
Lawrence Berkeley National Laboratory
LBL Publications

Title
Quantifying and simulating the weather forecast uncertainty for advanced building control

Permalink
https://escholarship.org/uc/item/6g11z33j

Journal
Journal of Building Performance Simulation, ahead-of-print(ahead-of-print)

ISSN
1940-1493

Authors
Zheng, Wanfu
Zabala, Laura
Febres, Jesus
et al.

Publication Date
2025

DOI
10.1080/19401493.2025.2453537

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6g11z33j
https://escholarship.org/uc/item/6g11z33j#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Quantifying and simulating the weather forecast 
uncertainty for advanced building control 

Wanfu Zheng
1,2

, Laura Zabala
3,4

, Jesus Febres
3
, David Blum

5
, Zhe Wang

1,2 

1
Department of Civil and Environmental Engineering, The Hong Kong University 

of Science and Technology, 
2
HKUST Shenzhen-Hong Kong Collaborative 

Innovation Research Institute, 
3
R2M Solution, 

4
Faculty of Engineering of Bilbao, 

University of the Basque Country UPV/EHU, 
5
Building Technology & Urban 

Systems Division, Lawrence Berkeley National Laboratory

Energy Technologies Area 

Month 2025 

doi.org/10.1080/19401493.2025.2453537 



 

 

 



Quantifying and simulating the weather forecast
uncertainty for advanced building control

Wanfu Zheng,1,2,# Laura Zabala,3,4,# Jesus Febres,3 David Blum,5 Zhe Wang1,2,∗

1Department of Civil and Environmental Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China

2HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute
Futian, Shenzhen, China

3 R2M Solution Spain, Bilbao, Spain
4 Faculty of Engineering of Bilbao, University of the Basque Country UPV/EHU, Bilbao, Spain

5 Building Technology & Urban Systems Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

#These two authors contribute equally to this paper
∗Corresponding author: cezhewang@ust.hk

ABSTRACT

Weather forecast uncertainty is unavoidable despite technological advancements. Accurately

quantifying and modeling this uncertainty is essential for developing and comparing advanced

building controllers. In this study, we present a structured approach using a first-order autore-

gressive model (AR(1)) to model uncertainty in ambient temperature and global solar irradiation

(GHI) forecasts. We analyzed weather data from four cities and employed Jensen-Shannon di-

vergence (JSD) to evaluate the similarity between synthetic and actual forecast errors. The

average JSD values for temperature are 0.027 (Berkeley), 0.021 (Leuven), 0.018 (Berlin), and

0.008 (Oslo), and for GHI, the average JSD values are 0.016 (Berkeley), 0.058 (Leuven), and

0.013 (Berlin). The low JSD values indicate a high similarity between the synthetic and real
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forecast error distributions. Our approach successfully generates synthetic weather forecasts

that mirror the statistical properties of actual forecasts. The implementation of our method for

uncertain forecast generation is being added to the BOPTEST framework.

KEYWORDS

Weather forecast uncertainty; Autoregressive model; Ambient temperature; Global solar irradi-

ation; Jensen-Shannon divergence

1 Introduction

Weather forecasts are essential inputs for prediction-based building control strategies, such as

Model Predictive Control (MPC) (Joe and Karava 2019; Bianchini et al. 2019; Drgoňa et al. 2020)

and Reinforcement Learning (RL) (Wei et al. 2017; Du et al. 2021). By incorporating weather

forecasts, these control strategies can optimize pre-cooling or pre-heating system operation to

enhance energy efficiency and cost savings (Wang and Hong 2020), or provide load flexibility

to respond to dynamic electricity prices or carbon emissions factors (Chaturvedi and Rajasekar

2022), coordinate on-site storage usage, or maximize share of renewable generation (Drgoňa

et al. 2020; Ma et al. 2021).

However, the weather forecast is inherently uncertain and prone to errors due to various

factors (Dong et al. 2021), such as the chaotic nature of the atmosphere (Reichman and Dubowski

2021), inaccurate model formulations based on physical approximations (Meng et al. 2021) and

a lack of knowledge about the initial state (Gagne et al. 2020; Flato et al. 2014). Considerable

research effort has been devoted to modeling the uncertainty of weather forecasts and considering

this uncertainty in control algorithms. These techniques include statistical models using time

series models such as autoregressive (AR) (Bacher et al. 2009) and autoregressive integrated

moving average (ARIMA) models (Naiqian et al. 2019) or the application of artificial neural
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Nomenclature
Variables, parameters, and indices
𝐴, 𝐵, 𝑃, 𝑄 Probability distributions
𝜏 Lead time (number of steps ahead in the forecast)
𝑘 Time step index
𝑋 (𝜏 |𝑘) Predicted value for the lead time 𝜏 at timestep 𝑘

𝑋 (𝑘 + 𝜏) Measured value at time step 𝑘 + 𝜏

𝑒(𝜏 |𝑘) Forecast error at lead time 𝜏 and time step 𝑘

𝑦𝑡 Predicted forecast error at time 𝑡 in AR model
𝜙𝑖 Coefficients of the AR model
𝜀𝑡 Residual term in AR model at time 𝑡

𝑝 Order of the autoregressive model
ℎ Lag in partial autocorrelation function (PACF)
𝜙 Autoregressive coefficient in AR(1) model
𝜀 Residual term in AR(1) model
𝜇 Mean of a distribution
𝜎 Standard deviation of a distribution
𝑢 Location parameter of Laplace distribution
𝑏 Scale parameter of Laplace distribution
𝑒(𝜏 |𝑘) Synthetic forecast error at lead time 𝜏 and time step 𝑘

�̂� (𝜏 |𝑘) Synthetic forecast at lead time 𝜏 and time step 𝑘

Operators
PACF(ℎ) Partial autocorrelation function at lag ℎ

Cov(·, ·) Covariance operator
Var(·) Variance operator
JSD(𝐴∥𝐵) Jensen-Shannon divergence between distributions 𝐴 and 𝐵

KLD(𝐴∥𝐵) Kullback-Leibler divergence between distributions 𝐴 and 𝐵

Abbreviations
GHI Global Horizontal Irradiation
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ANN Artificial Neural Network
NWP Numerical Weather Prediction
PACF Partial Autocorrelation Function
RMSE Root Mean Squared Error
KLD Kullback-Leibler divergence
JSD Jensen-Shannon divergence
MPC Model Predictive Control
RMPC Robust Model Predictive Control
SMPC Stochastic Model Predictive Control
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networks (ANNs) (Sorkun et al. 2017).

Numerical Weather Prediction (NWP) represents the forefront of weather forecasting tech-

nology. NWP applies partial differential equations to model atmospheric dynamics based on

initial conditions, integrating small-scale processes through physical parameterizations (Waqas

et al. 2024). Global NWP techniques provide high-quality forecasts up to 15 days ahead, which

are widely used by weather services worldwide. However, even with sophisticated models and

computational power, NWP cannot eliminate forecast errors entirely.

In the context of building simulations and advanced control applications, it is crucial to not

only use weather forecasts but also to assess and incorporate their inherent uncertainties into

simulation tools. Modeling weather forecast uncertainty allows researchers and practitioners to

better replicate real-world conditions, enabling the development and testing of robust control

strategies for such uncertainties. Simulation tools can more accurately predict building per-

formance by accounting for forecast uncertainty, leading to more reliable and efficient control

strategies.

Despite the importance of incorporating weather forecast uncertainty, many advanced build-

ing control strategies often neglect this aspect by using deterministic weather forecasts in simu-

lation studies (Zheng et al. 2024) or in deterministic MPC implementations in real case studies

(Wang et al. 2023). As a result, the controllers developed may risk violating operational

constraints, such as thermal comfort limits, or exhibit undesirable behaviors like ineffective

pre-cooling or pre-heating when actual weather conditions deviate from forecasts.

Accurately modeling weather forecast uncertainty serves two primary purposes. Firstly,

it bridges the gap between idealized simulations and real-world implementations of building

control systems by representing forecast uncertainty within building simulation tools. This ap-

proach enables more realistic assessments of controller performance under uncertain conditions,

ensuring that strategies developed in simulation can perform reliably in practice. Secondly, it
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is essential for implementing advanced control techniques such as Robust Model Predictive

Control (RMPC) (An et al. 2024) and Stochastic Model Predictive Control (SMPC) (Wu et al.

2015). These control methods explicitly account for forecast uncertainty and can provide control

decisions resilient to potential disturbances caused by uncertain weather forecasts.

Therefore, this study focuses on assessing and incorporating weather forecast uncertainty

into building simulation tools, particularly for advanced control applications. By modeling

this uncertainty, we aim to enhance the robustness and reliability of building control strate-

gies, ensuring they perform effectively under real-world conditions where weather forecasts are

imperfect.

1.1 Related studies

Accurately modeling weather forecast uncertainty is essential for developing robust building

control strategies. In this context, Oldewurtel et al. (Oldewurtel et al. 2012) compared stochastic

Model Predictive Control (MPC) with deterministic MPC and found that the stochastic ap-

proach led to fewer comfort violations, highlighting the importance of considering uncertainties

in building control strategies. Hedegaard et al. (Hedegaard et al. 2018) found that forecast uncer-

tainties can cause MPC to be up to 4% less effective in reducing heating costs. (Enrı́quez et al.

2016) demonstrated that not considering solar irradiation forecasts’ uncertainty significantly

increases thermal discomfort when using MPC for indoor temperature control. Researchers

have employed various approaches, including statistical models, machine learning techniques,

and methods that account for increasing uncertainty over the forecast horizon.

Several studies have utilized statistical models to simulate weather forecast uncertainties.

Oldewurtel et al. (Oldewurtel et al. 2012) proposed an AR model with Gaussian residuals for

forecasting temperature and solar radiation errors but did not validate them against real data.

Kuijpers et al. (Kuijpers et al. 2022) developed an AR model with an additive term for variables
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like temperature and humidity, using historical observations and assuming normally distributed

residuals with time-varying standard deviations. Grant and Gehbauer (Grant and Gehbauer

2022) assessed the impact of forecast accuracy on MPC by generating synthetic forecasts with

normally distributed errors but excluded extreme values, potentially underrepresenting extreme

weather events.

Jiang et al. (Jiang et al. 2023) addressed forecast uncertainty in energy dispatch by Stochastic

MPC strategy with deep learning forecasting models. They estimated prediction errors at each

forecast horizon on the training data, assuming normally distributed errors, and generated

multiple scenarios by adding Gaussian noise to the predicted values. Similarly, Halev et al.

(Halev et al. 2024) added Gaussian noise with a standard deviation increasing logarithmically

over time to model decreasing forecast accuracy, applying this to load and photovoltaic time

series.

Machine learning techniques have been applied to better capture uncertainties and correla-

tions in weather patterns. Liu et al. (Liu et al. 2018) focused on probabilistic forecasting of solar

irradiance using a time-series AR model that incorporated sky-cover forecasts and modeled sky

conditions as discrete random variables. They employed a nonlinear, non-Gaussian state-space

model with Sequential Monte Carlo methods for parameter estimation, generating probabilistic

forecasts that better capture uncertainties associated with varying sky conditions. (Scher and

Messori 2018) outlines other machine learning techniques to model prediction uncertainty, in-

cluding ensemble numerical models that assess forecast spread, convolutional neural networks

trained on past forecast errors or spreads, and statistical methods such as clustering weather

types or using persistence and local dimensions in phase space.

Recognizing that forecast accuracy decreases with the prediction horizon, some researchers

have modeled uncertainty as a function of time. Gao et al. (Gao et al. 2023) proposed a tube-based

robust MPC for HVAC systems, where the uncertainty space widens over time, enhancing the
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robustness of control strategies by accounting for growing uncertainty in longer-term forecasts.

Simulation platforms like the Building Optimization Testing Framework (BOPTEST) (Blum

et al. 2021) provide environments for testing advanced building control strategies. Currently,

BOPTEST only provides deterministic weather forecasts to users for testing their control strate-

gies. Incorporating stochastic weather models into such frameworks is essential for assessing

and enhancing the robustness of control strategies under realistic uncertainty conditions.

Despite these developments, there is still a lack of practical tools for effectively simulating

weather forecast uncertainties in building applications. Many existing models assume that resid-

uals are normally distributed, which may be the case for temperature (Petersen and Bundgaard

2014), but which may not accurately reflect the actual distribution of forecast errors—particularly

for variables like solar irradiance that are peaked, with narrower shoulders and longer tails, in-

dicating non-normal behavior (Gayathry et al. 2024). Some models also inadequately represent

extreme weather events due to practices like excluding large error values (Grant and Gehbauer

2022), potentially underestimating their impact on control strategies. The lack of validation

against real forecast data in (Oldewurtel et al. 2012) undermines the reliability of the proposed

method. When forecasts deviate from normality, simply comparing the mean and standard

deviation may be insufficient; therefore, more comprehensive evaluation methods are necessary

to compare the similarity between synthetic and historical forecasts effectively.

1.2 Scope and objectives

The objective of this study is twofold. Firstly, we aim to quantify the weather forecast uncertainty

using datasets collected from four different locations, representing the common situation where

an advanced control developer relies on weather forecasts provided by a service for a given

location. We are particularly interested in investigating the uncertainty associated with ambient

temperature and GHI forecasts. These inputs are critical for building thermal load and prediction-
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based building control strategies. Secondly, we aim to develop a stochastic model to simulate

weather forecast uncertainties accurately. This model will be used as an uncertain weather

forecast generator in the BOPTEST framework to facilitate the development of RMPC and

SMPC strategies. BOPTEST is a virtual building simulation framework that provides multiple

physics-based building models with predefined baseline controllers, testing scenarios, and key

performance indicator calculations, allowing control developers to develop and compare their

building control strategies.

The remainder of this paper is organized as follows: In Section 2, we introduce the datasets

and associated uncertainty quantification, the steps involved in generating synthetic forecasts,

and the evaluation metrics to be used in this study. Next, we present the results, including the

ambient temperature (Section 3.1) and the GHI (Section 3.2). We then discuss our contribution

and limitations in Section 4, followed by a conclusion in Section 5.

2 Method

This section outlines the specific procedures for quantifying and simulating the weather forecast

uncertainty, focusing on ambient temperature and GHI. The corresponding flow diagrams are

illustrated in Fig.1. Notably, due to the unique characteristics of GHI forecasts, additional data

preprocessing and post-processing steps are required, as depicted in Fig.1 (b). By following

these procedures, we can effectively model the weather forecast uncertainties.
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Figure 1: Flowchart of the proposed method.

2.1 Datasets

This study analyzed historical weather forecast data alongside the corresponding measured

weather data from four cities. The data ranges include: 1) Berkeley, USA: January 15, 2019,

to December 31, 2019; 2) Leuven, Belgium: January 1, 2019, to December 31, 2019; 3)Berlin,

Germany: October 1, 2020, to July 27, 2021, 4) Oslo, Norway: February 21, 2018, to September

17, 2018. Note that the forecasting and observation services are the same in the Berlin and Oslo

cases. In contrast, in the Berkeley and Leuven cases, the forecasting service is separate from

the observation service, which are weather stations located at building sites. These cases apply
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to a practical situation confronting an advanced control developer. The datasets were obtained

as follows:

• For Berkeley, the weather forecasts were obtained from the DarkSky API (Apple Inc)

and stored for a field demonstration of MPC (Blum et al. 2022). During the same

demonstration, the measured data were collected from a weather station on LBNL’s

campus and accessed through (The University of Utah). The DarkSky API provides

ambient temperature and cloud cover forecasts but not GHI forecasts. Therefore, the GHI

forecasts are generated using the k-Nearest Neighbors (kNN) machine learning algorithm,

trained using 30 days of recent past measurements of GHI from the weather station in

combination with past 1-step cloud cover, ambient temperature forecasts and predicted

clear-sky irradiance. More details can be found in (Blum et al. 2022). In the MPC

demonstration, the training process was run each time weather forecasts were collected,

approximately once per hour, along with a validation of the model on the most recent

previous day’s data, to confirm the model’s validity to be used for the MPC. To give a

broad idea of error introduced by this kNN model, during the period of data used for this

current paper’s study and across all validation data sets, the mean Root Mean Square Error

(RMSE) of the method was 175 W/m2, and the standard deviation of the RMSE was 93.4

W/m2.

• For Berlin, the weather forecasts were obtained from the MOSMIX model from Germany’s

Meteorological Services Deutscher Wetterdienst (DWD) (Deutscher Wetterdienst a). The

DWD also provided the measured data via the OpenData server (Deutscher Wetterdienst

b).

• For Leuven, the weather forecasts were purchased from the OpenWeather service (Open-

Weather). The measured data were collected at thpdme Vliet Building in Leuven, operated
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by the Building Physics Section of the KU Leuven.

• For Oslo, the weather forecasts were obtained from the Norwegian Meteorological Institute

at (Norwegian Meteorological Institute). The measured data were collected from its API

(Meteorologisk institutt).

Both ambient temperature and GHI are analyzed at the first three locations and just the

ambient temperature for Oslo due to data availability. All forecasts offer a prediction horizon

of 48 hours at 1-hour time intervals and all measurements are recorded at 1-hour time intervals.

The Berkeley, Berlin and Oslo forecasts are updated hourly, while the Leuven forecasts are

updated every 6 hours. For Leuven’s GHI dataset, the first and second-hour prediction time

intervals (i.e., 1- and 2-hour-ahead forecast) are excluded due to missing data, resulting in the

prediction horizon extending from the 3rd to the 48th hour. To prepare the data for model

development and validation, we split each city’s dataset chronologically into two subsets: a

training set comprising the first 70% of the data used to identify the model parameters, and a

validation set consisting of the remaining 30% of the data used to validate the models.

2.2 Preprocessing

A forecast’s lead time 𝜏 represents 𝜏 steps ahead forecast. For example, 𝜏 = 1 means one-

step ahead forecasts. The error for the lead time 𝜏th of the forecast at timestep 𝑘 , denoted by

𝑒(𝜏 |𝑘), is calculated as the difference between the lead time 𝜏th of forecast at timestep 𝑘 and

the corresponding measurement at timestep (𝑘 + 𝜏). The equation is defined as follows:

𝑒(𝜏 |𝑘) = 𝑋 (𝜏 |𝑘) − 𝑋 (𝑘 + 𝜏) 𝜏 = 1, . . . , 48 (1)

where 𝑋 (𝜏 |𝑘) denotes the predicted value for the lead time 𝜏 at timestep 𝑘 , 𝑋 (𝑘 + 𝜏) denotes

the corresponding measured value.
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Figs. 2 and 3 display the distribution of forecast errors for temperature and GHI at one

lead time, respectively. The temperature variable exhibits a normal distribution of forecast

errors across all locations and all lead times, albeit with a mean that differs slightly from zero

in most cases. The histograms of the GHI forecast errors exhibit a sharp peak and a high

concentration near zero, which suggests that a significant proportion of the error values are

equal to zero. Further analysis reveals that the cause of this phenomenon is the high accuracy

of the predictions during nighttime when the measured GHI is zero. As shown in Fig. 4, which

provides an example of the comparison between measured and forecast GHI data, the predictions

during nighttime were consistently accurate. Given this situation, it has been determined no

uncertainty will be added in cases where the measured GHI is equivalent to 0. In practice, we

drop the errors in every prediction horizon when the measured GHI equals 0 and get new error

data; the new error histogram of the GHI is shown in Fig. 5. We can see that the spikes in the

histogram become flatter as we remove a large number of error values equal to 0, which also

occur in all lead times.
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Figure 2: Histograms of the temperature forecast error distribution with a normal distribution
fit (red) at lead time 13 of the prediction horizon.

Figure 3: Histograms of the GHI forecast error distribution at lead time 13 of the prediction horizon.
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Figure 4: Comparison between the forecast and measured GHI data in Berkeley at 2019-01-25
23:00:00.

Figure 5: Histogram of the GHI forecast error distribution at lead time 13, exemplifying the distribution
shape, which is similar across all lead times. Errors when the measured GHI is zero have been removed.
The red and orange curves represent the Normal and Laplace distribution fits to the histograms, respec-
tively.

To statistically characterize the distribution of the new GHI forecast errors, we considered

Normal, Laplace, Gamma, and Logistic distributions as potential fits for the GHI forecast errors.

To assess the goodness-of-fit for each distribution, we employed the statistical metric the Akaike

Information Criterion (AIC) (Akaike 1974).

The AIC measures the relative quality of statistical models for a given data set. It is defined

as:

AIC = 2𝑘 − 2 ln(𝐿), (2)
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where 𝑘 is the number of parameters in the model, and 𝐿 is the maximum value of the likelihood

function for the model. Lower AIC values indicate a better fit to the data, balancing model

complexity and goodness of fit. Our results indicate that the Laplace distribution consistently

fits the GHI forecast error data better than the Normal and other distributions with lower AIC

values. This finding aligns with the visual observations from the histograms of the new GHI

forecast errors, which closely resemble the sharp peak and heavy tails characteristic of the

Laplace distribution.

2.3 Stochastic model

This study applies the time series AR model to simulate the forecast error of the 48-hour

prediction horizons. The AR(𝑝) model can be represented as

𝑦𝑡 =

𝑝∑︁
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝜀𝑡 (3)

where 𝑦𝑡 is the forecast error at lead time 𝑡, 𝜙𝑖 are the model’s parameters, 𝜀𝑡 denotes the residual

that captures the disturbances that affect the system, and 𝑝 specifies the order of the AR model.

To apply the AR model, determining the appropriate order 𝑝 is crucial, as it influences the

model’s ability to capture the underlying dynamics of the time series. Several methods exist for

selecting the optimal order of an AR model, including the partial autocorrelation function (PACF)

introduced by Box and Jenkins and information criteria like the AIC and Bayesian Information

Criterion (BIC) (Chen et al. 2013). In this study, we utilize PACF analysis to identify the

model order for our time series data. The PACF provides insights into past values’ direct effect

on the series’ current value, excluding the indirect effects mediated through intermediate lags

(Satrio et al. 2021). Specifically, the partial autocorrelation at lag ℎ, denoted as PACF(ℎ),

measures the correlation between 𝑦𝑡 and 𝑦𝑡−ℎ after removing the influence of the intervening
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lags 𝑦𝑡−1, . . . , 𝑦𝑡−ℎ+1. It is defined as:

PACF(ℎ) = 𝐶𝑜𝑣 (𝑦𝑡 , 𝑦𝑡−ℎ | 𝑦𝑡−1, . . . , 𝑦𝑡−ℎ+1)√︁
𝑉𝑎𝑟 (𝑦𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−ℎ+1)𝑉𝑎𝑟 (𝑦𝑡−ℎ | 𝑦𝑡−1, . . . , 𝑦𝑡−ℎ+1)

(4)

Analyzing the PACF is useful for identifying the order of an AR model because, for an AR(𝑝)

process, the PACF theoretically exhibits a sharp cutoff after lag 𝑝, which means that the partial

autocorrelations are significantly different from zero for lags up to 𝑝 and not significantly

different from zero for lags greater than 𝑝. The property allows us to visually inspect the PACF

plot to determine the appropriate order of the AR model.

Fig. 6 presents the PACF plots for the temperature and GHI forecast errors. In Fig. 6 (a),

the PACF of the temperature variable shows a significant spike at lag 1 that exceeds the 95%

confidence band, indicating a strong partial autocorrelation at this lag. The confidence bands

are calculated as ±1.96/
√
𝑁 , where 𝑁 is the sample size, providing a 95% Beyond lag 1, the

partial autocorrelations drop to near zero and remain within the confidence bands, suggesting

that higher-order lags do not contribute significantly to the model. Similarly, Fig. 6 (b) depicts

the PACF for the GHI variable, which also displays a significant partial autocorrelation at lag

1 and values within the 95% confidence band at higher lags. Based on these observations,

we conclude that the time series of forecast errors for temperature and GHI can be adequately

modeled using an AR(1) process. The significant partial autocorrelation at lag 1 indicates that

the immediate past error directly influences the current forecast error, while the insignificance

of higher lags (as they fall within the 95% confidence band) implies that further past errors do

not have a direct impact.

Therefore, the AR(1) model used in this study is defined as follows:

𝑒 (𝜏 + 1 | 𝑘) = 𝜙𝑒 (𝜏 | 𝑘) + 𝜀 (5)

where 𝑒 is the time series of forecast error and 𝜀 is the model residual. The known condition 𝑘

means to predict a specific time k and 𝜏 represents the lead time, ranging from 1 to 47. We assume
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that the model of temperature variable is subject to normally distributed residual, denoted as

𝜀 ∼ N(𝜇, 𝜎), where 𝜇 and 𝜎 represent the mean and standard deviation of the distribution. The

residual associated with the GHI variable is modeled using a Laplace distribution, represented

as 𝜀 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑢, 𝑏), with 𝑢 and 𝑏 denoting the location and scale parameters. We employ the

least-squares approach to estimate the parameters 𝜙 and 𝜀 using the AR(1) model.
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(a) PACF for ambient temperature (b) PACF for GHI

Figure 6: Partial autocorrelation function for forecast temperature and GHI errors with 95%
confidence interval.
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2.4 Generate synthetic forecasts

To generate synthetic forecasts that show stochastic properties similar to historical forecasts, we

utilize the propagation property of the AR model and add the synthetic forecast error to the

measured data.

In the context of time series propagation, for ambient temperature, we obtain the initial

error �̂�(𝜏 = 1|𝑘) by sampling from the distribution of the historical error 𝑒(𝜏 = 1), which

is characterized by 𝑒(𝜏 = 1) ∼ N (𝜇1, 𝜎1). Similarly, for GHI, �̂�(𝜏 = 1|𝑘) is sampled from

𝑒(𝜏 = 1) with 𝑒(𝜏 = 1) ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑢1, 𝑏1). Then we recursively substitute �̂�(𝜏 |𝑘) into

Equation (5) to obtain �̂�(·|𝑘). It is worth noting that for GHI, instances where the corresponding

measurement 𝑋 (𝑘 + 𝜏) is zero lead to a resetting of �̂�(𝜏 |𝑘) to zero.

After generating the synthetic forecast errors, we calculate the synthetic forecasts 𝑋 (𝜏 |𝑘) by

adding the synthetic forecast error to the corresponding measurement:

𝑋 (𝜏 |𝑘) = 𝑋 (𝑘 + 𝜏) + �̂�(𝜏 |𝑘) (6)

Furthermore, GHI forecasts can exhibit large prediction errors with a relatively high standard

deviation, as depicted in Fig. 5. During the synthetic forecast generation process, the stochastic

model may produce excessively large errors in rapid succession, leading to unrealistic high-

frequency fluctuations in the synthetic GHI forecasts, especially when the measured GHI is

small. The fluctuations are artifacts of the modeling process and are characterized by abrupt

alternations between large overestimations and underestimations in consecutive time steps, which

are not commonly observed in actual forecast error patterns. To mitigate the impact of these

unrealistic fluctuations, we apply a moving average filter with a window size of 3 samples to the

synthetic GHI forecasts. The moving average filter is well-known for its ability to smooth out

high-frequency variations in time series data (Martins et al. 2019), making it a suitable tool for

refining synthetic GHI forecasts. The post-processing step helps the synthetic forecasts maintain
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realistic temporal characteristics and avoid introducing artificial noise, thereby ensuring that the

control performance testing outcomes represent real operating conditions. The moving average

filter does not eliminate realistic large forecast errors due to genuine weather events like sudden

cloud cover. The filter simply reduces unrealistic erratic behavior from the stochastic modeling

process and is not reflective of actual weather dynamics.

2.5 Evaluation metrics

To evaluate the stochastic properties of the generated and historical (the ground-truth) forecasts,

the Jensen-Shannon divergence (JSD) (Lin 1991) is used to quantify the similarity between

the probability distribution of actual and synthetic errors. JSD is a statistical measure of the

similarity between two probability distributions and is defined as:

JSD(𝐴∥𝐵) = 1
2

KLD
(
𝐴∥1

2
(𝐴 + 𝐵)

)
+ 1

2
KLD

(
𝐵∥1

2
(𝐴 + 𝐵)

)
(7)

where KLD(·) denotes the Kullback-Leibler divergence (KLD). JSD is symmetric and bounded,

which means JSD(𝐴∥𝐵) = JSD(𝐵∥𝐴) and ranges between [0, 1]. JSD=0 indicates that prob-

ability distribution A is identical to B. A higher JSD indicates a greater dissimilarity between

the two probability distributions. JSD ≥ 0.4 is generally considered to indicate significant

disparities between the two distributions (Netzel and Stepinski 2015) and JSD ≤ 0.1 indicates

the two distributions being closely similar to each other (Baasch et al. 2021).

We choose JSD over KLD because JSD is symmetric (i.e., not affected by the distribution

order), whereas KLD is not symmetric. The symmetry ensures that the divergence measure treats

both distributions equally, providing an unbiased assessment of their similarity. Additionally,

JSD is always finite and bounded between 0 and 1, enhancing interpretability and making

meaningful comparisons across different scenarios. In contrast, KLD can be unbounded and

produce infinite values if the probability distributions have zero probabilities in places where

the other distribution does not, making JSD a more robust choice for our analysis.
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3 Result

In this section, we utilize the statistical parameter JSD to analyze the similarity between the

synthetic and historical forecast errors and then create the synthetic forecast.

3.1 Ambient temperature

Table 1 presents the AR(1) parameters for four cities: Berkeley, Leuven, Berlin and Oslo.

The similarity between the historical error and the synthetically generated error in the ambient

temperature is evaluated by calculating the JSD. A synthetic error is generated for all points

with the historical forecast collected for each location. This evaluation metric represents the

four analyzed locations in Fig. 7.

Table 1: Summary of AR(1) Parameters for Ambient Temperature in Four Cities. 𝜙 represents
the autoregressive coefficient, 𝜇 and 𝜎 are the mean and standard deviation of the residuals 𝜀,
where 𝜀 ∼ N (𝜇, 𝜎).

City Berkeley Leuven Berlin Oslo

𝝓 0.939 0.918 0.903 0.924

𝝁 0.008 0.045 0.047 0.017

𝝈 0.711 0.771 0.575 0.850
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Figure 7: JSD analysis between historical and synthetic ambient temperature forecast errors
across prediction horizons for four cities.

The JSD shows a very high similarity in the distributions for Oslo. Meanwhile, the similarity

is notably high for the Leuven and Berlin locations and slightly lower for the Berkeley locations.

The ambient temperature error model is assessed by analyzing additional statistical parameters.

As the ambient temperature error has a Gaussian distribution, the evolution of the mean error

and the standard deviation through the prediction horizon is also analyzed in Fig. 8 and Fig. 9,

respectively. The location of Leuven has been left out of the figures for clarity of the results, as

the predictions are updated every 6 hours in Leuven, and the results cannot be analyzed hourly

in the same way as the rest of the locations. All the available historical forecasts are used to

calculate the statistical indicators for the real error, and the emulated forecasts are generated for

all the points with historical forecasts available for each location.
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Figure 8: Mean temperature error evolution through the prediction horizon for the real error and
the synthetically generated error for Berkeley, Berlin and Oslo.

Figure 9: Standard deviation temperature error evolution through the prediction horizon for the
real error and the synthetically generated error for Berkeley, Berlin and Oslo.

The mean and standard deviation of the synthetic errors evolve along the prediction horizon,

following the same tendency as the real errors at the Berkeley and Oslo locations. In the case of

Berlin, the tendency differs slightly. Fig. 10 shows an example of the real ambient temperature

for a specific time period, the historic forecast for the temperature, and the synthetically generated

forecast with the proposed model.
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Figure 10: Comparison of actual ambient temperature forecast with 10 synthetic ambient
temperature forecasts at 2018-02-21 00:00:00 from Oslo dataset.

3.2 GHI

Table 2 presents the AR(1) parameters for three cities: Berkeley, Leuven, and Berlin. Fig. 11

illustrates a comparison between Berlin’s historical and synthetic forecast errors across selected

prediction horizons of 1, 12, 24, and 48 hours. The data is generated using the same method

as in the ambient temperature section, which utilizes historical forecasts and calculated AR(1)

parameters. The results reveal a high degree of similarity between the historical and synthetic

forecast errors, underscoring the effectiveness of this method. The datasets for Berkeley and

Leuven exhibit a similar behavior. To further quantify this similarity, we use the statistical

parameter JSD. Fig. 12 presents the results of JSD analysis for the three cities. As we can see

from the figure, the JSD of GHI across prediction horizons is relatively small for all three cities,

indicating that the landscapes are similar overall but with some differences. Fig. 13 compares an

example of 10 synthetic GHI forecasts with the actual forecast from the Berlin dataset. Synthetic

forecasts capture the basic shape of the profile measurement profile, exhibit a range of variability

around it, and cover the actual forecasts.
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Table 2: Summary of AR(1) Parameters for GHI in Three Cities. The autoregressive coefficient
is denoted by 𝜙. Residuals, 𝜀, are characterized by a Laplace distribution with location 𝑢 and
scale 𝑏: 𝜀 ∼ Laplace(𝑢, 𝑏).

City Berkeley Leuven Berlin

𝝓 0.67 0.63 0.62

𝒖 10.63 4.44 1.86

𝒃 87.44 91.97 45.64

Figure 11: Comparison of forecast error distributions for historical and synthetic forecasts at
selected lead times (𝜏 = 1, 12, 24, 48 hours) for the Berlin data. Each subplot represents a
different lead time 𝜏.
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Figure 12: JSD analysis between historical and synthetic GHI forecast errors across the prediction
horizon for three cities.

Figure 13: Comparison of actual GHI forecast with ten synthetic GHI forecasts at 2020-04-13
00:00:00 from Berlin dataset.
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4 Discussion

4.1 Contribution

In this work, we model the weather forecast uncertainty in scenarios where weather forecasts are

provided by external services to advanced control developers. We focus on ambient temperature

and GHI, two critical boundary conditions for a building’s thermal load. The studied datasets

comprise data collected from different locations with varying climate regions, including cases

where the forecasts and measurements are provided by the same service and cases where they are

not. We found that the weather forecasts are biased, meaning the mean of the forecast residuals

is non-zero. Additionally, as expected, the standard deviations of the forecast residuals increase

with the prediction horizon.

Our primary contribution involves applying the AR(1) model to emulate weather forecast

data. We discovered that the AR(1) model effectively represents the tendencies of these statistical

parameters. The residuals of the temperature forecast follow a normal distribution, while those

of the GHI forecast do not. The residuals of the GHI forecast are centered around zero because

the GHI forecasts at nighttime are always zero, with no forecast errors. After excluding the

GHI residuals during nighttime, we found that the remaining forecast residuals follow a Laplace

distribution.

We also propose a workflow for modeling and generating synthetic weather forecast data

using the AR(1) model. The temperature forecasting process begins with pre-processing the raw

data by comparing historical forecasts and measured data to obtain the forecast residuals. Then,

we identify the parameters of the AR(1) model using the least-squares approach and generate

the synthetic forecast data using the identified AR(1) model. For the solar irradiation forecasts,

additional pre-processing and post-processing steps are necessary. In the pre-processing stage,

we remove the nighttime data before fitting the Laplace model. In the post-processing stage, we
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apply a moving average filter to the generated forecast data since the standard deviation of the

forecast error for solar irradiation is larger than that for ambient temperature forecasts.

Finally, we introduce Jensen-Shannon divergence as a metric to quantify the statistical

similarity between the generated and real weather forecast errors. A smaller Jensen-Shannon

divergence value indicates a higher similarity between the distributions of the forecast residuals.

We believe the Jensen-Shannon divergence is a more comprehensive and suitable statistical

measure because it compares the entire distribution rather than just two statistics, such as the

mean and standard deviation.

Though we focused on ambient temperature and GHI forecasts in this study, the proposed

approach has the potential to be applied to other weather forecast variables. Moreover, the

findings of this study can be used to develop building controllers that consider the presence of

uncertain weather forecasts using techniques such as stochastic Model Predictive Control (MPC)

or robust MPC.

4.2 Limitation and future work

Our study has several limitations. First, our empirical analysis is based on the data collected

from four cities. Whether these four cities are adequately representative remains unknown. It

is necessary to validate the generalizability of the method as more site datasets are available.

Second, we only consider the self-dependence in our auto-regressive model, ignoring other

exogenous uncertainty sources, such as cloudiness information for GHI variables. There is

a trade-off between model accuracy and complexity. We hope our model can be as simple

as possible until it cannot be simpler. The other uncertain sources (such as cloudiness) are

less accessible. Therefore, we did not include them in our models. In the case of the ambient

temperature, in some locations, the proposed model presents a higher error in the first hour of the

prediction horizon than in the rest of the time points due to a worse fitting to the proposed normal
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distribution. More location analysis will be needed to investigate this observation. Finally, this

work did not consider any potential correlation of forecast errors among them, for example,

where a forecast that under-predicts global horizontal irradiation may be more likely to also

under-predict ambient air temperature for the same horizon. Instead, the synthetic forecasts are

generated individually for each variable.

In the next step, we propose developing an emulator of weather forecast uncertainty, which

will be integrated into the BOPTEST forecast API, which currently provides test controllers

with deterministic forecasts of disturbances in a given test case. By incorporating our weather

forecast uncertainty emulator into BOPTEST, building controllers can be tested and optimized

in the simulated environment that considers the uncertainty of weather forecasts.

Additionally, future studies could extend our approach to model the uncertainties in diffuse

and direct solar irradiation components separately. Incorporating these components would

enhance the applicability of our model for applications that specifically rely on direct or diffuse

solar irradiation data.

5 Conclusion

Although with the improvement of weather forecast technology, the uncertainty of weather

forecast is unavoidable. Quantifying and modeling weather forecast uncertainty is important

because it is necessary to consider weather forecast uncertainty when developing and comparing

advanced building controllers. To address this problem, we present a workflow to model the

weather forecast uncertainty using the AR model. We are especially interested in the ambient

temperature and GHI forecast, two essential boundary conditions for building thermal dynamics.

Four ambient temperatures and three GHI datasets from different locations were analyzed. We

applied the AR(1) model to simulate the weather forecast, a normal distribution to fit the

temperature forecast residuals and a Laplace distribution to fit the GHI forecast residuals. We
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used the JSD to evaluate the similarity between synthetic and actual forecast errors. Our results

show that the average JSD temperature over the horizons of Berkeley, Leuven, Berlin and Oslo

are approximately 0.027, 0.021, 0.018 and 0.008, respectively, and the average JSD of GHI

over the horizons of Berkeley, Leuven, and Berlin are approximately 0.016, 0.058 and 0.013,

respectively. The low values of JSD indicate a high similarity between the distributions of

generated and actual forecast errors. We also found the forecast errors vary a lot in different

locations. We then generate several synthetic forecasts and compare them to the original

forecasts. Our results show that the synthetic predictions cover the same area as the original

forecasts, showing that our approach can generate synthetic weather forecasts that are statistically

similar to the actual ones.
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Chen, Kyle Benne, Draguna Vrabie, Michael Wetter, et al. Building optimization testing

framework (boptest) for simulation-based benchmarking of control strategies in buildings.

Journal of Building Performance Simulation, 14(5):586–610, 2021. doi: 10.1080/19401493.

2021.1986574.

David Blum, Zhe Wang, Chris Weyandt, Donghun Kim, Michael Wetter, Tianzhen Hong,

and Mary Ann Piette. Field demonstration and implementation analysis of model predictive

control in an office hvac system. Applied Energy, 318:119104, 2022. doi: 10.1016/j.apenergy.

2022.119104.

Shobhit Chaturvedi and Elangovan Rajasekar. Application of a probabilistic lhs-pawn approach

32

https://darksky.net/dev


to assess building cooling energy demand uncertainties. Building Simulation, 15(3):373–387,

2022. doi: 10.1007/s12273-021-0815-6.

Shuhao Chen, Wanli Min, and Rong Chen. Model identification for time series with dependent

innovations. Statistica Sinica, 23(2):873–899, 2013. doi: 10.5705/ss.2010.219.

Deutscher Wetterdienst. Statistically optimised weather forecasts (mosmix), a. URL

https://www.dwd.de/EN/research/weatherforecasting/met_applications/

nwp_applications/mosmix_application_node.html. Last accessed 17 April 2023.

Deutscher Wetterdienst. Opendata, dwd, b. URL https://opendata.dwd.de/climate_

environment/CDC/observations_germany/climate/. Last accessed 17 April 2023.

Bing Dong, Reisa Widjaja, Wenbo Wu, and Zhi Zhou. Review of onsite temperature and solar

forecasting models to enable better building design and operations. Building Simulation, 14:

885–907, 2021. doi: 10.1007/s12273-020-0759-2.
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