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Center for Neural Engineering, University of Southern California
Los Angeles, CA 90089-2520, USA

Abstract

Based on an interference theory of forgetting in short-term
memory (STM), we model STM by a network of neural units
with mutual inhibition. Sequences are acquired by
combining a Hebbian learning rule and a normalization rule
with sequential system activation. As long as sequences are
acquired, they can be recognized without being affected by
speeds in presentation. The model of sequence reproduction
consists of two reciprocally connected networks, one of
which behaves as sequence recognizers. Reproduction of
complex sequences is shown to be able to maintain interval
lengths of sequence components. A mechanism of degree
self-tuning based on a global inhibitor is proposed for the
model to optimally learn required context lengths in order
to disambiguate associations in complex sequence
reproduction.

Introduction

A temporal sequence S is denoted as: pj—-p7—...—pp, and the
length of a sequence is the number of components in the
sequence. Any p;-p;j]-..-Pj» where 1 <i <j <N, is called a
subsequence of S.If § contains repetitions of the same
subsequence, like A-B in C-A-B-D-A-B-E, it is called a
complex sequence, otherwise a simple sequence. In complex
sequences, the correct successor can be determined only by
knowing a subsequence prior to it. We refer to the prior
subsequence required to cue unambiguousely the current
symbol p; in S as the context of p;, and the length of the
context as the degree of p,. The degree of a sequence is the
maximum degree of its components.

Neural networks to reproduce a temporal sequence of
input stimuli have been previously studied by a number of
investigators (among others see Grossberg 1969; Dehaene,
Changeux, & Nadal 1987; Kiihn, van Hemmen, & Riedel
1989). In most of these models, reproduction of complex
sequences poses great difficulty. Recently, we have proposed
a new mechanism for leaming temporal sequences (Wang &
Arbib 1990) in which we model STM by units comprising
recurrent excitatory connections between two local neuron
populations. Each neuron population is represented by a
single quantity corresponding to local field potential. The
activity induced by an input signal to a unit oscillates with
damping. By applying a Hebbian learning rule at each
synapse and a normalization rule among all synapses to a
unit, we have demonstrated that the neural networks with

1 The research described in this paper was suported in part by
grant no. 1RO1 NS 24926 from the NIH (M.A.A, PI).
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this model of STM are able to learn and reproduce complex
temporal sequences. What distinguishes our model from
others are two basic hypotheses embodied in the model: (1)
We assume that there is a common mechanism to process
both complex sequences and simple sequences; (2)
Reproduction of a component in a sequence is based on
recognition of the context of the component.

Since STM is modeled by decay, it has a fixed temporal
course, which makes the previous model unable to handle
the time-warp problem. For a solution to the time-warp
problem, we wish that a network can recognize a time-
warped sequence for sequence recognition, whereas for
reproduction we wish that a network can reproduce a
sequence with the same temporal course as the learned
sequence. This is the central theme of the present paper.

A Computational Model of STM

A model of STM must provide the following four basic
functions:

(1) Maintaining a symbol for a short time period. What
causes forgetting? An interference theory proposes that other
materials or tasks interfere with memory and thus cause
forgetting. A decay theory proposes that forgetting occurs
even if the subject had to do nothing over the retention
interval, so long as the subject did not rehearse the material.
(2) Maintaining a number of symbols. Miller (1956) tells
us that the number is about seven. (3) Coding the order of
input symbols. (4) Coding the length of the presentation of
each symbol. The function of STM provides first level
information for solving the time-warp problem. When
learning a sequence, one can recognize it even though each
component of the sequence is presented at considerably
different intervals. This function is called interval
invariance. Yet, a professional musician can recall a
multiple-page score, reproducing almost exactly the
memorized length of each note. This function is called
interval maintenance.

Our previous model cannot code the length of each
symbol presentation, and therefore cannot solve the time-
warp problem. Furthermore, the model conforms with the
decay theory of forgetting, whereas the current majority
view seems to be that, although some decay may occur, the
amount of forgetting caused by decay is substantially less
than the amount caused by interference (Murdock 1987).
Our following model is based on the interference theory.

Let us assume that there are n memory units, numbered
1, 2, ..., n, with each unit inhibited by all the other units,



as shown in Fig.1. Each unit receives an external input E;,

which is 1 so long as the external input is on and 0
otherwise. The internal state of unit i, s;, is defined as

if Ej(t)=1, Ej(1-1)=0
otherwise

sw={4 M

Figure 1. Diagram of the STM model. Each unit projects
and inhibits all the other units in the model. Shown in the

figure is only outgoing projections from one unit. Minus
sign indicates inhibition.

From the definition we can see that the internal state is
activated only by the beginning of an external input. The
excitation level of each unit has value range {0, 1, ..., T},
and is defined as

T if 5;(1)=1
xXi(1) =3 x;(t-1) - 1 if x;(1-1)>0, y;(1)=1 ()
xj(t-1) otherwise

where y; represents overall inhibition that unit i receives
from the other units, formulated as

yilt) =Y, si(t-1) - 1) 32
J#A
; - J1 ifx>0
with ftx) {O otherwise @

From the above definitions we see that whenever s;(¢) =
1, x;(t) is brought to its highest value T and unit i is
activated. If any of the units is activated, the inhibition that
it exerts on the rest of the network will drive all other active
units, i.e. those whose excitation levels are larger than 0,
down to the next lower level.

This model satisfies the above four requirements for an
adequate STM model. It preserves a symbol on a unit whose
excitation level codes the item. Let us assume that external
inputs arrive at STM serially (it is easy to serialize

2 Since the weights of inhibitory connections are the same, the
mutual inhibitory connections can be replaced by an global
inhibitor. An global inhibitor can reduce the number of
connections by one order of magnitute, but results in a less
reliable system due to information centralization in the
inhibitor.
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simultaneous inputs by a competitive network). Any new
item input to STM decrements the excitation levels of all
active units in STM. Therefore STM can at most code T
items so that T is the capacity of the STM model. A
symbol gets lost from the STM model because there are
other more recent symbols input into the model,
conforming with the interference theory. The order of input
symbols is coded since the larger the excitation level of a
unit, the more recent is the symbol represented by the unit.
Finally, the length of a symbol's presentation is reflected by
the time period while the corresponding external input is
on, and its coding will be given later.

Layer§
(detector layer)

Layer{
(input layer)

Figure 2. Architecture for complex sequence
reproduction. Within layer { (the input layer), every unit
inhibits every other one to form the STM model shown in
Fig.1. Within layer £ (the detector layer), all units project
to a global inhibitor which further projects back to them.
Plus sign indicates excitation, and minus sign indicates
inhibition.

Network Architecture

The structure of the model for sequence reproduction has
two layers, as shown in Figure 2. Layer {'is called the input
layer, which basically serves as a STM model shown in
Fig.1. Multiple occurences of a particular symbol in a
sequence is represented by one single unit in this layer, so
different units represent different spatial patterns in layer (.
Units in layer £ function as sequence detectors, and there is a
global inhibitor within this layer (see footnote 2). These
units recognize the contexts of individual components in a
sequence, and anticipate the occurence of these components.
Layer £ connects with layer { bidirectionally, and before
training connections between them are complete. The
projections shown in Fig.2 depict what results from
training, such that unit i in layer £ receives projections only
from those units in { that represents symbols in the context
detected by unit 7, and unit j in layer { only receives units in
& that anticipate the occurence of the symbol represented by
unit j. This resulted connection pattern is formed through
learning. During the training process, a sequence with



various component intervals is presented to layer {. At the
end of each component presentation, a unit in layer & is
randomly selected (but fixed in successive trainings) to fire.
The recurrent connections from layer & to layer { are formed
according to a Hebbian rule as following. If unit  in layer ¢
(recorded as <i, {>) and unit j in layer & (recorded as <j, &)
are firing simultaneously then a connection link from <j,
&> to <i, > is established, and its weight will be defined
later. All connection weights from units in & to ones in {
are initially zero.

We proposed in the previous paper (Wang & Arbib 1990)
that a unit was represented by an expanded network, such
that it has multiple terminals to hold different occurences of
a symbol. Each terminal directly connects to other units,
and thus a unit has multiple channels to connect to another
unit. The following description combines this idea for
solving the overwriting problem with the new STM model.

Suppose unit <i, {> has m terminals, and the excitation
level of its rth terminal is represented by x;,. The STM
model (Eq.1 through Eq.4) and the definitions of E}, s;, and
¥; remain the same except

T if s;(1)=1,r=1
e xl-,,._}{r-I) -1 if SE(!)=1,Dl,x1"r,}(l'-f)>0
r xj(t-1) - 1 if 5;(t)=0.x;,(t-1)>0,y;(t)=1
xjp(t-1) otherwise

The global inhibitor in layer & receives input from all
units in the layer and projects back to them. A degree
parameter d; is introduced for <i, §>, and it affects the

dynamics of the internal state of <i, £&> in the following
way

E=iSS W’ Sty 1%
sﬁt):f(%Z} Wi hxjp(-1), d) + T6-1) = T2)  (6)
==

e, y)= {3 ifx>T -y

otherwise M

where label & in (6) indicates layer &, x;, is the excitation

level of the rth terminal of unit <j, {>, and szrepresents

the connection weight from the rth terminal of unit <j, {>
to <i, £>. Symbols n and m stand for the number of units
and the number of terminals for each unit in layer {
respectively. The domain of d; is {1, 2, ..., T}. Through
function h(x, y) the role of d; is to gate in certain excitation
levels of units in layer {. Obviously, the larger is d;, the

more items can <i, £&> sense from layer {. Learning, or
modification of connection weights WL follows a Hebbian

rule and a later normalization as follows
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Wi =W+ sfn) hxjp(1). d;)

o~ n m it 8)
Wiy = Wi 3, >, Wi
j=1 r=1

where C; is a gain factor of learning. The effect of learning
on the detector is to change the distribution of all weights
to that unit, so it is reasonable to assume that initially all
weights are set equal.

Since without a further activation the excitation level of
a unit in layer { is monotonically decreasing, the formal
analysis in our previous paper (Wang & Arbib 1990)
applies. In particular, if the threshold of unit <i, &> in (6)
is set as

d;

S 2

rf = d‘-(ZT—dﬁl); (T-4;+) ©)
then the result of training is to build up activity so as to
fire the detector by the presentation of a specific
subsequence. Furthermore, after the detector has learned the
sequence (simple or complex), only presentation of that
sequence induces the maximum activity on the detector unit,
regardless of presentation speed of the sequence. The idea
behind this interval invariance is that during presentation of
a sequence component, only the beginning portion of
presentation is captured by the recognition model (cf. Eq.1),
and therefore it does not matter how long that presentation
lasts. Separation of effective input from external input is an
intrinsic property of the STM model, which exhibits
differences in computational power resulting from different
models of basic brain processes like STM.

Degree Self-tuning

Let the activity of the global inhibitor of layer £ be
represented by z, and ¢ represent the number of units in
layer &. Variable z is defined as

q
20 =12, 53(t1) - 2) 10)
=1

and therefore the inhibitor will be activated if there is more
than one unit firing simultaneously in layer &. According to

(6), the internal state sf(r) can be triggered either by system

input (called attention) through !f(r-l ) or by input signals

from layer {. The latter is called anticipation. What the
inhibitor actually does is to detect conflicts among those
detectors in layer &. Since system attention is always
scquential, the inhibitor can only be activated by conflicting
attention and anticipation or just by conflicting anticipation
of the detector layer.



Degree d; (i = 1, ..., g) is initially set to 1. Self tuning of
d; is done according to

dift) = dife-1) + 1 if.sf(:—f)=1,z(:j=1.d;{t—l)<'r a1

that is, the degree of <i, &> increments if this unit together
with other units causes activation of the global inhibitor. If
the degree of <i, &> increments, there will be one more
item from the input layer that can be sensed by <i, £>.
Thus the previously learned weight distribution to the unit
(see Eq. 8) will have to change its direction of distribution.
In the situation, the model re-initiates the weight

distribution to <i, &> and threshold F? is also modified

according to (9) based on the new value of d;. From (6), (7)
and (8), it is clear that if d;(1) grew larger than T, the STM
capacity of layer {, it would be equivalent to that dj(t) =T
in the dynamics of the internal state and weight distribution
of <i,&>. That is why d;(t) has an upper limit of 7.

A computer simulation of the model was conducted for
reproducing a complex sequence S .: J-B-A-C-D-A-B-A-E-F-
A-B-A-G-H-A-B-A-H-I. Learning a complex sequence is
slower than learning a simple sequence, because the
complex sequence needs dynamically increasing the degrees
of certain detectors, and each time such self organization is
done earlier training of those detectors has to be discarded.
Roughly speaking, time required for training increases
linearly with the degree of a sequence. It took 18 training
trials before the model learned to reproduce S ., whereas 6
trials suffice to reproduce a simple sequence. The degree
vector acquired by the degree self-tuning mechanism is {1,
2,31,1,2, 34,1, 1,2.3,4,1, 2,2, 3,4, 2] for those
detectors. The ninth component E, for example, requires to
memorize the prior subsequence of 4 components D-A-B-A
in order to be generated; and the second component B,
however, only requires to memorize the previous
component J in order to be generated.

The above neural algorithm optimally identifies amount
of context required to reproduce any complex temporal
sequence unambiguously. The same problem of finding
minimum amount of context has been studied by Kohonen
(1987) for producing unambiguous inference rules in
sequence generation. The proposed solution relies on
explicit rules for resolving inference conflicts. A basic
difference of our proposal from his is that we do not resort
to any external rules. Units representing symbols and
detectors in our model are connected in a neuron-like
manner, and communication among units is typically
neural.

Interval Maintenance

In our model, the interval length of a component
presentation is the time period during which the external
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input of the unit corresponding to that component equals 1.
This is equivalent to the period when the excitation level of
the unit equals 7. In sequence reproduction, a unit in layer £
detects the onset of the context of a component in order to
trigger that component in the reproduction process. In §,

above, for example, there is a detector in layer & that is
trained to detect the context D-A-B-A and to anticipate the
onset of symbol E. According to the model, after training
this detector is activated just one time step after the second
A starts to occur (see Eq.6). But E should not be triggered
until the whole interval of the A occurrence has elapsed.
The idea for interval maintenance is to code intervals by
connection weights from the detector layer to the input
layer. Since the backward projections from layer £ 1o { are
many-to-one correspondence, the interval of a symbol
presentation can be simply coded as the reciprocal of the
corresponding connection weight, so that temporal
integration of the entire interval is required to trigger the
next component.

In general, one interval series of presentation may be
different from another one. In order to cope with this
situation, instead of storing one interval directly in a
weight, two parameters are stored in the connection
terminal, one is an average u of different training intervals
and another is a deviation 2. During reproduction of a
sequence, a Gaussian number is generated based on p and
02, to control a specific interval. Each generated interval
will also modify u and o2 like a presentation interval.
Therefore, learning is nothing but formation of p and o2
Let e; represent the interval of the ith presentation of a
symbol. Two factors are taken into consideration for
forming u and 2. First, each interval should contribute a
certain amount. This is called an averaging factor. Second, a
recent interval should have more impact than a remote one.
This is called a recency factor. These two factors are
embodied in the following learning rules.

Hp=e]
12
{uku =(1-P) e+ Begsg 42

where B is the recency parameter ranging between 0 and 1,
which describes that except the first interval the most recent
interval has a constant amount of contribution, regardless of
the presentation history.

The following recurrence learning rule for the deviation
can be derived from (12)

2
2 _k(1-B) k-2 2 2 (13)
%= k1 Ukt Ok-1 + Plek — -7
.8 2 ;
.and itis easy to see that 0, = 0,if ) = ... = ¢;.
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Figure 3. Reproduction of the complex sequence S.: J-B-A-C-D-A-B-A-E-F-A-B-A-G-H-A-B-A-H-I. The interval series
{9.3,6,9,59,7,3,6,49,4,5,8,54,53,7,8} was first randomly generated, and fixed in subsequent training trials. All units in
layer ¢ have 3 terminals, and C; = 0.3. The other parameters are =03, and 7' =7.

With the learning rule of (12) and (13), interval
maintenance defined above is thus achieved. A computer
simulation of the model was conducted to reproduce the
complex sequence S,. As previously stated, the model took
18 training trials to learn the sequence. The number of trials
is basically decided by requirement of degree self-tuning.
After learning, the entire sequence with various interval
lengths was able to be reproduced by the initial context of
the sequence, subsequence J in this case. Fig.3 presents the
simulation result, which contains a temporal course of the
last training trial together with the reproduction process.
Since in this simulation the speed of presentation is the
same from one trial to another, the acquired deviation for
every link interval is zero. Therefore the time course of the
sequence is faithfully preserved in reproduction.

In summary, this article presents a ncural model of
temporal sequence reproduction, which is based on an
interference model of short-term memory. The model of
neural circuit proposed reproduces any complex temporal
sequence which may be distorted in time (time-warped). The
new abilities demonstrated in this paper, particularly
interval maintenance, demonstrate that a dramatic difference
in computational power could be lead to by results from
basic studies of cognitive science.
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