lost less mass after transplantation than did control litterbags (Figure 3.3A). 
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Instead, our inoculation results indicate that non-grassland microbes present in our inocula 

may be less effective at degrading grassland litter than microbes in the pre-existing 

grassland community.  Notably, inoculation effects resembled the effects of exposure to 

novel climate conditions, as inoculated litter lost less mass, accumulated lignin (Figure 

3.3D), and exhibited greater increases in structural carbohydrates (Figure 3.3C) by the 

end of the study. These results could indicate that the microbes inoculated into grassland 

litter communities are less effective at degrading grassland litter than the pre-existing 

members of the grassland microbial community. Prior studies have found evidence that 

microbial communities are constrained in their ability to degrade particular litter 

chemistries, though those studies have also shown that more complex litter chemistry 

generally results in stronger home-field advantage effects on C mineralization rates (Keiser 

et al., 2011; Strickland et al., 2009).  

Grassland microbial communities themselves do not appear constrained in their 

ability to decompose grassland litter in different climates, suggesting that the pool of taxa 

present in grassland microbial communities is adapted to climates experienced across our 

regional gradient. This is perhaps not that surprising, because the grassland site 

experiences a relatively broad range of daily air and soil temperatures (Table C1), and as 

such microbial communities in the grassland are likely composed of taxa that are capable of 

persisting in a wide range of environmental conditions. 

Even though inoculation had an effect on mass loss that ran counter to our 

hypothesis, our hypothesis that inoculation would positively affect bacterial abundance 

was supported (Figure 3.3B). Combined with the negative effect of inoculation on mass 

loss, this result suggests that microbial communities in inoculated bags had higher C-use 



 

77 
 

efficiency (CUE), as their increased biomass did not result in greater C-losses from the 

system. It is possible that these microbes are cheaters – organisms that benefit from EE 

production without producing EEs themselves (West et al., 2006). This would increase 

community-wide CUE by increasing the biomass supported by EE production, but would 

decrease the per-biomass rate of C mineralization relative to a similarly abundant 

community composed of proportionally fewer cheaters (Allison et al., 2014; Kaiser et al., 

2015). 

 

Enzyme profiles 

We hypothesized that kinetic properties of EEs produced by transplanted microbial 

communities would be enhanced in sites that experienced greater precipitation. Our results 

did not support this hypothesis. EE Vmax values differed significantly over time and with 

transplantation site, but were not generally higher in sites that received more precipitation.  

C-degrading enzymes generally exhibited the greatest activity in the sites that had the least 

precipitation (Figure 3.5A), though peptidase activity did increase the most in the sites 

that received the greatest precipitation (Figure 3.5B). These opposing trends between 

peptide degradation and activity of  EEs in general were also found in previous studies 

from arid and semi-arid ecosystems (Chapter 2, Alster et al., 2013), and likely indicate EE 

accumulation over dry periods in the more arid sites along the gradient and more rapid 

turnover of EEs in the wetter sites along the gradient.  

We hypothesized that allowing local microbes to access transplanted litter would 

either have no effect on EE traits or would enhance EE kinetic parameters after 

transplantation. Our results did in part support the hypothesis that inoculation would 
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enhance EE activity, but they were most consistent with inoculation shifting EE traits to 

resemble those observed in sites with lower decomposition rates. Inoculated litterbags 

exhibited increased activities of C-degrading EE classes such as CBH and BG, much like 

litterbags transplanted to the low-decomposition subalpine, scrubland, and desert sites. 

Given that inoculation also reduced mass loss rates, these results indicate that enzymatic 

efficiency declined as a result of inoculation. Rather than being locally adapted to climate, 

microbial communities may be more adapted to litter chemistry (Keiser et al., 2011; 

Wallenstein et al., 2013), such that EEs produced by inoculated microbes are less efficient 

on grassland litter than on their native substrates.  

There is supporting evidence for community adaptation to litter chemistry from our 

EE Vmax and Vmax temperature sensitivity results. EEs in transplanted litterbags exhibited 

Vmax values and Vmax temperature sensitivities that were more similar to one another than 

to EE temperature sensitivities of native microbial communities on native litter (Figure 

C2). This signal was observed regardless of the transplant destination site. The greater 

variation in EE Vmax values across native microbial communities relative to transplanted 

microbial communities indicates that microbes decomposing native litter in each site 

produce EEs in different amounts depending on the litter type. The greater variation in EE 

Vmax temperature sensitivities across native communities relative to transplanted microbial 

communities indicates that microbes decomposing native litter in each site are also likely 

producing EEs distinct from those produced by communities decomposing grassland litter. 
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Conclusion 

The capability of grassland decomposer communities to degrade grass litter after 

transplantation along our regional climate gradient was not primarily due to differences in 

precipitation between sites. Litterbags in the site that received the most precipitation lost 

mass at the same rate as in the grassland, and litterbags in the desert and subalpine site 

lost similar mass over the course of the study despite large differences in precipitation 

between the two sites. Instead, climate variables such as precipitation and temperature 

likely interact to limit decomposition rates at the ends of our gradient, such that the 

benefits of higher precipitation are outweighed by temperature constraints at the higher 

elevation sites, while warmer temperature effects are offset by moisture limitation in the 

hotter low elevation sites. A future shift to a more arid climate may therefore enhance 

decomposition rates in subalpine forests as they become warmer montane forests, and may 

reduce decomposition rates in grasslands as they experience reduced precipitation and 

become more similar to scrublands and desert. 

Although grassland microbes in general decomposed grass litter more slowly in 

foreign sites, the results of our inoculation treatment indicate that access to locally adapted 

microbes does not increase mass loss rates. Inoculation of litterbags with local microbiota 

prior to transplantation was instead consistent with the introduction and proliferation of 

cheaters. It may be that cheater taxa proliferate in the grassland community after 

inoculation because active decomposers in the inocula community are best adapted to 

degrade litter chemistries that differ from those found in the grassland. Our EE Vmax and 

Vmax temperature sensitivity results support this hypothesis, as they indicate that microbes 
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on native litter are likely producing different EEs at different rates from microbes observed 

in litterbags or in grassland litter in situ. 

In the context of a predicted future shift to a more arid climate in the American 

Southwest, our results indicate that microbial communities may not be constrained in their 

ability to respond to regional climate change, which potentially simplifies efforts to 

incorporate microbe-explicit mechanisms into global C-cycling models and predict future C 

dynamics (Allison and Martiny, 2008). However, our study only establishes that grassland 

microbial communities are not impaired relative to native microbial communities when 

decomposing grass litter in a wide variety of environments. Previous investigations of 

decomposer home-field advantage found stronger effects of community origin on 

decomposition of more complex litter substrates than on the decomposition of grass litter 

(Strickland et al., 2009), so it may be that transplantation of more complex substrates 

across a gradient such as ours might reveal stronger historical contingencies of community 

origin on decomposition dynamics. 
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Table 3.1 ANCOVA results for effects of site, sampling date, inoculation treatment, and all interactions on mass loss, 
bacterial cell density, and litter chemistry, and MANCOVA effects of the same factors for Vmax, Km, and Vmax and Km 

temperature sensitivity for all enzyme classes (with the exception of AG and AP Km temperature sensitivity). All 
analyses were run with gravimetric litter moisture (H2O) as a covariate. Bolded p-values are significant (<0.05). 
Variable Site Date Inoculation H2O Site:Date Site:Inoc Date:Inoc S:D:I 
Mass loss <0.001 <0.001 0.002 0.009 <0.001 0.978 0.636 0.619 
Bacterial density <0.001 <0.001 <0.001 <0.001 <0.001 0.014 0.089 <0.001 
Litter chemistry <0.001 <0.001 <0.001 <0.001 <0.001 0.125 0.627 0.639 
EE Vmax <0.001 <0.001 0.056 <0.001 <0.001 <0.001 <0.001 0.087 
EE Km <0.001 <0.001 0.331 <0.001 0.246 <0.001 0.110 0.122 
EE Vmax TS <0.001 <0.001 0.359 0.224 <0.001 0.630 0.641 0.898 
EE Km TS <0.001 <0.001 0.414 0.004 <0.001 0.038 0.546 0.933 
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Table 3.2 Mean (±SE) EE Km (in µM) across all EE classes in initial litter as well as in litterbags 
collected from each site in June and December 2015. Mean EE Km across all sites at each sampling 
date is presented because EE Km did not differ between sites at either sampling date after 
accounting for the effect of litter moisture. 

Date Mean Subalpine Forest Grassland Scrubland Desert 
Initial 288.1±21.5      
June 157.7±3.7 157.1±8.5 144.0±6.5 177.9±9.7 151.6±8.6 162.9±9.0 

December 292.5±6.8 247.3±13.0 293.7±12.2 325.9±15.9 293.3±16.9 309.7±17.6 
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Table 3.3 Mean (±SE) EE Vmax Q10 from litterbags collected on the final sampling date in December 2015. 
Bolded values are significantly different (p<0.05) from those observed in grassland litterbags. 
 AG AP BG BX CBH LAP NAG 
Subalpine 1.96±0.02  1.55±0.02 1.87±0.02 1.99±0.02 2.14±0.03 1.84±0.03 1.86±0.02 
Forest 1.95±0.03 1.53±0.02 1.86±0.02 2.07±0.03 2.07±0.03 1.79±0.02 1.90±0.02 
Grassland 2.18±0.03 1.60±0.02 1.88±0.02 2.02±0.03 2.11±0.03 1.92±0.02 2.01±0.02 
Scrubland 1.95±0.03 1.51±0.02 1.68±0.03 1.84±0.03 1.93±0.03 1.81±0.02 1.79±0.02 
Desert 2.17±0.08 1.57±0.01 1.85±0.04 1.90±0.02 2.15±0.06 1.88±0.04 1.95±0.03 
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Table 3.4 Mean (±SE) enzyme Km Q10 from litterbags collected on 
the final sampling date in December 2015. Bolded values are 
significantly different (p<0.05) from those observed in grassland 
litterbags. 
 BG BX CBH NAG 
Subalpine 2.00±0.04 1.32±0.02 2.07±0.06 1.62±0.03 
Forest 1.89±0.03 1.43±0.03 1.81±0.04 1.66±0.03 
Grassland 1.99±0.03 1.34±0.02 2.02±0.03 1.69±0.02 
Scrubland 1.76±0.04 1.30±0.03 1.91±0.03 1.59±0.02 
Desert 2.09±0.05 1.31±0.02 2.27±0.05 1.70±0.02 
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Figure 3.1 Conceptual 
figure of hypotheses for 
transplantation effects on 
decomposition rates.  
A) Hypothesized microbial 
decomposition assuming 
that climate (specifically, 
precipitation), is the main 
driver of mass loss.  
B) Hypothesized microbial 
decomposition assuming 
that decomposer 
communities are most 
adapted to their native 
environment and 
constrained in their ability 
to decompose litter in 
foreign environments. The 
solid line shows 
decomposition by 
grassland microbial 
communities, and the 
dotted line shows 
decomposition by desert 
microbial communities. In 
this scenario, access to 
local microbial 
communities will positively 
affect decomposition after 
transplantation, as shown 
by movement along the red 
arrow.  
C) Hypothesized microbial 
decomposition assuming 
that the effects of climate 
and local adaptation 
combine to drive mass loss 
rates across our gradient, 
such that local microbiota 
at the extremes of our 
gradient are adapted to 
conditions that are 
inherently less favorable 
for decomposition. 
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Figure 3.2 Mean (±SE) A) mass loss and B) bacterial cell density in transplanted litterbags over the course of 
the study, averaged across both grassland and inoculated litterbags in each site at each sampling date. 
Depicted means and standard errors are back-transformed from ln values. 
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Figure 3.3 Effect of inoculation with local microbial communities on mean (±SE) A) mass loss, B) 
accumulation of structural carbohydrates and C) change in the mass of the lignin fraction by the final 
sampling date, as well as the effect on mean (±SE) D) bacterial cell density, E) cellobiohydrolase Vmax, 
and F) β-glucosidase Vmax over the course of the study. All effects shown are significant (Tukey p<0.05).  
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Figure 3.4 Mean (±SE) mass loss from each major component of 
litter by December 2015. Positive values indicate accumulation of 
that fraction.  
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Figure 3.5 Mean (±SE) EE Vmax for A) β-xylosidase and B) Leucine aminopeptidase, in initial grassland litter 
and in June and December 2015 litterbags from each site.  
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APPENDIX A 

Chapter 1 Supplemental 

 

Table A1. P-values from ANOVA for litter moisture with respect to UV treatment, litter type, 
time of sampling, and all possible interactions. Significant (p<0.05) p-values are bolded. Ndf  
and Ddf are the degrees of freedom for the numerator and denominator of the F-statistic, 
respectively. 
 UV Litter (L) Time (T) UV:L UV:T L:T UV:L:T 

Litter moisture 0.040 <0.001 <0.001 0.645 0.555 0.392 0.963 
Ndf, Ddf 1, 73 1, 73 3, 73 1, 73 3, 73 3, 73 3, 73 
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Figure A1. Litter moisture content as fraction of total litter mass. Low lignin samples (L-) are shown with 
dotted lines, and high lignin samples (L+) with solid lines. UV pass treatments (UV+) are shown in black, UV 
block treatments (UV-) are in grey. Symbols represent means ± SE. The double-headed line above the plot 
indicates the duration of the wet season. 
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Figure A2. Litter cellulose content in grams at each sampling point. 
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APPENDIX B 

Chapter 2 Supplemental 

 

Table B1. Enzymes, substrates, and substrate concentrations used in this study. 
Enzyme Putative substrate Synthetic substrate [Substrate] 
α-glucosidase (AG) Starch degradation products 4-MUB-α-D-glucopyranoside 1000 µM 
Acid phosphatase (AP) Organic P 4-MUB Phosphate  4000 µM 
β-glucosidase (BG) Cellulose degradation products 4-MUB-β-D-glucopyranoside 2000 µM 
β-xylosidase (BX) Hemicellulose degradation products 4-MUB-β-D-xylopyranoside 2000 µM 
Cellobiohydrolase (CBH) Cellulose degradation products 4-MUB-β-D-cellobioside 1000 µM 
Leucine-aminopeptidase (LAP) Peptide terminals L-leucine-7-amido-4-methylcoumarin hydrochloride 1000 µM 
N-acetyl-β-D-glucosaminidase (NAG) Chitin degradation products 4-MUB-N-acetyl-β-D-glucosaminide 2000 µM 



 

101 
 

 
Figure B1. Mean bacterial cell density (billions of cells/g dry litter) in 
October 2014. Error bars denote standard error. Depicted means and 
standard errors are back-transformed from ln values. Means sharing 
the same letter are not statistically different (p > 0.05).  
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Figure B2. Mean EE Vmax (µmol·hr-1·g-1) as a function of bacterial cell 
density (cells/g dry litter). October 2014 and December 2015 samples 
are depicted due to lack of bacterial cell density data for June 2015 
samples.  
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Figure B3. Mean EE Km (µM) as a function of bacterial cell density 
(cells/g dry litter). October 2014 and December 2015 samples are 
depicted due to lack of bacterial abundance data for June 2015 samples. 
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APPENDIX C 

Chapter 3 Supplemental 

 

Table C1. Mean (± SE) historic climate parameters for the five sites used in this study, and plot-level temperature 
over the course of one year encompassing both sampling dates. 

Variable Subalpine Forest Grassland Scrubland Desert Period 
Air temperature (°C) 10.3±1.8 12.3±0.6 16.4±0.3 15.6±0.8 22.8±0.8 2009-14 
Air daily temp. range - 6.2±0.2 8.3±0.3 8.5±0.2 10.8±0.4 2009-14 
Soil temperature (°C) - 9.9±0.3 19.1±0.9 18.4±0.3 28.3±0.3 2008-12 
Soil daily temp. range - 2.6±0.1 4.6±0.8 5.5±0.7 10.9±0.2 2008-12 
Plot temperature (°C) 11.5±0.4 13.2±0.4 22.0±0.4 19.5±0.5 29.3±0.4 2015 
Plot daily temp. range 13.7±0.4 20.8±0.5 26.2±0.5 24.8±0.4 20.3±0.3 2015 

Rainfall (mm) ~265 402±118 242±76 193±33 100±24 2009-14 
Soil moisture (mL/cm3) - 8.6±0.3 7.3±0.8 7.3±0.5 4.6±0.1 2008-12 
Solar radiation (KW/m2) >1850 2640±500 2540±470 2770±520 2620±500 2006-13 

Elevation (m) 2250 1710 470 1280 275  
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Table C2. Enzymes, substrates, and substrate concentrations used in this study. 
Enzyme Putative substrate Synthetic substrate [Substrate] 
α-glucosidase (AG) Starch degradation products 4-MUB-α-D-glucopyranoside 1000 µM 
Acid phosphatase (AP) Organic P 4-MUB Phosphate  4000 µM 
β-glucosidase (BG) Cellulose degradation products 4-MUB-β-D-glucopyranoside 2000 µM 
β-xylosidase (BX) Hemicellulose degradation products 4-MUB-β-D-xylopyranoside 2000 µM 
Cellobiohydrolase (CBH) Cellulose degradation products 4-MUB-β-D-cellobioside 1000 µM 
Leucine-aminopeptidase (LAP) Peptide terminals L-leucine-7-amido-4-methylcoumarin hydrochloride 1000 µM 
N-acetyl-β-D-glucosaminidase (NAG) Chitin degradation products 4-MUB-N-acetyl-β-D-glucosaminide 2000 µM 
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Figure C1. Mean Vmax of A) β-glucosidase and B) cellobiohydrolase in initial litter and litterbags 
collected in June and December 2015. Error bars denote standard error. Depicted means and 
standard errors have been back-transformed from ln values.  
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Figure C2. Canonical discriminant ordinations of differences in A)EE Vmax and B)EE Vmax temperature 
sensitivities of all EEs assayed. Plots depict differences between native litter from each site 
(“Subalpine”, “Forest”, etc.) and litter in transplanted litterbags from all sites (“Litterbags”) in 
December 2015. Note that EE Vmax values and Vmax temperature sensitivities observed in transplanted 
litterbags group together, whereas EE traits observed in native litter differ much more widely. 
 




