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Abstract

This paper presents a connectionist model
of how representations for syllables might be
learned from sequences of phones. A simple
recurrent network is trained to distinguish a
set of words in an artificial language, which
are presented to it as sequences of phonetic
feature vectors. The distributed syllable rep-
resentations that are learned as a side-effect
of this task are used as input to other net-
works. It is shown that these representations
encode syllable structure in a way which per-
mits the regeneration of the phone sequences
(for production) as well as systematic phono-
logical operations on the representations.

Linguistic Structure and Distributed
Representation

If the language sciences agree on one thing, it is
the hierarchical nature of language. The impor-
tance of hierarchical, structured representations is
now generally recognized for the phonological pole,
where syllables and metrical units now play a ma-
jor role (see, e.g., Frazier (1987) and Goldsmith
(1990)), as well as for the syntactic/semantic pole
of language and language processing. The major
reason for believing in structured representations
is the significance of structure-sensitive operations
in language processing. A semantic inference rule
may need to know where the subject of a clause
is; a morphological reduplication rule may need
to know where the coda (final consonant(s)) of a
syllable is.

Traditional symbolic representations are based
crucially on the simple notion of concatenation
(van Gelder, 1990). A syllable representation, for
example, is a (bracketed) string of concatenated
phones. Recent connectionist work offers as an
alternative to this widely accepted approach dis-
tributed representations, for which it is generally
impossible to isolate which elements of the rep-
resentation denote which of the lower-level units
comprising the structure being represented.

What good are distributed representations?
They certainly are harder to interpret directly, at
least by external “users” of the system that creates
them. And at first blush it seems cumbersome, if
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not impossible, to implement structure-sensitive
operations on them, operations which present no
articular difficulty for symbolic representations
FFodor & Pylyshyn, 1988). Clearly distributed
representations would be useless for most purposes
if they were not amenable to such operations. Re-
cently, however, it has been shown that it is possi-
ble to arrive at a set of connection weights which
implements structure-sensitive operations on dis-
tributed representations. Where the representa-
tions arise on hidden layers through training, the
operations on them are also implemented through
training (Chalmers, 1990). Where the representa-
tions arise as a result of the application of a set
of primitive operations analogous to the filling of
roles in symbolic models, the operations on them
can be implemented more directly (Legendre, Miy-
ata, & Smolensky, 1991).
There are three reasons to prefer distributed
over symbolic representations for structured ob-
jects such as syllables and sentences.

1. Distributed representations do not necessarily
increase in size as the complexity of the rep-
resented object increases. In the case of some
types of representations, for example, those de-
scribed in this paper, representations for ob-
jects of the same type are of fixed width (Pol-
lack, 1990). This seems more important for syn-
tax/semantics than for phonology, where there
is apparently no recursive embedding, but in
a learning context, it is a desirable feature for
phonological representations too since a system
cannot be expected to know beforehand how
complex the representations will need to be and
therefore how much memory to allot to them.

2. Complex transformations can be performed on
distributed representations in a single parallel
step, rather than through a series of symbolic
conses, cars, and cdrs FLegendre et al., 1991).

3. There are relatively simple algorithms for
learning the structure in distributed represen-
tations (Elman, 1990; Pollack, 1990).

Most work concerned with distributed represen-
tations for structured objects has examined syntax
or semantics. It remains to be shown whether it
is possible to learn distributed syllable represen-
tations which embody the structure required for



phonological operations of various sorts. This is
in part what this study seeks to establish.

Linguistic Structure and Time

Language takes place in time: input to hearers
and output from speakers is sequential. If linguis-
tic knowledge is organized hierarchically, at least
part of what hearers do in perceiving language
must consist in taking in sequences of elements
at one level and classifying them as belonging to
a single unit at a higher level. Something tempo-
ral is turned into something static. In this sense
a syllable is a static summary of a temporal se-
quence of phones. Speakers in turn carry out the
reverse process: they turn static representations
into temporal sequences. Given a syllable repre-
sentation, they must unpack it into its component
onset (initial consonant‘s)) and rime (remaining
segments). The sorts of syllable representations
we seek should be accessible via the categorization
that takes place during perception and should be
expandable into their component elements during
production.

The temporal nature of language is related in-
timately to the issue of short-term memory. The
process by which a sequence of elements at one
level is recognized as a single element at a higher
level requires access to more than just a single el-
ement at a time; a context is necessary. The pro-
duction of a sequence of elements, given a higher-
level summary representation as input, requires as
a context some representation of what has already
been produced.

One approach to short-term memory is to give a
system access to a buffer of some fixed width. This
has several drawbacks, in particular the problem
of how the system is to know beforehand how wide
the buffer should be (Port, 1990). An alternative
is an approach that permits a system to develop
its own short-term memory. This is possible in
connectionist networks with recurrent connections
(Elman, 1990; Jordan, 1986; Port, 1990). It is this
method that is utilized in the study described here.

The Learner’s Task
Language acquisition begins with perception, so
we expect the representations for syllables and
other prosodic units to result from perceptual pro-
cesses. There are several possibilities for how
this might happen, though the most reasonable
is probably some combination.

1. The hearer/learner may be learning phonology
for its own sake, that is, either simply looking
for regularity in the input, or looking for evi-
dence that would allow the setting of some in-
nate parameters (Dresher & Kaye, 1990).

2. The hearer/learner may be attempting to map
perceptual features onto representations of ar-
ticulatory gestures, as in various versions of the
motor theory of perception (Liberman & Mat-
tingly, 1986).

3. The hearer/learner may learn prosodic represen-
tations as a side-effect of word recognition.
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It is the third possibility that is pursued here.
The idea that phonology emerges as the child
learns to recognize and produce words is an ap-
pealing idea, and an old one. It is based on the
notion that phonology is not just arbitrary pat-
terning, but rather a phenomenon with functions
for the language processing system: to facilitate
word recognition and to organize word production.
According to the third view in the list above, the
child acquires phonological representations in the
context of using them.

Consider the relationship between the acquisi-
tion of word recognition and the acquisition of
syllable structure. In learning to distinguish an
initial subset of the words in the target language,
a learner is provided with relatively direct infor-
mation about the distinctiveness among a sizable
subset of the possible syllables in the language.
Because the syllables are contrastive units, the
learner is forced to distinguish them in order to
distinguish the words. The question addressed
here is whether the word recognition task suffices
to develop representations which support phono-
logical operations.

A human learner/hearer is presented with un-
segmented, continuous input. The task of the sys-
tem studied here is a considerably simpler one:
its input consists of sequences of phones, each in
the form of a phonetic feature vector. The phones
appear one at a time, and the internal state of
the system on the previous time step provides the
necessary context for recognition. The system’s
initial task is simply to assign sequences of phones
(representing words in the language) to lexical cat-
egories. As a side effect of performing this task, it
develops internal representations for various sub-
sequences making up the words, in particular for
the syllables in the language. These subsequence
representations can then in turn be investigated
by treating them as inputs to components with
other tasks. Two further tasks are dealt with here:
the transformation of a static sequence represen-
tation into the sequence of phones it represents
(the production task), and the systematic map-
ping of one sequence representation onto another.
In both cases, what is of interest is whether the
sequence representations permit generalizations
to be made. That is, trained on a subset of the
sequence representations, does the system respond
to others on which it was not trained?

The Approach

The networks used in the study described here
are simple recurrent networks of the types
first investigated by Jordan (1986) and Elman
(1990). They consist of feedforward networks sup-
plemented with recurrent connections from the
hidden and/or output layers and are trained using
the familiar back-propagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). Figure 1
shows the architectures of the networks used for
the recognition and production tasks in the ex-
periments described below. Earlier experiments
indicated the superiority of these particular ar-



chitectures over other variants of simple recurrent
networks for these tasks.

The recognition network is presented with a se-
quence of phones, one at a time, each phone con-
sisting of a vector of phonetic features. Among
the features is sonority, which tends to corre-
late with proximity to the nucleus of a syllable.
Each sequence ends with a boundary symbol, rep-
resented by an input pattern consisting entirely of
zeros. The network is trained to auto-associate
the input phone pattern (that is, simply to copy it
to a set of output units), and to categorize the
input sequence as belonging to one of a set of
morphemes in the language. The auto-association
task, while not directly related to word recogni-
tion, has the effect of forcing the network to dis-
tinguish the phones making up the sequences. The
network is provided with targets for both the auto-
association and recognition tasks. The lexical tar-
get remains constant throughout the presentation
of the sequence. Via recurrent connections the
network also has access to a copy of its hidden
layer on the previous time step. A distributed syl-
lable representation, to be used as input to other
networks, is obtained by presenting the sequence
of phones making up the syllable followed by a
boundary symbol and saving the pattern which
appears on the hidden layer at the end of this se-
quence.

The production network takes a distributed syl-
lable representation (from the recognition net-
work) as input. This remains constant throughout
the production of the sequence. The network is
trained to output, one at a time, the phones mak-
ing up the sequence followed by a boundary pat-
tern following the sequence. Each phone takes the
form of a feature vector, identical to the pattern
used as input to the recognition network. Targets
are provided for each of the output phones. The
production network has recurrent connections on
both the hidden and output layers. The output
pattern is added to a decayed version of the pre-
vious sequence of outputs and sent to the network
as part of its input (on the STATE layer).

Experiments

Stimuli
Stimuli for the experiment consisted of phones and
phone sequences in an artificial language. Phones
were represented by vectors of 11 phonetic fea-
tures. Possible syllables in the language are char-
acterized as follows:

onset — {0,p,f,m,t,s,nk,x}

nucleus — {i,e,a,o,u}

rime — {0,n,s}.
Thus there were 135 possible syllables in all.

Procedures

Each experiment began with the training of a
recognition network to categorize a set of words
in the artificial language. Each word consisted of
two legal syllables in the language, and the set of
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words was generated by randomly combining pairs
of syllables, with the restriction that no identical
pairs were included. Once the recognition network
had been trained on the words, representations for
each of the 135 syllables in the language, consist-
ing of hidden layer patterns following the presenta-
tion of the syllable sequences, were extracted from
the network. These syllable representations were
then used as inputs to other networks.

Experiment 1

First 100 two-syllable words were generated. This
resulted in a set which contained 104 of the 135
possible syllables in the language. Next the recog-
nition network was trained to identify the phone
sequences representing the words. Previous exper-
iments have shown that word recognition train-
ing on a relatively large set is more effective if
the words are introduced gradually to the network
rather than all at once, an idea inspired by the
regimen used by Plunkett & Marchman (1991) to
train a network to learn English past tense forms.
Three new words were introduced to the training
set each time the mean square error per pattern for
the current training set dropped below 1.0. Train-
ing continued for 600 repetitions of the training
set (43,048 words), by which time all 100 words
had been introduced to the training set.

Performance on word recognition at this point
was far from impressive. 8111}' 17 of the 100
words were correctly identified at the point where
the final word boundary was presented. Still it
was felt that in attempting to learn to distin-
guish the words, the network might have devel-
oped distinct representations for the syllable se-
quences that made them up. Representations for
all 135 possible syllables were set aside by pre-
senting the network with the phone sequences and
then saving the final pattern on the hidden layer.
The hidden layer of the recognition network, and
hence the width of the distributed syllable repre-
sentations, was 25 units.

Next these syllable representations were used as
inputs to a production network. 20% of the sylla-
bles were randomly selected to be set aside for test-
ing the network for generalization. These included
sequences which had been parts of the words in the
original recognition training set and others which
were not included in the set. The production net-
work was trained to output each syllable sequence
followed by a boundary symbol. Training contin-
ued for 110 repetitions of all patterns, at which
point the network made errors on 7 of the 384
segments making up the training syllables. Er-
rors were made on 7 of the 95 segments in the
test sequences. Only one of these segments was
one which did not lead to a legal syllable in the
language.

These results indicate that the recognition net-
work is able to generalize about syllable structure
on words containing a subset of the possible sylla-
bles and that the distributed representations de-
veloped during training can be used for production
as well. The fact that the errors made are reason-
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able ones indicates that the representations are en-
coding syllable structure in a systematic way.

Next the trained recognition network was pre-
sented a representative set of 142 bogus syllables,
sequences which did not conform to the language
the network had been trained on. These included
sequences with phones not among the phoneme in-
ventory of the language (e.g., b and d), sequences
with illegal codas (e.g., ap%, sequences with long
nuclei (e.g., mua), sequences with cluster onsets,
and sequences with no nuclei. The hidden-layer
representations for each of these sequences were
saved and presented to the trained production net-
work. The output of the production network was
then examined to determine whether the networks
would in effect correct the representations. The
production network responded to 97 of the 142 se-
quences (68%) by replacing the original sequence
with a legal syllable in the language. Typical re-
sponses included the following: kn — ken, kfe —
ke, zou — zu, ptk — pi, zan — nan.

These results are further evidence that the
recognition and production networks have learned
about the structure of syllables in the language.
Ehey also indicate that the representations are ro-

ust.

Experiment 2

Finally, the syllable representations from the
recognition network were used as inputs to sim-
ple feedforward networks which were designed to
determine whether the representations could be
used for phonological transformations. Each feed-
forward network took as input a syllable repre-
sentation and yielded as output the syllable repre-
sentation that resulted when applying a particular
rule to the input syllable. Three rules (and three
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networks) were used: a rule which replaced the
vowel in a syllable with u, a rule which made the
coda of the syllable -s, and a rule which replaced
the onset of the syllable with the fricative in the
same place of articulation as the onset of the orig-
inal syllable (or by s if there was no onset).

Each network was trained on 80% of the sylla-
bles until there were no errors, then tested on the
remaining 20%. Training required about 25 repeti-
tions of all of the patterns. The network’s response
was taken to be that syllable (of the 135 possible)
whose distributed representation was closest (in
Euclidian distance) to the network’s output pat-
tern. For each rule, over 95% of the test sylla-
bles were generated correctly. In all cases errors
resulted in syllables which satisfied the basic con-
straint imposed by the rule in question (u nucleus,
s coda, fricative onset).

These results indicate that the syllable represen-
tations learned by the recognition network encode
syllable structure in a way which makes it acces-
sible to the sorts of operations which are common
in the phonological systems of natural languages.

Discussion

The experiments reported on here demonstrate
that simple recurrent networks can be trained to
develop representations of syllables which encode
information about structure in a distributed form.
These representations present a viable alternative
to traditional concatenative types of representa-
tions. Like their symbolic counterparts, the dis-
tributed representations can be unpacked into the
sequences they represent and can be transformed
in systematic ways. Unlike their symbolic counter-
parts, the distributed syllable representations are
learned; are of fixed width; and permit parallel,



single-step operations.

There are at least two other connectionist ap-
proaches to the acquisition of syllables. Goldsmith
& Larson (1990) model the syllabification of words
in a variety of languages using a constraint satis-
faction network in which units represent segments
in the word and activations represent the “derived
sonority” of the segments, an indication of their
role in the syllabic structure of the word, Two sim-
ple parameters characterize syllabification in each
language. The model provides an elegant account
of a range of phenomena, but it is not clear what
it has to do with processing since what is modeled
is abstract, atemporal derivation. It is also not
specified how a language learner might have ac-
cess to the derived sonorities needed to learn the
parameters.

More in the spirit of the present approach is an
experiment by Corina (1991), in which a simple
recurrent network was presented with sequences
of phonetic segments from a database of spoken
English utterances. Trained simply to predict
the next segment, the network showed clear ev-
idence of having discovered the statistical regu-
larities that characterize the structure of the En-
glish syllable. That is, its output predictions cor-
responded closely to the actual probabilities of
particular segment classes in particular positions.
This is evidence that a network can also learn
about syllable structure from training on an unsu-
pervised task. It remains to be seen whether the
hidden layer patterns from Corina’s network are
suited for recognition and production or whether
there is anything to be gained by combining the su-
pervised recognition and unsupervised prediction
tasks.?

How might the syllable representations learned
in the network fit into to a more complete model of
word recognition and production? I noted above
that the recognition network was not especially
successful in learning to distinguish the 100 words
it was trained on. As the number of words to be
recognized increases to more plausible ranges, we
can expect very serious degradation in this capac-
ity, though increasing the hidden layer size would
offset the degradation to some extent. Yet the
problem might go away in a hierarchically orga-
nized system with simple recurrent networks oper-
ating with different units as inputs. Word recogni-
tion might then be a process of assigning sequences
of syllables and/or larger metrical units to word
or morpheme units. Thus the syllable representa-
tions learned in the network described here would
provide the input to a syllable-level network. See
Gasser (1991) for more on this proposal.

From the perspective of its plausibility as a
model of phonological acquisition, the present
model has a number of inadequacies and gaps.
First, I have only scratched the surface in terms of
what might be required of such a model. How, for

'In some preliminary experiments, I have not found
better performance on word recognition from networks
which are also expected to predict their next sequence.

example, might this approach account for learn-
ing how to assign stress to novel words (in a lan-
uage which does this in a non-arbitrary way)?
%.ecently, Gupta & Touretzky (1991) have shown
that perceptrons can learn to assign stress to syl-
lable sequences from 19 natural languages (appar-
ently encompassing the range of possible stress
systems). The present approach would attempt to
achieve this in the context of the hierarchical ar-
chitecture referred to above, by training a sequen-
tial network which takes distributed syllable rep-
resentations (one at a time) as input to recognize
words involving one or more metrical units (se-
quences of stressed and unstressed syllables). The
hope would be that distributed representations for
these units, and eventually for the entire words,
would arise, and that these would provide the in-
put to the word production process, where stress
assignment takes place. While considerably more
involved than the approach of Gupta & Touretzky
(1991), this would respect the sequential nature of
language and maintain the relationship between
word recognition and phonological learning.

A further weakness of the framework in its cur-
rent state involves the learning of production.
While the learning of syllable representations as
a side-effect of the process of word (or morpheme)
recognition seems reasonable, the learning of the
reverse process is another matter. The network
trained on the production task was provided with
targets for each output phone, a degree of supervi-
sion that clearly does not correspond to anything
in the experience of the human language learner.
For now it may be best to view this task as noth-
ing more than an existence proof that the rep-
resentations can be unpacked for production or
alternatively a technique for analyzing the dis-
tributed representations, which, unlike their sym-
bolic counterparts, are not directly interpretable.
Of course, the issue of how children learn to pro-
duce, as well as perceive, linguistic forms, when
they are not provided with targets, is one facing
any approach to language acquisition.

Finally, the present approach presupposes some
mechanism for segmentation, first, at the level of
the phones that are the inputs to the recognition
process, and second, at the level of the syllables
(or words) themselves. Again, segmentation is a
problem for all sorts of acquisition models. Re-
cently Doutriaux & Zipser (1990) have had some
success in training simple recurrent networks to
discover segments in speech. Thus this seems to
be a problem that can be approached within the
framework outlined in this paper.
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