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ABSTRACT OF THE DISSERTATION

Ideology Analysis for Social-Media Users via Multi-Modal Data Mining

by

Zhiping Xiao

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Yizhou Sun, Co-Chair

Professor Mason A. Porter, Co-Chair

Analyzing public opinions on political affairs never fails to attract researchers’ attention.

One popular application is analyzing ideologies of the ordinary citizens. Traditionally,

researchers collect public opinions by conducting surveys, interviews, or estimate via the

roll call data. It took a lot of time to come to a conclusion, and it was also hard to find

representative objects and keep the objects’ opinions unaffected by researchers who design

the survey questions. By using social media data, some of the previously-mentioned problems

are mitigated due to the unprecedented massive scale. However, we need to keep in mind

that social media data might be systematically biased in some other ways. For instance,

those who never use social media could not be included.

In recent years, social media, such as Twitter, plays an increasingly important role in

people’s life. People express opinions, digest information, and interact on social medias.

All these behaviors left massive amount of observable clues online, which we collect as our

data. Centered around the problems on political ideology analysis, we start from collecting

a list of politicians who have verified accounts on Twitter. Then we build our data sets from

the Twitter accounts who are not further than one hop away from the politicians, directly

following or are followed by the politicians. Although it becomes much easier to collect

massive amount of data in an efficient and timely manner, social media data bring us unique
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challenges. For example: (1) we need to deal with the data size which is typically large; (2)

there are seldom ground-truth knowledge on social media data, which leads to the lack of

labels; (3) we need to consider how to deal with the multi-modality nature of our data.

If we view each user account as a node, their interactive behaviors could be modeled

as links in between. Since they interact in multiple ways, the graph structure we form

is heterogeneous. If we view each account as an individual information source, we could

represent its feature by the collection of tweets it posted in the past. If we consider temporal

information as well, the whole system could also be regarded as a multi-agent dynamic

system. Based on the observation of the data, we have proposed the following research

problems to answer:

(1) Can we rely solely on the user behavior data, represented as heterogeneous types of

links in the graph structure, to reveal the users’ ideologies?

(2) Can we rely solely on the text information from tweets, to reveal the users’ political

polarities?

(3) By learning from the historical data on social media, containing text, link, and temporal

information, can we predict the future trend?

To answer the first research problem, we proposed a model that successfully uses the

heterogeneous types of relations, called TIMME (Twitter Ideology-detection via Multi-

task Multi-relational Embedding). Challenges come from (1) the extreme sparsity of the

labels, (2) the incompleteness of the input features, and (3) the heterogeneous types of links.

TIMME is overall better than the state-of-the-art models for ideology detection on Twitter.

In theory, it could be extended to other data sets, and could be apply to tasks other than

ideology detection.

The work we’ve done to answer the second problem resulted in an embedding approach

called PEM (i.e., Polarity-Aware Embeddings Using Multi-Task Learning). The ideological

divisions in the United States have become increasingly prominent in daily communication,

and a lot of research has been conducted. We propose to quantify political polarity in
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social-media text data using a polarity-aware method of learning word representations. By

learning a word embedding with an explicit polarity dimension, one can infer the polarity of

a post and therefore of the social-media account that produced it. Decomposing a traditional

embedding into a polarity-neutral semantic component and a polarity-aware component is

a major challenge. Very sparse labels is another key challenge. Our experimental results

demonstrate that our model can successfully learn high-quality polarity-aware embeddings.

The third research question is answered by our next project, a social dynamic system

model that captures the updating patterns in real-world social network data sets. We faced

challenges on both the data end and the model end. From the data set, there is no existing

publicly-available data sets on real-world social network observations. From the model

perspective, modeling continuous time is trickier than modeling discrete time by nature.

After decided that we should consider using following the Neural-ODE framework, other

challenges came about, such as the data size, and the selection of an appropriate decoder

task. Our experimental results show that the framework we propose is capable of learning

the dynamic changes in the social network data sets. And our framework could also be used

to verify how well an opinion dynamic model captures the changes of a specific real-world

data set, under a given task.
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CHAPTER 1

Introduction

In this chapter, we show the background of our research works, we start from discussing our

motivation, and include the three research problems we study.

1.1 Motivation

Online social network platforms are platforms where people register accounts to become their

users, generate content such as text or images, and interact with each other. These social

networking service, or social media, provide a wide variety of data to be studied.

Those real-world data are meaningful to us if we are interested in public opinions [26, 32,

69, 71, 74]. They provide clues we can utilize for analyzing the public and each individual [3,

7, 26, 32, 59, 69, 71, 74, 79, 95, 122].

Unlike the traditional survey-based methods of collecting people’s opinions, which were

usually expensive and not efficient enough [3, 118], social media provide an opportunity of

analyzing people’s opinions easily, at a large scale, and in a timely manner. People express

their opinions online, and are influenced by each other. While social opinions and social

activities are becoming more and more indivisible from the online world, political-related

affairs are not an exception. For example, some social movements are initially started online.

Among all the social networking service platforms, Twitter 1 is especially outstanding by

the amount of active accounts, as well as the developer-friendly APIs they once provided

1https://twitter.com/
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us in the past few years. 2 By using their APIs, we could easily and legally access a huge

amount of data. Further more, due to the huge popularity on Twitter, most of the politicians

(i.e., the congress members 3, the presidents in recent years, and the presidents’ cabinets),

have their verified accounts on Twitter. Those politicians’ accounts could be used as as high-

quality source of labeled data. The only downside is that they only take a small portion of

the whole data set we have. Although our labels are of high quality in general, we still suffer

from the scarcity of the ground-truth labels.

Our goal is to make good use of the multi-modality social media data to analyze the

political tendencies of the accounts in social networks.

There are various ways of viewing the Twitter data structure. For example: if we view

each account as a node, their interactive behaviors could be modeled as heterogeneous types

of links connecting two nodes together [33, 59]. If we view each account as an individual

information source, we focus on the collection of tweets it posted, and conduct studies on

the text content. If we consider temporal information as well, the entire system could also

be regarded as a multi-agent dynamic system. Based on the observations of the data, we

propose to solve the following research problems:

(1) Can we rely solely on the account interaction data, represented as heterogeneous types

of links in the graph structure, to reveal the accounts’ ideologies?

(2) Can we rely solely on the text information from tweets, to reveal the accounts’ political

polarities?

(3) By learning from the historical data on social media, containing text, link, and temporal

information, can we predict the future trend?

2https://developer.twitter.com/en/docs/twitter-api

3https://www.congress.gov/congressional-record
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1.2 Research Problems

In this thesis, we introduce two published research works and one ongoing research work.

The first two works, corresponding to the first two research problems we proposed,

are focusing on different aspects of the social network data: links and text information,

respectively. TIMME: Twitter Ideology-detection via Multi-task Multi-relational Embedding

(Chapter 2) models the the relations among the accounts; Constructing Polarity-Aware

Embeddings using Multi-Task Learning (Chapter 3) studies the text content posted as tweets.

The social-dynamical-system project aims to solve the third research problem. We

propose to utilize our data, methods, and results from the first two projects to help us handle

the heterogeneous graph data, and text information better. In this project, we propose to

predict accounts’ future posts and interactions on a social-media platform using their past

behavior data.

The timeline of the projects involved are roughly listed in the Table 1.1:

Table 1.1: The Timeline of the Projects

Project Years We Worked on Other Contributors

TIMME 2018,2019 Weiping Song, Haoyan Xu, Zhicheng Ren, Haoran Wang, Zhiwen Hu, Prof. Yizhou Sun

PEM 2019,2020,2021 Pei Zhou, Jeffrey Zhu, Yining Wang, Wen Hong Lam, Prof. Mason A. Porter, Prof. Yizhou Sun

LSDS 2021, 2022, 2023, 2024 Zijie Huang, Xiao Luo, Yifang Qin, Xinyu Wang, Prof. Mason A. Porter, Prof. Yizhou Sun

1.2.1 Can Ideology be Inferred from Interactions?

The first project TIMME [158] was conducted to study whether or not we can infer an

account’s ideology from its interaction with other accounts. Motivated by the scarcity and

noisiness of the real-world social network data sets, it proposed a novel Multi-Task GNN-

based approach to model heterogeneous graphs.

Inspired by previous works [59], we proposed to reveal the ideology of ordinary people

by utilizing the multiple types of interactions among them, and by using a very limited
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amount of political-party labels. There, we model ideology-detection of Twitter accounts as

political-tendency classification of nodes in a heterogeneous graph.

Multiple tasks are involved in the decoder part of the model: one classification task, and

|R| = 5 link-prediction tasks. We get the tweets from the politicians’ and some of their one-

hop neighbors’ accounts, and extract the interactions among them, such as retweet, reply,

mention, and like. The multi-task setting makes the model more stable, and lets each task

help each other to achieve higher performances togetherly.

Designed specifically for real-world social network data, we focused on solving the scarcity

of labels, and handling the incompleteness of data more carefully. We also explored the

possibility of using text embedding as nodes’ features to further improve the performance.

However, our conclusion is, a low-quality text embedding is much worse than one-hot

embedding or random embedding. Such low-quality text embeddings include but are not

limited to: taking the mean value of GloVe embeddings of all tokens in a sentence as

sentence-level embeddings. As a matter of fact, previous studies have shown that in many

scenarios, a large language model that is not specifically designed for learning sentence-

level embeddings, will not be significantly better than the naive models such as the GloVe

baseline [125].

We have showed that inferring ideology of social network nodes from their links/relations

is not only doable, but also much easier and much more reliable than inferring their ideologies

from their tweet contents.

This work was published in the conference KDD (i.e., Knowledge Discovery in Database)

year 2020 proceedings [158].

1.2.2 Can Polarity be Explained by Text?

The second project PEM (see Chapter 3), is to study whether or not we can provide

explanations on the accounts’ political polarity, using only their text. We proposed an

effective novel approach to reveal political-polarities from tweet text, emphasizing the usefulness
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of text content. We found words and phrases naturally carrying political-polarity information,

but those polarities are not reflected in today’s word embeddings. We thereby learn an

embedding that captures both the semantic meaning and the political polarity of words

and phrases. Inspired by GN-Glove [172] which reveal gender polarity by learning a two-

component embedding, we propose to learn a two-component embedding that reveals political

polarity: semantic component and polarity component.

However, in gender bias studies, there exists many ground-truth counter pairs such as

male and female, actor and actress, king and queen, and so on. And those ground-truth pairs

exist for decades and seldom change their meanings from the gender perspective. Different

from the gender bias cases, political polarity is ever changing in an extremely high frequency.

For example, at some point, certain groups of people use the hashtag #AllLivesMatter

to show that they have something different to say about the #BlackLivesMatter movement.

But after a few years we see #AllLivesMatter used together with #Pro-Life, meaning

that they are against abortion. Then in some other case studies on the tweet content, we

see #AllLivesMatter and #Pro-Life are used together again to call for animal right

protection.

At an early stage of the project, we have tried to figure out some reliable ground-truth

counter pairs of words from the politicians’ tweets. Later on, inspired by some adversarial

frameworks, such as Cycle-GAN [177], we decided to solve this problem by designing

an adversarial framework for training, using the two sets of tweets from the democratic

politicians and republican politicians respectively.

In this project there involves three tasks when learning such embeddings: (1) preserving

the context information (2) using the polarity component to predict polarity (3) enforcing

the semantic component and the polarity component to be as independent from each other

as possible.

This work was published in the EPJ (i.e. European Physical Journal) – Data Science, in

year 2023 [159].
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1.2.3 Can Future Behaviors be Predicted using the Past Records?

In the work to be submitted soon, we are examining the third proposed research problem by

studying changes in accounts’ opinions with time. To do this, we are constructing a social

dynamical systems to model opinion trajectories on a social network (see Chapter 4).

The existing works on analyzing how do a group of people influence each other and change

their opinions over time, are mostly tested on simulated data, under a lot of constraints. Most

of the existing opinion dynamic model studies focus more on the mathematical features of

these models and the heuristics behind their design decisions. On the other hand, there

are many neural network models targeting at modeling sequential data, but they are not

specifically designed for real-world social network data analysis. Therefore, seldom do they

consider the unique challenges of such applications, such as the noisiness and sparseness of

the data. Besides, most of them are designed to handle observations in discrete time steps,

while we propose to study continuous-time data.

In this project, we model the dynamical changes using an ordinary-differential-equation

(ODE) solver, which enables the system to predict future observation at any continuous time,

instead of using discrete time steps. Inspired by Neural-ODE [25], LG-ODE [67], and

NRI [77], we implement this design by adopting a variational-autoencoder (VAE) framework.

In terms of the VAE components, we use a temporal GNN model as its encoder to generate

hidden representations at the starting time (t = 0), and we write down the update rules in

a neural-network format our ODE function. We can use our decoder for several different

downstream tasks, such as ideology prediction, hidden-representation reconstruction, and

interaction prediction. And it could potentially be applied to many other different tasks, as

long as reasonable training objective is provided.

We plan to submit this work in 2024.

6



1.2.4 Potential Future Direction

One of the most interesting yet challenging direction, is to study whether or not we can infer

causality relation from the observations online.

This future plan is motivated by the previous projects. We are interested in further

interpret the interventions and causal inferences in the social networking system. Even

though we can model the links or relations, the node features or text content, and their

dynamic changes properly, it still remains unclear what outcomes each factor causes (see

Chapter 5.2). The social dynamical system project might be helpful in helping us overcome

the lack-of-counter-factual-label problem.
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CHAPTER 2

Twitter Ideology-detection via Multi-task

Multi-relational Embedding

In this work, 1 we study whether or not we can infer an account’s ideology from its interaction

with other accounts. We estimate it by using Twitter data, and formalize it as a binary

classification problem. Ideology-detection has long been a challenging yet important problem.

Certain groups, such as the policy makers, rely on it to make wise decisions. Back in the old

days when labor-intensive survey-studies were needed to collect public opinions, analyzing

ordinary citizens’ political tendencies was uneasy. The rise of social medias, such as Twitter,

has enabled us to gather ordinary people’s data easily. However, the incompleteness of the

labels and the features in social network data sets is tricky, not to mention the enormous

data size and the heterogeneousity. The data differ dramatically from many commonly-used

data sets, thus brings unique challenges. In our work, first we built our own data sets from

Twitter. Next, we proposed TIMME, a multi-task multi-relational embedding model, that

works efficiently on sparsely-labeled heterogeneous real-world data set. It can also handle the

incompleteness of the input features. Experimental results showed that TIMME is overall

better than the state-of-the-art models for ideology detection on Twitter. Our findings

include: edges can lead to good classification outcomes without text; conservative voice

is under-represented on Twitter; follow is the most important relation to predict ideology;

retweet and mention enhance a higher chance of like, etc. Last but not least, TIMME can

be extended to other data sets and tasks in theory.

1This work was published in the conference KDD (i.e., Knowledge Discovery in Database) year 2020
proceedings [158]. Zhiping Xiao lead the discussions, designed the model under supervision of Prof. Yizhou
Sun, and was in charge of most of the coding and writing.
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Derica Rosa

Isabel

Democratic is the 
best party I believe.

Tweet

Retweet 
     (with comment)

I STRONGLY disagree. 
@Derica
I prefer Republican.

Follow

some_democratician

Follow

some_republican

I agree with what
@some_democratician
said because ......

But @some_republican
proposed something
very interesting......

Okay.
Whatever you say.ReplyLike Like

RT @Isabel
I agree w...

Retweet

Mention

Mention

Mention

Figure 2.1: An example of different relation types on Twitter. Derica is on liberal (left) side

while Rosa is on the conservative (right) side. Isabel does not have significant tendency.

2.1 Introduction

Studies on ideology are generally attracting more attention as the election year approaches.

Ideology here refers to the political stance or tendency of people, often reflected as left- or

right-leaning. Measuring the politicians’ ideology helps predict some important decisions’

final outcomes, but it does not provide more insights into ordinary citizens’ views, which

are also of decisive significance. Decades ago, social scientists have already started using

probabilistic models to study the voting behaviors of the politicians[3, 118]. But seldom did

they study the mass population’s opinions, for the survey-based study is extremely labor-

intensive and hard-to-scale. The booming development of social networks in the recent years

shed light on detecting ordinary people’s ideology. In social networks, people are more relaxed

than in an offline interview, and behave naturally. Social networks, in return, has shaped

people’s habits, giving rise to opinion leaders, encouraging youngsters’ political involvement

[114].

Most existing approaches of ideology detection on social networks focus on text [26,

32, 69, 71, 74]. Most of their methodologies based on probabilistic models, following the

long-lasting tradition started by social scientists. Some others [7, 59, 74, 122] noticed the
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advantages of neural networks, but seldom do they focus on edges. We will show that the

social-network edges’ contribution to ideology detection has been under-estimated.

An intuitive explanation of how edges could be telling is illustrated in Figure 2.1. Different

types of edges come into being for different reasons. We have five relation types between

accounts on Twitter today: follow, retweet, reply, mention, like, and the relations affect

each other. For instance, after Rosa retweet from Derica and mention her, Derica reply

to her; when Isabel mention some politicians in her posts, the politician’s followers might

come to interact with her. One might mention or reply to debate, but like always stands

for agreement. The relations could reflect some opinions that a user would never tell you

verbally. Words could be easily disguised, and there is always a problem called “the silent

majority”, for most people are unwilling to express.

Yet there are some uniqueness of Twitter data set, bringing about many challenges. It is

especially the case when existing approaches are mostly dealing with smaller data sets with

much sparser edges than ours, such as academic graphs, text-word graphs, and knowledge-

graphs. First, our Twitter data set is large and the edges are relatively dense (Section 2.4).

Some models such as GraphSAGE [62] will be super slow sampling our graph. Second, labels

are extremely sparse, less than 1%. Most approaches will suffer from severe over-fitting, and

the lack of reliable evaluation. Third, features are always incomplete, for in real-life data sets

like Twitter, many accounts are removed or blocked. Fourth, modeling the heterogeneity is

nontrivial. Many existing methods designed for homogeneous networks tend to ignore the

information brought by the types of edges.

Existing works can not address the above challenges well. Even though some realized

the importance of edges [33, 59], they failed to provide an embedding. Most people learn an

embedding by separating the heterogeneous graph into different homogeneous views entirely,

and combine them in the very end.

We propose to solve the above-listed problems by TIMME (Twitter Ideology-detection

via Multi-task Multi-relational Embedding), a model good at handling sparsely-labeled large

graph, utilizing multiple relation types, and optionally dealing with missing features. Our
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code with data is released on Github at https://github.com/PatriciaXiao/TIMME. Our

major contributions are:

• We propose TIMME for ideology detection on Twitter, whose encoder captures the

interactions between different relations, and decoder treats different relations separately

while measuring the importance of each relation to ideology detection.

• The experimental results have proved that TIMME outperforms the state-of-the-art

models. Case studies showed that conservative voice is typically under-represented on

Twitter. There are also many findings on the relations’ interactions.

• The large-scale data set we crawled, cleaned, and labeled (Appendix 2.7.1) provides a new

benchmark to study heterogeneous information networks.

In this paper, we will walk through the related work in Section 2.2, introduce the

preliminaries and the definition of the problem we are working on in Section 2.3, followed

by the details of the model we propose in Section 2.4, experimental results and discussions

in Section 2.5, and Section 2.6 for conclusion.

2.2 Related Work

In this section, we discuss our related works from three perspectives. They are, ideology

detection, graph neural networks, and multi-task learning.

2.2.1 Ideology Detection

Ideology detection in general could be naturally divided into two directions, based on the

targets to predict: of the politicians [30, 107, 119], and of the ordinary people [3, 7, 26, 32, 59,

69, 71, 74, 79, 95, 122]. The work conducted on ordinary people could also be categorized into

two types according to the source of data being used: intentionally collected via strategies

like survey [3, 79], and directly collected such as from news articles [7] or from social networks

[59, 69, 74]. Some studies take advantages from both sides, asking self-reported responses

11
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from a group of users selected from social networks [122], and some researchers admitted the

limitations of survey experiments [95]. Emerging from social science, probabilistic models

have been widely used for such kinds of analysis since the early 1980s [7, 59, 119]. On the

other hand, on social network data sets, it is quite intuitive trying to extract information

from text data to do ideology-detection [26, 32, 69, 71, 74], only a few paid attention to

edges [33, 59]. Our work differs from them all, since: (1) unlike probabilistic models, we

use GNN approaches to solve this problem, so that we take advantage of the high-efficient

computational resources, and we have the embeddings for further analysis; (2) we focus on

relations between users, and proved how telling those relations are.

2.2.2 Graph Neural Networks (GNNs)

In this subsection, we summarize a few types of GNNs.

2.2.2.1 Graph Convolutional Networks (GCNs)

Inspired by the great success of convolutional neural networks (CNNs), researchers have been

seeking for its extension onto information networks [39, 78] to learn the entities’ embeddings.

The Graph Convolutional Networks (GCNs) [78] could be regarded as an approximation of

spectral-domain convolution of the graph signals. A deeper insight [85] shows that the

key reason why GCN works so well on classification tasks is that its operation is a form

of Laplacian smoothing, and concludes the potential over-smoothing problem, as well as

emphasizes the harm of the lack of labels.

GCN convolutional operation could also be viewed as sampling and aggregating of the

neighborhood information, such as GraphSAGE [62] and FastGCN [23], enabling training in

batches. To improve GraphSAGE’s expressiveness, GIN [160] is developed, enabling more

complex forms of aggregation. In practice, due to the sampling time cost brought by our

edges’ high density, GIN, GraphSAGE and its extension onto heterogeneous information

network such as HetGNN [166] and GATNE [20] are not very suitable on our data sets.
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The relational-GCN (r-GCN) model [132] extends GCN onto heterogeneous information

networks. A very large number of relation-types |R| ends up in overwhelming parameters,

thus they put some constraints on the weight matrices, referred to as weight-matrix decomposition.

GEM [91] is almost a special case of r-GCN. Unfortunately, their code is kept confidential.

According to the descriptions in their paper, they have a component of similar use as the

attention weights α in our encoder, but it is treated as a free parameter.

Another way of dealing with multiple edge types is well-represented by SHINE [152],

who treats the heterogeneous types of edges as separated homogeneous edges, and combines

embeddings from all relations in the end. SHINE did not make good use of the multiple

relations to its full potential, modeling the relations without allowing complex interactions

among them. GTN [164] is similar with SHINE in splitting the graph into separate views and

combining the output at the very end. Besides, GTN uses meta-path, thus is potentially

more expressive than SHINE, but would rely heavily on the quality and quantity of the

meta-paths being used.

2.2.2.2 Graph Attention Networks (GATs)

Graph Attention Networks (GATs) [149] are another nontrivial direction to go under the

topic of graph neural networks. It incorporates attention into propagation by applying

self-attention on the neighbors. Multi-head mechanism is typically good at capturing more

aspects of the features, thus learn embeddings more effectively [89, 100].

An extension of GAT on heterogeneous information networks is the Heterogeneous Graph

Attention Network (HAN) [154]. Beside inheriting the node-level attention from GAT, it

considers different relation types by sampling its neighbors from different meta-paths. It

first conducts type-specific transformation and compute the importance of neighbors of each

node. After that, it aggregates the coefficients of all neighbor nodes to update the current

node’s representation. In addition, to obtain more comprehensive information, it conducts

semantic-level attention, which takes the result of node-level attention as input and computes

the importance of each meta-path. We use HAN as an important baseline in our experiments.
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2.2.3 Multi-Task Learning (MTL)

In multi-task learning (MTL) settings, there are multiple tasks sharing the same inductive

bias jointly trained. Ideally, the performance of every task should benefit from leveraging

auxiliary knowledge from each other. As is concluded in [127], MTL could be applied with or

without neural network structure. On neural network structure, the most common approach

is to do hard parameter-sharing, where the tasks share some hidden layers. The most common

way of optimizing an MTL problem is to solve it by joint-training fashion, with joint loss

computed as a weighted combination of losses from different tasks [75]. It has a very wide

range of applications, such as the DMT-demographic models [151] where multiple aspects of

Twitter data (e.g. text, images) are fed into different tasks and trained jointly. Aron and

Nirmal et al. [34] also applied MTL on Twitter, separating the tasks by user categories. Our

multi-task design differs from theirs, and we treat node classification and edge prediction on

different relation types as different tasks.

2.3 Problem Definition

Our goal is to predict Twitter accounts’ ideologies by learning the ideological embedding of

accounts in a political-centered social network.

Definition 2.3.1. (Heterogeneous Information Network) Following previous work

[143], we say that an information network G = {V , E}, where number of vertices is |V| = N ,

is a heterogeneous information network when there are |T | = T types of vertices,

|R| = R types of edges, and max(T, R) > 1. The heterogeneous graph G can be represented

as G = {{V1,V2, . . .VT}, {E1, E2, . . . , ER}}

Each possible edge from the ith node to the jth, represented as eij ∈ E has a weight value

wij > 0 associated to it, where wij = 0 representing eij /∈ E . In our case, G is a directed

graph. In general, we have ⟨vi, vj⟩ ̸≡ ⟨vj, vi⟩ and wij ̸≡ wji.

Our Twitter data GTwitter{V , {E1, E2, E3, E4, E5}} contains T = 1 type of entities (accounts),
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and R = 5 different types of edges (i.e., relations) among the entities, namely follow, retweet,

like, mention, reply.

A detailed description about Twitter data is included in Appendix 2.7.1, and we call

the subgraph we selected from Twitter-network a political-centered social network, which is

defined as follows:

Definition 2.3.2. (Political-Centered Social Network) The political-centered social

network is a special case of directed heterogeneous information network. With a pre-defined

politicians set P ⊆ V , in our selected heterogeneous network GTwitter, for all e = ⟨vi, vj⟩ ∈ Er

where r ∈ {1, 2, . . . , R}, there has to be either vi ∈ P or vj ∈ P . All the politicians in this

data set have ground-truth labels indicating their political stance. The political-centered

social networks are represented as Gp.

We would like to leverage the information we have to learn the representation of the

accounts, which can help us reveal their ideologies. Due to the lack of Independent representatives

(only two in total), we consider the binary-set labels only: {liberal, conservative}. Based

on the ideology tendencies of the two political parties in recent years [43], we label the

Democratic accounts as liberal, and Republican as conservative.

Definition 2.3.3. (Multi-task Multi-relational Network Embedding) Given a network

Gp = {V , {E1, E2, E3, E4, E5}} where the number of nodes is |V| = N , the goal of TIMME is to

learn such a representation hi ∈ Rd where d≪ N for all vi ∈ V , that captures the categorical

information of nodes, such as their ideology tendencies. As a measurement, we want the

representation H ∈ RN×d, to success on both node-classification and edge-prediction.

2.4 Methodology

The general architecture of our proposed model is illustrated in Figure 2.2. It contains two

components: encoder and decoder. The encoder contains two multi-relational convolutional

layers. The output of the encoder is passed on to the decoder, who handles the downstream

tasks.
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Figure 2.2: The general architecture of our model, with the encoder shown in details. Grey

blocks represent missing features. Our model can either handle them by treating them as

learnable parameters, or use one-hot features.

2.4.1 Multi-Relation Encoder

As mentioned before in Section 2.1, the challenges faced by the encoder part are the large

data scale, the heterogeneous edge types, and the missing features.

GCN is very effective in learning the nodes’ embeddings, especially good at classification

tasks. Meanwhile, it is also naturally efficient, in terms of handling the large amount of

vertices N .

Random-walk-based approaches such as node2vec [57] with time complexity O(a2N),

where a is the average degree of the graph, suffer from the relatively-high degree in our

data set. On the other hand, GCN-based approaches are naturally efficient here. Like

is analyzed in Cluster-GCN [28], the time complexity of the standard GCN model is

O(L∥A∥0F + LNF 2), where L is the number of layers, ∥A∥0 the number of non-zeros in

the adjacency matrix, F the number of features. Note that the time complexity increases

linearly when N increases. A GCN model’s layer-wise propagation can be written as
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Figure 2.3: The two types of decoder in our multi-task framework, referred to as TIMME

and TIMME-hierarchical.

H(l+1) = σ
(

ÂH(l)W (l)
)

,

where Â = D̃
1
2 (A + IN)D̃ 1

2 , and D̃ is defined as the diagonal matrix and A the adjacency

matrix. Each diagonal element Dii of D could also be written as di, and it is equal to the sum

of all the edges attached to vi; Matrix H(l) ∈ RN×d(l) is the d(l)-dimensional representation

of the N nodes at the lth layer; and W (l) ∈ Rd(l)×d(l+1) is the weight parameters at layer l.

This is similar to the the case of an ordinary MLP (i.e., Multi-layer Perceptron) model.In a

certain way, Â can be viewed as A after being normalized.

We propose to model the heterogeneous types of edges and their interactions in the

encoder. Otherwise, if we split the views like many others did, the model will never be

expressive enough to capture the interactions among relations. For any given political-

centered graph GP , let’s denote the total number of nodes |V| = N , the number of relations

|R| = R, the set of nodes V , the set of relationsR, and Er being the set of edges under relation

r ∈ R. Representation being learned after layer l (l ∈ {1, 2}) is represented as H(l) ∈ RN×d(l) ,

and the input features form the matrix H(0) ∈ RN×d(0) . The set of relations R̂, where

|R̂| = 2R + 1, includes all relations in the original direction (R), the relations in reversed

direction (R), plus an identical-matrix relation (1). Our data set has only |R| = R = 5

relation types, so it should be fine not to conduct a weight-matrix decomposition like r-
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GCN [132]. We model the layer-wise propagation at layer l + 1 as

H(l+1) = σ
( ∑

r∈R̂

αrÂrH
(l)W (l)

r

)
, (2.1)

where H(l) ∈ RN×d(l) is used to denote the representation of the nodes after the lth encoder

layer, and the initial input feature is H(0). Âr = D̃
1
2
r (Ar + IN)D̃

1
2
r is defined in similar way as

Â in GCN, but it is calculated per relation. The activation function σ we use is ReLU. By

default, α = [α1, . . . αr . . . ]T ∈ R2R+1 is calculated by scaled dot-product self-attention over

the outputs of H(l+1)
r = ÂrH

(l)W (l)
r :

A = Attention(Q, K, V ) = softmax
(QKT

√
d

)
V ∈ R(2R+1)×d , (2.2)

where Q = K = V ∈ R(2R+1)×d comes from the 2R + 1 matrices H(l+1)
r ∈ RN×d, stacking

up as O ∈ R(2R+1)×N×d, taking the mean value over the N entities. We then calculate an

attention to apply to the 2R + 1 outputs as

α = softmax
(
sumcol

(
QKT

√
d

))
∈ R2R+1 , (2.3)

where sumcol(X) takes the sum of each column in X ∈ Rd1×d2 and ends up in a vector ∈ Rd2 .

The last problem to solve is that the initial features H(0) are often incomplete in real

life. In most cases, people would go by one-hot features or randomized features. But we

want to enable our model to use the real features, even if the real-features are incomplete.

Inspired by graph representation learning strategies such as LINE [145], we propose to treat

the unknown features as trainable parameters. That is, for a graph Gp whose vertice set is

V , Vfeatured
⋂Vfeatureless = ∅ and Vfeatured

⋃Vfeatureless = V , for any node with valid feature

∀vi ∈ Vfeatured, the node’s feature vector H
(0)
i is known and fixed. For ∀vj ∈ Vfeatureless,

the corresponding row vector H
(0)
j is unknown and treated as a trainable parameter. The

generation of the features will be discussed in the Appendix 2.7.1. In brief, TIMME can

handle any missing input feature.
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2.4.2 Multi-Task Decoder

We propose TIMME as a multi-task learning model such that the sparsity of the labels

can be overcome with the help of the edge information. As is shown in Figure 2.3, we

propose two architectures of the multi-task decoder. When we test it on a single-task i, we

simply disable the remaining losses but a single Li, and name our model in single-task mode

TIMME-single.

L0 is defined the same way as was proposed in [78], in our case a binary cross-entropy

loss:

L0 = −
∑

y∈Ytrain

(
y log(y) + (1− y) log(1− y)

)
, (2.4)

where Ytrain contains the labels in the training set we have.

L1, . . .LR are edge-prediction losses, calculated by binary cross-entropy loss between

edge-labels and the predicted edge scores’ logits. To keep the edges asymmetric, we used

Neural Tensor Network (NTN) structure [140], with simplification inspired by DistMult [161].

We set the number of slices be k = 1 for Wr ∈ Rd×d×k, omitting the linear transformer U ,

and restricting the weight matrices Wr each being a diagonal matrix. For convenience, we

refer to this edge-prediction cell as TIMME-NTN. Consider triplet (vi, r, vj), and denote

the encoder output of vi, vj ∈ V as hi, hj ∈ Rd, the score function of the edge is calculated

as:

s(i, r, j) = hiWrhj + V

hi

hj

+ b , (2.5)

where Wr ∈ Rd×d is a diagonal matrix for any r ∈ R. The parameters Wr, V ∈ R2d and

b ∈ R are to be learned in our training phase. Group-truth label of a positive (existing) edge

is 1, otherwise 0.

The first decoder-architecture TIMME sums all R + 1 losses as L = ∑R
i=0 Li. Without

average, each task’s loss is directly proportional to the amount of data points sampled

at the current batch. Low-resource tasks will take a smaller portion. This is the most

straightforward design of a MTL decoder.
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Table 2.1: Descriptive statistics of the three selected subsets of our data set.

PureP P50 P20∼50 P+all

# Account 583 5,435 12,103 20,811

# Edge 122,347 1,593,721 1,976,985 6,496,107

# Labeled Account 581 759 961 1,206

# Featured Account 579 5,149 11,725 19,418

# Follow-Edge 59,073 529,448 158,746 915,438

# Reply-Edge 1,451 96,757 121,133 530,598

# Retweet-Edge 19,760 311,359 595,030 1,684,023

# Like-Edge 14,381 302,571 562,496 1,794,111

# Mention-Edge 27,682 353,586 539,580 1,571,937

The second, TIMME-hierarchical, has λ = [λ1, . . . , λ|R|]T being computed via self-

attention on the average embedding over the R edge-prediction task-specific embeddings.

Here, L = ∑R
i=0 Li is the same with TIMME. TIMME-hierarchical essentially derives

the node-label information from the edge relations, thus provides some insights on each

relation’s importance to ideology prediction. TIMME, TIMME-hierarchical, TIMME-

single models share exactly the same encoder architecture.

2.5 Experiments

In this section, we introduce the data set we crawled, cleaned and labeled, together with our

experimental results and analysis.

2.5.1 Data Preparation

The statics of the political-centered social network data sets we have are listed in Table 2.1.

Data prepared is described in Appendix 2.7.1, ready by April, 2019. In brief, we did the
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following:

1. Collecting some Twitter accounts of the politicians P .

2. For every politician p ∈ P , crawl their most-recent s followers and s followees, putting

them in a candidate set C.

3. For every candidate c ∈ C, we also crawl their most-recent s followers to make the follow

relation more complete.

4. For every account u ∈ P ∪ C, crawl their tweets as much as possible, until we hit the

limit. The limit is set by Twitter Developer API, which allows us to visit no more than

3, 200 most recent tweets per account.

5. From the followers and followees, we collect follow relation, from the tweets we extract

the following relationships: retweet, mention, reply, and like.

6. Select different groups of accounts from C, based on how many connections they have

with members in P , and making those groups into the 4 subsets, as is shown in Table 2.1.

7. We filter the relations within any selected group so that if a relation e = ⟨vi, vj⟩ ∈ Gp,

there must be vi ∈ Gp and vj ∈ Gp.

Our four data sets represent different account groups. PureP contains only the politicians.

P50 contains politicians and accounts keen on political affairs, indicated by that they are

following or followed by at least 50 politicians. P20∼50 is politicians with the group of

accounts who are of moderate interests on politics, following or are followed by 20 to 50

politicians. The accounts considered in P+all is a union set of the three, plus a subset of the

accounts following or being followed by only 1 to 5 politicians’ accounts, selected uniformly at

random, from all the followers and followees of the politicians. P+all is the most challenging

subset to all models. More details on the data set, including how we generated features and

how we tried to get more labels, are all described in details in Appendix 2.7.1.
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Table 2.2: Node classification measured by F1-score/accuracy. The best performances are

in bold.

Model PureP P50 P20∼50 P+all

GCN 1.0000/1.0000 0.9600/0.9600 0.9895/0.9895 0.9076/0.9083

r-GCN 1.0000/1.0000 0.9733/0.9733 0.9895/0.9895 0.9327/0.9333

HAN 0.9825/0.9824 0.9466/0.9467 0.9789/0.9789 0.9238/0.9250

TIMME-single 1.0000/1.0000 0.9733/0.9733 0.9895/0.9895 0.9333/0.9324

TIMME 0.9825/0.9824 0.9867/0.9867 1.0000/1.0000 0.9495/0.9500

TIMME-hierarchical 1.0000/1.0000 0.9733/0.9780 0.9895/0.9895 0.9580/0.9583

2.5.2 Performance Evaluation

In practice, we found that we do not need any features for nodes, and use one-hot encoding

vector as initial feature.

We split the train, validation, and test set of node labels by 8:1:1, keep it the same

across all data sets and throughout all models, measuring the labels’ prediction quality by

F1-score and accuracy. For edge-prediction tasks, we split all positive edges into training,

validation, and testing sets by 85:5:10, keeping same portion across all data sets and all

models, evaluating by ROC-AUC and PR-AUC.2

2.5.2.1 Baseline Methods

2AUC refers to area under the curve, PR refers to the precision–recuall curve, and ROC refers to the
receiver operating characteristic curve.
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Table 2.3: Edge-prediction measured by ROC-AUC/PR-AUC. The best performances are in

bold.

Model PureP P50 P20∼50 P+all

Follow Relation

GCN+ 0.8696/0.6167 0.9593/0.8308 0.9870/0.9576 0.9855/0.9329

r-GCN 0.8596/0.6091 0.9488/0.8023 0.9872/0.9537 0.9685/0.9201

HAN+ 0.8891/0.7267 0.9598/0.8642 0.9620/0.8850 0.9723/0.9256

TIMME-single 0.8809/0.6325 0.9717/0.8792 0.9920/0.9709 0.9936/0.9696

TIMME 0.8763/0.6324 0.9811/0.9154 0.9945/0.9799 0.9943/0.9736

TIMME-hierarchical 0.8812/0.6409 0.9809/0.9145 0.9984/0.9813 0.9944/0.9739

Reply Relation

GCN+ 0.8602/0.7306 0.9625/0.9022 0.9381/0.8665 0.9705/0.9154

r-GCN 0.7962/0.6279 0.9421/0.8714 0.8868/0.7815 0.9640/0.9085

HAN+ 0.8445/0.6359 0.9598/0.8616 0.9495/0.8664 0.9757/0.9210

TIMME-single 0.8685/0.7018 0.9695/0.9307 0.9593/0.9070 0.9775/0.9508

TIMME 0.9077/0.8004 0.9781/0.9417 0.9747/0.9347 0.9849/0.9612

TIMME-hierarchical 0.9224/0.8152 0.9766/0.9409 0.9737/0.9341 0.9854/0.9629

Retweet Relation

GCN+ 0.8955/0.7145 0.9574/0.8493 0.9351/0.8408 0.9724/0.9303

r-GCN 0.8865/0.6895 0.9411/0.8084 0.9063/0.7728 0.9735/0.9326

HAN+ 0.7646/0.6139 0.9658/0.9213 0.9478/0.8962 0.9750/0.9424

TIMME-single 0.9015/ 0.7202 0.9754/0.9127 0.9673/0.9073 0.9824/0.9424

TIMME 0.9094/0.7285 0.9779/0.9181 0.9772/0.9291 0.9858/0.9511

TIMME-hierarchical 0.9105/0.7344 0.9780/0.9190 0.9766/0.9275 0.9869/0.9543

Like Relation

GCN+ 0.9007/0.7259 0.9527/0.8499 0.9349/0.8400 0.9690/0.9032

r-GCN 0.8924/0.7161 0.9343/0.7966 0.9038/0.7681 0.9510/0.8945

HAN+ 0.8606/0.6176 0.9733/0.8851 0.9611/0.9062 0.9894/0.9481

Continued on next page
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Table 2.3 – Continued from previous page

Model PureP P50 P20∼50 P+all

TIMME-single 0.9113/0.7654 0.9725/0.9119 0.9655/0.9069 0.9796/0.9374

TIMME 0.9249/0.7926 0.9753/0.9171 0.9759/0.9292 0.9846/0.9504

TIMME-hierarchical 0.9278/0.7945 0.9752/0.9175 0.9752/0.9271 0.9851/0.9518

Mention Relation

GCN+ 0.8480/0.6233 0.9602/0.8617 0.9261/0.8170 0.9665/0.8910

r-GCN 0.8312/0.6023 0.9382/0.7963 0.8938/0.7563 0.9640/0.8902

HAN+ 0.9000/0.7206 0.9573/0.8616 0.9574/0.8891 0.9724/0.9119

TIMME-single 0.8587/0.6502 0.9713/0.8981 0.9614/0.8923 0.9725/0.9096

TIMME 0.8684/0.6689 0.9730/0.9035 0.9730/0.9185 0.9839/0.9446

TIMME-hierarchical 0.8643/0.6597 0.9732/0.9046 0.9723/0.9166 0.9846/0.9463

We explored a lot of potential baseline methods, while only a tiny subset of them are

suitable for our case. Some methods we mentioned in section 2.2, HetGNN [166], GATNE

[20] and GTN [164] generally converge approximately 10 to 100 times slower than our model

on any task we have. The GraphSAGE model [62] is not very suitable on our data set.

Moreover, other well-designed models such as GIN [160] are way too different from our

approach at a very fundamental level, thus are not considered as baselines. Some other

methods such as GEM [91] and SHINE [152] should be capable of handling the data set at

this scale, but they are not releasing their code to the public, and we can not easily guarantee

reproduction.

We decided to use the three baselines: GCN, r-GCN, and HAN. They are closely-

related to our model, open-sourced, and efficient. We understand that none of them were

specifically designed for social networks. Early explorations without tuning them resulted in

terrible outcomes. To make the comparisons fair, we did a lot of work in hyper-parameter

optimization, so that their performances are significantly improved. The GCN baseline treats

all edges as the same type and put them into one adjacency matrix. We also extend the
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baseline models to new tasks that were not mentioned in their original papers. We refer

to GCN+ and HAN+ as the GCN-base-model or HAN-base-model with TIMME-NTN

attached to it. By comparing with GCN/GCN+, we show that reserving heterogeneousity is

beneficial. Comparing with r-GCN, we prove that their design is not as suitable for social

networks as ours. With HAN/HAN+ we show that, although their model is potentially more

expressive, our model still outperforms theirs in most cases, even after we carefully improved

it to its highest potential (Appendix 2.7.3). We did not have to tune the hyperparameters

of TIMME models closely as hard, thanks to its robustness.

HAN+ has an expressive and flexible structure that helps it achieve high in some tasks.

The downsides of HAN/HAN+ are also obvious: it easily gets over-fitting, and is extremely

sensitive to data set statistics, with large memory consumption that typically more than

32G to run tasks on P+all, where TIMME models takes less than 4G space with the same

hidden size and embedding dimensions as the baseline model’s settings.

2.5.2.2 TIMME

To stabilize training, we would have to use the step-decay learning rate scheduler, the same

with that for ResNet. The optimizer that we use is Adam, kept consistent with GCN

and r-GCN. We do not need input features for nodes, thus our encoder utilizes one-hot

embedding by default. One of the many advantages of TIMME is how robust it is to

the hyper-parameters and all other settings, reflected by that the same default parameter

settings serve all experiments well. Like many others have done before, to avoid information

leakage, whenever we run tasks involving edge-prediction, we will remove all edge-prediction

test-set edges from our adjacency matrices.

We show in Table 2.2 and 2.3 that multi-task models TIMME and TIMME-hierarchical

are generally better than TIMME-single on most tasks. Even TIMME-single is superior

to the baseline models most of the times. TIMME models are stable and scalable. The

classification task, despite the many labels we manually added, easily over-estimating the

models. Models trained on single node-classification task will easily get over-fitted. If we
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Reply Weights Friend Weights Encoder Output

Figure 2.4: t-SNE of matrices onto 2D space. We show reply (and reversed) and friend (and

reversed) weight matrices of the first convolutional layer (W (0)
r ) and the encoder output

embeddings (H(2)). Red for ground-truth Republican nodes, and blue for Democratic.

force them to keep training after convergence, only multi-task TIMME models keep stable.

The baselines and TIMME-single suffer from dramatic performance-drop, especially HAN/HAN+.

2.5.3 Case Studies

In this subsection, we discuss our findings from the case studies on our TIMME models.

2.5.3.1 Selection of Input Features

To justify the reason that we do not need any features for nodes, we show the node-

classification training-curves of TIMME-single with one-hot features, randomized features,

partly-known-partly-randomized features, and with partly-known-partly-trainable features.

The results are collected from P50 data set. To make it easier to compare, we have fixed

training epochs 300 for node-classification, and 200 for follow-relation edge-prediction. It

is shown that text feature is significantly better than randomized feature, and treating

the missing part of the text-generated feature as trainable is better than treat it as fixed

randomized feature. However, one-hot feature always outperforms them all, essentially

means that relations are more reliable and less noisy than text information in training our

network embedding. We have proved in Appendix 2.7.2 that the 2R + 1 weight matrices at

the first convolutional layer captures the nodes’ learned features when using one-hot features.

Experimental evidence is shown in Figure 2.4. It shows that although worse than the encoder
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(a) Features’ Impact on Node-Classi�cation Task (b) Features’ Impact on “Follow” Link-Prediction Task
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Figure 2.5: Illustration of impact of features. We show random features in blue, partly known

and partly randomized (and fixed) in yellow, partly-known and partly-trainable features in

green, and one-hot features in red.

output, the first embedding layer also captured the features of nodes. The embedding comes

from epoch 300, node-classification task on PureP.

2.5.3.2 Performance Measurement on News Agencies

A good measurement of our prediction’s quality is to evaluate the predicted ideology on

some accounts with ground-truth ideologies, while being included but remain unlabeled in

our data set (i.e., not belonging to our training set). News agents’ accounts are typically

such accounts, as is shown in Figure 2.8. Among them we select some of the agencies

believed to have clear tendencies.3 The continuous scores we have for prediction come from

the softmax of the last-layer output of our node-classification task, which is in the format

of (probleft, probright). Right in the middle is (probleft, probright) = (0.5, 0.5), left-most is

(1.0, 0.0), and right-most is (0.0, 1.0). For most cases, our model’s predictions agree with

people’s common belief. But CNN News is an interesting case. Many people voted for that

CNN is extremely left, but our model output shows that it is a slightly-left-leaning centrist.

3We fetch most of the ground-truth labels of the news agents from the public voting results on https:
//www.allsides.com/media-bias/media-bias-ratings, got them after the prediction results are ready.
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Figure 2.7: Overall ideology on Twitter, Florida (FL).
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CNN (@CNN)
CBC News (@cbcnews)

Guardian News (@guardiannews)
New York Times (@nytimes)

Christian Science Monitor (@csmonitor)
The American Spectator (@amspectator)

Fox News Opinion (@FoxNewsOpinion)
National Review (@NRO)

Figure 2.8: The News Agencies’ Ideologies. Text colors come from the public’s voting online,

blue for left and red for right, and black for middle (centrist). The lengths of the bars, starting

from the middle, come from the softmax of the last-layer output of our node-classification

task, which is in the format of (probleft, probright). Right in the middle is (probleft, probright) =

(0.5, 0.5), left-most is (1.0, 0.0), and right-most is (0.0, 1.0).
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Figure 2.9: The impact of training on single-edge-prediction tasks, on Pure-P (left), P50

(middle), P+all (right) data set respectively.
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Some others have findings supporting our results: CNN is actually only a little bit left-

leaning.4,5 Although the public tends to believe that CNN is extremely liberal, it is more

reasonable to consider it as centrist biased towards left-side. People’s general belief on news

agencies’ ideologies might be more polarized than their actual stance. Besides, although

there are typically more famous news agencies on the liberal side [46, 70], according to our

experimental results, those right-leaning ones tend to support their side more firmly.

2.5.3.3 Geography Distribution

Consider results from the largest data set (P+all), and with predictions coming out from

TIMME-hierarchical. We predict each Twitter account’s ideology as either liberal or

conservative. Then we calculate the percentage of the accounts on both sides, and depict

it in Figure 2.6. Darkest red represents p ∈ [0, 1
8 ] of accounts in that area are liberal,

remaining [7
8 , 1] are conservative; darkest blue areas have [7

8 , 1] accounts being liberal, [0, 1
8 ]

conservative. The intermediate colors represent the evenly-divided ranges in between. The

accounts’ locations are collected from the public information in their account profile. From

our observation, conservative people are typically under-represented. 6,7 For instance, as a

well-known firmly-conservative state, Utah (UT) is only shown as slightly right-leaning on

our map.

That our results on states like Utah being less extreme than people’s common belief

is intuitively reasonable, since Twitter accounts are also biased. Typically biased towards

youngsters and urban citizens. Although we are able to solve the problem of silent-majority

by utilizing their edge relations instead of text expressions, we know nothing about offline

ideology. We suppose that some areas are silent on Twitter, and this guess is supported by

4https://libguides.com.edu/c.php?g=649909&p=4556556

5https://www.allsides.com/news-source/cnn-media-bias

6National General Election Polls data are partly available at https://www.realclearpolitics.com/
epolls/2020/president/National.html.

7Compare with the visualization of previous election at https://en.wikipedia.org/wiki/Political_
party_strength_in_U.S._states.
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P+all

Figure 2.10: Illustration of the task-weight parameter λ value in decoder on each data set.

the county-level results at Florida, shown in Figure 2.7. This time the color-code represents

evenly-divided seven ranges from [0, 1
7 ] to [6

7 , 1], because of the necessity of reserving one color

for representing silent areas (denoted as white for N/A). The silent counties, typically some

rural areas, have no account in our data set, inferring that people living there do not use

Twitter very often. The remaining parts of the graph makes complete sense, demonstrating

a typical swing state.8

2.5.3.4 Correlated Relations

When we train TIMME-single with only one relation type, some other relations’ predictions

benefit from it; they become increasingly accurate. We assume that, if by training on relation

ri we achieve a good performance on relation rj, then we say relation ri probably leads to

rj. As is shown in Figure 2.9, relations among politicians are relatively independent except

that all other relations might stimulate like. In more ordinary account groups, reply is the

one that significantly benefit from all other relations. It is also interesting to observe that

the highly-political P50 shows that like leads to retweet, while from more ordinary accounts’

perspective once they liked they are less likely to retweet. The relations among the relations

are asymmetric.

2.5.3.5 Relation’s Contributions to Ideology Detection

The importance of each relation to ideology prediction can be measured by the value of the

corresponding weight value λr that measures the relative importance of the corresponding

8The ground-truth election outcome in Florida at 2016 is at https://en.wikipedia.org/wiki/2016_
United_States_presidential_election_in_Florida.
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task r, in the decoder of TIMME-hierarchical. All the values are close to 0.2 in practice,

in the range [0.99, 2.01], but they still have some common trends, as is shown in Figure

2.10. Despite that reply pops out rather than follow on PureP, we still insist that follow is

the most important relation. That is because we only crawled the most recent about 5000

followers and the most recent 5000 followees. If one account follows another account, a long

time ago, we do not capture it. The follow relation is especially incomplete on PureP.

2.6 Conclusion

The TIMME models that we proposed handles multiple relations, with a multi-relational

encoder, and multi-task decoder. We step aside the silent-majority problem9 by relying

mostly on the relations, instead of the text information. Optionally, we accept incomplete

input features, but we showed that edges are able to do well on generating the ideology

embedding without additional text information. From our observation, the edges help

much more than naively-processed text in ideology-detection problem, and follow is the

most important relation to ideology detection. We also concluded from visualizing the

state-level overall ideology map that conservative voices tend to be under-represented on

Twitter. Meanwhile we confirmed that public opinions on news agencies’ ideology can be

polarized, with very obvious tendencies. Our model can be easily extended to any other

social network embedding problem, such as on any other data set like Facebook as long as

the data set is legally available, and of course it works on predicting other tendencies like

preferring Superman or Batman. We also believe that our data set would be beneficial to

the community.

9In terms of the tweet contents, y, about 97% of the tweets are produced by only the most active 25% of
accounts [142].
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2.7 Appendix

In this section, we provide the supplementary materials that can help our readers better

understand our work.

2.7.1 Data Preparation

We target at building a data set representing the political-centered social network (Section

2.3), a selected subset from the giant Twitter network. Handling this data set would be

challenging. For example, for GraphSAGE, neighborhood-sampling can not be easily done

both effectively and efficiently. Our data set reaches the blind spots of many existing models.

The tools we used to crawl politicians’ name lists from the government website, and

their potential Twitter accounts from Google, is Scrapy.10 To legally and reliably crawl from

Twitter data, we first applied for Developer API from Twitter11, and then used Tweepy12 for

crawling. We set very strict rate limits for our crawlers so as not to harm any server. Our

data set is released at https://github.com/PatriciaXiao/TIMME. Raw data was collected

starting Jan 2019, and finished by April 2019.

2.7.1.1 Twitter IDs Preparation

Using the same notation as in Section 2.3, we describe our procedure to prepare Twitter IDs.

To construct Gp = {V , {E1, E2, E3, E4, E5}}, we first select the users to be included V , then we

include the links between vertices in V under each relation r ∈ R = {1, 2, 3, 4, 5} in Er.

Politicians Twitter IDs

As is described briefly in Section 2.5.1, we need to start from a set of politicians P , which

we treat as seeds for further crawling.

10https://scrapy.org/

11https://developer.twitter.com/

12https://www.tweepy.org/
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To start, we first obtain the name list of the recently-active politicians. This list consists

of the following items:

• The union-set of 115th and 116th US Congress members, where we observe a lot of overlap

between the two groups.13

• Recent-years’ presidents and their cabinets.14

• Additional politicians that are well-known to the public: Hilary Clinton, who recently ran

for US president; and Michelle Obama, who was the former First Lady.

Next, with the help of Google, we crawled the most-likely Twitter names and IDs of

the politicians. We do so automatically, by providing Google a politician’s name and the

keyword “twitter” and parsing the first response. Then after manual filtering, we have 583

politicians’ Twitter accounts available, who make up our politicians set P . Anyone else to

be included in our data set must be in the 1-hop neighborhood of a politician (Section 2.3).

Candidate Non-Politicians Twitter IDs

With the help of Twitter Developer API, we are able to get the full followers and followees

list of any Twitter user.

However, it is not affordable to include all followers and followees of the politicians,

thus we set a limit on window size s when crawling the candidate non-politicians list, only

accepting the most-recent s = 5,000 followers or followees of any politician. These followers

and followees we collected form a raw candidate set Craw. Then we remove the politicians

from this set, resulting in the final candidates set C = Craw−P . For all vi ∈ C, we apply the

same window size s = 5,000 and crawled their most recent s followers, and s followees. All

follower-followee pairs are stored into a database for the convenience of the following steps.

13Congress members’ name list with party information is publicly available at https://www.congress.
gov/members .

14Obama and Trump’s cabinets are publicly available at https://obamawhitehouse.archives.
gov/administration/cabinet and https://www.whitehouse.gov/the-trump-administration/
the-cabinet/, respectively.
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Selecting Subgroups from Candidates

The user set C is still too large, and we do not know anything about its components. To

conduct meaningful analysis, we need to select some meaningful subgroups from it, such as

a very-political subgroup and a political-outliers subgroup, etc.

The criteria we used to select the desired subgroups of users is some thresholds. We

define a political-measurement ti for each user vi ∈ C, who is followed by ti,1 politicians

p ∈ P , and meanwhile following ti,2 politicians, so ti is computed by ti = max(ti,1, ti,2).

Then we set a threshold range t, set upon each ti, used for filtering the groups of users.

Considering we set t as threshold range for graph Gp, for all vi ∈ V , if ti ∈ t, then vi ∈ Gp;

otherwise vi /∈ Gp. By having t = {∞}, we select a minimum subgraph containing purely

politicians, resulting in our PureP data set. Setting the threshold t ∈ [50,∞) allows us to

select a small group of users who are keen on political topics, together with the politicians,

being our P50 data set. We set t ∈ [20, 50) for less-political users, plus the politicians,

being our P20∼50 data set. The data set generated using t ∈ [20,∞) includes all nodes vi

with ti ≥ 20. We want to have a data set representing more general users, containing some

users from each group. Therefore, we include another 3,000 users randomly selected from the

group t ∈ [0, 5). Adding these random political-outlier users will make the data set resembles

the real network even more. Putting together the politicians, the t ∈ [20,∞) group, and the

3, 000 random outliers from t ∈ [0, 5) group, we form the data set P+all. Ideally, P+all

has representatives of all groups of users on Twitter. The statistics are concluded in Table

2.1.

2.7.1.2 Relation Preparation

Only the follow relation is directly observed and already well-prepared at this stage (stored

in a database, as we mentioned before). The other Twitter relations: retweet, mention, like,

reply — must be concluded from tweets. We distinguish the different relation types from

the tweets by the tweets’ fields in responded Json from API. For example, there are some

fields indicating if an “” mark is a mention, a retweet, or it links to nothing. According to
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our observation, the fields in the Json file responded from Twitter API might change across

time. We don’t know when will it be the next update, so there’s no ground-truth solution for

this part. We suggest whoever want to do so test the crawler first on her/his own account,

trying all behaviors to conclude some patterns. Note: rate limit applies.15

Due to the Twitter official API limits, the maximum amount of tweets we can crawl

for each user along the timeline is around 3,200. Therefore, all relations are somewhat

incomplete observations. All links we have only reflect some recent interactions between the

users. One should keep the limitations of our data set in mind when using it.

2.7.1.3 Feature Preparation

We get feature from text, using users’ tweets posted to generate their features. Although

there has been some recent advances in NLP with transformer-based structures, such as

BERT and XLNet, Sentence-BERT [125] found that BERT/XLNet embeddings are

generally performing worse than taking the mean value of all words’ GloVe [115] embeddings

on many sentence-level tasks. Not to mention the computational cost of transformers. We

therefore use GloVe mean of the words as features, Wikipedia 2014 + Gigaword 5, 300-

dimensional pre-trained version. When we apply the GloVe mean embedding on tweet-level

and want to tell the ideology behind the tweets, we can easily achieve about 72.84% accuracy,

using a 2-layers MLP, after only 200 epochs of training.

2.7.1.4 Label Preparation

If we are to use only the 583 labels from the politicians, the evaluation will always be

untrustworthy. To overcome this issue, we manually expand the labels. We first crawled the

users’ profiles of each vi ∈ P ∪ C, getting their information such as location and account

description. Next, using the descriptions, searching for the words democratic, republican,

conservative, liberal, their correct spell and variations, we have a large group of candidates.

15https://developer.twitter.com/en/docs/basics/rate-limiting
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Then we do manual filtering to get rid of the uncertain users, reading their descriptions and

recent tweets. We successfully included 2,976 high-quality new labels in the end. Those

labels make the node-classification task significantly more stable and reliable.

2.7.2 Explanations on Weight being Feature

Starting from our layer-wise propagation formula, we have that, at the first convolutional

layer (notations in Section 2.4):

H(1) = σ
( ∑

r∈R̂

αrÂrH
(0)W (0)

r

)
,

where H(0) ∈ N×d(0) is the input feature-matrix. When using one-hot embedding of features,

H(0) = I and d(0) = N , so the right-hand-side is equivalent with σ
(∑

r∈R̂ αrÂrW
(0)
r

)
. Now,

W (0)
r on its own plays the role of H(0)W (0)

r when H(0) ̸= I. An intuitive way of understanding

is to view the relation r’s propagation as aggregation of a linear transformation (W (0)
r ) done

on H(0), from the neighborhood (Âr) of each node under relation r. We propose that this

procedure can also be viewed as simply the propagation of W (0)
r ∈ RN×d(1) . In terms of what

we compute, having one-hot features and weight matrix W (0)
r is equivalent as having input

features being H̃(0) = W (0)
r ∈ RN×d(1) , and set W̃ (0)

r ∈ Rd(1)×d(1) = Id(1) being fixed identical

matrix not to be updated. That’s the reason why we believe that W (0)
r captures the nodes’

learned features under relation r, and drew Figure 2.4.

2.7.3 Baseline Hyper-Parameter and Architectural Optimizations

In this subsection, we discuss how we train our baselines on our data sets.

2.7.3.1 Applying GCN model Directly

As is discussed in Section 2.2, due to the uniqueness of the political-centered social network

data set, most of the existing models won’t work well under our problem settings. We

want to examine how well can GCN do when treating all relations as the same, ignoring the
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heterogeneous types. Very interestingly, without much work on hyper-parameter optimization,

we only increased the hidden size and added the learning rate scheduler, it works pretty well.

This phenomenon can potentially be an indirect evidence that relations are correlated, in

addition to the discussions in Section 2.5.

2.7.3.2 Missing-Task Completion

We compare our model’s performance on each task with the baselines. Ideally, we want

models working on heterogeneous information networks with both node-classification task

and link-prediction task as our baselines, so that we can compare with them directly.

However, the situation we faced was not as easy as such. For instance, GCN and HAN

never considered applying themselves directly on link-prediction tasks. But we all know that

once we have the embeddings of the nodes, link prediction is doable.

Therefore, we decided that whenever a baseline originally can’t handle a task, we lend it

our decoder’s task-specific cells. This decision brings about some significant improvements

on the link prediction performances of NTN+ and GCN+, since TIMME-NTN is powerful

and efficient for link-prediction. Just in case, we also decide that when a node-classification

task is missing, we should add a linear transformation layer with output units 2, the same as

what we did, and apply a simple cross-entropy loss. From this perspective, it is no longer fair

to compare them with r-GCN directly. To distinguish them from others’ standard models,

we add a plus sign “+” to the names, indicating that “we lend it our cells”.

2.7.3.3 Optimizing r-GCN

The most important contribution of r-GCN is the weight-matrix decomposition methods.

This mechanism would be very helpful in reducing the parameters, especially when the

number of relations R is super high. However, in our case, where R is small, the weight-

decomposition operation is counter-effective. The first option, basis decomposition, the

number of basis b is easily being larger than R. In the second option, block-diagonal

decomposition, reduces the parameter size too dramatically, and harms the model’s performance.
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Reviewing the experiments reported in the r-GCN paper, seeing how they chose these

hyper-parameters across data sets, we found that when R is small, they often chose basis-

decomposition with b = 0. We go by the same option, which works well in practice.

2.7.3.4 Optimizing HAN

HAN/HAN+, in general, because of the complex structure with a lot of parameters, is

easily overfit. What makes things worse, its training curve is never stable, and our early

tryouts on using validation set to automatically stop it at an optimal point did not work

well. We had do it manually, by verifying when its best result appears on the validation

set and when over-fitting starts, finding the right time to stop training. By default, we

set learning rate 0.005, regularization parameter 0.001, the semantic-level attention-vector

dimension 128, multi-head-attention cell’s number of heads K = 8. We set the hyper-

parameters in the TIMME-NTN component of HAN+ the same with ours. Optimizing

HAN was a tough work to do, for it requires re-adapting every choices we made on every

data set for every task. Adding more meta-path would potentially boosting its performance,

but the computational cost will be overwhelming. Another observation is that, TIMME

models are significantly better than HAN/HAN+ in handling imperfect features. When

using GloVe-mean features, TIMME models typically perform about 1% worse than

using one-hot features, while HAN/HAN+ experience performance-drop up to around 10%.
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CHAPTER 3

Constructing Polarity-Aware Embeddings Using

Multi-Task Learning

In this work, 1 we aim at inferring explainable polarity scores of the user accounts, given

the text contents of their posts. Ideological divisions in the United States have become

increasingly prominent in daily communication. Accordingly, there has been much research

on political polarization, including many recent efforts that take a computational perspective.

By detecting political biases in a corpus of text, one can attempt to describe and discern

the polarity of that text. Intuitively, the named entities (i.e., the nouns and the phrases

that act as nouns) and hashtags in text often carry information about political views. For

example, people who use the term “pro-choice” are likely to be liberal, whereas people

who use the term “pro-life” are likely to be conservative. In this paper, we seek to reveal

political polarities in social-media text data and to quantify these polarities by explicitly

assigning a polarity score to entities and hashtags. Although this idea is straightforward,

it is difficult to perform such inference in a trustworthy quantitative way. Key challenges

include the small number of known labels, the continuous spectrum of political views, and

the preservation of both a polarity score and a polarity-neutral semantic meaning in an

embedding vector of words. To attempt to overcome these challenges, we propose the

Polarity-aware Embedding Multi-task learning (PEM) model. This model consists of

(1) a self-supervised context-preservation task, (2) an attention-based tweet-level polarity-

inference task, and (3) an adversarial learning task that promotes independence between

1This work was published in the EPJ (i.e. European Physical Journal) – Data Science, in year 2023 [159].
Zhiping Xiao lead the discussions, designed the model under supervision of Prof. Yizhou Sun and Prof.
Mason A. Porter, and was in charge of most of the coding and writing.
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an embedding’s polarity dimension and its semantic dimensions. Our experimental results

demonstrate that our PEM model can successfully learn polarity-aware embeddings that

perform well at tweet-level and account-level classification tasks. We examine a variety of

applications — including spatial and temporal distributions of polarities and a comparison

between tweets from Twitter and posts from Parler — and we thereby demonstrate the

effectiveness of our PEM model. We also discuss important limitations of our work and

encourage caution when applying the PEM model to real-world scenarios.

3.1 Introduction

In the United States, discourse has seemingly become very polarized politically and it often

seems to be divided along ideological lines [82, 156]. This ideological division has become

increasingly prominent, and it influences daily communication.

abortion

(unsatis�ed with)

healthcare

pro-choice pro-life

(criticize)

Trumpcare
(criticize)

Obamacare

liberal conservativeneutral

Figure 3.1: Illustration of inferring political polarities from text.

The analysis of data from social media is important for studying human discourse [21,

135]. To study the polarization of social opinions in online communication, we attempt

to detect polarity biases of entities and hashtags. There are a variety of ways to model

political biases; see, e.g., VoteView (see https://voteview.com/) [14]. A space of political

opinions can include axes for social views (e.g., ranging from “conservative” to “progressive”),

economic views (e.g., ranging from “socialist” to “capitalist”), views on government involvement

(e.g., ranging from “libertarian” to “authoritarian”), and many others. The simplest model

of a political spectrum, which we use in the present paper, is to consider a one-dimensional
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(1D) political space with views that range from “liberal” to “conservative”.

By glancing at a corpus of text (such as a newspaper article or a tweet), humans can

often readily recognize particular views in it without the need to analyze every word in the

corpus. Many items (including named entities and hashtags) in a corpus of text are helpful

for inferring political views [51], and people can quickly discern political views even in small

corpora of text or in short speeches.

On Twitter, political biases are often reflected in the entities and hashtags in tweets.

The entities that we use are nouns and noun phrases (i.e., phrases that act as nouns),

which we identify from text corpora by using existing natural-language-processing (NLP)

tools. For instance, as we illustrate in Figure 3.1, if somebody uses the term “pro-choice” to

describe abortion, they may have a liberal-leaning stance on a liberal–conservative axis of

political views [129]. By contrast, if somebody uses the term “pro-life”, perhaps they have

a conservative-leaning stance. We propose to automate this process in an interpretable way

by detecting the political biases of entities and hashtags, inferring their attention weights in

tweets, and then inferring the political polarities of tweets.

The problem of inferring political polarities from text is somewhat reminiscent of “fairness-

representation” problems [16, 172]. This analogy is not perfect, and these problems have

different objectives. We aim to reveal polarities, whereas fairness studies are typically

interested in removing polarities. The notion of fairness entails that outputs are unaffected

by personal characteristics such as gender, age, and place of birth. In recent studies, Zhao

et al. [172] examined how to detect and split gender bias from word embeddings and Bose

and Hamilton [16] developed models to hide personal information (such as gender and age)

from the embeddings of nodes in graph neural networks (GNNs). Political bias can be

more subtle and change faster than other types of biases. A key challenge is the labeling of

political ideologies. Unlike the inference of gender bias, where it is typically reasonable to use

discrete (and well-aligned) word pairs such as “he”/“she” and “waiter”/“waitress” as a form

of ground truth, political polarity includes many ambiguities [146]. Political ideology exists

on a continuous spectrum, with unclear extremes, so it is very hard to determine either
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ground-truth polarity scores or well-aligned word pairs (e.g., “he” versus “she” is aligned

with “waiter” versus “waitress”) [117].

To infer polarities, we seek to learn an embedding that can help reveal both the semantic

meaning and the political biases of entities and hashtags. We propose a model, which we

call the Polarity-Aware Embedding Multi-task learning (PEM) model, that involves three

tasks: (1) preservation of the context of words; (2) preservation of corpus-level polarity

information; and (3) an adversarial task to try to ensure that the semantic and polarity

components of an embedding are as independent of each other as possible.

Our paper makes the following contributions:

(1) We raise the important and practical problem of studying political bias in a corpus of

text, and we assemble a data set from Twitter to study this problem. Our code, the

data sets of the politicians, and the embedding results of our models are available at

https://bitbucket.org/PatriciaXiao/pem/src/master/.

(2) We propose the PEM model to simultaneously capture both semantic and political-

polarity meanings.

(3) Our PEM model does not rely on word pairs to determine political polarities. Consequently,

it is flexible enough to adapt to other types of biases and to use in other context-

preservation strategies.

(4) Our data, source code, and embedding results are helpful for tasks such as revealing

potential political polarities in a text corpus.

3.2 Related Work and Preliminary Discussions

In this section, we discuss our related works and preliminaries from five perspectives. They

are, political-polarity detection, neural word embeddings, fairness of representations, sentiment

analysis, and recognition of named entities.
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3.2.1 Political-Polarity Detection

There are a variety of ways to formally define the notion of political polarity [14]. We consider

a 1D axis of political views that range from “liberal” to “conservative”. In the United States,

members of the Democratic party tend to be liberal and members of the Republican party

tend to be conservative [82, 88]. This prior knowledge is helpful for acquiring high-quality

labeled data [158], but such data are restricted in both amount and granularity.

The detection of political polarity has been a topic of considerable interest for many

years [97, 116]. Additionally, for more than a decade, social-media platforms like Twitter

have simultaneously been an important source of political opinion data and have themselves

impacted political opinions in various ways [4, 8]. Some researchers have attempted to

infer the political views of Twitter accounts from network relationships (such as following

relationships) [59, 147, 158]. Other researchers have attempted to infer polarity from tweet

text [69, 80].

We seek to infer the political polarities of entities and hashtags in tweets. Gordon et

al. [55] illustrated recently that word embeddings can capture information about political

polarity, but their approach does not separate polarity scores from embeddings and thus

cannot explicitly tell which words are biased. Most prior research has focused on tweet-

level or account-level polarities [73, 150] or on case studies of specific “representative”

hashtags [121]. By contrast, our PEM model focuses on biases at a finer granularity

(specifically, entities and hashtags).

3.2.2 Neural Word Embeddings

We use the term neural word embeddings to describe approaches to represent tokens (e.g.,

words) using vectors to make them understandable by neural networks [10, 83, 87]. Words

can have very different meanings under different tokenizations. In our paper, we tokenize

text into entities (including nouns and noun phrases), hashtags, emoji, Twitter handles,

and other words (including verbs, adjectives, and so on). One way to obtain a neural word
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embedding is the Skip-gram version of word2vec approaches [101], which are based on the

assumption that similar words have similar local textual contexts. Another approach, which

is called GloVe [115], relies on a global co-occurrence matrix of words. Other methods,

such as transformers [41, 148], generate contextualized embeddings (in which a word can

have different embeddings in different contexts). These models encode words, which initially

take the form of a sequence of characters, into a vector space. Therefore, these models are

also often called “encoders”.

In contrast to all of the above studies, our PEM model learns an embedding that captures

both the semantic meanings and the political polarities of words. Our framework is not

limited to any specific embedding strategy. If desired, one can replace the embedding part

(namely, Task #1) of our PEM model by other encoders.

3.2.3 Fairness of Representations

Many researchers have observed that word embeddings often include unwanted biases [99].

In studies of fairness, a model is considered to be “fair” if its outputs are unaffected by

personal characteristics, such as gender and age; it is “biased” (i.e., “unfair”) if such features

influence the outputs. Models often inherit biases from training data sets, and they can

exacerbate such biases [112]. Researchers have undertaken efforts to reveal biases and

mitigate them [16]. For example, Zhao et al. revealed gender-bias problems using their

WinoBias model [171] and attempted to generate gender-neutral representations using their

GN-GloVe model [172].

Such representation-learning algorithms motivate us to separate politically-biased and

politically-neutral components in embeddings (see [172]) and to use an adversarial training

framework to enhance the quality of the captured polarities (see [16]). However, our work

has a different focus than [172] and [16]. These works were concerned with reducing biases,

whereas we seek to reveal differences between polarized groups.
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3.2.4 Sentiment Analysis

Sentiment analysis aims to determine the attitude (negative, positive, or neutral) of a corpus

of text [98, 136]. The use of neural word embeddings is common in statistical approaches to

sentiment analysis [49, 162]. Some of these approaches account for the importance levels of

entities [9, 141].

In many applications, sentiment analysis has relied on much richer labeled data sets than

those that are available in political contexts [136, 144], where it is rare to find high-quality

anchor words (such as good, bad, like, and dislike) [162]. In our paper, we seek to reveal

polarities from textual data. Polarity is different from sentiment. For example, most entities

have neutral sentiments, but these same entities can still have biased polarities.

3.2.5 Recognition of Named Entities

We focus on learning polarity scores for named entities (specifically, nouns and noun phrases)

and hashtags. The terminology “named entity”, which comes from NLP, refers to a noun or

a noun phrase that is associated with an entity. For example, the United States Congress

is a named entity. We use a named-entity recognition (NER) tool [84, 105] to identify

the entities in our training corpus. In an NER information-extraction task, one seeks to

discern and classify entities in a text corpus into predefined categories, such as person names,

organizations, and locations. We use the popular tools TagMe [44] and AutoPhrase [137]

for our tasks.

3.3 Problem Definition

We use “tokens” to denote the smallest word units that we obtain through tokenization of

tweets. We tokenize entities, hashtags, emoji, mentioned accounts, and other words. We

represent each tweet as a sequence of such tokens. We study the problem of detecting the

political biases of entities and hashtags in tweets. To do this, we seek to learn (1) semantic

embeddings for each token and (2) the political polarities of each entity and hashtag. We then
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obtain tweet-level polarity scores by calculating a weighted average of token-level polarity

scores.

Definition 3.3.1. (Two-Component Polarity-Aware Embeddings) We design a two-

component polarity-aware embedding z ∈ Rd1+d2 of each token w. Because we seek to learn

1D polarity scores, we set d2 = 1. We decompose z as follows:

z = [z(s) , z(p)] , z(s) ∈ Rd1 , z(p) ∈ Rd2 .

The two components of the embedding z are

(1) the polarity-neutral semantic component z(s) and

(2) the polarity-aware political-polarity component z(p).

By forcing z(s) to be polarity-neutral, we seek to enhance the quality of the political

polarities that we capture in z(p). We set d1 = d and d2 = 1, and we use f(z(p)) = zd+1

as the “polarity score” of a token. When determining tweet-level polarities, we ignore z(p)

for tokens that are neither entities nor hashtags. We expect that zd+1 < 0 when a word is

liberal-leaning and that zd+1 > 0 when a word is conservative-leaning. The absolute value

|zd+1| indicates the magnitude of a political leaning. Using our approach, we are able to infer

the political polarity of a token in O(1) time. We are interested in the polarity scores of

tokens that are either entities or hashtags. It is very common to use a 1D polarity score [14],

so we do so in the present paper. However, it is straightforward to extend our PEM model

to incorporate more polarity dimensions.

3.4 Methodology

In this section, we discuss how we design our PEM model. Our model consists of three parts,

and could be regarded as a multi-task framework where each of the three parts handles a

different task.
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Figure 3.2: Schematic illustration of our PEM model. In this illustration, we consider a

tweet with n tokens.

3.4.1 General Design

To generate our proposed embeddings, we infer semantic meanings, infer political polarities,

and use z(p) to capture as much political polarity as possible.

We show a schematic illustration of our model in Figure 3.2. To capture the meanings

of tokens, we learn embeddings from the context of text. We thus propose Task #1 to help

preserve contextual information. To infer political polarities from tokens, we propose Task

#2, in which we use a weighted average of the entities’ and hashtags’ polarity component

z(p) to calculate a polarity score of each tweet. To further enhance the quality of the polarity

component, we propose Task #3, in which we use an adversarial framework to ensure that

the two components, z(s) and z(p), are as independent as possible.

3.4.2 Task #1: Context Preservation

We want our token-level embeddings to preserve contextual information, which has both

semantic information and polarity information. A simple approach is to use Skip-Gram [101].
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Given a document with tokens w1, w2, . . . , wn, we seek to maximize the mean log probability

to observe tokens in a local context. Specifically, we maximize

1
n

n∑
t=1

∑
j∈{−c,...,c}, j ̸=0

ln p(wt+j|wt) , (3.1)

where c indicates the size of a sliding window and

p(wt+j|wt) =
exp(zT

t z′
t+j)∑|W|

i=1 exp(zT
t z′

i)
, (3.2)

where wi is the ith token in the document, the set W is the vocabulary set of all tokens,

zi is the target embedding of token wi, and z′
i is the context embedding. When the index

t + j ̸∈ {1, . . . , n}, we ignore it in (3.2). In Task# 1, we need both zi and z′
i to be able to

distinguish between the target and context roles of the same token [101]. In Task #2 (see

Section 3.4.3) and Task #3 (see Section 3.4.4), we use only the context embedding z′
i.

The loss function ℓTask 1 for Task #1 is the negative-sampling objective function

ℓTask 1 = − 1
k + 1

(
ln
(
σ(zT

t z′
t+j)

)
+

k∑
i=1

Ewi∼Pnoise(w)
[
ln
(
σ(−zT

t z′
i)
)])

, (3.3)

where k is the number of negative samples (i.e., token pairs that consist of a target token

and a token from a noise distribution) per positive sample (i.e., token pairs that occur in

the same sliding window), the sigmoid function σ is σ(x) = 1
1+exp(−x) , and Pnoise(·) is a noise

distribution. We obtain negative samples of word pairs from the noise distribution [101],

whose name comes from the idea of noise-contrastive estimation (NCE) [61]. A good model

should distinguish between data and noise. We use the same noise distribution as in Skip-

Gram [101]:

Pnoise(w) =
(

U(w)∑
i∈W U(i)

)3/4

, (3.4)

where U(w) denotes the number of appearances of a token w in the training corpus. Minimizing

ℓTask 1 approximates the maximization of the mean log probability (3.1).

In practice, when discussing political affairs, they are usually described by multiple words,

namely, phrases. We use AutoPhrase [137] to detect phrases in our data sets, and treat

them as tokens as well.
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We refer to Task #1 as our Baseline PEM model, and we call it the “Skip-Gram

model” when we use it on its own. We use the same hyperparameter settings as in the

default settings in the original Skip-Gram model [101].

3.4.3 Task #2: Polarity Preservation

In Task #2, our goal is for the polarity component of our embeddings to capture reasonable

polarity information. The finest granularity of the polarity labels that we can automatically

and reliably obtain in large enough numbers are at the level of social-media accounts. We

assume that every politician has consistent political views during our observation time (the

years 2019 and 2020), and we assign polarity labels to their tweets based on their self-

identified party affiliations. We thereby use account-level labels to guide the polarity-score

learning of entities and hashtags.

A simple approach is to use the mean polarity score of all entities to estimate the

polarity score of a text corpus. However, this approach does not consider the heterogeneous

importance levels of entities. When considering political tendencies, some entities (e.g., “pro-

choice”) are more informative than others (e.g., “plan”). Therefore, we calculate a weighted

average of entity polarities in each tweet, with weights that come from attention.

Suppose that we are given a sentence with n tokens (i.e., words, phrases, hashtags,

mentions, emoji, and so on) that are embedded as z1, z2, . . . , zn, where m of the n tokens

are entities or hashtags. The set of indices of the m tokens is I = {i1, . . . , im} (with m ≤ n).

The polarity dimensions of the embeddings are

EP = [z(p)
i1 ; z(p)

i2 ; · · · ; z(p)
im

] ∈ Rm×1 .

We use a standard self-attention mechanism [66], which proceeds as follows. We represent

keys, values, and queries in a vector space. Each key has a corresponding value. Upon

receiving a query, we evaluate similarities between the queries and the keys. We then estimate

the value of a query as a weighted average of the values that correspond to the keys [148].

We vertically concatenate the sequence of the semantic (i.e., polarity-neutral) components
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of the entities’ and hashtags’ embeddings and write

ES = [z(s)
i1 ; z(s)

i2 ; · · · ; z(s)
im

] ∈ Rm×d ,

where the key K and the query Q are different linear transformations of ES. That is,

K = stopgrad (ES) WK , Q = stopgrad (ES) WQ ,

where stopgrad is a stop gradient (so ES is not updated by back-propagation of the attention

component) and WK , WQ ∈ Rd×d are weight matrices. We calculate the attention vector

α ∈ Rm×1, which includes an attention score for each entity in a tweet, using the standard

softmax function:

α = Att(Q, K) = softmax
((

QKT

√
m

)
· 1m×1

)
, (3.5)

where the ith component of the softmax function is

softmax(xi) = exi∑m
k=1 exk

and 1m×1 is a vector of 1 entries.

Each tweet’s polarity score z̃(p) is then

z̃(p) = αT EP ∈ R1×1 . (3.6)

Suppose that there are N tweets in total and that tweet j has the associated label lj ∈

{−1, 1}, where −1 signifies that the tweet is by a politician from the Democratic party and

1 signifies that the tweet is by a politician from the Republican party. (We only consider

politicians with a party affiliation.) We infer polarity scores {z̃(p)
1 , z̃(p)

2 , . . . , z̃(p)
N } for each

tweet and then use a hinge loss with the margin parameter γ > 0 as our objective function.

Specifically, we set γ = 1 and write the loss for Task #2 as

ℓTask 2 = 1
N

N∑
j=1

(
max

{
0, γ − lj z̃(p)

j

})
. (3.7)

When we use Task #1 and Task #2, we say that we are using our Polarized PEM

model.
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3.4.4 Task #3: Independence Enforcement

In Task #3, we encourage the semantic component z(s) to be polarity-neutral, and we thereby

force the political-polarity component z(p) to capture polarity more accurately. We use an

adversarial framework to achieve this goal. We alternately train two competing objectives:

(1) learn a high-quality embedding z that preserves both context and polarity; and (2) learn

a semantic embedding z(s) that is not able to infer a tweet’s polarity. Let E denote the first

objective, which combines Task #1 and Task #2 and controls the quality of our embedding.

The loss function ℓE of the first objective is

ℓE = ℓTask 1 + ℓTask 2 . (3.8)

Let D denote the second objective, which is a discriminator that attempts to use a semantic

embedding for polarity classification. We start training by running the objective E because

our discriminator makes sense only if our embedding is meaningful.

We apply the attention mechanism that we used in Task #2 (for aggregate token-level

semantic embeddings) to a tweet-level semantic embedding. We use the weighted average

z̃(s) = αT ES ∈ Rd of the semantic dimensions of a tweet’s tokens as our tweet-level semantic

embedding. The WK and WQ functions in Task #3 are different than those in Task #2.

We use the discriminator D to discern political-party labels from z̃(s). The discriminator is

a standard two-layer multilayer perceptron (MLP) classifier that infers a class label 0 for

liberal-leaning tokens and a class label 1 for conservative-leaning tokens. Between these two

layers, we set the number of elements in the output of each hidden layer to dMLP = 100.

We use a binary cross-entropy loss ℓD. The ground-truth labels of the tweets are Y =

{y1, . . . , yN} ∈ {0, 1}N and the inferred polarity scores are Ŷ = {ŷ1, . . . , ŷN}. The output

label of tweet i is

ŷi = D(z̃(s)) = σ
(
MLP(z̃(s))

)
∈ [0, 1] , (3.9)

where σ is the sigmoid function. The discriminator loss is the binary cross entropy

ℓD = − 1
N

N∑
i=1

(yi ln(ŷi) + (1− yi) ln(1− ŷi)) . (3.10)
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The encoder E seeks to make ℓD large enough so that z(s) tends to ignore political

polarity. The discriminator D seeks to make ℓD small enough to be a stronger discriminator.

To balance these goals, we use an adversarial framework. The training objective for all tasks

together is

ℓTask 3 = min
E

max
D

(ℓ(E, D)) = min
E

max
D

(ℓE − λℓD) . (3.11)

We always train Task #3 together with Tasks #1 and #2. When we train all three tasks

together, it is referred as the Complete PEM model.

3.4.5 Joint Training

In Algorithm 1, we present our adversarial framework for our Complete PEM model.

An adversarial framework trains two neural networks together so that they counteract each

other [27, 54]. The quantity θE denotes all of the parameters in Tasks #1 and #2, including

all of the embedding weights Z, the attention weights, and so on. The quantity θD, which

we use only in Task #3, denotes the set of discriminator parameters. Each batch that we

input into our PEM model has data from 16 tweets.

We learn all parameters in θE and θD during training, but we need to determine the

hyperparameter λ. In our experiments, we examined λ = 0.01, λ = 0.1, λ = 1, and λ = 10.

Of these values, our Complete PEM model performs the best for λ = 0.1, so we use

λ = 0.1. When applying the PEM model to another data set, one should carefully select a

suitable value of λ.

In each phase (i.e., either training θD or training θE), we stop training right after we first

observe a drop in the F1 score (which is is the harmonic mean of precision and recall) in the

validation set. (Such a performance drop can be an indication of overfitting [19].) We then

use the parameter values from just before the performance drop and proceed to the next

phase.
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Algorithm 1 Complete PEM: Learning algorithm
procedure LearnEmbedding(Iter)

Z← initialize the embeddings

Initialize the parameter λ > 0

for i = 1, . . . , Iter do

while not converged do ▷ train θE, fix θD

sample from tweets

ℓE ← ℓTask 1 + ℓTask 2

ℓ(E, D)← ℓE − λℓD

update θE to minimize ℓ(E, D)

end while

while not converged do ▷ train θD, fix θE

sample from tweets

ℓD ← Discriminator loss

update θD to minimize ℓD

end while

end for

return Z ▷ the learned embedding

end procedure
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3.5 Experiments

In this study, we discuss the experimental results of our PEM model. Our discussion

include how to construct our data sets, what do our polarity embeddings look like, and some

downstream tasks that we can apply our embeddings to.

3.5.1 Data Sets

We start by collecting a list of Twitter accounts, including 585 accounts of legislators in

the 115th and 116th Congresses,2 the accounts of 8 well-known news outlets (see Table 3.1),

and the accounts of President Barack Obama, President Donald Trump, and their Cabinet

members at the time (3 March 2019) that we first collected the data. Our data set consists

of (1) the most recent 3,200 tweets of each account that we collected on 3 March 2019 and

(2) the tweets of these accounts that were posted between 1 January 2020 and 25 November

2020.

We select the news outlets from those with the most voters (i.e., participants who

label the political polarity of news outlets on the AllSides Media Bias Ratings (see https:

//www.allsides.com/media-bias/media-bias-ratings). Previous studies have inferred

the political polarities of news outlets from their content [21, 58], and we seek to examine

whether or not our model can also reveal political polarities. The available political labels

in the AllSides Media Bias Ratings are “liberal”, “somewhat liberal”, “neutral”, “somewhat

conservative”, and “conservative”. We use the three liberal news outlets with the most votes,

the three conservative news outlets with the most votes, and the neutral news outlet with

the most votes. We checked manually that the polarities of the Twitter accounts of these

news outlets are consistent with the labels that we obtained from the AllSides Media Bias

Ratings. When a news outlet has multiple Twitter accounts (e.g., @cnn and @cnnpolitics),

we use the account with the most followers in early February 2020. On 10 February 2020,

we finished collecting and sorting the media data.

2See https://www.congress.gov/members.
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We split the politicians’ tweets (of which there are more than 1,000,000 in total) into

training, validation, and testing sets in the ratio 8:1:1. We also use the tweets of the news

outlets and those of the unobserved accounts as testing sets.

We also test our embedding on three existing data sets: the Election2020 data set [22],

which has 965,620,919 tweets that were collected hourly between March 2020 and December

2020; a Parler data set from 6 Jan 2021 that has 1,384,579 posts;3 and the TIMME data

set [158], which includes 2,975 Twitter accounts with location information and self-identified

political-polarity labels (either Democratic or Republican). These Twitter accounts are not

run by politicians and are never in a training data set. We thus refer to them as “unobserved

accounts”. We have access to the most recent 3,200 tweets in each Twitter account’s timeline;

we keep the tweets that they posted in 2020.

Table 3.1: The selected news outlets and their political polarities. The label “L” denotes

a liberal-leaning outlet, “C” denotes a conservative-leaning outlet, and “N” denotes a

neutral outlet. These labels come from the AllSides Media Bias Ratings (see https:

//www.allsides.com/media-bias/media-bias-ratings).

Twitter Account News Outlet Polarity

@nytimes The New York Times L

@guardiannews Guardian News L

@cnn CNN L

@csmonitor The Christian Science Monitor N

@amspectator The American Spectator C

@foxnewsopinion Fox News Opinion C

@nro National Review C

3This data set is available at the repository https://gist.github.com/wfellis/
94e5695eb514bd3ad372d6bc56d6c3c8.
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3.5.2 Entity Identification

We use the union of the set of entities from three main sources to identify potential entities

while training.

To detect nouns, we consider all nouns and proper nouns from parts-of-speech (POS)

tagging4 to be reasonable entities.

To detect phrases that act as nouns, we use AutoPhrase (version 1.7) [137] to learn a

set of phrases from all politicians’ tweets in our data. We then use this set of phrases when

tokenizing all employed data sets. AutoPhrase assigns a score in the interval [0, 1] to

each potential phrase, where a higher score indicates a greater likelihood to be a reasonable

phrase. After looking at the results, we manually choose a threshold of 0.8, and we deem all

multi-word noun phrases whose scores are at least this threshold to be of sufficiently high

quality.

To detect special terms that represent entities that may not yet be part of standard

English, we apply TagMe (version 0.1.3) [44] to our training set to include named entities

that we are able to link to a Wikipedia page.

3.5.3 Results

We train our PEM to obtain the two-component polarity-aware embeddings of the named

entities and hashtags in our data sets.

3.5.3.1 Polarity Component

We compute token-level polarity scores by examining the polarity component z(p) of each

embedding. We transform all tokens except mentions into lower-case versions. We do this

because Twitter handles (i.e., user names) are case-sensitive, but upper-case and lower-case

letters have the same meaning (and thus can be used as alternatives to each other) for other

4See https://www.nltk.org/api/nltk.tag.html.
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entities (including hashtags).

According to our results, of the entities and hashtags that politicians used in our data

(which we collected in 2019 and 2020), the ones with the strongest liberal polarities are

#trumpcare, #actonclimate, #forthepeople, #getcovered, and #goptaxscam. The

entities and hashtags with the strongest conservative polarities are #va10, #utpol, #ia03,

#tcot, and #wa04.

Our results illustrate that hashtags that refer to electoral districts can be strongly

conservative-leaning. Politicians with different political leanings may use hashtags in different

ways, and examining a hashtag that is associated with an electoral district is a good way

to illustrate this. Additionally, conservative politicians may use a particular non-germane

hashtag for certain content more often than liberal politicians. For example, some tweets

that used #va10 contributed to a discussion of a #VA10 forum that was hosted by the

Republican party in Fauquier County (@fauquiergop).

In Figure 3.3, we show our embedding results for the 1,000 most-frequent entities and

hashtags and for a few highlighted ones that we select manually. To facilitate visualization,

the vertical axis is a 1D t-distributed stochastic neighbor embedding (t-SNE) values [94].

In theory, words with particularly close semantic meanings are near each other along this

axis. In our embedding results, hashtags are more likely than other tokens to capture a clear

political polarity.

Some of our observations are unsurprising. For example, terms that are related to “pro-

life” are typically conservative-leaning, whereas terms that are related to “pro-choice” are

typically liberal-leaning.

Other observations are more nuanced. For example, liberal-leaning Twitter accounts

sometimes use text that one is likely to associate more with conservative-leaning views, and

vice versa. The embeddings of “trump” and “obama” give one pair of examples, and the

hashtags #trumpcare and #obamacare give another. Hashtags without semantic context

can also appear in tweets. Another interesting observation is that #blacklivesmatter and

#alllivesmatter are both liberal-leaning. In [50], it was pointed out that #alllivesmatter
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Figure 3.3: Visualization of the political polarities in our embedding results. The horizontal

axis gives the values of the polarity score z(p), and the vertical axis is a 1D t-SNE value

(which we use to facilitate visualization) that we calculate from the semantic embedding

z(s).

was used as a counterprotest hashtag between August 2014 and August 2015. This observation

helps illustrate that the polarities of tokens can change with time. Nowadays, #bluelivesmatter

is used more than #alllivesmatter as an antonym of #blacklivesmatter in practice (in

the sense of having a similar semantic meaning but opposite political polarity). Additionally,

#alllivesmatter now appears commonly in topics such as animal rights.

3.5.3.2 Semantic Components

To demonstrate the quality of the semantic components z(s), we calculate the cosine similarity

of the embedding vectors of the tokens. Our results appear to be reasonable. For example,

we observe that the closest token to “gun” is “firearm” and that the closest token to

“healthcare” is “care”. The t-SNE values from our Polarized PEM model and Complete

PEM model also suggest that these semantic components have reasonable quality.
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(a) Complete PEM semantic components.
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(b) Polarized PEM semantic components.

Figure 3.4: Visualization of the semantic components of our (a) Complete and (b) Polarized

PEM embeddings. We project these components onto a plane by calculating t-SNE values.

Both results are reasonable, but the Polarized PEM results tend to encourage semantically-

related words to be closer to each other. For example, #familiesbelongtogether and

#keepfamiliestogether are used similarly in practice and they are close to each other in the

embedding from our Polarized PEM model.
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In Figure 3.4a, we plot the results of calculating t-SNE values to project the semantic

dimensions of the most-frequent 600 tokens and several manually-selected tokens from our

Complete PEM embeddings onto a plane. In Figure 3.4b, we show the t-SNE values for our

Polarized PEM embeddings. These plots illustrate similarities in the semantic meanings of

these tokens. For example, we observe that #AllLivesMatter and #BlueLivesMatter

have similar meanings. By comparing Figures 3.4a and 3.4b, it seems that the semantic

components of our Polarized PEM embeddings may be slightly more reasonable than

those of our Complete PEM embeddings.

3.5.3.3 Account-Level Case Studies

-

-

-

-

-

Figure 3.5: Our estimates of the political polarities of news outlets based on their most

recent 3,200 tweets. We collected these tweets starting on 3 March 2019.

We compute a Twitter account’s political polarity by calculating the mean of the polarity

scores of all of its tweets. Suppose that an account posted N tweets. The ith tweet consists of

n tokens, with embeddings {z1, . . . , zn} and polarity scores {z(p)
1 , . . . , z(p)

n }. The tweet-level

polarity score of this tweet is bi = (∑n
j=1 z(p)

j )/n. We estimate the overall polarity score

of the account to be b = (∑N
i=1 bi)/N . If bi < 0, we regard account i as liberal-leaning; if

bi > 0, we regard it as conservative-leaning; if bi = 0, we regard it as neutral. We show our

results (which seem reasonable) in Figure 3.5. We plot liberal-leaning accounts in blue and
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conservative-leaning accounts in red.

Some previous research [59, 147] on relationships (e.g., following and retweeting relationships)

between Twitter accounts has inferred clearer polarities in news outlets than what we obtain

using our approach. This suggests that interactions may be more helpful than text itself at

identifying the political polarities of Twitter accounts.

3.5.3.4 Illustrations of Estimating Tweet Polarities with the Attention Mechanism

abortion access is health care period as co-chair of the pro-choice caucus i will fight any attempt to interfere in a woman's constitutional right to choose #sotu

  1.19      -3.98   -5.94  -2.34  -0.35     0.39     -2.65        -3.79 0.92     -2.91                -0.42        3.80

being pro-life is wanting the most for women and their children it is recognizing every person deserves a chance to live #whywemarch

   16.87             -5.04        -6.58                   -1.40              -1.29        4.92

Attention

Polarity
Tweet
Score

Tweet
Score

-0.369

1.832
Attention

Polarity

 every r

Figure 3.6: Illustrations of estimating tweet polarities using an attention mechanism. We show the

weights from our Complete PEM model in green, where darker shades signify greater importance

levels. We show the polarity scores underneath the entities and hashtags.

See Figure 3.6 for examples of our Complete PEM model’s attention weights and

polarity scores. Both the attention weights and the polarity scores appear to be reasonable.

3.5.3.5 An Ablation Study of the Attention Mechanism

We summarize the performance of the three versions of our PEM model in Table 3.2. The

left column gives our classification results when we use an attention mechanism. Recall

that our Baseline model does not use an attention mechanism. In models with an attention

mechanism, we use the score that we infer from Task #2, which calculates a weighted average

of the tokens’ political-polarity component {z(p)}. In the right column, we show the accuracy

and F1 scores when we use the mean value of the elements of {z(p)}. Recall that we interpret

tweets with negative scores as liberal and tweets with positive scores as conservative.

The results in Table 3.2 suggest that Task #2 alone can successfully capture polarity

information, but introducing Task #3 to enhance the independence of the semantic and

polarity components can improve inference of the political-polarity component z(p). However,
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forcing z(s) to be polarity-neutral makes it harder to preserve accurate semantic information.

(See Figures 3.4a and 3.4b.) This illustrates why our Complete PEM model does not

always outperform our Polarized PEM model.

3.5.4 Results on a Few Downstream Tasks

We illustrate that our embeddings are reliable and useful for several downstream tasks.

These downstream tasks include estimating some accounts’ political polarity, showing how

public opinions change over time, detecting potential political-polarity in other real-world

data sets, and so on.

3.5.4.1 Classification Results

First, we discuss the classification results of our Polarized and Complete PEM models.

We select 10% of the politicians’ tweets (there are 127,143 such tweets) uniformly at

random and withhold these tweets as the testing set for Table 3.2. We select another 10%

of the tweets, which we also choose uniformly at random, as a validation set. We use the

remaining 80% of the tweets (i.e., 1,017,137 tweets) as our training set. We train all models

(see Table 3.2 and Table 3.3) on the same training set.

In Table 3.2, we show the performance of the models on the testing set. We perform the

tweet-level classification task on the withheld tweets of the politicians. We never include

these tweets in the training set. We perform the account-level classification task on the

accounts of all politicians with tweets in the testing set. For a given account, we use its

tweets in the testing set to infer its political score by calculating the mean polarity score of

all of its tweets.

In Table 3.3, we show the tweet-level and account-level classification performance levels

for the unobserved accounts. (See Section 3.5.1 for a description of these accounts.)

We use the Skip-Gram and GloVe embeddings as baselines. For each of these embeddings

(which we do not adjust), we use the same MLP classifier that we use as a discriminator in
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Table 3.2: The classification performance on the withheld tweets of politicians and on the

Twitter accounts of politicians. The subscript “no attn” signifies that we use the mean

value of {z(p)} directly (i.e., without applying an attention mechanism). Skip-Gram (i.e.,

the Baseline PEM model) and GloVe use a pretrained embedding with the same MLP

binary classifier as in our discriminator. (To train this classifier, we use a training set that

includes 80% of the politicians’ tweets.) In each entry, we show the accuracy followed by the

F1 score. We show the best results for each column in bold. The names of our models are

also in bold.

Model Tweet-Level Results (accuracy; F1) Account-Level Results (accuracy; F1)

Skip-Gram 0.7705; 0.7736 0.8769; 0.8797

GloVe 0.7438; 0.7453 0.8578; 0.8620

BERTbase 0.8595; 0.8603 0.9965; 0.9968

BERTweet 0.8399; 0.8435 0.9844; 0.9853

Polarized PEMno attn 0.7681; 0.7682 0.9757; 0.9758

Complete PEMno attn 0.7991; 0.7994 0.9827; 0.9827

Polarized PEM 0.8339; 0.8337 0.9861; 0.9872

Complete PEM 0.8338; 0.8330 0.9931; 0.9936

Task #3 and train the MLP classifiers on our training set until they converge. We fine-tune

the transformer classifiers BERTbase [41] and BERTweet [106] (which uses the BERTbase

model configuration and is trained using RoBERTa-style pretraining) on our training set

as baselines. We use the uncased (i.e., ignoring capitalization) version of BERTbase; the

classifier BERTweet separates lower-case and upper-case letters. We use the fine-tuned

transformers to classify the tweets of politicians (see Table 3.2) and the tweets of the

unobserved accounts (see Table 3.3).

For the model variants that do not incorporate attention, we calculate each polarity score

by computing the mean values of the polarity components z(p) of the entities and hashtags.

We compute the polarities of accounts in the same way as in our examples with news outlets

(see Section 3.5.3.3).

By comparing Table 3.2 and Table 3.3, we conclude that our models perform better
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Table 3.3: The classification performance on the unobserved accounts. We never include

tweets from these accounts in a training data set. In each entry, we show the accuracy

followed by the F1 score. We show the best results for each column in bold. The names of

our models are also in bold.

Model Tweet-Level Results (accuracy; F1) Account-Level Results (accuracy; F1)

Skip-Gram 0.5822; 0.5636 0.6660; 0.6604

GloVe 0.5680; 0.5491 0.6486; 0.6372

BERTbase 0.6541; 0.6280 0.7234; 0.7218

BERTweet 0.6284; 0.6486 0.7836; 0.7778

Polarized PEMno attn 0.6066; 0.6244 0.8157; 0.8196

Complete PEMno attn 0.6061; 0.6258 0.8494; 0.8475

Polarized PEM 0.6308; 0.6965 0.8493; 0.8758

Complete PEM 0.6479; 0.6987 0.8612; 0.8870

than the transformers (BERTbase and BERTweet) on the unobserved accounts. Possible

reasons include the following:

1. Our polarity score can take any real value, so it can highlight extremists and exploit

extreme tweets that help expose an account’s polarity. BERTbase only allows polarity

values between 0 and 1.

2. Models, such as the transformers, with many parameters can suffer from severe overfitting

problems, especially when a training set is too small. In Section 3.6, we discuss

potential drawbacks of a training data set that includes tweets only by politicians.

3.5.4.2 Classification Results using Only Semantic Components

To demonstrate that including Task #3 allows the polarity component z(p) to capture more

political information and makes the semantic components z(s) more politically neutral, we

conduct an experiment in which we use only the semantic components of the tokens for

a classification task. Specifically, we examine account-level classification of the politicians’

withheld tweets (see Table 3.4).
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In the left column of Table 3.4, we show our account-level classification results using only

z(s). We obtain these results by training a discriminator with the same architecture as in

Task #3. We train it on our training set (which has 80% of the politicians’ tweets) until

the classifier converges on our validation set (which has 10% of politicians’ tweets). We then

use it to classify tweets in the testing set (which has 10% of politicians’ tweets).

Of our classification tasks in Section 3.5.4.1, doing account-level classification based on

the politicians’ tweets in the testing set is the least challenging one. For more challenging

classification tasks, such as the classification of the tweets of the unobserved accounts,

the accuracies that we obtain by using Skip-Gram (i.e., the Baseline PEM model),

thePolarized PEM model, and the Complete PEM model are 0.5701, 0.5809, and 0.5756,

respectively. Their accuracies for classifying the unobserved accounts are 0.6450, 0.6624, and

0.6551, respectively. These numerical values suggest that their performance levels are similar

on these tasks.

Table 3.4: The account-level classification performance on the politicians’ withheld tweets in

our testing set. We never include these tweets in our training data set, but our training set

does include other tweets by the accounts that posted these tweets. In each entry, we show

the accuracy followed by the F1 score. We show the best results for each column in bold.

The names of our models are also in bold. The Skip-Gram row indicates our Baseline

PEM results.

Model Results Based on z(s) (accuracy; F1) Results Based on z(p) (accuracy; F1)

Skip-Gram 0.8394; 0.8451 0.8457; 0.8503

Polarized PEM 0.8994; 0.9008 0.9861; 0.9872

Complete PEM 0.8111; 0.8204 0.9931; 0.9936

The results in Table 3.4 suggest that the design of our Complete PEM model helps

encourage political information to be in the polarity component z(p), rather than in the

semantic components z(s).
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3.5.4.3 Polarity Distribution of Politicians
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Figure 3.7: Probability densities of the polarity scores of the Twitter accounts of politicians.

We use the same approach as in Section 3.5.4.1 to estimate the polarity scores of the

Twitter accounts of politicians. We plot the associated probability densities for both Democrats

and Republicans in Figure 3.7, and we observe stark polarization.

3.5.4.4 Temporal Variation of Political Polarities

We now examine temporal changes in the inferred political polarities of the 49,428 Twitter

accounts in the TIMME data set [158] that tweeted in 2020. To examine such temporal

variation, we chunk the tweets from 2020 of each of these accounts in 7-day intervals starting

from 1 January and examine trends over time. (The final interval is cut off and is hence

shorter.)

We use the same approach as in Section 3.5.4.1 to infer tweet-level and account-level

polarities. As we can see in Figure 3.8, our embedding results illustrate plausible trends on

Twitter. Many liberal-leaning accounts were active starting in the week of the murder of

George Floyd. As the week of the U.S. presidential election approached, people were using

Twitter more actively, and then discussions of the election seemed to recede after it was over.

Based on our results, we also suspect that there may be more liberal-leaning accounts than

conservative-leaning accounts on Twitter.
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Figure 3.8: Weekly trends of liberal and conservative tweets on Twitter in 2020. We plot these

trends at both (top) the account level and (bottom) the tweet level. The week of George

Floyd’s murder began on 20 May 2020. The week of the 2020 United States presidential

election began on 28 October.

3.5.4.5 Geographic Distribution of Political Polarities

The TIMME data set [158] has 51,060 accounts with self-reported geographic locations in the

United States. Using these locations, we examine the liberal versus conservative tendencies

of tweets across the U.S. in 2020. We calculate the polarity of each Twitter account using

the mean of the polarities of the tokens in its tweets; we show these account polarities

geographically in Figure 3.9. We use the mean polarity of all accounts in a state (and

the geographic regions Washington, D.C., Puerto Rico, and Guam) to calculate the state’s

polarity, and we then normalize the states’ polarity scores q = {q1, . . . , q53} to the interval

[−1, 1] by calculating q̂i = (qi −
∑53

j=1 qj

53 )/ max{|q1|, . . . , |q53|}. After this normalization, −1

is the most liberal score and +1 is the most conservative score. Our results are consistent

with the tendencies that were reported in national polls for the 2020 U.S. election.5

5See https://www.realclearpolitics.com/epolls/2020/president/National.html.
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Figure 3.9: The mean polarity score of the Twitter accounts in each state (and the geographic

regions Washington, D.C., Puerto Rico, and Guam) in the United States. We normalize the

polarity scores to [−1, 1].

3.5.4.6 Revealing Biases in Data Sets

We use the embedding results of our Complete PEM model to examine biases in data

sets. In practice, using these results entails assuming that we can trust the polarities that

we learn from the coarse-grained labels of the politicians’ parties. Under this assumption,

we find that the TIMME data set is politically neutral and that the Election2020 data

set [22] is somewhat liberal-leaning. In the Election2020 data set, the mean polarity

of the tweets in each week is liberal-leaning. Of the 119 keywords that were provided in

Version 1 of this data set, there are 78 liberal-leaning keywords and 41 conservative-leaning

keywords. Our embedding also suggests that posts on Parler tend to be more conservative

than tweets on Twitter. In Figure 3.10, we plot the distributions of the polarities of the

Twitter tweets and Parler posts. We compute these empirical probability densities using

kernel density estimation (KDE) with a Gaussian kernel (i.e., the default setting) in the

70



Seaborn library [155].
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Figure 3.10: Distributions of polarity scores of Twitter tweets and Parler posts. The Twitter

curve is smoother because the Twitter data set is much larger than the Parler data set.

3.5.5 Performance Robustness

In Table 3.2 and Table 3.3, we reported our best performance levels (from six different

random seeds). We also want to examine the robustness of these performance levels. We

use the same hyperparameter settings as before, but now we use 5-fold cross validation and

different random seeds to initialize the models.

We still train the models on the politicians’ tweets. However, instead of randomly using

80% of them as our training set, we now do a 5-fold cross validation. That is, we split the

politicians’ tweets evenly and uniformly at random into 5 sets that we select uniformly at

random, and we withhold one set at a time as our validation and testing sets (with 10%

each, with the tweets in them selected uniformly at random). None of the training sets are

identical to the one that we used previously.

After training a model on the training set, we evaluate it on the testing data set of

politicians. We then use the trained models to infer the polarities of the tweets from the

unobserved accounts using the approaches in Table 3.3.

In Table 3.5, we report the means and standard deviations from our 5-fold cross validation.

The results illustrate that the models’ performance levels are robust, although the tweet-level
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Table 3.5: The mean values and standard deviations for 5-fold cross validation of different

models, which we initialize with different random seeds. We show the best results for each

column in bold. The names of our models are also in bold.

Politicians’ Accounts (Mean Value ± Standard Deviation)

Model Tweet-Level Results (accuracy; F1) Account-Level Results (accuracy; F1)

Skip-Gram 0.7700 ± 0.0026 ; 0.7707 ± 0.0029 0.8833 ± 0.0113 ; 0.8996 ± 0.0100

GloVe 0.7231 ± 0.0039 ; 0.7319 ± 0.0035 0.8575 ± 0.0205 ; 0.8798 ± 0.0161

BERTbase 0.8586 ± 0.0006 ; 0.8587 ± 0.0006 0.9963 ± 0.0034 ; 0.9963 ± 0.0034

BERTweet 0.8337 ± 0.0010 ; 0.8327 ± 0.0010 0.9828 ± 0.0077 ; 0.9826 ± 0.0077

Polarized PEMno attn 0.7691 ± 0.0011 ; 0.7665 ± 0.0011 0.9721 ± 0.0244 ; 0.9723 ± 0.0243

Complete PEMno attn 0.7955 ± 0.0009 ; 0.7937 ± 0.0009 0.9805 ± 0.0169 ; 0.9811 ± 0.0167

Polarized PEM 0.8338 ± 0.0007 ; 0.8336 ± 0.0007 0.9841 ± 0.0030 ; 0.9845 ± 0.0030

Complete PEM 0.8332 ± 0.0006 ; 0.8327 ± 0.0006 0.9915 ± 0.0026 ; 0.9927 ± 0.0026

Unobserved Accounts (Mean Value ± Standard Deviation)

Model Tweet-Level Results (accuracy; F1) Account-Level Results (accuracy; F1)

Skip-Gram 0.5822 ± 0.0007 ; 0.5635 ± 0.0008 0.6561 ± 0.0053 ; 0.6324 ± 0.0074

GloVe 0.5764 ± 0.0009 ; 0.5574 ± 0.0009 0.6387 ± 0.0073 ; 0.6222 ± 0.0099

BERTbase 0.6348 ± 0.0007 ; 0.6231 ± 0.0006 0.7182 ± 0.0078 ; 0.7149 ± 0.0072

BERTweet 0.6282 ± 0.0006 ; 0.6280 ± 0.0005 0.7752 ± 0.0176 ; 0.7695 ± 0.0173

Polarized PEMno attn 0.6245 ± 0.0011 ; 0.6067 ± 0.0011 0.8062 ± 0.0191 ; 0.8105 ± 0.0182

Complete PEMno attn 0.6259 ± 0.0014 ; 0.6063 ± 0.0015 0.8467 ± 0.0177 ; 0.8450 ± 0.0178

Polarized PEM 0.6284 ± 0.0023 ; 0.6865 ± 0.0020 0.8463 ± 0.0063 ; 0.8666 ± 0.0059

Complete PEM 0.6472 ± 0.0030 ; 0.6907 ± 0.0028 0.8550 ± 0.0075 ; 0.8814 ± 0.0072

performance levels are more robust than the account-level performance levels.

3.5.6 Bot Analysis

Our investigation does not account for the activity of automated accounts (i.e., bots). We

use the verified Twitter accounts of politicians, so we assume that these are not bot accounts.

However, bots are widespread on Twitter and other social media [45], We check for potential

bots in our Twitter accounts and compare the inferred bot probabilities of these accounts

with our inferred political polarities. We find that the probability that an account is a bot
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has little correlation with its political polarity.

To evaluate the probability that a Twitter account is a bot, we use Botometer (version

4) [131]. It has two options — universal and English — for the language that it employs for

bot detection. The universal bot score is evaluated in a language-independent way, but the

English bot score is more accurate for accounts that tweet primarily in English, so we use

the English option.

There are many different types of Twitter bots (see https://botometer.osome.iu.edu/

faq). For simplicity, we use only an overall bot score from Botomer. The score of a bot

varies between 0 and 5, with larger scores signifying that an account is more likely to be

a bot. In Figure 3.11, we show the probability densities of bot scores for politicians and

ordinary Twitter accounts.

Bot-Score Distribution

Politicians’ Accounts
Other Users’ Accounts

0
0.0

0.6

5

0.5

0.4

0.3

0.2

0.1

1 2 3 4

Figure 3.11: Probability densities of the bot scores of the Twitter accounts of politicians

(solid curve) and all other Twitter accounts (dashed curve).

In Figure 3.12, we plot the distributions of the overall bot scores versus the absolute

values of polarity scores (i.e., |{z(p)}|) for both politicians’ Twitter accounts and ordinary

Twitter accounts. The absolute values of the polarity scores indicate the extremeness of an

account’s content according to our PEM model.

3.5.7 Impact of Assigning Polarity Scores to Other Tokens

We use tokens other than hashtags and entities in our PEM model, but we have not assigned

political polarities to them. We feel that this design decision improves the interpretability
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Figure 3.12: Distribution of the overall bot score versus the absolute values of the polarity

scores of the content of (a) politicians’ Twitter accounts and (b) all other Twitter accounts.

of our model. For some words, such as “a” or “the”, it definitely does not make sense to

assign a political polarity.

Table 3.6: The tweet-level classification performance on the politicians’ withheld tweets in

our testing set when we assign polarity scores to all tokens versus only assigning polarity

scores to hashtags and entities. In each entry, we show the accuracy followed by the F1 score.

We show the best results for each column in bold.

Results (accuracy; F1) Polarized PEM Complete PEM

Using z(p) of All Tokens 0.8369; 0.8366 0.8337; 0.8334

Using z(p) of Only Entities and Hashtags 0.8339; 0.8337 0.8338; 0.8330

As one can see in Table 3.6, assigning political polarities to tokens other than named

entities and hashtags does not seem to harm our classification performance. We show it

by comparing the tweet-level classification results of our Complete PEM model on the

withheld testing set of the politicians’ tweets (i.e., the same testing set that we used in
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Section 3.5.4.1).

3.6 Limitations

We highlight several important limitations of our work. Naturally, our discussion is not

exhaustive, and it is also relevant to think about other limitations. The limitations we

mention include our data limitations and model limitations.

3.6.1 Incomplete Data

We consider only textual information. Therefore, we overlook images, videos, and other

types of information.

3.6.2 Model Limitations

We designed our PEM model to infer political polarity scores from entities and hashtags,

so it is not helpful for inferring the polarity of tweets that have no entities or hashtags.

Additionally, our PEM model does not take time stamps into account, so it does not consider

the dynamic nature of polarities.

3.6.3 Training-Set Biases and Other Issues

Our design decision of assigning political polarities to items in a training set enables one to

automatically assign labels at scale. However, it can be undesirable to make such assignments

a priori.

We use the tweets of politicians because their accounts are verified and they have a

consistent, unambiguous, and self-identified political affiliation. However, this choice introduces

biases and other potential issues. First, the size of our training data set is necessarily limited,

and it is easier for models to overfit data when using small data sets than when using

large ones. Second, our results may be sensitive to the time window in which we collected

75



tweets. For example, polarization in tweets may be more apparent during elections than

at other times. Third, politicians are not necessarily representative of other social-media

users. Fourth, we did not train our model to handle bot or cyborg accounts. We used

verified Twitter accounts in our training data set, so it presumably does not have any bots

or cyborgs. (Our estimation of bot probabilities supports this presumption.) Bot accounts

are very common on Twitter [45], so it is necessary to be cautious when applying our model

directly to typical Twitter data sets.

The verified Twitter accounts of politicians are very different in nature from the Twitter

accounts of other users. We saw ramifications of such differences in our classification results.

Using BERTbase to classify tweets from politicians versus those of other accounts yields an

accuracy of 0.7590 and an F1 score of 0.7595 on the testing set. If we partition the set of

non-politician accounts into two groups that each have the tweets of 1,293 accounts (which

we assign uniformly at random) and try to classify the group of each tweet, we obtain an

accuracy of 0.4600 and an F1 score of 0.6276.

3.6.4 Quantifying Political Polarity

There are many possible ways to quantify political polarity. We chose to assign labels of

“liberal” and “conservative”, but other dichotomies are also relevant. Moreover, we designed

our PEM model learn a single type of polarity. It cannot simultaneously reveal multiple

types of political polarities.

3.6.5 Sarcasm and Irony

In our work, we did not analyze nuanced situations, such as sarcasm and irony, that depend

heavily on context. Sarcasm plays an important role in social media [146], and it is worth

generalizing our PEM model to be able to handle it successfully in the future.
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3.7 Conclusions

We studied the problem of inferring political polarities in embeddings of entities and hashtags.

To capture political-polarity information without using auxiliary word pairs, we proposed

PEM, a multi-task learning model that employs an adversarial framework.

Our experiments illustrated the effectiveness of our PEM model and the usefulness of the

embeddings that one can produce from it. In principle, it is possible to extend our approach

to extract any type of polarity of an embedding (while attempting to minimize the effects

of polarity on other components). One can also extend our PEM model to deploy it with a

variety of embedding strategies.

3.8 Ethics Statement

There are several ethical points to consider in our work.

First, one needs to consider our data sets. The data that we used comes from publicly

available sources, and our training data comes from the verified accounts of politicians.

We do not store any sensitive information (such as real-time locations) from Twitter. It is

important to be aware of Twitter’s privacy policy (see https://twitter.com/en/privacy)

when downloading and using data from Twitter.

There are also important ethical considerations when using the results of embeddings like

ours. Our PEM model yields interesting and occasionally counterintuitive results. One must

be cautious when using such results for subsequent tasks (e.g., when drawing conclusions

about an individual’s political views). Additionally, models inherit biases from training data

sets, and they can exacerbate such biases [112].

The conclusions that we obtained from applying our PEM model are based on the

existing posts of social-media accounts. One must be cautious when subsequently inferring

what such accounts may post in the future and especially if one seeks to use any insights

from our model to inform behavior, actions, or policy.
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CHAPTER 4

A Social Dynamical System for Twitter Analysis

Public opinions on social phenomena often change with time. Twitter (which has been

rebranded as X), as one of the most popular social-media platforms in the world, offers an

opportunity to study opinions without having to collect them through surveys. We propose

to model the constantly changing stances of Twitter accounts as the constantly changing

status of nodes in a graph with fixed network structure and time-dependent node features.

To model a graph structure efficiently and effectively, many researchers use graph neural

networks (GNNs) [72]. In recent years, GNNs have played an increasingly important role in

many applications, including social-network analysis [11, 86]. However, most such models

are designed for time-independent network data. To model a dynamical social system using

a GNN, we need to use a GNN that is appropriate for time-dependent data.

Many challenges exist from the data perspective. There are only a few data sets that

are both time-dependent and multimodal. It is already hard to have a data set with both

relationship and text information. It is ever rarer to find such data sets that also have

temporal information. Simulated social-network data has its own limitations. We can never

expect a synthetic social network to reflect all aspects of a real-world social network. Most

synthetic social networks reveal only certain aspects of a social network’s patterns. Therefore,

we will collect real-world data and build a new data set from scratch.

We propose to model changes of opinions in real-world data sets. The difficulty of data

collection, the scarcity of observations, the massive amount of noise in data, and the lack of

ground-truth labels make it very challenging to prepare the data sets and build a reliable

and stable model.
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We propose a Latent Social Dynamical-System framework (LSDS) that learns to model

the dynamical latent opinions of social-media accounts from the text in their posts. It

incorporates continuous time, uses a neural-ODE framework,allows one to consider the

irregularly-sampled observations, and follows the training pipeline of a variational-autoencoder

(VAE) framework. We create our own dynamic data sets from data that we collected on

Twitter. Our LSDS model consists of three major components: (1) a temporal encoder,

which takes in all observations before the starting time and yields an initial hidden state

(i.e., initial latent opinion embedding) of any node at the starting time; (2) an ODE solver,

which encodes the dynamic opinion-updating rules by optimizing a GNN, which serves as

the ODE function, so that we can use the initial hidden state to predict an account’s latent

opinion at any future time; and (3) a temporal decoder, where we use the predicted future

latent opinions for several downstream tasks.

To the best of our knowledge, we are the first to propose such a dynamic social-network

framework that targets at latent opinions of accounts. Our experiments reveal that the

LSDS framework can help reveal the opinion changes of nodes in social networks.

4.1 Introduction

Over the past few decades, there has been rapid growth in internet usage. People from

across the world now share their opinions online and interact with each other. One can

obtain behavioral data of people from their posts on social-media platforms, such as X

(which used to be known as Twitter). This process of collecting opinions, although it comes

with other types of data bias [46], is much more convenient than traditional methods such

as surveys and interviews.

To capture opinion dynamics in a social-media network, we build a machine-learning

model to predict future observations from past observations by learning the updating rules

of the accounts’ latent opinions. As we show in the schematic illustration in Figure 4.1,

accounts’ opinions are influenced by other accounts that interact with them. For example,
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Figure 4.1: Illustration of changes in node opinions as they interact with each other in a

network. The colors indicate observed opinions, such as on a liberal–conservative spectrum.

The shade of a color indicates the extremeness of an opinion. Therefore, the darkest blue

and darkest red indicate the most extreme opinions. The white color signifies that we do

not observe the opinion of a node at the associated time.

in the depicted scenario, after hearing some red-sided opinions from its neighbor node 3, node

4 changes from a blue opinion to a red opinion. However, node 3 agrees partly with both

the blue side and the red side, so later node 3 and node 2 both broadcast some blue-sided

opinions, turning node 4 from extreme red to a more moderate red opinion. If our framework

is capable of understanding the opinion-updating rules that caused these changes, it should

also be good at forecasting future opinions.

To design our framework, we investigated related works and found inspirations from

different perspectives. It is very common to model a graph-structured data set using a

GNN [62, 77, 78, 160]. However, dynamic GNNs have received much less attention than

time-independent GNNs [138]. Recently, some computer scientists have verified that, in

carefully designed experiments, neural networks are capable of learning the update rules in

the traditional opinion models [111], such as the DeGroot [2] and Friedkin–Johnsen

(FJ) [47] models. Many models of opinion dynamics have been studied by social scientists,

physicists, and others over many decades [17, 18, 35, 92, 108, 109, 130]. Although recent

explorations have established a connection between neural-network models and the traditional

opinion models, there remain many important problems to pursue in using neural networks to

study opinion dynamics. First, most existing works focus on either simulated data or labor-
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intensive manual labeling, and it is thus unclear how successful they can be in real-world

scenarios at scale. The existing models assume that opinions are explicitly known at each

observation, whereas we hold a different point of view. From our earlier exploration [158],

we conclude that the text content in accounts’ posts often does does accurately reflect

their opinions (see Chapter 2). Therefore, we propose to model their opinions as latent

representations to be learned from observations. Second, many existing opinion models rely

on discrete time or observations that are sampled at constant time intervals. We seek to

formulate a model that can predict node opinions at any future time t, where t is any real

number (i.e., time is continuous) within a reasonable horizon. Third, there has not yet been a

framework where traditional rule-based opinion-update rules and learnable neural-network-

based update rules can be used alternatively and compared to each other. We propose to

build a framework that is able to handle real-world data observations, make predictions on

a continuous timeline, and is flexible enough to encompass different opinion-model variants.

Social-media networks provide multimodal data, such as text in accounts’ posts and

interaction behaviors between accounts. Our direct observations include the observation of

interactions of the accounts and the observation of accounts’ features (such as text). Edges

that reflect follower–followee relationships remain consistent because following relationships

do not change often within the time range (i.e., approximately a year) of our data. We

treat the temporal relationships (specifically, retweet, mention, and like) between nodes as

temporal edges. They provide ground-truth signals for our downstream tasks.

We design a Latent Social Dynamical-System (LSDS) framework. Inspired by Latent

Graph ODE (LG-ODE) [67] and Neural Relational Inference (NRI) [77], our

social dynamical system uses a Neural ODE framework [25], with an ODE function defined

using GNN function and the whole framework is trained end-to-end (i.e., from raw input to

final output and do not need any intermediate steps) with a Variational Autoencoder

(VAE) pipeline [165]. To project the text features into a continuous vector space, we use a

pretrained Sentence-BERT model [125] to generate tweet-level text embeddings from raw

text content.
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Our experimental results (see Section 4.5) demonstrate that our framework is useful for

modeling the changes of accounts’ opinions in a social network. Our ablation studies suggest

that, for our tasks and within our model variants, currently the best encoder is a temporal

GNN model and that the best ODE function is an NRI model, as their performance are the

best on most of our downstream tasks. Of the few decoder tasks that we have tried (text-

embedding reconstruction, node-polarity prediction, and interaction prediction), interaction

prediction is the most challenging one. Nonetheless, one can readily propose an alternative

encoder component, ODE function component, or other decoder for a new downstream

task. These new components can be added to our framework. From this perspective, our

framework has great extensibility.

Our main contributions are as follows:

1. To the best of our knowledge, we are the first to propose a neural-ODE dynamical-

systems framework that is capable of handling multimodal real-world data sets.

2. We collected and processed temporal multimodal data sets from X (i.e., Twitter). We

expect that our data set will also help researchers with future studies.

3. Our experimental results suggest that our LSDS model is able to capture the update

rules of a social dynamical system. Additionally, by comparing different variants

of opinion models in case studies and ablation studies, we demonstrate that each

component of LSDS is important.

4. Our LSDS framework is compatible with a variety of encoder and decoder architectures

and a large variety of selection of ODE functions. It thus has great potential to be

adjusted for use in many other tasks.

5. In addition, we propose an automated data-preprocessing method, which does not need

labor-intensive manual-labeling.

84



4.2 Related Work

In this section, we discuss our related works from four perspectives. They are, graph neural

networks, neural ordinary differential equations, models of opinion dynamics, and variational

encoders.

4.2.1 Graph Neural Networks

Graph neural networks (GNNs) are neural-network models that are designed specifically for

graphical data that consists of nodes and the edges between them [72]. GNNs are able to

take advantage of neural networks and solve graph-based problems. They have succeeded in

many fields and have thus attracted much attention [1, 123, 157, 170, 174].

Based on model architecture and the graph-based tasks that they are targeting, GNNs

are roughly classified into the following categories: recurrent-based GNNs, convolution-based

GNNs, spatiotemporal GNNs, graph autoencoders (GAEs), graph adversarial networks, and

graph reinforcement-learning models [123]. These categories overlap with each other, so

one type of GNN can belong to multiple classes. In this chapter, we focus exclusively on

convolution-based GNNs.

Convolutions on graph data [6] can be either in the spectral domain [65] or in the spatial

domain [175]. Spectral convolutional GNNs use ideas from spectral graph theory. One of

the key differences between spectral convolutional GNNs and spatial convolutional GNNs

is that the latter consider only the neighborhood of a target node, whereas the former

require access to all nodes. For instance, GCN [78] is a spectral model and normalizes the

adjacency matrix using the symmetrically normalized Laplacian of an entire graph, whereas

NRI [77], GIN [160], GraphSAGE [62], and many other convolutional GNNs are spatial

models [5, 168]. Spectral convolutional GNN models typically possess some useful properties

that can be proved theoretically [48, 128, 176]. However, spatial convolutional GNNs tend

to be more efficient and thus less costly to train. Some spatiotemporal GNNs combine

GNN components and recurrent-neural-network (RNN) components for sequence prediction.
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These models have performed well in applications such as traffic forecasting [60, 173].

Despite the popularity and the demonstrated effectiveness of GNNs, they have not been

used very much to analyze dynamic data on graphs [138]. Exploring how GNNs can be

used to help analyze dynamical real-world graph data, such as opinions in real-world social

networks, remains an open and challenging direction.

4.2.2 Neural Ordinary Differential Equations

Solving ordinary differential equations (ODE) is a traditional field that researchers have been

exploring for hundreds of years [63, 68, 102]. In mathematics, the term “ordinary” is used

in contrast with “partial” to emphasize that only one independent variable is involved. For

example, with the dependent variable y and the independent variable x, the only possible

derivative term in an ODE is dy
dx

. In a partial differential equation (PDE), there are more

than one independent variables, say x and w, so a PDE can include both ∂y
∂x

and ∂y
∂w

. An

ODE takes the form
dy

dx
= f(x, y) , (4.1)

where x is the independent variable and y is the dependent variable. We can also denote

the y value with a given xi value by y(xi). The function f(x, y) determines how y changes

instantaneously with respect to x. Additionally, The ODE (4.1) is subject to an initial

condition y(x0) = y0 or a boundary condition y(xa) = ya, where y0 or ya are known values.

Initial and boundary conditions provide essential information that specifies the particular

solution(s) of the ODE among all possible solutions. In an ODE, both time and space are

continuous. There are numerous numerical approaches to solve ODEs [104].

The Neural-ODE [25] model combines a neural-network architecture with an ODE

solver by using a neural network to implement the ODE function f(x, y). This design is

helpful to bring neural networks from discrete space to continuous space. They allow one to

approximate derivatives in a continuous manner. The contributions of the Neural-ODE

model are twofold:
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1. The Neural-ODE model re-implemented traditional ODE solvers (e.g., a Runge–

Kutta solver) so that they can work in deep-learning settings.

2. By using neural networks instead of algebraic formulas as the ODE functions, Neural-

ODE is able to enhance the expressiveness of a model. It thereby improves its flexibility

For example, ODE solvers help in the construction of a continuous version of a neural-network

layer-wise gradient update. A neural ODE can also be used to model changes in nodes’

representations in continuous time. One example is the Latent Graph ODE (LG-ODE)

model [67], where time-dependent physical system graphs (e.g., predicting the movement of

bouncing balls) were successfully analyzed. Our work follows this line of research. In our

case, however, we are interested in opinion dynamics on social networks.

4.2.3 Models of Opinion Dynamics

Social scientists have long been very interested in modeling how people’s opinions change

as they interact with each other [17, 35, 92, 108]. Models of opinion dynamics include

the DeGroot model [2], the Friedkin–Johnsen (FJ) model [47], the Hegselmann–

Krause model (HK, a type of bounded-confidence model) [124], and many others. Each of

these models relies on various underlying assumptions.

Recently, the method Sociologically-Informed Neural Network (SINN) [111]

used neural-network architectures to learn the derivatives of opinion variables at each time

step of a discrete-time dynamical system. They used an opinion model to give ground-

truth update rules of the opinion value, and they then trained a neural network to learn the

opinion-update rules automatically. Experiments in [111] demonstrated that neural networks

are capable of learning to act as a traditional opinion model. Their work demonstrates the

power of neural-network models and illustrates their potential to help in studies of opinion

dynamics.
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4.2.4 Variational Autoencoder

A variational autoencoder (VAE) [76] is a framework where variational inference is applied for

training. It is set up as an autoencoder, which makes it differentiable for backpropagation.

It includes both an encoder and a decoder. The encoder takes the inputs and learns a

corresponding latent-space variable distribution, and the decoder draws samples from the

latent space as the hidden representation and reconstructs the input [52].

In many existing works (such as NRI [77] and LG-ODE [67]) that seek to capture the

changes of the states of the nodes in a network, VAE is used as the training framework.

We adopt a similar training framework as a standard, unsupervised VAE. However, because

our data set is partially labeled and thus allows a semisupervised approach, our training

pipeline is no longer precisely a VAE framework. We keep the encoder and latent space,

and the decoder is able to learn many different objectives, including but not limited to the

input-reconstruction task.

4.3 Problem Definition

We learn to model how the opinions of social-network accounts affect each other and change

with time. In this section, we discuss how we define a dynamical social graph, and from

which signals we can estimate the accounts’ opinions.

4.3.1 Dynamic Social Graph

There are many different types of dynamic networks [138]. Some have time-independent

sets of nodes, whereas others have time-dependent sets of nodes (i.e., nodes can appear and

disappear). Some networks with time-dependent edges allow edges to appear and disappear,

and others only allow changes in edge weights.

Social networks are commonly modeled as graphs. When we model a social network,

each account is a node, and we model each follower–followee relationship as an edge.
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In our scenario, due to the nature of a social network, the follower–followee relationships

change at a relatively low frequency. Opinions change much faster, so we regard follower–

followee relationships as time-independent. Accordingly, we study dynamical systems on a

time-independent network [120].

We focus on the changing opinions of each account in a social dynamical system. We

model our social dynamical system as a multi-agent dynamical system. We describe a social

network as a graph G = (V , E), where V = {v1, v2, . . . , vN} is the set of N nodes that

each represents an account, which interact with the other accounts. The set E encodes the

accounts’ follower–followee relations, where ⟨vi, vj⟩ ∈ E indicates that account vi follows

account vj. The graph G has M = |E| edges.

We observe the accounts’ opinions through the text content from their posts. For each

account vi, we have a series of observations oi = {ot
i}. For any account vi and any time t,

the observation ot
i ∈ RD is the vector-space representation of the corresponding text content

at time t. In practice, we generate ot
i from the account’s raw tweet text using the pretrained

Sentence-BERT model [125]. If account vi posted multiple tweets at time t, we use the

mean value of all tweets’ embeddings to represent the account vi’s corresponding observation

ot
i of account vi.

As one can expect, in our data sets, each account posts content at their unique frequency,

so that each account vi has a unique observation time sequence {tj
i}Ti

j=0. Let zt
i denote the

hidden representation of account vi at time t; the quantity zt
i is account vi’s latent opinion.

Our goal is to model how zt
i changes according to time t.

4.3.2 Opinion Evaluation

We use two different ways to evaluate our model’s performance of estimating future opinions.

Each of these ways corresponds to a different decoder task.
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4.3.2.1 Interaction Prediction

We can evaluate the quality of the hidden representation zt
i and zt

j of accounts vi and vj by

using these representations to infer the interactions between them at time t.

Using our underlying time-independent graph architecture that is defined by “follow”

relationships, we treat all other types of interactions (specifically, mention, retweet, reply,

and like) as time-dependent edges to be inferred. That is, we have multiple types of time-

dependent edges: {Emention, Eretweet, Ereply, Elike}. The time-dependent edge ⟨i, j, t⟩ ∈ Emention

signifies that account vi mentioned account vj in a their post at time t.

To evaluate how well our model captures the update rules of opinions, we can calculate

an edge-prediction score. For example, for ⟨i, j, t⟩ ∈ ER with the relation R ∈ {mention,

retweet, reply, like}, we measure

Score(i, j, t, R) = fR(zt
i, zt

j) ,

where fR (with R ∈ {mention, retweet, reply, like}) is a function to compute a score that

reflects how likely there is an edge between the given nodes according to zt
i and zt

j (i.e., their

latent opinions at time t).

4.3.2.2 Polarity Inference

One of the key challenges of real-world social-network data sets is the lack of ground-truth

labels. In our case, the data set is political in nature, so it is reasonable to assign a political-

polarity label to each tweet.

Once we have political-polarity labels for observed tweet, we can learn to recover the

polarity score pt
i from the corresponding hidden representation zt

i. The more precise our

estimation, the more powerful our model is.

Using the pretrained text-embedding model from our PEM model [159] (see Chapter 3),

where the last dimension of the token embedding is a political-polarity score, we are able to

assign a polarity score pt
i ∈ R to each tweet.
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Figure 4.2: A schematic overview of our model’s architecture. We implement the graph ODE

function gi as a GNN function, where all edges in the network depicts the follower–followee

relationships in the original graph (i.e., the graph on the bottom-left corner of this Figure).

4.4 Methodology

Our LSDS model consists of three main components: a time-dependent encoder, an ODE

solver that handles a GNN ODE function, and a time-dependent decoder. In Figure 4.2, we

give a schematic overview of how these components work together in our model.

The encoder transforms the observations of accounts into the initial state of their latent

opinion representations. It is time-dependent because it considers historical observations

before the starting time t = 0 by using both observed content and the time stamps. It

aims to encode the hidden space of the initial state z0
i from all observations ot′

i before the

starting time (i.e., for all observations with t′ < 0). To achieve this goal, we first construct

a temporal graph Gtemporal from these observations. In this temporal graph, each node

represents an observation. For example, in Figure 4.2, we show how our framework works

with an example of 4 accounts (social network is shown on the bottom left corner, and we

denote the accounts’ nodes as node 1, 2, 3 and 4). There are 2 observations on node 1 before
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t = 0 and 2 observations on node 3. Therefore, node 1 in the social network results in 2 nodes

{o1a, o1b} in the temporal graph, and similarly node 3 corresponds to 2 other temporal-graph

nodes {o3a, o3b}. An edge in a temporal graph represents a follower–followee relationship

between the corresponding accounts. For example, in Figure 4.2, node 1 is adjacent to

node 3. The temporal graph then has the edges: {(o1a, o3a), (o1a, o3b), (o1b, o3a), (o1b, o3b)}.

After constructing a temporal graph, we encode it with a temporal-graph encoder, whose

output will allow us to generate the initial latent states z0
i of all accounts (i = 1, 2, . . . , N).

Ideally, the latent representation zt
i captures the latent opinions of account vi at time t. This

representation is related to the observation oi but is not necessarily identical to the direct

observation.

An ODE solver allows us to numerically integrate an ODE with a GNN ODE functon on

the right-hand side. The GNN is designed as a message-passing framework, so traditional

opinion models such as DeGroot can also fit into this framework (see Section 4.4.2). It

aims to provide zt
i from the initial state z0

i , the target time t, and the graph-ODE function.

The decoder uses a hidden representation such as zt
i to do downstream tasks. We can

evaluate our model’s effectiveness from its performance on the downstream tasks. The

decoder is also time-dependent because the downstream tasks use time-dependent hidden

representations as their inputs.

4.4.1 The Time-Dependent Encoder

In this subsection, we introduce the architecture of our temporal-graph encoder, and another

variant of time-dependent encoder that also works in our framework, serving as a baseline

encoder (see Section 4.4.1.2).

4.4.1.1 The Temporal Graph Encoder

We use a temporal-graph encoder to encode the observation sequences oi = {ot′
i |t′ < 0}

before the starting time t = 0 for each account vi (with i ∈ {1, 2, . . . , N}) into a factorized
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distribution of initial hidden states:

qϕ(Z0) =
N∏

i=1
qϕ(z0

i |o1, o2, . . . , oN) . (4.2)

Because this multi-agent dynamical system consists of many coupled components, similar to

the design of LG-ODE [67], we choose to use a model that captures interactions between

the nodes, instead of simply modeling each node’s observation sequence separately using

RNNs [126].

We use a similar encoder architecture as in the LG-ODE model. Our encoder has two

phases: (1) a dynamic-node-representation learning (DNRL) phase, in which we learn a

function fembed that learns a structural contextualized embedding ht
i for each observation ot

i

of node i at time t; (2) a temporal self-attention (TSA) phase, in which we learn a function

freadout to represent the sequence {ht
i|t < 0} of each account vi as a fixed-length vector ui,

which we then use to determine the posterior distribution of the initial state Z0 (i.e., the

matrix who stacks N vectors {z0
i |i = 1, 2, . . . , N} together).

In the DNRL phase, we learn the function fembed, which is a spatiotemporal GNN model.

In this model, we first construct a temporal graph Gtemporal = (O, E), where each node in O

represents an observation ot
i. An edge exists between the nodes representing ot1

i and ot2
j if

and only if node vi and vj are adjacent in the input graph G. We also consider the impact

of previous observations of the same account, so nodes with observations ot1
i and ot2

j are

adjacent when i = j.

For each layer l, we represent the hidden representation of osrc ∈ O as h(l)
src and otgt ∈ O as

h(l)
tgt, respectively. The nodes learn from their neighborhood via a standard message-passing

and aggregation paradigm [64], where we use attended message-passing and use a summation

operation as its aggregation function. That is,

h(l)
tgt = h(l−1)

tgt + σ
( ∑

src∈Ntgt

(
Attention(h(l−1)

src , h(l−1)
tgt ) ·Message(h(l−1)

src , ∆t(src, tgt))
))

, (4.3)

where Ntgt is the neighborhood of node otgt (i.e., all nodes that are adjacent to otgt). We

assume that any source node osrc is adjacent to the target node otgt, denoted as src ∈ Ntgt.
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The quantity ∆t(src, tgt) is the temporal gap between the two observations src and tgt. The

time-dependent message function Message(·) is

Message(h(l−1)
src , ∆t(src, tgt)) = Wvalĥ(l−1)

src ,

where ĥ(l−1)
src = σ(Wtemp[h(l−1)

src ∥∆t(src, tgt)]) + TE(∆t(src, tgt)) ,
(4.4)

the linear transformations Wtemp and Wval ensure that the output dimension is the same as

the input dimension, TE is a projection function that projects the temporal observation gap

∆t(src, tgt) onto a vector with the same dimensionality as the hidden space (i.e., the same

dimensionality as h(l−1)
src ). We separately project its odd and even dimensions:

TE(∆t)2i+1 = cos(∆t/100002i/d) , TE(∆t)2i = sin(∆t/100002i/d) .

The attention function Attention(·) is based on a self-attention mechanism [148]. We

introduce the linear transformations Wkey and Wque, which have the same dimensionality

as Wval. The transformations Wkey, Wque, and Wval together project the input node

representations ĥ(l−1)
src into values Wvalĥ(l−1)

src , keys Wkeyĥ(l−1)
src , and queries Wqueh(l−1)

tgt . We

then define the attention function Attention(·) as

Attention(h(l−1)
src , h(l−1)

tgt ) = (Wkeyĥ(l−1)
src )T (Wqueh(l−1)

tgt ) · 1√
d

, (4.5)

where d is the hidden dimensionality. Finally, we stack the L = 2 layers of the spatiotemporal

convolutional layers to obtain the representation ht
i = h(2)

tgt, where the corresponding node

with observation ot
i in Gtemporal = (O, E) is otgt.

We have a spatiotemporal embedding ht
i of each ot

i. However, each individual account

vi can have an observation sequence oi of variable length. To encode the sequence as a

fixed-dimensional vector ui and then derive the hidden-representation distribution’s mean

and standard deviation µi, σi ∈ Rd from it, we use the TSA phase. In the TSA phase, we

learn freadout. That is,

[µi ∥ σi] = freadout({ht
i|t ∈ {t

j
i}Ti

j=0, t < 0}) ,

where freadout outputs a matrix [µi ∥σi], which denotes the concatenation of µi and σi. We

use [· ∥ ·] to represent the concatenation operation.
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We incorporate temporal information into the embedding ht
i and write

ĥt
i = σ(Wtemp[ht

i ∥∆t]) + TE(∆t) ,

where ∆t = t − tstart is the difference between the current observation and the earliest

observation. This step is very similar to how we compute Message(·).

We compute a global sequence vector ai ∈ Rd and a linear transformation Wa ∈ Rd×d

by calculating

ai = tanh
((

1
|{oi|t < 0}|

∑
t

ĥt
i

)
Wa

)
, ui = 1

|{oi|t < 0}|
∑

t

σ(aT
i ĥt

i)ĥt
i ,

where |{oi|t < 0}| is the observed sequence length that is accessible by the encoder. We then

have another transformation layer:

[µi ∥ σi] = fposterior(ui) . (4.6)

In practice, we implement fposterior as a linear-transformation layer with input dimension d

and output dimension 2d.

With our approximate posterior distribution and our hidden-space distribution parameters

µi and σi, we can sample the initial state z0
i from the normal distribution with mean µi and

standard deviation σi. That is,

z0
i ∼ qϕ(z0

i |o1, o2, . . . , oN) = N (µi, σi) . (4.7)

4.4.1.2 GCN Encoder with Time-Dependent Input Features

Another option of our framework’s time-dependent encoder component is a standard Graph

Convolutional Network (GCN) [78] encoder. This encoder has the identical GNN

model architecture as in the original GCN paper and code.1 This version of the encoder

contains a 2-layer graph-convolutional architecture, with the layer-wise update rule

h(l)
i = σ

( ∑
vj∈Ni

1
cij

h(l−1)
j W(l−1)

)
, (4.8)

1See https://github.com/tkipf/pygcn for GCN code.
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where h(l)
i is the hidden representation of node vi at layer l. Parameters in the weight

matrix W(l−1) are learnable parameters. The quantity cij is a normalization factor for the

edge between vi and vj. We compute cij during the data-preprocessing step after we add a

self-edge to each node. It is given by

cij =
√
|Ni| · |Nj| ,

where Ni is the neighborhood of node vi’s. The quantity |Ni| is the size of node vi’s

neighborhood.

In the GCN encoder, time information is embedded into the node features. Suppose

that we have an observed sequence {oi|t < 0} of node vi with sequence length SeqEnci,

we compute a weighted sum of all the observations in the sequence. The weight of the

earliest observation is 1
2SeqEnci

, the next observation has weight 1
2SeqEnci−1 , and so on. The

latest observation right before the starting time t = 0 has weight 1/2. The weighted sum of

all {ot
i|t < 0} is the input h(0)

i to the GCN model.

The last layer of the GCN is followed by a linear-transformation layer with the same

architecture as fposterior (see Equation (4.6)). We then compute the mean µi and the standard

deviation σi of the GCN encoder the same way as in Equation (4.6).

4.4.2 The Graph ODE

A social-network data set with N accounts, together with update rules of their opinions and

the initial states of their opinions, can be viewed as a continuous multi-agent dynamical

system.The opinion evolution of zt
i is governed by a set of coupled first-order ODEs with

vector fields gi that update their values in infinitesimal time steps.

We model our ODE function in a straightforward way using a GNN framework gi by

writing
dzt

i

dt
= gi(zt

1, zt
2, . . . , zt

N) , (4.9)

where gi consists of LODE layers of message-passing convolutional layers:

v(l+1)
j = f

(l)
aggregate

(
{f (l)

message(v
(l)
i , v(l)

j )|vi ∈ Nj}
)

. (4.10)
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The input is the nodes’ representations v(0)
i = zt

i and the output is the derivative dzt
i

dt
=

v(LODE)
i .

With the initial state z0
i ∈ Rd for each account vi, the solution zt

i satisfies an initial-value

problem (IVP), which we express in the integral form

zt
i = z0

i +
∫ t

t′=0
gi(zt′

1 , zt′

2 , . . . , zt′

N )dt′ . (4.11)

There are many numerical ODE solvers to obtain zt
i. A prominent example is Runge–

Kutta methods [134]. The Euler’s method we refer to in our code is a particular type of

Runge–Kutta methods [56].

The vector field gi defines the dynamics of the latent state of the ith agent (i.e., account

vi). The coupled dynamics of the agents constitute a multi-agent dynamical system.

We have a GNN-based ODE function in our LSDS framework by default (see Section 4.4.2.1),

and we also adapt some ODE functions from opinion models to produce other variants (see

Section 4.4.2.2).

4.4.2.1 Graph Neural-ODE Function

Our model’s ODE function uses a similar updating algorithm as in the NRI model, a

type of GNN that has been used successfully to model discrete-time multi-agent dynamical

systems [77]. In each layer of an ordinary NRI model, information is passed from nodes to

edges and then from edges to nodes:

e(l)
(i,j) = f (l)

e ([v(l)
i ∥ v(l)

j ]) , v(l+1)
j = f (l)

v (
∑
i ̸=j

e(l)
(i,j)) ,

where e(l)
(i,j) is the edge embedding between node pair (vi, vj) in layer l and the vector v(l)

j is the

node embedding of node vj at layer l. The functions f (l)
e and f (l)

v are multi-layer perceptrons

(MLPs). In NRI [77], Kpif et al. considered a fully connected graph and discrete time

steps. We are interested in dynamics on social networks, so we need to consider real-world

social-network structure. Therefore, we adapt the standard NRI node-update rules. For
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each layer,

e(l)
(i,j) = f (l)

message(v
(l)
i , v(l)

j ) = f (l)
e ([v(l)

i ∥ v(l)
j ]) ,

v(l+1)
j = f

(l)
aggregate({e

(l)
(i,j)|vi ∈ Nj}) = f (l)

v (
∑

vi∈Nj

[v(l)
i ∥ e(l)

(i,j)]) + v(l)
j .

(4.12)

Following settings that have worked well in similar models [67, 77], we set the number of

layers in our ODE function LODE to 1 as a default. When we change it to other values, we

find the model performance degrades.

4.4.2.2 Baseline Opinion Models

In some other variants of LSDS, we adapt the right-hand sides of our ODE functions from

opinion models to GNN models. In our discussion, we use the SINN [111] baseline models

because they are already neural-network models and worked well on some simulated data sets.

These baselines include the DeGroot model [2], the Friedkin–Johnsen (FJ) model [47],

and a Hegselmann–Krause (HK) bounded-confidence model [124].

• Among all opinion models we have translated into GNN model, the DeGroot model

is the simplest one with the fewest constraints and requires the least modification from

SINN model to GNN model. Denote latent opinion of an account vi at time t by

zt
i ∈ Rd. Its discrete-time update rule on a network is

zt+1
j = zt

j +
∑

vi∈Nj

aijzt
i ,

whereNj is the neighborhood of node vj and aij > 0 is the strength of the edge (i.e., the

follower–followee relationship) between two adjacent accounts vi and vj. The SINN

model uses an ODE as a continuous-time analogue of the DeGroot model in the form

dzt
i

dt
=

∑
vi∈Nj

aijzt
i =

∑
vi∈Nj

mT
i qjzt

i ,

where mi, qj ∈ RK are the ith and jth columns of M, Q ∈ RN×K .The number of

nodes of the network is N , and we use M and Q to decompose the N × N amount
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of parameters of aij with the expression a = MQT . The SINN model sets the

hyperparameter K ≪ N , which dramatically reduces the number of parameters from

O(N2) to O(KN). Translating this formula into a GNN model yields

e(l)
(i,j) = f (l)

message(v
(l)
i , v(l)

j ) = mT
i qjv(l)

i ,

v(l+1)
j = f

(l)
aggregate({e

(l)
(i,j)|vi ∈ Nj}) =

∑
vi∈Nj

e(l)
(i,j) .

(4.13)

When LODE = 1, our graph-ODE function is identical to the SINN DeGroot ODE

function.

• The Friedkin–Johnsen (FJ) model is an opinion model that considers accounts with

different susceptibilities to interpersonal influence. Some researchers also use the term

“stubborness” to describe FJ model’s incorporation of nodes with hesitance to change

their opinions [153]. The discrete-time FJ update rule is

zt+1
j = (1− sj)z0

j + sj

∑
vi∈Nj

zt
i ,

where sj ∈ [0, 1] is the susceptibility to persuasion. A smaller value of sj signifies that

account vj is harder for others to influence. All neighbors in a network have the same

importance. Okawa and Iwata [111] proposed an ODE that is similar to the FJ model.

It is
dzt

i

dt
= sj

∑
vi∈Nj

zt
i + (1− sj)z0

j − zt
j .

When LODE = 1, by extending the dimensionality of zt
j from one dimension (1D) to d

dimensions (dD), we obtain a GNN version of FJ ODE. We do not include the decay

term −zt
j. This yields our GNN FJ model

e(l)
(i,j) = f (l)

message(v
(l)
i , v(l)

j ) = sj ⊙ v(l)
i ,

v(l+1)
j = f

(l)
aggregate({e

(l)
(i,j)|vi ∈ Nj}) =

∑
vi∈Nj

e(l)
(i,j) + (1− sj)⊙ v(0)

j ,
(4.14)

where x ⊙ y denotes element-wise multiplication. For any node vj, the susceptibility

value and the hidden value of the node (in each layer of the GNN function) have the

same dimensionality (i.e., sj, v(l)
j ∈ Rd).
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• The Hegselmann–Krause (HK) model is a bounded-confidence model (BCM) [12].

Bounded-confidence models consider “confirmation bias” and “selective exposure”,

which entails that agents tend to pay more attention to information that confirms

their preconceptions [29, 133]. The discrete-time HK model is

zt+1
j = zt

j + 1
|Nj(t)|

∑
i∈Γj(t)

(zt
i − zt

j) ,

where Γj(t) = {vi ∈ Nj | |zt
i − zt

j| ≤ δ} is the set of neighboring nodes whose opinions

are within the confidence bound of the target node j (i.e., |zt
i − zt

j| ≤ δ). Okawa and

Iwata [111] used a continuous-time HK model in the form of the ODE

dzt
i

dt
=

∑
vi∈Nj

σ
(
δ − |zt

i − zt
j|
)(

zt
i − zt

j

)
,

where zt
j ∈ R1 and σ(z) = 1/(1 + eγz). In our scenario, we extend the agent opinions

from 1D to dD, with zt
j ∈ Rd, and assume that an agent’s attention to all different

topics (with one topic in each dimension of the d-dimensional opinion space) is limited.

Therefore, we use the softmax smooth function and write

e(l)
(i,j) = f (l)

message(v
(l)
i , v(l)

j ) = γ ⊙ Softmax
(
ξ ⊙ (δ − |vt

i − vt
j|)
)
⊙
(
vt

i − vt
j

)
,

v(l+1)
j = f

(l)
aggregate({e

(l)
(i,j)|vi ∈ Nj}) =

∑
vi∈Nj

e(l)
(i,j) ,

(4.15)

where⊙ represents element-wise multiplication and ξ, δ, γ ∈ Rd, which are the same for

all agents, are parameters to learn. In practice, on our real-world data sets, we found

softmax smoothing function performs significantly better than the sigmoid function

that SINN used for 1D opinion updates.

To demonstrate the importance of the ODE functions, we also use a naive baseline ODE

model, which we call No-Update. This model is

e(l)
(i,j) = f (l)

message(v
(l)
i , v(l)

j ) = v(l)
j ,

v(l+1)
j = f

(l)
aggregate({e

(l)
(i,j)|vi ∈ Nj}) = 1

|Nj|
∑

vi∈Nj

e(l)
(i,j) .

(4.16)

In this case, the ODE has the same opinion prediction as the initial opinion v0
j for each node

vj for all times t.
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4.4.3 The Time-Dependent Decoder

We consider two tasks: (1) interaction inference (i.e., “prediction”) and (2) polarity inference

(i.e., “prediction”). As we discussed in Section 4.3.2, each of the downstream tasks has a

different decoder design and different objectives.

Previous neural dynamical systems [67, 77] jointly train the encoder, a reconstruction

decoder, and an ODE by maximizing the evidence lower bound (ELBO)

ELBO(θ, ϕ) = EZ0∼qϕ(Z0|o1,o2,...,oN )[log pθ(o1, o2, . . . , oN)]−KL[qϕ(Z0|o1, o2, . . . , oN) ∥ p(Z0)] ,

(4.17)

where the prior p(Z0) is the standard normal distribution N (0, 1). The vectors 0 and 1 are

all-zero and all-one vectors, respectively. The quantity KL[qϕ ∥ p] is the Kullback–Leibler

(KL) divergence between the distribution qϕ and the distribution p [169]. Previous neural

dynamical systems have considered an observation-reconstruction task [67, 77]. However,

real-world social networks involve many uncertainty. It is unreasonable to suppose that we

can predict exactly what the accounts post. Therefore, we seek different decoder tasks than

observation–reconstruction.

We use a similar framework as in Equation (4.17). We break the loss value into two

parts. The first part estimates the quality of the decoder’s prediction, and the second part

is a regularization term. The loss value is

L = Ldec + λLreg , (4.18)

where Lreg = KL[qϕ(Z0|o1, o2, . . . , oN) ∥ p(Z0)]. The term Ldec is different for different tasks.

4.4.3.1 Interaction Prediction

We model the interaction-prediction task as a time-dependent edge-prediction problem. We

assign an index R ∈ {1, 2, 3, 4} to the 4 types of possible interactions: reply, mention,

retweet, and like. For a temporal edge ⟨i, j, t⟩ with relation r ∈ {1, 2, 3, 4}, node indices

i, j ∈ {1, 2, . . . , N}, and time t ∈ [0, T ] (where T is the ending time of the observations), we
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measure the score of the edge’s existence with the function

edge score(i, j, t, r) = zt
iWrzt

j + Wv

zt
i

zt
j

+ b . (4.19)

This choice extends the TIMME-NTN module [158] (see Section 2.4.2) for edge prediction

to temporal edges. In Equation 4.19, Wr ∈ Rd×d, Wv ∈ R2d, and b ∈ R are trainable

parameters of the decoder. The matrix Wr is diagonal.

When the temporal edge ⟨i, j, t⟩ exists, the ground-truth value of the edge score is 1;

when it does not exist, the ground-truth value is 0. We optimize edge score(i, j, t, r) using

the ground-truth values by minimizing the binary-cross-entropy loss, which we thus use for

Ldec. We evaluate the models’ performance on the test data set by using the ROC-AUC

and by the mean precision. The mean precision is the area under the curve (AUC) of the

precision–recall (PR) curve, so we also refer to it as PR-AUC.

4.4.3.2 Polarity Prediction

We model the polarity-prediction task as a regression problem. We label the ground-

truth political-polarity score using the polarity scores that we compute with PEM (see

Chapter 3) [159].

We feed xt
i into the pipeline of the pretrained PEM model sentence by sentence. We

calculate the mean value of the polarity score of all tokens in a sentence as a sentence-level

polarity score. We regard the mean value of all sentences’ polarity scores as a ground-truth

polarity score pt
i.

For any text-content observation xt
i of account vi at time t > 0, the corresponding latent

opinion observation zt
i is available. We then use a 2-layer MLP network and output a 1D

score

p̂t
i = MLP(zt

i)

as the predicted polarity value. We compute the loss component Ldec as a negative Gaussian

log-likelihood between the prediction p̂t
i ∈ R and the ground truth pt

i ∈ R. We evaluate the
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quality of our prediction by calculating the mean-square error (MSE) and mean absolute-

percentage error (MAPE) between all pairs of p̂t
i and pt

i.

4.5 Experiments

In this section, we talk about how we designed our experiments in details, and discuss the

experimental results of our LSDS framework.

4.5.1 Data Sets

We collected our data set from Twitter using the Twitter (currently named X) API.2 We

collected the data by the end of the year 2020.3 Back then, the Twitter API allowed access

to the most recent 3,200 tweets in each account’s timeline.

Although some accounts’ records can be traced back to 2019 or even earlier, we align

the starting time and the ending time of their timelines and keep only the tweets that were

posted in 2020.

4.5.1.1 Selecting the Subset of Accounts

We use the TIMME data set’s collection of politicians’ accounts [158], which consists of

Congress members, cabinet members, and president candidates at that time. After filtering

out the accounts that were no longer available at the time that we collected them and

removing the accounts that have posted fewer than two tweets during the year 2020, we keep

513 politician accounts.

The 513 politician accounts are the nodes in our Twitter 2020 Dynamical data of

Politicians (T20D-Politicians) data set. For our comparisons, we set the number of

accounts in all other data sets to 513.

2See https://developer.twitter.com/en/docs/twitter-api for more information.
3The last valid record of post was on November 26th.
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We select 256 politicians’ accounts (approximately 50% of the politicians’ accounts)

uniformly at random and include some of their neighbors according to the follower–followee

relationships in the TIMME data set. The total number of nodes that we include in every

data set is always 513, with 256 politicians and 257 other accounts. We used different criteria

to select the followers and followees. We order the followers and followees of the selected

politicians’ accounts in the TIMME data set by how many tweets they posted during the

year 2020.

We keep a list of the selected politicians’ followers and followees as the candidate accounts.

We select the most active (i.e., those that have posted the most tweets) candidate accounts to

make the T20D-Active data set (i.e., Twitter 2020 Dynamical data of Active accounts).

We select the most inactive (i.e., those that have posted the fewest tweets) candidate accounts

to make the T20D-Inactive data set. We also select the candidate accounts from the

TIMME data set uniformly at random to form the T20D-Random data set.

4.5.1.2 From Observations to Representations

We can observe only an account’s tweets. Instead of having a ground-truth representation ot
i,

we observe the text xt
i that an account vi posts on Twitter at time t. For our tasks, we use the

Sentence-BERT model [125]. We use the “all-MiniLM-L6-v2” version of its pretrained

parameters to translate text sentences into vector embeddings. The Sentence-BERT

model has been tested on benchmarks such as SentEval [31], and it has performed better

on sentence-level embeddings [125] than other popular language models such as BERT [41]

and RoBERTa [90].

We transform the observations X̃ t
i = {xt̃

i|t̃ ∈ [tstart, tend]} of account vi’s tweets on a

certain day into vector-space representations Õt
i = {õt̃

i|t̃ ∈ [tstart, tend]}, and we then take a

mean of these representations. This yields our vector-space representation of account vi at

day t. It is given by

ot
i = 1
|Õt

i |
∑

t̃∈[tstart,tend]
õt̃

i . (4.20)
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In practice, we assume that humans are unlikely to change their opinions very frequently.

There is no need to measure an account’s opinion at every second. Accordingly, we use a

temporal granularity of one day.

4.5.1.3 Constructing A Dynamic Network

We assume that the follower–followee relationships of each T20D node set (see Section 4.5.1.1)

never change. However, the nodes’ latent opinions continuously change.

To train our model effectively, we need multiple trajectories of samples, so we need to

construct multiple dynamic graphs for each data set. We select 50 different sequences of

observations from the 2020 tweets. The time window of different sequences that we select

can overlap with each other, and each sequence’s time range includes at least 20 observations

time points. We select these numbers based on experience in other neural-ODE projects [67].

For each tweet, we record the accounts that retweet this tweet, which accounts are

mentioned by this tweet, which accounts (if any) the tweets are replying to, and which

accounts like the tweet. We keep only accounts that are included in our node set (e.g.,

T20D-Active node set). When we combine all observations from a particular day, we

merge all of the interactions of all tweets on that day into the observed interactions.

We split all data sets into training and testing sets with an 8:2 ratio. To reduce data

leakage, we use the earlier observations in a timeline as a training sequence and the later

ones as testing sequences. The different data sets have different numbers of follower–followee

relationships (see Table 4.1).

We see in Table 4.1 that the testing set of T20D-Active is significantly denser than its

training set.4 The reason is that we use earlier times for the training sets and later times

for the testing sets. Additionally, in 2020, Twitter allowed access to only the most recent

3,200 tweets of each account’s timeline. If some accounts are extremely active (i.e., they

post many tweets per day), then we may only have their tweets during a short time period

4Similar problem exists on other data sets (i.e., T20D-Inactive and T20D-Random) but typically less
severe.
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Table 4.1: Overview of the size of our training and testing data sets. The quantity “# Seq”

denotes the number of sequences of a dynamic network. The quantity “Max N” denotes the

maximum number of candidate nodes in this network. The quantity “Mean N” refers to the

mean number of nodes in a network, and “Mean M” refers to its mean number of edges.

Data set name Split # Seq Max N Mean N Mean M Feature dimensions

T20D-Politicians train 40 513 462.35 239,450.73 768

test 10 513 467.90 223,263.10 768

T20D-Active train 40 513 334.83 72,565.30 768

test 10 513 478.30 102,114.60 768

T20D-Random train 40 513 341.03 56,198.83 768

test 10 513 395.50 61,431.80 768

T20D-Inactive train 40 513 183.55 42,475.68 768

test 10 513 185.90 40,093.60 768

(e.g., perhaps a few months or less). This size imbalance between training sets and testing

sets is negligible in data sets (e.g., T20D-Inactive) in which we select the accounts that do

not post tweets very frequently.

4.5.1.4 Limitations

Because of Twitter API’s accessibility, the most recent behaviors are preserved better than

the earlier behaviors. We examine the numbers of observations each day for mentions,

retweets, and likes. We plot their mean values and the standard deviations in Figure 4.3.

4.5.2 Model Performance

We test the different variants of our LSDS framework and compare their performance. For

each setting, we use 3 different random seeds and take the mean and standard deviation of

the results. Table 4.2 shows the results of our temporal-relationship prediction task, and

Table 4.3 shows the results of our political-polarity regression task. Our data sets are denser

than many other data sets, such as knowledge graphs (e.g., the FB15K data set has as many

as 14,951 nodes but only 592,213 edges [15]) and chemical graphs (e.g., the MUTAG data

106



N
um

be
r o

f O
bs

er
ve

d 
In

te
ra

ct
io

ns

(a) T20D-Politicians data set
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(b) T20D-Random data set

Figure 4.3: The number of observed interactions after different numbers of days. The solid

curves indicate the mean values, and the filled areas indicate the standard deviations.

Table 4.2: Performance on our temporal interaction-prediction task (we predict the next 18

days). We show mean results and their standard deviations. By default, most researchers

use GCN models with 2 convolution layers (i.e., LENC = 2). We show the best results in

bold.

Model Variants
T20D-Politicians T20D-Active T20D-Random T20D-Inactive

ROC-AUC AVG-PR ROC-AUC AVG-PR ROC-AUC AVG-PR ROC-AUC AVG-PR

LSDS with other encoder variants

GCN (LENC = 2) .7400± .0330 .7190± .0342 .7219± .0100 .7196± .0108 .6614± .0093 .6459± .0120 .7266± .0158 .7117± .0205

GCN (LENC = 3) .7308± .0172 .7033± .0175 .7274± .0110 .7260± .0136 .7576± .0071 .7622± .0054 .8326± .0317 .8163± .0271

LSDS with other ODE function variants

DeGroot .8354± .0170 .8203± .0198 .8797± .0042 .8843± .0016 .8849± .0088 .8768± .0118 .8726± .0123 .8704± .0088

FJ .8621± .0069 .8502± .0127 .8736± .0041 .8736± .0036 .8564± .0066 .8587± .0045 .8845± .0063 .8872± .0055

BCM (HK) .8302± .0217 .8190± .0235 .8768± .0104 .8827± .0075 .8792± .0049 .8715± .0065 .8646± .0041 .8615± .0103

No-Update .7546± .0721 .7526± .0565 .8392± .0148 8357± .0155 .7855± .0657 .7673± .0726 .8091± .0685 .8078± .0636

LSDS .8558± .0136 .8427± .0118 .8849± .0022 .8881± .0052 .8987± .0015 .8925± .0016 .8888± .0062 .8856± .0059

set has 17.93 nodes on average but only 19.79 edges on average [38, 163]). Therefore, instead

of assuming that there is no interaction between two nodes that we sample uniformly at

random and then use the edge as negative sample, we select node pairs that do not interact

with each other according to a specified relationship (e.g., retweet) at a particular time to

construct our negative samples. We use the negative edge samples to train the relation
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prediction task. We call this process “removing false-negative interactions”. This treatment

is both reasonable and essential, but it roughly doubles the computation time.

As we can see in Table 4.2, for the temporal-edge prediction task, our LSDS model

performs the best on almost all data sets, except for the T20D-Politicians data set. On

this data set, using the FJ ODE function achieves the best performance. We suspect that

the FJ model’s takes the agents’ susceptibilities into consideration makes it predict more

precisely on the politicians’ behaviors.

Researchers typically use GCNs with two convolution layers (i.e., LENC = 2). However,

we find that a 3-layer GCN (LENC = 3) performs well on the temporal edge-prediction task,

so we show results for this variant. We do not obtain a similar finding for the other decoder

tasks. That is, for our other two tasks, the default 2-layer GCN outperforms a 3-layer GCN.

Table 4.3: Performance on our temporal polarity-prediction task (we predict the next 18

days). We show mean results and their standard deviations. We show the best results in

bold.

Model Variants
T20D-Politicians T20D-Active T20D-Random T20D-Inactive

MSE MAPE MSE MAPE MSE MAPE MSE MAPE

LSDS with other encoder variants

GCN 0.371± 0.008 1.33± 0.09 0.243± 0.003 1.95± 0.14 0.383± 0.020 1.35± 0.06 0.361± 0.009 1.27± 0.09

LSDS with other ODE function variants

DeGroot 0.338± 0.008 1.35± 0.03 0.195± 0.011 2.21± 0.10 0.331± 0.002 1.39± 0.03 0.331± 0.002 1.20± 0.02

FJ 0.320± 0.002 1.65± 0.08 0.205± 0.007 2.17± 0.10 0.331± 0.002 1.58± 0.08 0.326± 0.002 1.34± 0.07

BCM (HK) 0.365± 0.013 1.25± 0.05 0.195± 0.003 1.77± 0.32 0.349± 0.001 1.42± 0.02 0.348± 0.005 1.20± 0.00

No-Update 0.361± 0.011 1.75± 0.11 0.200± 0.004 3.39± 0.63 0.351± 0.002 1.88± 0.17 0.350± 0.003 1.45± 0.07

LSDS 0.305± 0.001 1.82± 0.37 0.168± 0.001 1.64± 0.05 0.318± 0.005 1.60± 0.30 0.299± 0.005 1.57± 0.08

In Table 4.3, we show the overall performance on the political-polarity regression task.

Although our model performs well in general, all models perform similarly to each other.

This finding is consistent with the fact that individuals tend to maintain consistent opinions

along a liberal–conservative axis.
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4.5.3 Case Studies

Thus far, the temporal interaction-prediction task has been the most discriminative decoder

task. However, treating all treating all testing-set samples equally is not enough in practice.

We are also interested in exploring how well each model can look into the near future versus

the far future.

Additionally, although we optimized scores on all types of relations together due to the

sparsity of some types of relations, it is interesting to examine whether or not we observe

different interaction-prediction performance for different types of relationships over time.

4.5.3.1 Which Model Performs Better in the Long Term?

LSDS (Our Model)

No-Update Baseline

(a) T20D-Politicians Data Set

LSDS (Our Model)

No-Update Baseline

(b) T20D-Random Data Set

Figure 4.4: The mean-squared errors of the predictions of political-polarity scores after

different numbers of days. The solid curves indicate the mean values, and the filled areas

indicate the standard deviations.

Although all neural-ODE functions perform similarly on our polarity-prediction task (see

Table 4.3), we observe that our LSDS model is almost always better at making longer-term

predictions (see Figure 4.4). If we generate a data set to include longer time ranges, perhaps

our LSDS model will perform better. This is an interesting experiment to perform in the
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future. See Section 4.6 for a discussion of this idea and other future work.

In Figure 4.4, we see from the performance of the No-Update baseline that if we assume

that everybody always retains the same opinion, then our models make more mistakes as

we consider progressively longer time horizons. This trend is more prominent in the No-

Update model than in the other models.

LSDS (Our Model)

No-Update Baseline
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(a) T20D-Politicians data set
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(b) T20D-Random data set

Figure 4.5: The mean precisions (i.e., PR-AUCs) of the predictions of temporal interactions

after different numbers of days. The solid curves indicate the mean values, and the filled

areas indicate the standard deviations.

In Figure 4.5, we show the performance on our temporal-interaction prediction task for

different time horizons. In this comparison, we include our LSDS model, the FJ model

(which performs unexpectedly well, especially on the T20D-Politicians data set), the No-

Update baseline, and an ordinary GCN.

From these figures, we find that unlike the political-polarity score, which is significantly

harder to predict in the long-term than in the short-term, most of the models’ performances

on predicting the interactions between accounts stabilizes after about 10 days. It may be

that different tweets have very different tweet contents, even if they comes from the same

account, hence that it is less likely for a feature to stabilize, whereas behavior in a social

network does not tend to change much in a short period of time (e.g., in one month). For
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example, perhaps people retweet and mention many of the same accounts in a short period

of time.

However, from the poor performance of the No-Update baseline, we conclude that there

is still some pattern of changes in the temporal interactions. In general, capturing long-term

behaviors is more challenging than capturing short-term behaviors. We believe that the

models’ performance on long-term predictions depends on how well they can capture the

more consistent interaction-patterns between accounts. As one can see in the significant

difference between Figure 4.5a and Figure 4.5b, we suspect that politicians and other types

of accounts have different interaction patterns. Additionally, from Figure 4.5, we suspect

that our data sets are not challenging enough for our models. They all seem to do too well

at predicting future dynamics. We need to test them more stringently in future works.
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(b) FJ model

Figure 4.6: The mean precisions (i.e. PR-AUCs) of the predictions of different types of

temporal interactions in the T20D-Politicians data set after different numbers of days. The

solid curves indicate the mean values, and the filled areas indicate the standard deviations.

One may ask why our Figures 4.5 (and also Figure 4.6 discussed in the next subsection)

are so wiggly in the first few days, even though it should be easier generically to predict

the near future than farther in the future. We suspect that this observation arises from

the construction of our data set. As we mention in Section 4.5.1.4, the distribution of our
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observations is uneven in time. This feature of our data set can cause the predictions in the

first few days to be less reliable than later predictions.

Intuitively, one expects model performance to worsen as we consider times that are farther

away from the initial time t = 0. However, this is not the case for our edge-prediction results.

We suspect that this is due to the powerful temporal GNN encoder component. As we show

in Figure 4.7, even the No-Update model, in which there is essentially no ODE and we

let zt
i = z0

i for all nodes vi, the performance on our interaction-prediction task is somewhat

stable.
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(b) T20D-Random data set

Figure 4.7: The mean precisions (i.e. PR-AUCs) of the predictions of temporal interactions

using the No-Update baseline. The performance of No-Update baseline relies heavily on

the quality of the encoder component.

4.5.3.2 Which Relationship is the Easiest One to Predict?

In the relationship set {reply, mention, retweet, like}, the hardest type of relationship to

predict is replies. Replies are also the least reliable relationship, given how sparse it is. Most

of the time, we are not even able to plot the performance on predicting replies because of

the data sparsity.

All other types of relationships have enough data to use for reasonable predictions. The
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sparsity of the reply-relationship data is also why we measure prediction success using PR-

AUC instead of ROC-AUC. PR-AUC is better than ROC-AUC on handling imbalanced data

sets [36].

According to Figure 4.6, the FJ model consistently performs better than our LSDS

model for predicting all types of interactions. All other models perform similarly well for

predictions of all relationships between the accounts of politicians. A model that performs

well at predicting mentions is likely to perform similarly at predicting retweets. The FJ

model performs slightly better than the others, but it achieves different performances for

different relationships. It seems that, when using the FJ model, it is easiest to predict the

politicians’ likes and retweets and that it is hardest to predict their mentions.
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(b) FJ model

Figure 4.8: The mean precisions (i.e., PR-AUCs) of the predictions of temporal-interactions

for the T20D-Random data set after different numbers of days for different types of

interactions. The solid curves indicate the mean values, and the filled areas indicate the

standard deviations.

We obtain different results for other sets of accounts (e.g., T20D-Random. In Figure 4.8,

we see that LSDS is successful and stable at predicting retweet interactions in a set of

accounts that consists of 50% politicians and 50% of ordinary followees and followers of

politicians. An advantage of our LSDS model is that it achieves a similar performance for
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all relationships. For the FJ model (see Figure 4.8b), it is significantly harder to predict like

interactions than to predict the other types of interactions.

4.5.4 Training

It is very tricky to train our LSDS model. We gradually increase the KL coefficient λ (see

Section 4.4.3 and Equation (4.21)) as the training proceeds, there exist many local optima,

so the training performance can easily drop.

rate = 5 × 10-3
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(a) T20D-Politicians data set
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(b) T20D-Random data set

Figure 4.9: The ROC-AUCs of our LSDS model for the training set after each epoch for

various learning rates. We observe similar trends for the testing set. Larger loss values

indicate worse performance.

As we see in Figure 4.9, the most suitable learning rate lr when we train for our temporal-

relationship-prediction task for 100 epochs is lr = 1 × 10−3. The learning rate influences

whether or not our model becomes trapped in a bad local optimum. Additionally, the

training curve depends on the data set, as we can see by comparing Figures 4.9a and 4.9b.

In Figure 4.9a, we see that the learning curve for the learning rate lr = 1 × 10−4

experiences some instability at about epoch 40, but the optimization performance becomes

better at about epoch 60. Later, its performance drops again and then does not improve.

This phenomenon is caused by our KL-coefficient scheduler. We compute the KL coefficient
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λ using the formula

λ =



0 , epoch ≤ 10

1− 0.99 epoch−10 , epoch > 10 and epoch ≤ 90

0.6 , epoch > 90 .

(4.21)

We adapt this learn-rate schedule for λ from the schedule in LG-ODE [67]. LG-ODE

was designed initially for physical systems that typically require fewer than 100 epochs of

training, and we add an upper bound of 0.6 to λ so that our model is less likely to experience

severe performance drops after 100 epochs.

To stabilize the training curve and enable training for many more epochs without harming

the performance, many neural-ODE implementations [24, 42] have used the Cosine Annealing

learning-rate scheduler [93]. Additionally, some previous works on VAEs have suggested

that the KL coefficient λ can be scheduled in other ways [113]. We have not added the

Cosine Annealing learning rate scheduler. We believe that adding this will improve the

performance of our LSDS model. We find that the learning rate lr = 1×10−4 most benefits

temporal GNN encoder for our temporal-relation-prediction task. With the baseline GCN

encoder, sometimes the best learning rate is 5 × 10−5. For the political-polarity prediction

task (see Table 4.3), the political-polarity classification task (see Table 4.4), and the text-

embedding reconstruction task (see Table 4.5), the 5×10−5 and 1×10−4 learning rates yield

similar performance.

4.5.5 Ablation Study

In this subsection, we try different combinations of hyperparameter settings on our LSDS

framework, and then conduct ablation studies.

4.5.5.1 Hidden-Dimension Sizes

Adding more GNN layers to a graph ODE function does not improve the performance of

LSDS at our tasks. The original NRI model uses a single-layer architecture to capture
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the dynamics of a physical system [77]. We have done experiments with a 2-layer GNN in

the ODE function, but it does not improve the performance of LSDS. For example, for

the temporal-interaction-prediction task on the T20D-Politicians data set, the ROC-AUC

drops slightly to about 85.6% and the mean precision (i.e., PR-AUC) drops to about 84.5%.

Hidden-dimension sizes affect the performance of our LSDS model, but they are not as

important as other model features. The hidden-dimension size that we use for the graph

ODE function is 128 by default. If we increase the hidden-dimension size of the graph

ODE function from 128 to 256, for the temporal-interaction prediction task on the T20D-

Politicians data set, then the ROC-AUC drops to about 83.2% and the mean precision

(i.e., PR-AUC) drops to about 81.9%. If we decrease the hidden-dimension size from 128

to 64, the ROC-AUC performance drops to about 84.4% and the mean-precision score (i.e.,

PR-AUC) drops to about 83.1%. The hidden size we use for the temporal graph encoders is

64 by default. If we increase the hidden size of LSDS’s temporal GNN encoder from 64 to

128 and consider the T20D-Politicians data set, the ROC-AUC drops to about 85.1% and

the mean precision (i.e., PR-AUC) drops to about 83.9%. Decreasing the encoder’s hidden-

dimension size from 64 to 32 yields a ROC-AUC of about 85.1% and a mean precision (i.e.,

PR-AUC) of about 84.2%.

Increasing the dimensionality of the latent-opinion representation zt
i ∈ Rd increases the

expressiveness of LSDS in theory. However, we need to consider the memory costs and the

risk of over-fitting. We set the size of zt
i to d = 16. With d = 32, the performance is about

the same (it increases by only 0.01%), with the standard deviation 5–10 times larger than

those for d = 16. With d = 64, overfitting becomes severe. There is an approximately 2%

training performance increase, but the testing performance decreases by about 2%. To make

our comparisons fair, we use d = 16 for all models in our main experiments.

4.5.5.2 The Encoder and Decoder

From Table 4.2, by comparing the performance of the GCN baseline and other baselines,

we see for our tasks that having a good encoder is more important than having a good ODE
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function. It is also important to have a reliable decoder with a reasonable objective function.

The tasks are extremely important when we evaluate the quality of a model. For

example, as an extreme case, suppose that we treat the political-polarity-prediction task

as a classification task instead of as a regression tasktask. To do this, we write

p̃t
i =


1 , if pt

i > 0

0 , otherwise ,

where p̃t
i is the ground-truth class label. We then change the MLP decoder’s output unit to

2 and use a softmax layer as a class selector. We can use the negative log-likelihood function

as our loss and evaluate model performance by computing the accuracy and the F1-score.

Table 4.4: Performance on our temporal polarity-classification task (we predict the next 18

days). We show mean results and their standard deviations. We show the best results in

bold.

Model Variants
T20D-Politicians T20D-Active T20D-Random T20D-Inactive

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

LSDS with other encoder variants

GCN .8288± .0093 .8269± .0093 .7143± .0044 .6855± .0050 .7114± .0020 .7112± .0019 .8434± .0041 .8427± .0040

LSDS with other ODE function variants

DeGroot .8595± .0017 .8576± .0017 .8303± .0010 .8256± .0013 .7848± .0021 .7846± .0022 .8639± .0010 .8630± .0010

FJ .8600± .0000 .8582± .0000 .8270± .0014 .8224± .0019 .7744± .0031 .7741± .0031 .8582± .0015 .8572± .0014

BCM (HK) .8567± .0011 .8548± .0011 .8285± .0014 .8243± .0017 .7629± .0078 .7626± .0079 .8550± .0026 .8538± .0026

No-Update .8570± .0009 .8552± .0009 .8260± .0022 .8209± .0027 .7847± .0037 .7843± .0037 .8616± .0013 .8606± .0013

LSDS .8582± .0012 .8562± .0011 .8278± .0010 .8232± .0011 .7876± .0017 .7872± .0018 .8644± .0005 .8634± .0005

As we show in Table 4.4, it is hard to distinguish between the performances of the different

models. Even the No-Update baseline, which simply sets zt
i = z0

i for all i and all t, performs

very well on our political-polarity-classification task. Although all models perform similarly,

the FJ and DeGroot models sometimes outperform the others by a negligible margin.

If we consider an unsupervised setting, where the nodes do not have any training labels,

we can use the text-embedding reconstruction task as our decoder task, which is much more

similar to the decoder task of the original version of the VAEs, compared to all the other

tasks we have. Using the ground-truth future posts of account i at time t, we know its
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ground-truth future text-embedding observation ot
i. We can train a decoder to reconstruct

õt
i from the hidden representation zt

i. The more õt
i and ot

i align with each other, the better

our social dynamical system is.

The text-embedding reconstruction task is self-supervised, so we do not need node labels

for it. By passing zt
i through a single linear layer, which performs a linear transformation

that adapts the output dimension to the size of ot
i, we predict the observation

ôt
i = Linear(zt

i) .

We then use the negative Gaussian log-likelihood between the prediction ôt
i and the ground

truth ot
i as the objective function Ldec. We evaluate the quality of the reconstruction process

by taking the mean values of the MSEs and MAPEs between all pairs of ôt
i and ot

i.

Table 4.5: Performance on our text-embedding-reconstruction task (we predict the next 18

days). We show mean results and their standard deviations. We show the best results in

bold.

Model Variants
T20D-Politicians T20D-Active T20D-Random T20D-Inactive

MSE MAPE MSE MAPE MSE MAPE MSE MAPE

LSDS with other encoder variants

GCN 0.034± 0.002 5.12± 0.51 0.019± 0.001 4.19± 0.46 0.022± 0.002 3.42± 0.22 0.025± 0.004 3.81± 0.36

LSDS with other ODE function variants

DeGroot 0.016± 0.000 3.15± 0.06 0.011± 0.000 3.39± 0.19 0.016± 0.000 3.15± 0.14 0.017± 0.000 3.29± 0.07

FJ 0.017± 0.000 3.88± 0.04 0.012± 0.000 3.80± 0.37 0.016± 0.000 3.67± 0.10 0.017± 0.000 3.87± 0.05

BCM (HK) 0.018± 0.000 4.46± 0.11 0.012± 0.000 3.88± 0.20 0.016± 0.000 3.44± 0.18 0.017± 0.000 3.66± 0.15

No-Update 0.025± 0.009 5.78± 0.23 0.018± 0.006 6.49± 0.46 0.025± 0.012 5.80± 0.16 0.027± 0.008 6.18± 0.62

LSDS .0164± .0006 3.45± 0.11 .0111± .0001 4.10± 0.38 .0150± .0005 3.06± 0.26 .0167± .0004 3.49± 0.34

In Table 4.5, we see that all models perform very similarly to each other on the text-

embedding-reconstruction task. However, the DeGroot model, which was designed to

study consensus in multi-agent systems [40], slightly outperforms the rest. The fact that the

No-Update baseline performs well on the text-embedding-reconstruction task may help

explain why we found it hard to reconstruct text content from the predicted embeddings. A

bottleneck of our LSDS framework is that its pipeline relies heavily on the quality of the
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text embedding. With a better strategy than using Sentence-BERT embedding for post-

content representation, our framework has the potential to better model a social dynamical

system. However, currently, none of the text embedding models that are more powerful than

Sentence-BERT are affordable to us.

The above results also demonstrate that the three components of our model — the

encoder, the ODE solver, and the decoder — have different impacts on performance. An

expressive encoder that is able to generate a proper initial state z0
i is essential to achieve

good performance. Selecting a reasonable decoder is also important. For different data

sets and different target tasks, different choices of ODE solvers can be appropriate. The

text-embedding quality also affects the model’s quality.

4.5.6 Model Efficiency

Our model has reasonable time and memory efficiency both in theory and in practice. We

ran our experiments on a Linux server with the Ubuntu 20.04 operating system, with a 16G

RTX A4000 GPU, 32GB memory, and 12 virtual CPUs built on Intel(R) Xeon(R) Gold 5320

CPUs of 2.20GHz clock speed.

We use the standard adjoint method for the neural-ODE solver [178], so the time complexity

of the ODE solver is O(NzNf (Nt + Nr)), where Nz is the size of each state zt
i, Nf is the

number of hidden layers (i.e., LODE) in the neural-ODE function, and Nt is the number of

function evaluations in the forward pass (one can estimate it roughly as the number of time

points at which we make predictions), the quantity Nr is the number of evaluations in the

backward pass [179]. To give an example of run time with one of our tasks, running our

LSDS model for the temporal-edge prediction task on the T20D-Politicians data set takes

approximately 20–30 seconds per epoch.

The number of parameters depends on the choice of the encoder, the ODE function, and

the decoder. For the encoders, our temporal GNN model has 86,592 parameters and the

GCN encoder (with LENC = 2) has 30,944 parameters. In Table 4.6, we show the number of

parameters in the ODE function. In Table 4.7 , we show the numbers of parameters in the
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decoders.

Table 4.6: The numbers of parameters in the ODE functions.

ODE function type GNN (NRI) DeGroot FJ BCM (HK) No-Update

Number of parameters 288,752 16,416 41,040 240 0

Table 4.7: The numbers of parameters in the decoders. The label “Rel Pred” stands for

relationship-prediction decoder, “Pol Pred” stands for polarity-prediction (i.e., regression)

decoder, “Pol Class” stands for polarity-classification decoder, and “Emb Recon” stands for

text-embedding-reconstruction decoder.

Decoder type Rel Pred Pol Pred Pol Class Emb Recon

Number of parameters 196 289 306 6,545

The memory cost of running the neural-ODE solver using the standard adjoint method

is O(NzNf ), where Nz denotes the parameter size of each state and Nf denotes the number

of hidden layers in the neural-ODE function [167, 179]. In practice, the memory cost of our

model on our data sets while we run our LSDS model is usually less than 5 GB, and the

peak memory cost is under 10 GB.

4.6 Conclusion and Future Work

We developed a Latent Social Dynamical-System (LSDS) framework that is able to capture

the dynamics of multi-agent dynamical systems on real-world social networks.

Using data from Twitter, we analyzed our model’s performance on a series of experiments

on temporal-interaction prediction and political-polarity prediction tasks. LSDS performed

well on these tasks. Additionally, it is flexible enough to use other encoder, decoder, and

ODE-function components, so it can be used on other downstream tasks and data sets.

There are many interesting future research directions to pursue.

Because of the limitations of the collected data, our social-dynamical-system trajectories

cover less than one month. As we discussed in Section 4.5.3, we suspect that our model
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is more accurate at predicting over long time periods than over short time periods, so it is

important to examine the performance of LSDS on data samples that cover such periods.

In our current encoder framework, we consider only information in a social-media platform.

However, in the real world, it is also important to consider news, television shows, and offline

discussions. It is a challenging but interesting task to generalize our LSDS model to account

for such platforms.

It is also desirable to generalize our LSDS model to study adaptive networks [13], in which

nodes and edges can appear, disappear, and change their weights with time. Additionally,

although the NRI model provided a successful neural-ODE function for most of our tasks, it

is not designed specifically to study social dynamical systems. Other GNNs may be better

suited to studies of opinion dynamics and other social phenomena.

It is possible improve the LSDS model’s training process by improving the learning rate

schedule and KL-coefficient schedule (see Section 4.5.4). It may also be useful to use different

learning rates for different model components.

After observing that the FJ model does have some advantage over other models at

modeling the opinions of politicians’ accounts, we believe that it is also promising to combine

the update rules of the FJ model and LSDS neural-ODE function.

It is also important to consider other decoder tasks. A key example is text reconstruction,

which aims to predict the text content that a particular account will produce at a specific

future time. Given the flexibility of our LSDS model, we also hope to extend it to a multi-

task model so it can simultaneously consider multiple downstream tasks.

It is necessary to take ethical concerns seriously when applying our framework and

its variants to any task on real-world data sets. For example, as with any other neural

network models, our LSDS model can inherit biases from training data, such as gender

bias. Additionally, even though the LSDS model achieves good performance on a few tasks

that we have tried, whatever it predicts should never be treated as ground truth about

individuals.
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CHAPTER 5

Conclusions and Future Works

In this chapter, we conclude our previous works and discuss our future works.

5.1 Conclusions

This thesis summarizes our works on the Twitter data (i.e., X data). We have studied the

relations modeled as heterogeneous types of links (see Chapter 2), how to extract the political

polarity from tweet content (see Chapter 3)

In the first project, we proposed the TIMME model [158] to study how we can infer

an account’s ideology from its interaction with other accounts. In the second project, we

proposed the PEM model [159] to study how we can infer the political polarity from the

accounts’ posts. In the third project, we proposed the LSDS model to learn the dynamics

of a multi-agent social network system.

In fact, the methods we have proposed are not restricted to analyzing political-related

data. We can easily migrate their usage to other problems and other data sets with neglectable

changes. Our works are universally suitable for analyzing social opinions from any perspectives.

Besides, it is not even necessarily limited to the use on analyzing social media data. For

example, it is possible that TIMME/TIMME-hierarchical [158] (see Chapter 2) be

directly applied to other classification tasks on other data sets.

Additionally, we should always keep in mind that all data sets contain biases. In our case,

all observations come from the social-media platform Twitter. In other words, even if the

limited amount of user accounts we analyze are representative enough as Twitter users, they
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have no chance of representing those who never use social medias. Conclusions from Twitter

data are often different than what one observes with other lenses on the real world [103].

We need to be careful when we draw conclusions according to our data and our methods.

5.2 Future Work

However, despite the insights we get from the previous works, the reasons why such interactions

take place still remain mysteries.

We do not have any insight into the actual impact of a certain influential factor yet.

For instance, we do not know how to model the impact of retweet-behavior from a certain

account. The next project along this line could possibly focus on the study of causality,

solving the fourth research problem we propose:

By learning from the observed link, text, and temporal information, can we reveal

the underlying causal relationships among the accounts’ posts and behaviors?

How to reveal causal inference on a social network is one of the questions that we are

highly interested in. That is a possible future work following our current projects.

One of the key challenges in studying this problem is the lack of ground-truth observations.

In other words, lack of counterfactual data. Conducting counter-factor studies online by

conducting planned behaviors with all other conditions controlled is neither ethical nor

practical.

However, studying causal effect on social network is worthwhile. There have been many

existing works revealing the severity of polarization in the real world [110]. On the other

hand, most of the efforts on proposing methods to mediate such polarization are more or less

on the theoretical side, solving a mathematical problem instead of applying to real-world

data sets [96]. If we are able to reveal what is the cause of polarity from the data, it will be

super helpful in mediating the ever-growing polarization.

Previous studies have already combined causality inferences and graphical models, being
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widely viewed as cross-disciplinary studies of computer science and philosophy [37, 53, 81,

139]. Some researchers have pointed out that counterfactual is no longer necessary with help

of probabilistic models [37].
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Adam, and Paul Honeine. Analyzing the Expressive Power of Graph Neural Networks

in a Spectral Perspective. In Proceedings of the International Conference on Learning

Representations (ICLR), 2021.

[6] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gauzere, Sebastien

Adam, and Paul Honeine. Bridging the Gap Between Spectral and Spatial Domains

in Graph Neural Networks. arXiv preprint arXiv:2003.11702, 2020.

[7] Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh, James Glass, and Preslav Nakov.

Multi-Task Ordinal Regression for Jointly Predicting the Trustworthiness and the

Leading Political Ideology of News Media. In Proceedings of the Conference of the

126



North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT), volume 1, pages 2109–2116, 2019. (Volume 1:

Long and Short Papers).
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[32] Michael D. Conover, Bruno Gonçalves, Jacob Ratkiewicz, Alessandro Flammini, and

Filippo Menczer. Predicting the Political Alignment of Twitter Users. In the IEEE

International Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE

Third International Conference on Social Computing (SocialCom), pages 192–199,

2011.

[33] Michael D. Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves, Filippo
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[58] Mauŕıcio Gruppi, Panayiotis Smeros, Sibel Adalı, Carlos Castillo, and Karl Aberer.

SciLander: Mapping the Scientific News Landscape. arXiv preprint arXiv:2205.07970,

2022.

[59] Yupeng Gu, Ting Chen, Yizhou Sun, and Bingyu Wang. Ideology Detection for Twitter

Users with Heterogeneous Types of Links. arXiv:1612.08207, 2016.

[60] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. DynaGraph: Dynamic

Graph Neural Networks at Scale. In Proceedings of the ACM SIGMOD Joint

International Workshop on Graph Data Management Experiences & Systems

(GRADES) and Network Data Analytics (NDA), page 6, 2022.

[61] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive Estimation: A new

Estimation Principle for Unnormalized Statistical Models. In Proceedings of the

133



International Conference on Artificial Intelligence and Statistics (AISTATS), pages

297–304, 2010.

[62] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning

on Large Graphs. In Proceedings of the Advances in Neural Information Processing

Systems (NeurIPS), pages 1024–1034, 2017.

[63] Philip Hartman. Ordinary Differential Equations. SIAM, 2002.

[64] Hengtao He, Xianghao Yu, Jun Zhang, Shenghui Song, and Khaled B. Letaief. Message

Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems.

IEEE Transactions on Wireless Communications, 23(5):4709–4723, 2024.

[65] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on Graph-

Structured Data. arXiv preprint arXiv:1506.05163, 2015.

[66] Dichao Hu. An Introductory Survey on Attention Mechanisms in NLP Problems.

In Proceedings of the SAI Intelligent Systems Conference (IntelliSys), pages 432–448,

2019.

[67] Zijie Huang, Yizhou Sun, and Wei Wang. Learning Continuous System Dynamics from

Irregularly-Sampled Partial Observations. In H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, editors, Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), volume 33, pages 16177–16187. Curran Associates, Inc.,

2020.

[68] Edward L. Ince. Ordinary Differential Equations. Courier Corporation, 1956.

[69] Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and Philip Resnik. Political Ideology

Detection Using Recursive Neural Networks. In Proceedings of the Annual Meeting

of the Association for Computational Linguistics (ACL), volume 1, pages 1113–1122,

2014. (Volume 1: Long Papers).

134



[70] Julie Jiang, Xiang Ren, and Emilio Ferrara. Retweet-BERT: Political Leaning

Detection Using Language Features and Information Diffusion on Social Networks. In

Proceedings of the International AAAI Conference on Web and Social Media (ICWSM),

volume 17, pages 459–469, 2023.

[71] Kristen Johnson and Dan Goldwasser. Identifying Stance by Analyzing Political

Discourse on Twitter. In Proceedings of the First Workshop on NLP and Computational

Social Science (NLP+CSS), pages 66–75, 2016.

[72] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin,

Jianhao Shen, Fang Sun, Zhiping Xiao, Junwei Yang, Jingyang Yuan, Yusheng Zhao,

Yifan Wang, Xiao Luo, and Ming Zhang. A Comprehensive Survey on Deep Graph

Representation Learning. Neural Networks, 173:106207, 2024.

[73] Andreas Jungherr. Twitter use in election campaigns: A systematic literature review.

Journal of Information Technology & Politics, 13(1):72–91, 2016.

[74] Sandeepa Kannangara. Mining Twitter for Fine-Grained Political Opinion Polarity

Classification, Ideology Detection and Sarcasm Detection. In Proceedings of the ACM

International Conference on Web Search and Data Mining (WSDM), pages 751–752,

2018.

[75] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-Task Learning Using Uncertainty

to Weigh Losses for Scene Geometry and Semantics. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 7482–7491,

2018.

[76] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[77] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.

Neural Relational Inference for Interacting Systems. In Proceedings of the International

135



Conference on Machine Learning (ICML), Proceedings of Machine Learning Research

(PMLR), pages 2688–2697, 10–15 Jul 2018.

[78] Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph

Convolutional Networks. In Proceedings of the International Conference on Learning

Representations (ICLR), 2016.

[79] Theresa Kuhn and Aaron Kamm. The National Boundaries of Solidarity: A Survey

Experiment on Solidarity with Unemployed People in the European Union. European

Political Science Review (EPSR), 11(2):179–195, 2019.

[80] Mirko Lai, Marcella Tambuscio, Viviana Patti, Giancarlo Ruffo, and Paolo Rosso.

Stance Polarity in Political Debates: A Diachronic Perspective of Network Homophily

and Conversations on Twitter. Data & Knowledge Engineering (DKE), 124:101738,

2019.

[81] Steffen L. Lauritzen. Causal inference from graphical models. Monographs on Statistics

and Applied Probability, 87:63–108, 2001.

[82] Matthew Levendusky. The Partisan Sort: How Liberals Became Democrats and

Conservatives Became Republicans. University of Chicago Press, Chicago, IL, USA,

2009.

[83] Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix

Factorization. In Proceedings of the Advances in Neural Information Processing

Systems (NeurIPS), pages 2177–2185, 2014.

[84] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A Survey on Deep

Learning for Named Entity Recognition. In Proceedings of the International

Conference on Computational Linguistics (COLING), pages 2145–2158. Association

for Computational Linguistics, 2018.

[85] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph Convolutional

Networks for Semi-Supervised Learning. In Proceedings of the Association for the

136



Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI),

pages 3538–3545, 2018.

[86] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A Survey of Graph Neural Network

based Recommendation in Social Networks. Neurocomputing, 549:126441, 2023.

[87] Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen.

Word Embedding Revisited: A New Representation Learning and Explicit Matrix

Factorization Perspective. In Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), pages 3650–3656, 2015.

[88] Robert Lieberman, Suzanne Mettler, Thomas B. Pepinsky, Kenneth M. Roberts, and

Richard Valelly. Trumpism and American Democracy: History, Comparison, and

the Predicament of Liberal Democracy in the United States. Comparison, and the

Predicament of Liberal Democracy in the United States, 29 Aug 2017.

[89] Jie Liu, Shaowei Chen, Bingquan Wang, Jiaxin Zhang, Na Li, and Tong Xu. Attention

as Relation: Learning Supervised Multi-head Self-Attention for Relation Extraction.

In Proceedings of the twenty-ninth international conference on international joint

conferences on artificial intelligence, pages 3787–3793, 2021.

[90] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

[91] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.

Heterogeneous Graph Neural Networks for Malicious Account Detection. In

Proceedings of the ACM International Conference on Information and Knowledge

Management (CIKM), pages 2077–2085, 2018.

[92] Jan Lorenz. Continuous Opinion Dynamics under Bounded Confidence: A Survey.

International Journal of Modern Physics C, 18(12):1819–1838, 2007.

137



[93] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm

Restarts. arXiv preprint arXiv:1608.03983, 2016.

[94] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal

of Machine Learning Research (JMLR), 9:2579–2605, 2008.

[95] Sergio Martini and Mariano Torcal. Trust Across Political Conflicts: Evidence from a

Survey Experiment in Divided Societies. Party Politics, 25(2):126–139, 2019.

[96] Seth A. Marvel, Hyunsuk Hong, Anna Papush, and Steven H. Strogatz. Encouraging

Moderation: Clues from a Simple Model of Ideological Conflict. Physical Review

Letters, 109(11):118702, 2012.

[97] Diana Maynard and Adam Funk. Automatic Detection of Political Opinions in Tweets.

In Proceedings of the Extended Semantic Web Conference (ESWC), pages 88–99, 2011.

[98] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment Analysis Algorithms

and Applications: A survey. Ain Shams Engineering Journal, 5(4):1093–1113, 2014.

[99] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. A Survey on Bias and Fairness in Machine Learning. ACM Computing

Surveys (CSUR), 54(6):1–35, 2021.

[100] Sneha Mehta, Huzefa Rangwala, and Naren Ramakrishnan. Low Rank Factorization

for Compact Multi-Head Self-Attention. arXiv preprint arXiv:1912.00835, 2019.

[101] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed

Representations of Words and Phrases and their Compositionality. In Proceedings of

the Advances in Neural Information Processing Systems (NeurIPS), pages 3111–3119,

2013.

[102] Richard K. Miller and Anthony N. Michel. Ordinary Differential Equations. Academic

Press, 2014.

138



[103] Fred Morstatter and Huan Liu. Discovering, Assessing, and Mitigating Data Bias in

Social Media. Online Social Networks and Media, 1:1–13, 2017.

[104] Mohammad Rafiq Muqri. A Study of Differential Equation Solver Suites and Real-

world Applications Using Python, Maple, and Matlab. In Proceedings of the ASEE

Virtual Annual Conference Content Access, 26 Jul 2021.

[105] David Nadeau and Satoshi Sekine. A Survey of Named Entity Recognition and

Classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[106] Dat Quoc Nguyen, Thanh Vu, and Anh-Tuan Nguyen. BERTweet: A Pre-trained

Language Model for English Tweets. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing: System Demonstrations (EMNLP), pages

9–14, 2020.

[107] Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik, and Kristina Miler. Tea

Party in the House: A Hierarchical Ideal Point Topic Model and Its Application to

Republican Legislators in the 112th Congress. In Proceedings of the Annual Meeting

of the Association for Computational Linguistics (ACL) and the International Joint

Conference on Natural Language Processing (IJCNLP), volume 1, pages 1438–1448,

Beijing, China, July 2015. (Volume 1: Long Papers).

[108] Hossein Noorazar. Recent Advances in Opinion Propagation Dynamics: A 2020 Survey.

The European Physical Journal Plus, 135:521, 2020.

[109] Hossein Noorazar, Kevin R. Vixie, Arghavan Talebanpour, and Yunfeng Hu. From

Classical to Modern Opinion Dynamics. International Journal of Modern Physics C,

31(07):2050101, 2020.

[110] Ann M. Oberhauser, Daniel Krier, and Abdi M. Kusow. Political Moderation and

Polarization in the Heartland: Economics, Rurality, and Social Identity in the 2016

U.S. Presidential Election. The Sociological Quarterly, 60(2):224–244, 2019.

139



[111] Maya Okawa and Tomoharu Iwata. Predicting Opinion Dynamics via Sociologically-

Informed Neural Networks. In Proceedings of the ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), pages 1306–1316, 2022.

[112] Cathy O’Neil. Weapons of Math Destruction: How Big Data Increases Inequality and

Threatens Democracy. Broadway Books, New York, NY, USA, 2016.

[113] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. Conditional Variational Autoencoder

for Neural Machine Translation. arXiv preprint arXiv:1812.04405, 2018.

[114] Chang Sup Park. Does Twitter Motivate Involvement in Politics? Tweeting, Opinion

Leadership, and Political Engagement. Computers in Human Behavior, 29(4):1641–

1648, 2013.

[115] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global

Vectors for Word Representation. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[116] Richard J. Pierce Jr. Two Problems in Administrative Law: Political Polarity on the

District of Columbia Circuit and Judicial Deterrence of Agency Rulemaking. Duke Law

Journal (DLJ), 37:300–308, 1988. (Available at Availableat:https://scholarship.

law.duke.edu/dlj/vol37/iss2/9.).
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