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Abstract of the Thesis

A Study on Conditional Likelihood Estimation

for Survey Sampling

by

Patrick Joseph McCarthy

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Mark Handcock, Chair

The pursuit of accurate methods for generalizing attributes of a population from a

sampled subset is a problem predating the discipline of statistics. Rather than at-

tempting to characterize a population and so assume that the population perfectly

represents its own generative process, a superpopulation approach considers the

observed population as a sigma algebra of all possible data generated by a pro-

cess and is focused upon estimating the parameters of the process rather than

producing summary statistics.

This study briefly surveys the essentials of survey sampling and evaluates a new

superpopulation-based approach put forth by Chaudhuri, Handcock and Rendall

(2013), based upon the empirical likelihood of Owen (1989). Using the form

of the Hájek estimator and informing it with conditional estimation on empirical

likelihood, the approach is shown by simulation study to improve in both accuracy

and variance against Hájek’s estimator in cases where the values of interest and

sampled auxiliary information have little or no correlation, and no improvement

over existing methods of estimation otherwise.
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CHAPTER 1

Introduction

One of the chief occupations of a statistician is the description of a body of people,

products, business indicators or other aspects of one’s environment, and indeed the

origin of the word “statistics” can be traced to 1748, when it was drived from the

German equivalent of the Latin word for “state” dic (2013). Although estimates

of center and spread are most accurately reproduced from a complete accounting

of the topic of interest, cost and logistics often preclude building an exhaustive

data set. The characteristics of a small subset of the data can, however, speak for

the body from which it was derived via the practice of survey sampling, and it is

by this means that estimates of quantities have been produced for tens or perhaps

hundreds of years.

In this study, we examine a novel approach to survey sampling described by

Chaudhuri, Handcock and Rendall Chaudhuri et al. (2013). The estimator used

in this method attempts to estimate a parameter of a superpopulation by in-

corporating the value of interest in a sample as well as corresponding available

auxiliary data. Although many such approaches exist in the literature, Chaud-

huri, Handcock and Rendall incorporate the Empirical Likelihood of Owen Owen

(2001) to minimize inaccuracies that may arise from conventional parametric esti-

mation. The new estimation technique will be discussed in the context of existing

practice, and finally tested with a simulation study on real data.
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CHAPTER 2

An Overview of Survey Sampling

The method proposed by Chaudhuri, Handcock and Rendall describes a means

for computing estimates from samples of larger population, although it does not

dictate the entire procedure from beginning to end. In this chapter the funda-

mentals of simple random sampling, which provide our baseline, are described,

followed by the sampling proportional-to-size technique suggested in the original

paper. Additionally, estimators for computing means and variances from sam-

ples are described, including that which composes the framework for the CHR

estimator.

2.1 Definitions and Key Concepts

Let a survey encompass a finite set of N elements called a finite population (or

simply population) which represents the complete body of interest. It is this pop-

ulation for which we would want to find summary information or parameters,

where parameters are functions of the study variable values. A device called a

sampling frame is constructed which allows for observation of individual popula-

tion elements by relating elements of the population with sampling units in the

frame, e.g. through a sampling algorithm. The sample consists of N > n observed

values of the sample units, and it is this sample that is used to construct point

estimates of population characteristics of interest, and additionally calculate their

precision. In some designs, sampling units contain not only variables of interest

but also others, the auxiliary variables. Their values may not relate closely with
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the value being examined, or even relate at all, but through an understanding

of their relation to other values in the finite population U they may ease infer-

ence and increase precision Särndal & Wretman (1992). This last point will be

addressed in detail in a later section.

To assemble a sample, elements are drawn from the finite population at ran-

dom and we say that the ith element of the population yi is drawn with probability

πi (or pi in the case of simple random sampling), and as the finite population is

the set of all units eligible for sampling,
∑

U πi = 1 necessarily. We also define

πij = P (yi ∈ s) and P (yj ∈ s), the probability of both i and j being included in

the sample together. This is sometimes called a second-order inclusion probability

or joint inclusion probability, whereas πi represents a first-order probability. Ele-

mentary probability tells us that P (A∩B) = P (A)×P (B) if and only if events A

and B are independent, and as the dependence relationship comes up frequently in

describing estimators we also define ∆ij = πij − πiπj, or more broadly the covari-

ance matrix of all possible combinations of i and j to be simply ∆. By convention,

tr(∆) is the N -vector π. A last commonly-used term is the π-expanded value yi/πi

which we denote y̌i. In the case of a dual subscript the check is understood to

mean expansion by the second-order probability, as in ∆̌ij = ∆ij/πij.

Consider the example of a dataset describing counties in the United States with

demographic information and also voter turnout during the 2004 U.S. Presidential

Election Bureau (2009). This finite population consists of all 3,113 counties and

county equivalents. For our purposes the total number of votes for the Democratic

party candidate cast in all counties is our variable of interest, and auxillary data

is composed of figures such as the total population by county and percent of a

county’s population that voted for a given party. The sampling frame is composed

of all of the elements of the finite population (counties) and their values for all

relevant variables, as well as some sampling design, that is the vector of first-order

probabilities corresponding to the population elements.
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Unlike many statistical pursuits such as regression or classical hypothesis test-

ing, the practice of sampling is not interested in discovering the distribution of the

data being examined or the relationships of variables, but rather estimates of the

population derived from the samples and diagnostic measures on those samples

describing their variance and bias. There are different approaches to obtaining

these measurements, each with its own caveats.

2.2 Simple Random Sampling

The most straightforward method by which one may sample is Simple Random

Sampling, in which every unit in the population U = {1, · · · , k, · · · , N} has an

equal probability of selection pi, such that
∑

U pi = 1. A common SRS estimator

is that described by Särndal et al. Särndal & Wretman (1992) to estimate the

population total is

t̂π = Nȳs =
N

n

∑
s

yk,

which has an unbiased variance estimator

V̂ ar(t̂) = N2 1− n/N
n

S2
ys.

Note that to estimate the average county turnout we can simply divide the point

and variance estimators by the size of the finite population to get t̂, and V̂ ar(t̂) =

1−n/N
n

S2
ys. One can also define the true variance of t̂ as

V ar(t̂) = N2 1− n/N
n

S2
yU ,

however this is rarely useful in an estimation context as it depends upon the

sample variance of the finite population rather than of the sample, and had the

finite population information been available in the first place sampling would not

be necessary. Another useful property of these variance estimators is they are

always positive so long as n < N . A drawback, however, is these estimators
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are limited by the variation in the sample data itself. They can produce very

accurate estimates if the data itself varies little, however if the data varies a lot

the estimator’s variance grows proportionately.

Typically, the simplest sampling designs are conducted as sampling-with-replacement

(WR), i.e. after a unit is selected for the sample it remains in the finite population

to potentially be selected again. This presents disadvantages, especially where a

finite population has many disparate elements, as the variation of the sample may

not reflect the variation of the population. Despite this, several advantages keep

SWR in use including unbiasedness, ease of calculation for estimation and variance

as well as simple extensions to multilevel designs. Most discussion in this work will

not center around SWR but instead its alternative sampling-without-replacement

(WOR).

County Total Votes Cast Democrat Votes Prob. of Selection

Autauga, AL 20081 4758 0.00032

Baldwin, AL 69320 15599 0.00032

Barbour, AL 10777 4832 0.00032

Bibb, AL 7600 2089 0.00032

Blount, AL 21504 3938 0.00032
...

...
...

...

Table 2.1: A sample from the U.S. Counties data frame

Referring back to the U.S. counties example, we show the estimators as com-

puted for 10,000 random samples, each consisting of 40 without-replacement draws

with equal probability from the population (Table 2.1, Figure 2.2). In this es-

timate, the quantity of interest to be found t is the total number of votes cast in

all counties, the sample values yi are the votes cast in all of the counties, and the

selection of probability p is the same for all counties, 1/3,113 = 0.00032. As the

estimators are unbiased they surround the true values fairly accurately, especially
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Figure 2.1: Frequencies of County Sizes

considering that the distribution of values has a very strong right skew with many

small counties and very few counties of more than one million people (Figure

2.1). Despite this, the large variance of the data comes out (the maximum value

of the variable of interest is more than an order of magnitude larger than the 75th

percentile, which itself is approximately twice the value of the 25th percentile)

and the estimator itself has a heavy skew (The median county has only 10,640

residents and even the 99th percentile is just short of 482,000), making it more

difficult to trust the result of any given sample.

2.3 Sampling with Probability Proportional to Size

A common way to improve upon the precision of a simple random sample is to

bring in additional information. Sampling with probability proportionate to size

(PPS) is one way to do this. In PPS, an auxilliary variable is used to denote

the “size” of the sample units in question, and rather than sample all units with
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Figure 2.2: The distribution of 10,000 estimates of Total Votes and predicted

std. errors. The top panel shows the summary plot of the estimates computed

from different samples against the known true value. The bottom plot displays

the corresponding estimators for the standard error (Equation 2.3) against their

observed standard deviation, the ”true” estimate standard error.
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equal probability as in SRS, this size is directly proportional to a probability

of inclusion. One then draws samples using these probabilities, and estimation

is conducted using formulas that include these probabilities. Typically, a large

probability implies that a sampling unit represents a comparably large fraction of

the population, and in constructing the estimator its value is weighted accordingly.

The procedure according to Hansen and Hurwitz (1943) is one of the earliest,

making use of the relative size of the sample elements in a with-replacement scheme

Brewer (1983). An element i was selected with probability zi/
∑

i zi, where zi is

the measure of size of that element. Despite the advantages of with-replacement

methods, this estimator proved less efficient than without-replacment schemes

developed afterward Brewer (1983). One such later method commonly used is

that of Horvitz and Thompson (1952) which estimates a population total

t̂HT =
∑
s

yi
πi

=
∑
s

y̌ (2.1)

without bias where πi remains the probability of inclusion of the ith element in

the sample Horvitz & Thompson (1952). Its variance estimator

V ar(t̂HT ) =
∑∑

U

∆ij y̌iy̌j (2.2)

is approximated by

V̂ ar(t̂HT ) =
∑∑

s

∆̌ij y̌iy̌j, (2.3)

which is unbiased when all πij > 0 Särndal & Wretman (1992). Among other

attractive properties, the HT estimator is especially interesting for our purposes

because the auxiliary information offered by πi allows us to reduce the variance.

For example, if there was a proportionality constant c such that cπi = yi for all

i then all terms yi/πi would reduce to c and the variance of the estimator would

become 0. Therefore, in cases where the probability of inclusion and the value of

interest are closely correlated the HT estimator provides excellent estimation.
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Correspondingly, this relationship has little benefit when the variable of in-

terest and the weight are uncorrelated. In this case, one may make use of an

estimator sometimes attributed to Hájek Särndal & Wretman (1992)

t̃Hj = Nỹ = N

∑
s yk/πk∑
s 1/πk

. (2.4)

Särndal et al. give an approximate (Taylor-linearized) variance instead of a true

variance for computational ease Särndal & Wretman (1992),

V ar(Nt̃Hj) = N2AV ar(ỹ) =
∑∑

U

∆ij

(
yi − ȳU
πi

)(
yj − ȳU
πj

)
(2.5)

with variance estimator

V̂ ar(t̃Hj) = N2AV ar(ỹ) =
∑∑

s

∆̌ij

(
yi − ỹs
πi

)(
yj − ỹs
πj

)
(2.6)

The Hájek estimator is intended to measure means rather than totals, and so to

compute totals with them the formulas as given contain the coefficients N for the

estimator and N2 for variance. (This is the opposite of the adjustment made to

the HT estimator to obtain means.) Of particular note is the term
∑

1/π in the

estimator. Whereas the HT is analogous to a sum, Hájek’s is a weighted average,

with
∑

1/π acting as a stand-in for population size.

Returning to the example of the 2004 election, let the size of a county be

defined by the total number of votes cast by that county, and let the probability of

selection be defined by the reciprocal of that number. Consider a series of samples

drawn from the population using a PPS-friendly sampling algorithm (see section

5.1) with these probabilities, each consisting of 40 of the 3,113 U.S. Counties.

The 2004 election was contentious in many counties and so a larger voter turnout

in the population often indicated a larger turnout among Democratic voters. In

this dataset they are in fact highly correlated, with correlation coefficient ρ =

0.978. For comparison, a variable uncorrelated with size was generated for each

member of the population as a random Gaussian with mean 0, actual correlation

ρ = −0.02.

9



Figures 2.3 and 2.4 show the results of the estimators for the collection of

samples and their standard errors. As expected, HT is a clear winner in the

correlated case with a median estimate closer to the true population value and

a smaller variance. Though Hájek’s estimator isn’t terrible, the diversity of the

population units and non-centrality of the population mean produce a variance

much greater than with HT. By contrast, in the uncorrelated case Hájek comes out

ahead albeit by a smaller margin. This illustrates the general case that Horvitz-

Thompson performs well when absolute correlation is far from zero, and Hájek’s

performs well when correlation is closer to zero.
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Figure 2.4: PPS Estimation of Mean, Not Correlated to Size

The additional stability provided by auxiliary information comes at the cost

of additional assumptions. To maintain an unbiased estimation for variance πij >

0 necessarily for all i, j, and to ensure that the variance does not produce a

negative value the Sen-Yates-Grundy (SYG) condition that πij − πiπj < 0 for all

i 6= j must always be met, requiring careful selection of a compatible sampling

algorithm Särndal & Wretman (1992). Finally, as most PPS schemes are sampled

without replacement, there must be a means by which to update the selection

12



probabilities to new values conditioned on the sampled elements being removed

from consideration for future draws. This can be especially cumbersome for large

N .

All of the estimators discussed to this point are design-based. As the sam-

ple size approaches the population size, the formulas will produce increasingly

accurate representations of the population, and where N = n they will give the

desired for the population of interest exactly. An alternative, the superpopluation

approach, is discussed in a later section.

2.4 Multistage Designs

When a population of interest exhibits high variability it can be difficult to com-

pute estimates with desirably small precision. To counter this, the finite pop-

ulation can be divided into smaller, more homogenous groups called Primary

Sampling Units (PSUs) which are themselves sampled, and then the contents of

the PSU are either enumerated exhaustively, sampled, or divided further into Sec-

ondary or even Tertiary Sampling Units which themselves can be enumerated or

sampled Lumley (2011).

A common type of multistage design is cluster sampling, in which PSUs (and

optionally sampling units within them) are sampled, after which the lowest-level

sampling unit is enumerated exhaustively Lumley (2011). This is in effect what

our election example has accomplished, in that samples of 40 counties are selected,

and every vote within them is tallied. (By contrast, an exit poll of some percentage

of a county’s voters would not be considered a true cluster design). Although not

the focus of this study, multistage sampling (and designs that use it, termed

’complex designs’) is a primary application of PPS designs in general and the

Chaudhuri-Handcock-Rendall estimator in particular.

13



CHAPTER 3

An Overview of Empirical Likelihood

As an analyst works to understand data, a commonly applied tool is parametric

estimation. The data are assumed to come from a common generative process,

in which each data point represents a random variable following a common dis-

tribution F (θ), for unknown parameter θ. To assign the parameter a value, the

probabilities of observing the values of each observation are computed and multi-

plied together to produce the probability of observing the sample. This product

is a likelihood function such as (3.1), which is then optimized with regards to θ:

L(θ) =
n∏
i=1

f(x1; θ) · f(x2; θ) . . . f(xn; θ). (3.1)

This is a useful approach when the form of f(·) is known, and especially so when

the computation of the likelihood or log-likelihood produces an easily-managed

expression. When the form is not known independently of the data or the com-

putations are difficult, however, it can be unclear how to proceed. A solution to

this problem can be found in empirical likelihood.

Rather than attempting to maximize the functional form of a distribution,

Empirical Likelihood (EL) treats the shape itself as a nuisance parameter to be

profiled out in the pursuit of a desired statistic Pawitan (2001). Rather than

defining a distribution as a functional form a priori and using that form to pro-

duce statistics, EL does not define the distribution but rather provides a basis

for comparision and computing statistics in terms of the observed data, as well

as producing a non-parametric likelihood function for which the probability of

14



observing the present data can be optimized Owen (2001).

At its most general, the empirical likelihood is defined as

sup
Fθ

n∏
i=1

pi (3.2)

where Fθ is the family of all possible discrete functions over the observed values

x1, · · · , xn, and the variable pi refers to the probability of observing the value

xi in the ith observation. This definition is a limiting property on the infinite or

non-parametric model of the probability space as we only have n observations and

so can only produce an approximation. As n approaches infinity the true shape

of the infinite model emerges. Owen (2001) demonstrated that this supremum is

definable as a discrete distribution

Fn(x) =
1

n

n∑
i=1

1Xi≤x, −∞ < x <∞ (3.3)

for a sample composed of random draws X1, X2, · · ·Xn assumed to all be dis-

tributed according to the same CDF F0 Owen (2001). This distribution is therefore

the non-parametric maximum likelihood estimate (NPMLE). Correspondingly, the

optimum nonparametric likelihood for the same observations can be described as

L(F ) =
n∏
i=1

(F (Xi)− F (Xi−)), (3.4)

where F (x−) is understood to be P (X < x). The expression F (Xi) − F (Xi−)

can thus be considered to take the place of f(xi; θ) in (3.1) above as the “amount

of density” occuring at that point.

It should be noted that this formulation depends upon the quantity F (Xi)−

F (Xi−) being nonzero everywhere in the domain of interest in order to produce

a positive likelihood, a requirement which suggests the method is most capable

for large samples which can be expected to sample every value in the support.

Alternatively, Owen suggests limiting the family of possible functions F to the

subset of F for which the support intersects the observed values.
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Although taking a non-parametric approach suggests a lack of interest or even

of belief in a governing parameter θ, in fact the existence of a parameter is not

prohibited or absent insomuch as it is a matter of perspective and derivation. In

the standard parametric mode a parameter η is sought through a function θ(η),

and optimizing η̂ = ηMLE produces the MLE θ̂ = θ(η̂). In the non-parametric

case, when we assume a true CDF F0 and a relationship θ0 = T (F0) (in which

we take θ = T (F ) for a function T of distributions), and so replacing F with the

optimal value Fn the ECDF produces an empirical θ̂. In this case the functional T

is specifically one which produces a statistic (e.g. the mean) from a distribution,

such as in the case θ̂ =
∑n

i=1 xidF (xi). Replacing likewise dF for Fn, θ̂ is the

estimate of the MLE of the mean.

Calculating the empirical likelihood function is simplest when it can be directly

computed as a product of each individual observation’s probability, however when

the observations contain ties (i.e. Xi = Xj when i 6= j) the values are no longer

distinct and the form must be altered. In order to preserve the convenient form

of (3.2) , Owen recommends that one assign a weight wi to each observation Xi

such that
∑
wi = pj, where pj = P (Xi = zj) for some zj in the support. The

likelihood can then be computed as

L(F ) =
n∏
i=1

wi. (3.5)

Absent other constraints, this likelihood has been found to be maximized at

wi =
pj(i)
nj(i)

, those being the p and n in which the ith observation falls. Additionally,

as the sum of the weights is necessarily between 0 and 1, one can describe the

weights as constrained by an (n-1)-dimensional simplex

Sn−1 =

{
(w1, w2, · · ·wn)|wi ≥ 0,

n∑
i=1

wi = 1

}
. (3.6)

The simplex is effectively a generalization of a triangle, in which the line between

the triangle’s centroid and a given point is a scale corresponding to the value of
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a single wi at a point, one wi = 1 and the rest are 0, and every point along the

edge of the shape represents a linear combination of weights totalling 1, whereas

every point within the shape represents a linear combination of weights totalling

less than one. Because on the edge the total is in fact 1, a degree of freedom

is lost (wi = 1 −
∑

j 6=iwj) and so the simplex is denoted as (n-1)-dimensional.

Although setting all weights to be equal produces an optimal likelihood, the value

of the simplex is that it allows for optimization of the weights under additional

constraints.

To contrast the parametric and non-parametric approaches, consider the ex-

ample of the binomial distribution with the likelihood/probability mass function

L(p|n, k) =

(
n

k

)
pk(1− p)n−k, (3.7)

with unknown p, n = 2 and a series of observed k = {0, 1, 1, 2}. To estimate the

mean via parametric likelihood, first one can recast the number of successes in

each trial as an observation from a multinomial with log-likelihood

l(p) =
n∑
k=0

nk log(pk)

where nk is the number of observations of value k, which can be solved for an

optimal p̂

p̂ =

∑
k knk
nN

=
0 · 1 + 1 · 2 + 2 · 1

2 · 4
= 1/2

where N =
∑

k nk, and finally use the formula for the binomial mean to obtain

np̂ = 2 · 1/2 = 1.

By contrast, the EL approach is much simpler. The empirical likelihood is
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calculated as

L(F ) =
n∏
i=1

wi

=

(
1

4

)4

This doesn’t immediately produce a mean, but with a functional T =
∑

k p(k)k =∑
k kwk the mean can be produced as

0 · 1/4 + 2(1 · (1/4)) + 2 · (1/4) = 1

It is important that the scope of these toy experiments be understood, as

with a cursory reading appears little different than computing a sample mean. In

the parametric case, by finding p̂ the data are used to estimate the properties of

the distribution from which both the data came, and which future data can be

expected to follow. The EL case does produce a sample mean, but with the intent

that future samples can be expected to follow the same distribution. One caveat

is that a functional form is never suggested for the distribution F , and in fact

where wi 6= pi for any i, F cannot even be asserted to be unique.
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CHAPTER 4

The Composite Likelihood Estimator

Many pursuits in statistics are performed with the intent of discerning information

about the true nature of things from data and assumptions about its source. Sur-

vey sampling is most commonly concerned with estimating means, populations,

and other such descriptive figures while other endeavors such as regression attempt

to discern relationships, or at least reasonable approximations thereof. The com-

pound likelihood approach seeks to use sampling to describe a relationship, and

so marry these two goals.

4.1 Definition of Terms

Chaudhuri, Handock and Rendall Chaudhuri et al. (2013) seek to understand the

generative process of something, described by a response variable Y . It is as-

sumed this can be explained by a parametric model or process, for example the

simple regression model Y = βX + ε. Given a complete set of population data,

one could simply perform the necessary calculations to determine β, however by

shifting the focus from the current population to those generated under different

circumstatnces of time, location, etc. it immediately becomes clear that the finite

population at hand is not the ”true” population of the study as an exhaustive

analysis no longer offers a compete description. The understanding of the finite

population as a realization of population random variables and the use of those to

study their generating process is called a superpopulation model Särndal & Wret-

man (1992). Importantly however, the finite population is not often available
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in its entirety, and so this investigation must be conducted using sampling tech-

niques. The approach often taken is a two-step approach described by Särndal

et al. and used by Chaudhuri, Handcock and Rendall (2008), in which the pa-

rameter of interest (β in the regression above) is estimatated as a function of the

sample data, and then that β̂ is used with probability information to estimate

the true superpopulation parameter β Chaudhuri et al. (2008). The superpop-

ulation approach should be constrasted with the design-based approach of the

other estimators discussed. Whereas the design-based estimators get increasingly

close to producing the desired value as the sample size approaches the size of

the population, the superpopulation by definition attempts to specify the process

from which the population is defined and as a result this goal is not realized by

perfectly specifying the population at hand; it is one of many.

Let us generally refer to the superpopulation parameter of interest as θ. Chaud-

huri, Handcock and Rendall (hereafter CHR) estimate θ by generating a condi-

tional likelihood LCE and maximizing, but first much groundwork must be laid.

Consider a superpopulation model composed of Y the response variable, a set X

of auxillary data which may or may not have a direct relationship with Y , and Z

a matrix of design variables, and let V = X ∪ Y ∪ Z. Let A ⊆ V be a collection

of all explanatory variables. Additionally, let the finite population P consist of N

i.i.d. draws from model, and let a random subset S of P be the set of samples of

size n. We will discuss S, an instance of such a sample.

As discussed above, the nature of a sample depends upon the means by which

it was procured, the sampling design (here denoted D). For convenience, consider

also a membership vector IS of length N , with sum n, for which the ith element

is 1 when element i of the population is included in S and 0 otherwise. For our

purposes IS can be read as “the sample S being selected from the population

P”. Finally, π will denote the probability of inclusion— πS is the probability

that the sample S was selected, πi is the probability that unit i was included
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in S, etc. Crucially, as the population consists of i.i.d random variables from

the superpopulation (and therefore the population is not fixed), π is a random

variable.

4.2 Assumptions and Composite Likelihood

CHR rely upon several assumptions. First conditional independence given the

design asserts that for all S ⊆ P

πS ⊥ (YP , XP)|DP ,∀S ⊆ P . (4.1)

Under this assumption, EP [πS|YP , XP , DP ] = EP [πS|DP ] = π[S,DP ]. Second

CHR assume conditional independence given the sampling probabilities, in which

the sample selected is dependent only upon the probability of selection, that is

IS ⊥ (XP , YP , DP)|πS,∀S ⊆ P . (4.2)

This frees us to consider the sample (and therfore its contents) as solely influenced

by one source, a natural conclusion which does much to ease computation. This

enables the adoption of a principle from Pfeffermann and Sverchkov (2003), that

PrP [Is = 1, VS] = EP [πS|VS]PrP [VS] (4.3)

or in other words that the joint probability of drawing a sample from the popu-

lation with the data in those samples being what it is, can be expressed as the

population density of the values of V in the sample VS multiplied by the inclu-

sion probability of the sample given VS Pfeffermann & Sverchkov (2003). This

construction will allow us to define a density of interest via Bayes’ Rule.

Should the assumptions not be met the estimation can go awry. In the case

of conditional independence given the design, if πS is not independent of XP

and YP then it isn’t enough to build assumptions about our sample from the

selection probabilities of the elements alone, and the EL weights put upon the
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observations will be misspecified. Fulfilling this assumption allows us to directly

translate P (Xi = x) into the probability of selection πi and leverage the elegant

EL form. In the election example, this assumption may fail if in some counties

with low Democrat turnout the county was not listed in the election totals. The

probability of selecting the county, i.e. the proportion of all national votes cast

in that county, would be linked to the auxiliary variable Democrat turnout. In

the data as used, the selection of probability is always included, non-zero, and

determined solely by the county’s proportion of the national total of votes.

Likewise if conditional independence given the sampling probabilities is vi-

olated, then samples cannot be considered upon equal footing but will require

investigation into the auxiliary variables that correspond with each new sample.

This assumption is known to be met because the sampling algorithm used takes

only the probabilities of selection as inputs. If there was a quota of some kind

requiring an equal proportion of Democrat- and Republican-leaning states then

the inclusion vector IS would rely upon both πi and Xi for a county.

It is given that the ith element in S was drawn from the finite population

with probability πi. Let F0 be the distribution of VP , presently defined to a

parameter. Taking into account the above expression, we can then define F
(i)
S to

be the conditional distribution of the values of sampled elements Vi given inclusion

of unit i in the sample, with density dF
(i)
S . We can then reformulate the above to

produce

dF
(i)
S =

PrP(I{i} = 1, Vi)

PrP(I{i} = 1)
=
EP [πi|Vi]dF0(Vi)

PrP(I{i} = 1)
(4.4)

where the normalizing constant PrP(I{i} = 1) can also be expressed as∫
EP [πi|Vi]dF0(Vi)dVi (4.5)

via (4.3). The density defined in (4.4) is a central quantity in this study. By

combining the density of F0 and all the information of selection encapsulated in
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EP [πi|Vi] according to (4.2), a likelihood based upon this density can be maxi-

mized to estimate the superpopulation parameter θ. Before defining the likelihood,

however, the issue the availability of population information must be addressed.

Breaking down (4.4) and rearranging, it can be understood that the product

of the sample density dF
(i)
S and the probability of an observation’s selection are

together equivalent to the density of the finite population times the population

expectation of sample probabilities, given the data matrix for the observation.

This allows the conditional distribution of the sample data to be redefined in

terms of both the finite population and also the indicator vector for inclusion in

the sample. This is advantageous as it allows for the density to be defined while

taking into account the probability of observation/selection through the EP term,

however at the same time it is problematic— the intent of a survey is conducted

to gain insights without knowledge of the population itself. With this in mind,

requiring population-level understanding is clearly counterproductive.

To circumvent this, we can redefine the necessary expectations in terms of

population densities that are “masked” or hidden somehow. The expectation

EP [πi|Vi] = [ES(π−1
i |Vi)]−1 will be defined as the conditional visibility νi, follow-

ing Patil and Rao’s (1978) interpretation of sampling as enumerating a partially

hidden population (Patil & Rao, 1978; Pfeffermann & Sverchkov, 1999). We define

also Υ as EP [πi] = EF0(Vt)[νi], a normalizer here called the visibility factor. This

last term likewise follows from Patil and Rao, and together they can be imagined

to form a pdf fw(x) = f0(x)w(x)
Υ

where w(x) is a weight applied to every value x

depending upon whether it was observed, and Υ normalizing the density to have

an integral of 1. By substituting with prior expressions, we obtain

dF
(i)
S =

νidF0(Vi)

Υi
(4.6)

Finally, a likelihood can be produced using the observed values of the sample.

Invoking the assumption of F0 being understood up to a parameter θ and modeling
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νi with a parameter α, a composite likelihood using all Vi, i = 1, 2, · · ·n can be

constructed as

LCE(V, α, θ) =
n∏
i=1

dF
(i)
S . (4.7)

With this, F0 can be optimized by finding the profile likelihood of θ. The compu-

tation of Υ and even the optimization of θ itself can be complex however, and so

the use of other methods to find and optimize this term are desirable.

4.3 Reinterpretation in Terms of Empirical Likelihood

By casting the problem in terms of conditional visibility, a conceptual link appears

between the current formulation of a sample density and the empirical likelihood

approach of Owen Owen (2001). Within the superpopulation model, we assume

F0 is specified by a parametric family Fθ. Suppose that for each F ∈ F we define

the weights F assigns on Vi to be wi = F ({Vi}), with a zero weight assigned

to continuous functions of F . Additionally, the computations can be simpilifed

further with another assumption which we call label independence of visibility

factors. Restating (4.1) it can be asserted Υi=EP [π(i,DP )], that the visibility factor

depends upon the design variables rather than any value composing the sample,

and so therefore all members of the population share the same visibility factor.

Approximating this factor by Υ̂ =
∑n

i=1 νiwi, and substituting wi for dF0 =

F0({Vi}) we can easily recreate (4.7) as

LCE(w,Z, ν) =
n∏
i=1

wi∑n
i=1 νiwi

(4.8)

which conveniently shares the form of the Hájek estimator. Υ must be treated

carefully, as incorrect specification (e.g. as π,ν) will not weight the parameters

properly. As ν comes from EP which itself is a maximization of α, this term

should be estimated separately from w. ν and Z follow from the sample data,

leaving us only to optimize for the vector wi. Additionally, with the assumption
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that Y and A share a relationship via some function ψθ

EF θ [ψθ(Y,A)] = 0 (4.9)

the weights can be optimized further by employing this constraint in the n-

dimensional simplex

Wθ =

{
w ∈ ∆n−1 :

n∑
i=1

wiψθ(Yi, Ai) = 0

}
∀θ ∈ Θ (4.10)

(Population parameters understood to be known and fixed can also be incorpo-

rated in such a manner, however are beyond the scope of the present study.) A

constrained estimator for θ can be produced according to Qin & Lawless (1994)

Chaudhuri et al. (2008) as

θ̂CE = arg max
θ∈Θ

{
max
w∈Wθ

LCE(w,Z, ν)

}
(4.11)
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CHAPTER 5

Examination of the Estimator

We here empirically demonstrate the properties of the Chaudhuri-Handcock-Rendall

(CHR) estimator. A simulation study was conducted in which samples were drawn

from the election dataset used in prior examples, and the estimator and its vari-

ability are compared both to theoretical expectations of their performance and

their true performance. Differing results arise across several values of interest,

depending upon the relationship of that value to the probability of selection.

5.1 Generating Samples

To observe the properties of the estimator first-hand, many samples are drawn

from a population with known characteristics, and then from each estimators are

computed which are then compared to the known “truth” of the population. These

estimators, while making use of the conditional empirical likelihood approach, are

based upon the form of the Hájek estimators of mean and variance described

in equations 2.4 and 2.6 and have their characteristic requirements. One, the

Sen-Yates-Grundy criterion that πij 6= πiπj, is required to guarantee non-negative

values for estimated variance Sen (1953) Yates & Grundy (1953). Consider again

equation 2.6

V̂ ar(t̃Hj) = N2AV ar(ỹ) =
∑∑

s

∆̌ij

(
yi − ỹs
πi

)(
yj − ỹs
πj

)
.

If πij = πiπj then ∆̌ij = 0 and the variance expression collapses to 0, suggesting an

unrealistically perfect estimator. Generating samples without this characteristic
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is non-trivial, requiring a special algorithm; in section 5.2 great care is taken also

to confirm that these properties are as expected.

The study sample consists of 2.24 million samples of 40 counties each, drawn

from the 2004 election dataset used previously Commission (2006). The sam-

ples were drawn proportionately to county size which we define here as the total

number of votes cast in that county across all presidential candidates.

Sampling with unequal probability while preserving the Sen-Yates-Grundy

condition presents an additional challenge over simple sampling without replace-

ment, as without due care the order in which units are sampled can have unforseen

relationships upon the sampling probabilities. For instance, given a vector of sam-

pling probabilities {.2,.2,.2,.4} a draw of the first element results in the renormal-

ization of the remaining probabilities as {.25,.25,.5} where as a draw of the last

results in probabilities of {.33,.33,.33}. In this instance, it is apparent that not

only is recomputation necessary, but that the probability of inclusion of the next

sample is affected.

Tillé presents a method in which the probabilities are easy to compute and do

not depend upon draw order Tillé (1996). Consider a population U from which

n units are to be sampled. First, an initial probability vector of values π(i|k) is

computed, representing for each i the probability that the ith unit is selected given

that it is being selected from a sample of size k. These values are proportional to

the positive values xi, (i ∈ U) of some auxiliary variable x and are computed as

π(i|k) =
kxi∑
i∈U xi

(i ∈ U).

If π(i|k) ≥ 1, then set π(i|k) = 1 and repeat the procedure until all π(i|k) ∈ [0, 1].

After generating this initial vector, the first selection step is conducted which

(because it’s counted backward) is termed step k = (N − 1). A unit is selected

from U with probability 1− π(i|N − 1).

Each of the subsequent steps is subtly different from the first. At the beginning
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of step k, the sample is composed of k + 1 units. The vector of probaiblities is

recalculated as above with the reamining unselected units, and a unit is selected

from the sample with probability

rki = 1− π(i|k)

π(i|k + 1)
.

The selected unit is discarded. After selection only k units remain in the sample,

and the procedure stops at the end of step n, leaving behind the n undiscarded

units which then comprise our sample.

This algorithm, published by Tillé in the sampling package, was ported to

C++ and run upon 30 Apple iMacs to produce 2.24 million samples for analysis

in subsequent sections Tillé & Matei (2012).

5.2 Sen-Yates-Grundy Assumption

The CHR estimator dictates that the Sen-Yates-Grundy (SYG) condition be met,

that is that the probability of two elements being included in the same sample

is distinct from the product of two first order inclusion probabilities, πij 6= πiπj.

Having gone to much trouble to obtain and execute a Tillé sampling procedure to

achieve this purpose, it is important that we test this assertion.

At issue are three distinct matrices. The first, theoretical matrix is that spec-

ified by Tillé’s sampling method, and is employed in the calculation of the HT,

Hájek and CHR estimators. A second matrix is that observed by direct computa-

tion of the occurrence of pairs of samples, i.e. πij is the number of times that unit

i and unit j are sampled together divided by the number of possible opportuni-

ties. The third matrix is the outer product of the vector of first order selection

probabilities π with itself. The theoretical matrix and the observed matrix will be

compared to ensure that our sampling procedure produces a result of the expected

form, and provided that it does the theoretical matrix will then be compared with

the outer product to test the SYG condition.
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Before beginning the analysis however, an issue of completeness must be ad-

dressed. The theoretical joint inclusion matrix provides a non-zero probability for

all off-diagonal elements of the matrix, which is to say that any element can poten-

tially be sampled with any other element with some probability. (Technically the

diagonal should be empty as after drawing element i without replacement i cannot

be selected again, however by convention we set the diagonal to the first order

probabilities π.) By contrast, as a result of some very small but non-zero joint

probabilities the empirical joint inclusion matrix contains zeroes in approximately

2% of its cells even after millions of samples are drawn. As this will both force EL

estimates to be zero as well as dilute many distance metrics, a workaround was

implemented in the form of a general additive model Hastie & Tibshirani (1986).

The model is a Poisson regression (with form E(Y |x) = eθx) taking the upper

triangluar values πij of the observed joint inclusion matrix from the simulation

as the response. These elements of the theoretical matrix are predicted by a

smoother function on the combination of πi and πj and offsets. The resultant

model has 29 terms and an estimated degree of freedom of 28.999, but is not

sufficiently insightful itself to merit reproduction. When the predictor log(π) is

chosen the smoothing function in the GAM, borrowing strength, fits a response

surface which contains no zeroes, but rather “smooths over” the observed zeros

giving a close approximation of the expected observed values. This predicted fit

will be the empirical matrix examined. The choice of Poisson regression is worth

noting. Were the probabilities modeled simply as Gaussian around a mean rather

than as a count variable, peculiar effects could arise such as expectations of πi

close to, at, or even less than zero. As a Poisson however, the value is fixed as

greater or equal to zero.

One of the most fundamental approaches to comparing discrete probability

distributions is divergence measures. One of the most common, the Kullback-

Leibler divergence, is the expectation of the sum of the log difference between like
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probabilitites belonging to distributions P and Q, defined as

D(P ||Q) =
∑

log(Pi/Qi)Pi

Though notably not a metric (as D(P ||Q) 6= D(Q||P )) the difference of the mea-

sure from zero is a good indicator of deviance of distribution.

Theoretical πij Empirical πij πiπj

Theoretical πij 0.0000 0.0024 89.6770

Empirical πij 0.0024 0.0000 89.6763

Table 5.1: KL Divergence, Rows are Reference Matrix

Table 5.1 demonstrates that the theoretical and empirical matrices match each

other quite closely, with a divergence across the 31132 cells of less than 1/100

indicating that our theoretical matrix is a very close facsimilie to the expectation

provided by Tillé’s formula. This speaks well to the fidelity of the sampling

algorithm and increases confidence in the samples gathered and the computations

thereof. By contrast, either joint matrix when compared with the other products

(that is, testing the assertion that πij = πiπj) demonstrates a much larger distance.

From an information theoretic perspective, one can interpret this to say that it

takes nearly 90 additional ’bits’ of information to describe Q with P .

Theoretical πij Empirical πij πiπj

Theoretical πij 0 1.971 70.71

Empirical πij 1.971 0 70.81

Table 5.2: Integrated Absolute Error, Columns are F-hat

Progressing from the KL divergence, the relative shape of the distributions

can be examined with the Integrated Absolute Error or L1 Norm, defined for use

with the discrete case as

IAE =
∑
|f̂ − f |
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The result in Table 5.2 conveys much of the same information as the KL diver-

gence, namely that the crossproduct matrix is quite a bit more different from the

theoretical and empirical matrices than the latter two are from each other. With

the KL result this is also a good affirmation of our SYG assumption as it suggests

that πij and πiπj are in fact different from one another, but not as a uniform

inequality. Another interesting result is the comparison of the three distributions

against a uniform distribution (Table 5.3). These values are also particularly

small. It is also encouraging that the absolute error between the theoretical ma-

trix and the crossproduct is larger in magnitude than the distance between the

crossproduct and uniform.

Theoretical πij Empirical πij πiπj

Uniform Distribution 2376 2376 2365

Table 5.3: Integrated Absolute Error, Columns are F-hat

Another traditional measure is the Pearson Goodness of Fit, which compares

an observed distribution O with an expected distribution E, producing a value

which follows a χ2 distribution.

χ2
df =

∑(
Oi − Ei
Ei

)2

With knowledge of the degrees of freedom, this allows for hypothesis tests of the

difference of two distributions, along with confidence intervals and other tests.

Theoretical πij Empirical πij πiπj

Theoretical πij 0.0000 0.0048 33.4502

Empirical πij 0.0048 0.0000 33.4487

Table 5.4: Pearson Goodness of Fit χ2, Rows are Expected, Columns Observed

Here too, it can be seen that the theoretical and empirical distributions are

quite close to each other, and the crossproduct distribution much less so. Al-

though the goodness-of-fit can be computed on this value, the degrees of freedom
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necessary at N2 − 1 is such a tremendously large number that significance may

not be detected if it is in fact there. Indeed, it may not make sense at all in

the conventional sense given the input data. Recall that each element i in the

inclusion probability vector refers to a single US county, and that in contrast to

an experiment or other scenario in which different factors are mutually orthog-

onal, it is not outrageous to suggest that some or many of the counties may be

grouped together and understood as subject to the same effects. Therefore, a sort

of “empirical” degree of freedom may be calculated to attempt to discern this true

dimensionality.
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Figure 5.1: Largest values of χ2 significant at a 95% level for varying values of X

Consider Figure 5.1. This plot traces the critical value at which χ2 is significant

at 95% confidence for degrees of freedom between 0 and 40, with a line drawn at

the value of χ2 produced by the goodness-of-fit test of the crossproduct matrix

against the theoretical joint inclusion distribution. Interpreting the KL Divergence

as indicating a significant difference, we can place the “true” degrees of freedom

at no more than approximately 22. As a goodness-of-fit’s degrees of freedom
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represents the number of cells less one, and acknowledging that both rows and

columns of the joint inclusion matrix are represented by the same set of counties,

it can be suggested that the 3113 counties observed represent no more than
√

22,

or between 4 and 5 distinct groupings though it does not indicate what these

groupings may be.

Finally, the difference in matrices will be characterized in terms of their eigen-

values. All three distributions are chiefly characterized by one principle compo-

nent, and then much less so by the subsequent components as demonstrated in

Figure 5.2.
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Figure 5.2: Magnitude of Eigenvalues 1:20 (left) and 2:20 (right)

Note that the joint inclusion matrices share an uneven decrease in eigenvalue

magnitude whereas the crossproduct matrix has a smooth decline on a much much

smaller vertical scale. This suggests the latter lacks the same degree of internal

structure as the others, but more importantly it falls below the precision threshold

of the computer used (approximately 10−14) which suggests that it is actually

indistinguishable from zero. As Figure 5.2 implies, the theoretical distribution has
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πij πiπj∑N
2 λ2∑
λ2

0.0908 0

Table 5.5: Percent of Variation in Secondary Eigenvalues

variation across several orthogonal components suggesting structure, as where the

crossproduct’s variation drops quickly to zero with the removal of the first principle

component. Table 5.5 makes clear the difference in the two values, demonstrating

not only the zero, but that more than 9% of variation in the πij approach cannot

be explained by the outer product alone. As analyses thus far are all consistent

that the theoretical and empirical joint inclusion matrices are nearly identical,

only the theoretical distribution will be considered going forward.

In all these investigations, it can be seen that in comparing the theoretical

joint inclusion matrix and the outer product of the first-order inclusion matrix

with itself that not only do the two matrices demonstrate divergence from each

other, but also that values of one are not strictly greater than the other, and

also that their variance structures differ. In conclusion, in employing the CHR

estimator, there need not be any concern that πij − πiπj consistently equals zero.

5.3 Simulation Study

Several variables were analyzed, each representing a different combination of cor-

relation with probability of selection and value of interest. Additionally, as the

Horvitz-Thompson estimator is intended for estimating totals while the Hájek and

CHR are intended for means (and SRS is agnostic), both means and totals for the

values in question were computed.

The four estimators examined and their corresponding approximate measures

of variance are as follows.
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Horvitz-Thompson:

t̂ =
∑

yi/πi, ȳ = 1/N
∑

yi/πi

V̂ (t̂) = N2(1/n− 1/N)s2, V̂ (ȳ) = −1/2
∑

∆̌ij(y̌i − y̌j)2

Hájek:

t̂ =
N
∑
yi/πi∑

1/πi
,

V̂ (t̂) = N2

(∑ 1

π2
i

)∑
∆̌ij

(
yi − ȳ
πi

)(
yj − ȳ
πj

)
,

ȳ =

∑
yi/πi∑
1/πi

V̂ (ȳ) =

(∑ 1

π2
i

)∑
∆̌ij

(
yi − ȳ
πi

)(
yj − ȳ
πj

)

Chaudhuri-Handcock-Rendall:

t̂ = N
1
2

∑∑
i<j(yi + yj)/πij

1/πij
, ȳ =

1
2

∑∑
i<j(yi + yj)/πij

1/πij

V̂ (t̂) = 4N2 (N − n)

N − 1

∑
G2
i∑

ν2
i

, V̂ (ȳ) = 4
(N − n)

N − 1

∑
G2
i∑

ν2
i

where

Gi =
∑
i>j

n∑
j

1

π2
ij

yi + yj
2
−
∑

i>j

1
2

(yi+yj)

1/πij∑
i>j 1/πij


νi =

∑
i>j

n∑
j

1

πij

and lastly SRS:

t̂ = N

∑
yi
n

, ȳ =
∑

yi/n

V̂ (t̂) = N2(1/n− 1/N)s2 V̂ (ȳ) = (1/n− 1/N)s2
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Note that in most cases the variance for the total can be converted to the variance

for the mean by multiplying by a constant N2, and vice versa. Additionally, the

structural similarity of the Hájek and CHR estimators is apparent here.

The HT performs best when the value of interest is highly correlated with

the selection probability as it is designed to assume yi/πi is close to constant.

Hájek by contrast is designed as an average, as it contains a term 1/
∑
πi = N̂ ,

effectively averaging over the population size implied by the observed weights. The

CHR estimator shares this property as it is a variation on the Hájek with a more

nuanced approach to weights. The SRS estimator, essentially a sample average,

is equally suited to either estimate and is included in this analysis for comparison

only as a “worst case scenario”; as sampling was conducted proportional to size

rather than with equal probability the typically unbiased, high-variance estimator

will show both bias and greater than typical variance under the PPS sampling

scheme.

The results of the simluation study are documented in Tables 5.8 and 5.9, and

show the rankings of the estimators and their observed standard errors, with 1

representing most accurate and 4 representing least.

ρ(X, p) HT SRS Hajek CHR

Num. Dem. Votes 0.978 1 4 2 3

Num. Other Votes 0.923 1 4 2 3

Pct. Voted Dem. 0.268 2 3 1 1

Neg. Corr. -0.860 1 4 2 3

No Corr. -0.020 3 2 1 1

Dem. Win County 0.236 3 4 2 1

Table 5.6: Accuracy Ranking for Estimators of ’Total’

The Hájek-based lineage of the CHR estimator is apparent in the results, as

like the Hájek estimator it is out-performed by the Horvitz-Thompson in cases
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ρ(X, p) HT SRS Hajek CHR

Num. Dem. Votes 0.978 1 4 2 3

Num. Other Votes 0.923 1 4 2 3

Pct. Voted Dem. 0.268 3 4 1 2

Neg. Corr. -0.860 1 4 2 3

No Corr. -0.020 3 2 1 1

Dem. Win County 0.236 3 4 2 1

Table 5.7: Accuracy Ranking for Estimators of ’Mean’

where correlation is either strongly positive or strongly negative, such as a strong

correlation case like Figure 5.3. Also similarly, when correlation is low CHR and

Hájek come out ahead. In particular, the binary variable indicating a Democratic

win in a county (and thus either the expectation of a Democratic win in the mean

case or the count of Democratic-won counties in the total case) is predicted best

by CHR (Figure 5.4). “Democrats Win” has one of the lower correlations with

selection probability at ρ = 0.23, and the mean square error of the estimator is

superior to both the HT and Hájek cases. Although the MSE is lower in the SRS

case, the corresponding estimator is strongly biased and least accurate among all

others.

In other cases the CHR estimator was not clearly the best. The percent of a

county’s votes won by Democrats, another low-correlation variable at ρ = 0.26,

was predicted equally well by the CHR and Hájek estimators though the CHR had

a superior variance for both the total and mean cases. Though nearly identical in

correlation to the previous case, this can potentially be explained by the nature of

the data; county vote percentage was stored as a value between 0 and 100, while

democratic win in a county was stored soley as a 0 or 1. This informs the yi + yj

term of the CHR estimator. Wheras the binary variable, with a possible value

for the term in the set {0, 1, 2} can easily acheive a value of 0 the continuous
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case makes a value of 0 very unlikely, as it requires two counties with literally

no Democratic votes being sampled at once. This virtual inability to cover the

entire domain of the term may result in an inflation of the estimator, reducing its

efficiency. Finally, in high correlation cases won by the HT estimator, CHR and

Hájek performed similarly to achieve second place with very similar estimates and

MSEs. Graphical summaries of all estimators and their mean square errors are

produced in Appendix A.

In addition to the accuracy of the estimators, it is worth noting the role of

standard error in evaluation. The quantities at issue, including percentages, totals

and binary variables all show variances on different scales, and so the normal

computation for standard error is here swapped for root-normalized mean square

error (RNMSE),

√
MSE(θ̂)

xmax − xmin
.

Predictably, when the SRS estimation is a bad estimator for a given quantity its

RNMSE is also the worst. More interesting, among the most accurate estimators

for a quantity (highlighted in blue in tables 5.8 and 5.9) the most accurate es-

timator and smallest error never coincide, although they do come close. In the

no-correlation case, the CHR estimator even provides the best estimation, but

with the worst error!
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CHAPTER 6

Discussion

The intent of this study was to evalute the estimator put forth by Chaudhuri,

Handcock and Rendall, and in doing so to review much of the elementary theory

that supports it. Survey sampling with and without auxiliary information was

discussed, and also the empirical likelihood of Owen was discussed. Finally, the

CHR estimator itself was described and its performance evaluated in the context

of a dataset describing voting patterns in the 2004 US Presidential Election. In

addition to comparing sample estimates of voting percentages and proportions

against a known population result, the data itself was examined for sources of

variation, chiefly by attempting to derive its degrees of freedom.

At the outset of this study it was not at all clear how the CHR estimator

would perform when held up against more traditional methods. This comes

mostly as a result of its novel application of empirical likelihood, particularly

because weights are typically treated as a direct inversion or other function of

the observed sampling probabilities instead of as random variables. Although the

theoretical underpinnings of the strengths and weaknesses of the estimator are

detailed in Chaudhuri, Handcock and Rendall’s own papers, the simulation con-

ducted here demonstrates that it closely follows the trend of the Hájek estimator

upon which it was based, always equating its accuracy and in cases of low cor-

relation surpassing it. In cases of high correlation, other estimators such as the

Horvitz-Thompson provide more efficient estimates. The degrees of freedom in

the data were estimated to be no greater than
√

22, suggesting that among all of
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the 3113 counties represented as sampling units in the data there are only three

or four distinct categories providing the observed variation.

The study conducted here can be extended in several ways. First, the esti-

mates of the superpopulation parameters might be put to work in a predictive

estimation such as a regression, attempting to determine the nature of the su-

perpopulation and using it to reproduce the variable of interest across the finite

population. Another extension could be an in-depth study of the role of aux-

iliary information. In addition to the simplex investigated above to determine

weights, Chaudhuri, Handcock and Rendall specified a second simplex in which

the weights are optimized against an auxiliary variable A. Finally, the estimator

may be recast in terms of estimators other than the Hájek to attempt to improve

upon specialized domain-specific estimators.

46



Appendix A

Estimator Comparisons

The following are plots of variables of interest for each of the discussed estimators.

They reflect estimations of samples selected proportional to size, as drawn via

Tillé’s method Tillé (1996).
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