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ABSTRACT OF THE DISSERTATION

Energy-Efficient CMOS Integrated Circuits and Systems for Brain-Machine Interfaces

By

Omid Malekzadeh Arasteh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Professor Payam Heydari, Chair

Restoring the ability to walk in individuals with chronic spinal cord injury is an ambitious

goal that has been rigorously pursued in recent years. While there have been a number of

attempts to enable walking in those patients, no universally accepted biomedical solution

exists to address this grand challenge to this day. Brain-machine interfaces (BMIs) are one

of the promising platforms to restore motor and sensory functions in people with paraplegia.

However, fully-implantable BMIs must address a number of critical issues to become clinically

viable, in particular excessive overall power dissipation and inadequate interference resilience

in neural recording.

In this dissertation, an energy-efficient electrocorticography (ECoG) array architecture for

fully-implantable BMIs is presented. A novel dual-mode analog signal processing method is

introduced that extracts neural features from high-γ band (80-160 Hz) at the early stages

of signal acquisition. This approach utilizes a distinct optimized signal pathway based on

power envelope extraction to achieve significant power savings for digitization and processing.

A prototype incorporating a 32-channel ultra-low power signal acquisition front-end was

fabricated in 180nm CMOS process and successfully tested in vitro and in vivo.

xii



Next, an ultra-low power mixed-signal neural data acquisition system is presented. The

dual-mode data acquisition system enables a novel low-power hybrid-domain neural decoding

architecture for implantable BMIs with high channel count. The fully-integrated custom chip

implemented in 180nm CMOS process achieves excellent performance with significant back-

end power-saving advantage compared to prior works. The fabricated prototype was further

evaluated with in vivo human tests at bedside, in addition to electrical characterization.

Finally, common-mode interference phenomenon in multi-channel biosignal recording sys-

tems employing a shared-reference scheme is studied. While it is well-understood that a

shared-reference scheme causes impedance mismatch at the input terminals of bioamplifier,

and thus limits the maximum achievable common-mode rejection ratio (CMRR), a theo-

retical study that can provide quantitative assessment of this source of degradation is still

lacking. This section provides an equivalent electrical circuit model of the input interface

consisting of an electrode array and bioamplifiers, followed by a complete analysis to formu-

late the CMRR degradation.
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Chapter 1

Introduction

1.1 Motivation

Restoring the ability to walk in individuals with chronic spinal cord injury is an ambitious

goal that has been rigorously pursued in recent years. While there have been a number of

attempts to enable walking in those patients, no universally accepted biomedical solution

exists to address this grand challenge to this day. Brain-machine interfaces (BMIs) are one of

the promising approaches to restore motor and sensory functions in people with paraplegia.

Such platforms incorporate a cyber-physical system (CPS) that interacts directly with the

brain in order to establish a seamless walking experience by exploiting neural interfaces,

wireless communication devices and robotic prostheses.

Despite the natural desire for a non-invasive approach to implement BMIs, there is a growing

need to realize fully-implantable systems that could potentially outperform the existing pro-

posed solutions by accurately decoding the task-specific neural information. The inherent

advantage of a minimally-invasive neural implant is that it can facilitate signal acquisition

with higher spatiotemporal resolution in the vicinity of brain tissue, however, a number of

1



critical issues need to be addressed. Most importantly, to become clinically viable, the over-

all power consumption must be minimized to prolong the operation time in such biomedical

implants.

To realize an energy-efficient interference-resilient BMI that could be fully implanted, this

dissertation presents (1) a novel dual-mode array architecture which aims to significantly

reduce the power dissipation in the mixed-signal and digital back-end with negligible over-

head in the front-end acquisition (2) a fully-integrated 1µW/channel neural data acquisition

system based on the proposed dual-mode operation (3) a detailed common-mode interference

analysis in biosignal recording systems.

1.2 System Overview

Fig. 1.1 shows the overall proposed CPS that encompasses an electrocorticography (ECoG)-

based BMI to restore walking. The main components include two implanted units, one inside

the skull and one over the chest area, and external robotic prosthetic legs. To allow neural

recordings with improved spatiotemporal resolution, a high-density subdural electrode grid

is surgically placed over the motor cortex area of the brain. The neural signals are obtained

by a custom-designed miniaturized multi-channel recording system, which is located in the

skull unit. To minimize the heat dissipation in the vicinity of brain tissue, the recording

system consumes microwatt-level power to avoid any cell/tissue damage.

Once the neural data are acquired, serialized and digitized in the skull unit, they are trans-

ferred to the chest-wall unit via a tunneling cable, where the power-hungry modules such as

general-purpose digital signal processor (DSP) and wireless transceivers (TRX) are located.

Further signal processing and neural decoding are performed in DSP, and the control com-

mands are relayed to the external robotic prostheses via TRX. In this approach, brain signal

2
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Figure 1.1: Proposed cyber-physical system incorporating a fully-implantable ECoG-based
brain-machine interface to restore walking.

acquisition, processing and wireless transmission are achieved in a manner that eliminates

direct exposure of brain to high transmit power, avoiding any potential risks associated with

radio-frequency radiation. In the next section, a brief review of brain signals, biopoetential

electrodes and state-of-the-art biosignal recording systems is presented.

1.3 Background

1.3.1 Brain Signals

Bioelectric potentials are produced as a result of electrochemical activity of a certain class

of cells, known as excitable cells in the tissue [3]. The excitable cells exhibit two states:

rest and active. At the rest state, the cell membrane is more permeable to K+ ions than

Na+ ions and thus the internal medium builds a potential difference (-40 to -90 mV) relative

3



to the exterior, to counteract the K+ ions diffusion gradient and reach an equilibrium.

Once the excitable cell undergoes electrical stimulation either artificially or by the central

nervous system, its membrane’s permeability to Na+ ions increases such that its potential

difference reaches +40 mV. However, this will be followed by a sharp decrease in the potential

difference as the membrane returns to its resting state. This cycle of cellular potential is

referred to as the action potentials (AP) which is fundamental in generation of different

biopotential signals such as electrocardiography (ECG), electromyography (EMG), electro-

encephalography (EEG), electrocorticography (ECoG) and local field potentials (LFP). In

BMI applications, EEG, ECoG, AP and LFP are commonly used to observe neural activity.

The existence of electric impulses was first reported by Richard Caton in 1875 [4]. Caton

studied the animal brains using a galvanometer and observed small electric currents from

the exposed cerebral hemisphere of monkeys and rabbits. In 1890, Adolf Beck published his

findings on “electrical oscillations” in the brain and noted that these oscillations ceased after

sensory stimulation, a first description of desynchronization in electrical brain potentials

[5]. Three decades later in 1924, Hans Bergers recorded the first human EEG, invented the

electroencephalogram and successfully observed alpha rhythms from the brain [6]. ECoG

was pioneered by Wilder Penfield and Herbert Jasper in early 1950s, primarily for identifying

the epileptogenic zones for surgical resection [7]. Although, EEG is considered as an effective

non-invasive method for brain signal acquisition, ECoG offers higher signal power, higher

spatial resolution and a broader spectral content which are crucial for future BMI systems.

Thus, high-density (HD) ECoG grids serve as a suitable platform for motor signal acquisition

and sensory cortex stimulation. ECoG signals exhibit a robust predictable decrease in α (8-

12 Hz) and β (13-30 Hz) band powers, and increase in high-γ (80-160 Hz) band power over

the motor cortex (i.e., the brain areas that control movement) in response to movements

[1, 8, 9, 10, 11]. These key finding are the main motivation behind implementing a fully-

implantable BMI that could be used to restore walking for patients with spinal cord injury.

4



1.3.2 Biopotential Electrodes

Although the input impedance of readout circuits in CMOS technology is typically very high,

a non-zero current would still flow from the brain to the input amplifiers. This necessitates

a transducer interface which converts the ionic current to electrical current, often called

the biopotential electrode [12]. The principal operation of this interface is based on the

electrode-electrolyte interaction which governs the current flow. The electrolyte (i.e. brain

tissue) contains no free electrons and the electrode contains no free cations or anions, thus

a chemical reaction (oxidation/reduction) is necessary to allow the current flow. However,

this will disturb the neutrality of the solution and creates a charge gradient at the electrode-

electrolyte interface, causing a potential difference referred to as half-cell potential. Since

the biopotential electrodes exhibit mismatches in reality, the half-cell potentials give rise to

a differential DC electrode voltage offset (DEO) which can be quite large (∼ 50mV). To

illustrate this effect, we can use a circuit model for the biopotential electrode, as depicted in

Fig. 1.2. CA and RA represent the electrode impedance, Rs is the resistance of the electrolyte

solution and Vhc is the half-cell potential. Depending on the neural signal of interest, different

electrode types with distinct impedances could be used. For ECoG, the electrode impedance

is typically between 1 kΩ to 5 kΩ and for EEG, the electrode impedance is roughly a few

MΩ and can be reduced to a few kΩ by applying a gel between the scalp and the electrode.

RA

CA
RS

Vhc

Figure 1.2: Biopotential electrode circuit model.
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1.3.3 Biosignal Recording

The bioamplifier provides the low-noise amplification of ECoG signal while drawing minimum

current from the supply to reduce the power burden in a multi-channel acquisition system. In

addition, the bioamplifier needs to filter out the DEO, reject the common-mode interference,

and exhibit high input impedance to minimize the differential error caused by the impedance

mismatch. In this section, a brief review of prior works is presented.

Numerous designs of bioamplifiers have been reported in the past and the purpose of this

section is not to present a comprehensive survey but rather focus on the key design aspects of

selected works which have proven effective. As mentioned, DEO is inevitable in biomedical

signal acquisition systems and hence, it needs to be filtered out to avoid amplifier saturation.

Passive components such as capacitor and resistor can be used to create the high-pass filter

but require significant area which is impractical for a multi-channel acquisition system. R.

Harrison et al. [13] used a MOS-bipolar pseudoresistor element in the feedback path of

a capacitively-coupled amplifier to realize the low-frequency high-pass corner. This is an

effective method for rejecting DEO as it eliminates the need for a very large resistor at the

cost of linearity and process variation.

An obvious concern with low-frequency operation of MOS transistors is the presence of flicker

(1/f) noise. To reduce the 1/f noise contribution, transistor sizing can be increased but this

approach creates an area overhead. A. Avestruz et al. [14] purposed an AC-coupled chopper

amplifier to minimize the 1/f noise. This design utilizes a switched capacitor integrator

in the feedback path to create the high-pass corner and uses capacitive feedback to set

the midband gain accurately. The chopping before the input capacitor (Cin) of the OTA

generates a parasitic resistor which reduces the overall input impedance significantly. In

another implementation by N. Verma et al. [15], chopper switches are placed at the virtual

ground node of the OTA. However, this will cause the parasitic switched capacitor resistor

6



to form a high-pass filter with Cin, necessitating careful design of the input capacitor and an

area overhead. In a different approach, R. Muller et al. [16] proposed to use a mixed-signal

feedback to realize the high-pass corner. This architecture employs an open-loop chopper

amplifier, delta-sigma modulated capacitive DAC and ADC. The input offset is cancelled

through the mixed-signal servo-loop which is only active at DC. This is advantageous since

the input impedance can be much higher at the in-band frequency, Zin = 1/(4fchop(CDAC +

CPAR)), compared to Zin = 1/(2fchop · Cin) at DC.

To further reduce the noise contribution at lowest power consumption, several works have em-

ployed different current-reusing techniques to boost the overall amplifier transconductance,

gm but without increasing the bias current. This merit is captured in the noise efficiency

factor (NEF) [17], defined by:

NEF = Vrms,in

√
2Itot

πUT · 4kT ·BW
(1.1)

where Vin,rms is the input-referred noise voltage of the amplifier, Itot is the total current

dissipated by the amplifier, UT is the thermal voltage, kT is the product of Boltzmann

constant and temperature, and BW is the amplifier’s bandwidth in Hz. NEF is used to

compare different amplifier topologies and represents the factor by which noise is greater

compared to an ideal single bipolar junction transistor (BJT) with the same total current

and bandwidth. As such, the theoretical limit is 1 for single-ended and 2 for a differential pair

of BJTs. The inverter-based amplifier [18] is the simplest structure employing current-reuse.

B. Johnson and A. Molnar [19] applied transistor stacking to share bias current among

the input differential pairs of four amplifiers. In this approach, the bias current for each

channel’s differential pair is generated by the output drain currents of the preceding channel’s

differential pair in an orthogonal fashion. Since this technique involves combining 2 · N

branches at the output for N-channel inputs, it creates an increased complexity and power

of the peripheral circuits in high channel-count systems, thus degrading NEF. Y. Chen et
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al. [20] applied multi-chopping to current-reusing technique to further improve NEF but the

number of chopper switches represents a trade-off between signal bandwidth and Gaussian

noise. F. Yaul and A. Chandrakasan [21] proposed the “squeezed-inverter” structure in

which the N-type and P-type transistors have separate bias voltages, allowing the supply

voltage to be reduced. As a result, this amplifier structure can achieve an improved power

efficiency factor (PEF) defined as NEF 2 · VDD where VDD represents the supply voltage.

Most recently, L. Shen et al. [22] have reported one of the best NEF to date by utilizing

multiple inverter stacking approaches.

An important design consideration in bi-directional BMI systems is the presence of stimu-

lation artifact which could saturate the amplifiers. H. Chandrakumar and D. Markovic [23]

used an auxiliary amplifier at the input to cancel the large-signal common-mode artifact.

They also utilized the auxiliary-path technique to boost the input impedance as opposed

to the positive feedback loop technique [24] which suffers from stability issues. It is worth

noting that the differential- and common-mode artifacts can also be suppressed by template

subtraction [25] at the cost of increased complexity.
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1.4 Dissertation Outline

This chapter provided the motivation and system overview of the proposed fully-implantable

BMI to restore walking in patients with spinal cord injury. A brief review of the fundamentals

in brain signals, biopotential electrodes and biosignal recording was presented, which serves

as a prelude to neural signal acquisition studied comprehensively in this work.

Chapter 2 introduces the dual-mode array architecture for HD-ECoG implantable BMIs,

providing a detailed description of the proposed approach and demonstrating a fabricated

prototype in 180nm CMOS process. The design, implementation and human testing of

a dual-mode 32-channel signal acquisition front-end chip, capable of acquiring and pre-

processing of ECoG signals, is further discussed in Chapter 2.

Chapter 3 presents an ultra-low power mixed-signal neural data acquisition system that en-

ables a novel low-power hybrid-domain neural decoding architecture for implantable BMIs

with high channel-count. A fully-integrated chip in 180nm CMOS technology is demon-

strated, providing a proof-of-concept for future use in implantable BMIs. The design, imple-

mentation and human testing of the fabricated prototype are further discussed in Chapter 3.

Chapter 4 studies the common-mode interference phenomenon frequently encountered in

multi-channel biosignal recording systems employing a shared-reference scheme. A detailed

analysis of the common-mode rejection is presented using an equivalent electrical circuit

model of the input interface consisting of an electrode array and differential bioamplifiers.

9



Chapter 2

Dual-Mode Array Architecture for

High-Density ECoG-Based BMIs

2.1 Introduction

Approximately 330,000 people are living with chronic spinal cord injury (SCI) in the US

alone, and currently there are no biomedical approaches capable of restoring motor function

after SCI. Recent advances in neurophysiology and nanoscale electronics have made it pos-

sible to realize fully implantable brain-machine interfaces (BMIs) for medical applications.

Large-scale miniaturized ECoG arrays are considered to be a promising signal platform for

fully implantable BMIs due to their signal stability, high signal-to-noise ratio (SNR) and

spatial resolution [26, 27]. However, these favorable attributes often come at the expense of

excessive power consumption. Therefore, energy efficient BMI architectures inspired by prior

studies of human motor control are of high interest to make such invasive BMIs a clinical

reality.

It is perceived that the primary motor cortex, M1, encodes high-level kinematic parameters

10
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Figure 2.1: Existing architectures for multi-channel feature extraction in brain-machine in-
terfaces based on (a) analog and (b) digital signal processing.

for upper and lower extremity movements (i.e., duration and speed), and interacts with

subcortical/spinal networks that execute low-level motor control (i.e., muscle activation or

movement trajectories) [1, 28, 29, 30, 31]. High spatiotemporal resolution ECoG recordings

from M1 contain rich movement information related to upper and lower extremities in γ-

band [8, 9, 10, 11]. In particular, high-γ (80-160 Hz) band exhibits consistent changes in

power levels during movement and idle states [1], and thus these patterns can be utilized as

the central neural features to enable practical BMIs for prosthetic control in SCI patients.

Shown in Figs. 2.1(a)-(b) are general block diagrams of the analog- and digital-based multi-

channel architectures, each comprised of an N -channel front-end, a multiplexer, and a mixed-

signal and digital back-end.

The analog-based architecture utilizes analog signal processing (ASP) to form an M -element

neural-feature vector based on spectral decomposition [14, 32, 33]. Although this approach

reduces the signal bandwidth and lowers the sampling rate (fs) of the mixed-signal and dig-

ital back-ends, it has several limitations at the circuit- and architecture-level. For example,

an analog neural spectral-processing integrated circuit is implemented in [14] for M=4 that

amplifies and processes neuronal activity with variable bandwidth and power filtering char-

acteristics. The signal chain includes a power-hungry tunable heterodyning amplifier based

on a dual-nested chopper architecture, which suffers from a limited input impedance and

11



requires an anti-alias filter. An analog energy extractor for local field potential is introduced

in [32] for M=6, which allows for a compact design and low power consumption. However,

this approach offers limited degree of freedom to control the selectivity and sensitivity of

the transfer characteristics of the filters used as part of the energy extractor. [33] reports

a single-channel neural recording prototype, capable of extracting sub-banded energy across

four (M=4) different frequency bands. This architecture utilizes a power-hungry variable

gain amplifier to satisfy the dynamic range and settling requirements of discrete-time signal

conditioning and digitization. To avoid anti-aliasing in the sampled-data system, it allows

for limited tuning of each sub-band parameters which are controlled by the clock frequency.

Moreover, a complex switching matrix can be employed to share the bulky energy extractors

in multi-channel acquisition, which is not amenable to large-scale neural recording.

The digital-based multi-channel architecture implements the neural feature extraction en-

tirely in the digital back-end [15], as shown in Fig. 2.1(b). This approach requires higher

fs compared to the analog-based architecture due to a significantly larger bandwidth of raw

ECoG signal, resulting in higher dynamic power dissipation. Although power and clock gat-

ing techniques can be applied to reduce the power consumption, it is still advantageous to

avoid the data-processing power bottleneck by limiting the signal bandwidth before multi-

plexing/digitization.

Inspired by our work in [1], this chapter presents a scalable dual-mode array architecture

which exploits ultra-low power (ULP) ASP to extract relevant neural features of ECoG sig-

nals to enable prosthetic control in implantable BMIs. The rest of this chapter is organized

as follows. Section 2.2 discusses the system-level specifications and implications of neural fea-

ture extraction. Section 2.3 presents the proposed dual-mode array architecture. Section 2.4

describes the circuit design and analysis. Section 2.5 presents experimental results including

electrical and human neurological measurements. Section 2.6 concludes this chapter.

12



2.2 System-Level Considerations and Implications

In this section, we discuss important challenges in state-of-the-art ECoG-based implantable

BMIs and investigate the system-level specifications and implications.

First, the input-referred integrated RMS noise from the front-end amplifier should fall below

the cortical background noise (∼5-10µV) to allow for high-fidelity signal acquisition [34].

Second, to reduce the power-line 50/60-Hz interference, the common-mode rejection ratio

(CMRR) of the amplifier is desired to be larger than 70dB [35]. Third, for multi-channel

acquisition with a common-reference electrode that has comparable impedance to channel

electrode’s, the input impedance must be large enough (>> 1MΩ) to avoid any signal at-

tenuation and CMRR degradation. Finally, to satisfy the thermal dissipation requirement

in the vicinity of the brain, it is crucial to reduce the overall power consumption of the

multi-channel neural recording to keep the temperature increase below 1◦C.

An effective approach to extend the longevity in battery-powered implantable BMIs is to

exploit the unique characteristics of ECoG signal. It has been observed that power spec-

tral density of ECoG signals attenuates with frequency [36], and therefore, it spans a wide

dynamic range (∼48 dB across 2-200 Hz). While spectral equalization helps reduce the dy-

namic range, relax the resolution requirement and achieve power-saving in the front-end and

mixed-signal blocks, there is still a major bottleneck due to the mandated compute-intensive

and power-hungry statistical data processing in the digital back-end. [1] studied the impor-

tant signal characteristics of raw ECoG and power envelopes during walk and idle states.

Fig. 2.2 shows raw ECoG, γ-band, and its power envelopes (Pγ). As can be seen, changes

in Pγ exhibit distinguishable amplitude-modulated voltage variations between walk and idle

states which occur in time scale of seconds, implying that both sampling rate and resolution

requirements can be significantly relaxed for such signals compared to raw ECoG. These

attributes suggest that extracting neural features early in the signal chain using a distinct
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Figure 2.2: Example of the experimental setup and signal processing steps used for recording
of motor cortical activity with ECoG grid during a causal walking task. Data from knee
gyroscope, ECoG data in its raw, γ-band filtered and power envelopes (Pγ) are shown. A
close-up of Pγ and knee gyro signals is illustrated for comparison during individual gait
cycles [1].

signal pathway is highly beneficial to minimize the system power dissipation, leading to an

energy-efficient neural recording architecture.

2.3 Proposed Dual-Mode Array Architecture

Given that power envelopes of γ-band can be used to decode movement intentions [1], it is

sensible to use a single envelope detector in the analog domain to produce low-bandwidth

features for clustering and classification in the digital back-end. However, based on prior

work [8, 9, 10, 11], a specific frequency range within γ-band needs to be identified by human

training and data collection/processing of raw ECoG for decoding. Therefore, the front-end

14



circuitry should be capable of acquiring raw ECoG signal and extracting the power envelopes

within this identified frequency range. This notion calls for a dual-mode approach to neural

recording with two distinct regimes of operation: (1) full-band (FB) mode for raw ECoG

signal acquisition with moderate-resolution (8-10 bits) and high sampling rate fs,FB (>13

kS/s), and (2) base-band (BB) mode for power envelope extraction with low-resolution (3-4

bits) and significantly reduced sampling rate fs,BB (>260 S/s). Initially, brain activity across

the full-spectrum is momentarily observed during the FB mode operation to compute the

feature weights in the digital back-end. Subsequently, these weights are fed back to the front-

end and the system reverts to BB mode to perform feature extraction. While an implantable

high-density ECoG-based BMI needs the FB data for training, calibration and validation

purposes, it will primarily operate in BB mode for prosthetic control which accounts for

majority of the time.

Fig. 2.3(a) shows the proposed dual-mode array architecture. The 32-channel signal ac-

quisition system consists of a 32-element dual-mode front-end (DMFE) array, FB/BB time-

multiplexers (MUXs), a programmable-gain instrumentation amplifier (InAMP), and FB/BB

output buffers (Buffs), a serial peripheral interface (SPI) and a digital circuitry (DIG). The

system communicates with the back-end (i.e., DSP or host PC) via SPI, which provides

access to internal registers to update feature weights, and select operation mode (FB/BB)

or acquisition method (either channel-specific or multiplexed). The latter option is employed

to acquire signals from one specific channel or all channels during each operation mode.

To study the power-saving advantage of the proposed architecture in Fig. 2.3, a simple

power analysis is presented. Biased to operate in subthreshold region, each DMFE includes

a front-end amplifier (AMP) and neural pre-processing (NP 2) module with power consump-

tion of PU and PNP 2 , respectively. Following the FB MUX, m stages of post-multiplexing

amplification/buffering are employed with N -times higher bandwidth compared to the front-

end amplifier (N denotes the number of channels). Assuming unity-gain bandwidth product
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varies linearly with bias current in weak-inversion, each post-multiplexing gain stage ap-

proximately consumes N · PU (to the first-order). Assuming a bandwidth reduction factor

of η for the BB operation mode compared to the FB counterpart, the power consumption

of the BB output buffer is approximately N · (ηPU). Specifically, neural signals in FB mode

and extracted features in BB mode occupy a bandwidth of ∼200 Hz and ∼4 Hz per chan-

nel, respectively, resulting in η ≈ 0.02. Moreover, the total dynamic power dissipation of

MUX, ADC and DSP is represented by PD for FB mode and ηPD for BB mode. While

FB operation requires multiplexing, post-multiplexing amplification/buffering, digitization
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and post-processing with an excessive bandwidth and power consumption, BB operation

achieves significant power-saving in the respective blocks with minimum power overhead,

PNP 2 , in DMFE. To deduce the power-saving advantage, the ratio of system powers Psys,FB

and Psys,BB in FB and BB modes is calculated, as follows:

Psys,FB
Psys,BB

≈ N · PU(1 +m) + PD
N · [PU(1 + η) + PNP 2 ] + η · PD

(2.1)

Given fs,BB = ηfs,FB, BB MUX consumes proportionally less dynamic power compared to

FB MUX. Furthermore, the power consumption of BB ADC is reduced compared to that of

FB ADC due to decreased sampling rate and resolution [37]. It is expected that at low-SNR

(<5-bit resolution), component matching and/or minimum realizable capacitance will impose

a limit on power dissipation. However, low-bandwidth processing still continues to improve

the overall system power consumption. This notion proves to be important for DSP in BB

mode as dynamic powers associated with processing (∝ fks,BB where k denotes the algorithm

complexity) and memory accesses (∝ fs,BB) are reduced significantly [38]. For a quantitative

comparison, ULP ADCs and DSP from literature are used to evaluate Eq. (2.1) for N=32

and m=2. Reported ULP ADCs consume as small as 2.7nW for 1kS/s with 6-bit resolution

(BB ADC) and 97nW for 40kS/s with 10-bit resolution (FB ADC) [39]. On the other hand,

commercially available DSPs (e.g., C5517 by Texas Instruments) consume milliwatt-level

power. Since the desired input-referred noise typically requires PU to be greater than a

few µW and PNP 2 introduces a small overhead, the second terms in the numerator and

denominator of (2.1) will dominate Psys,FB and Psys,BB, and the power-saving advantage will

thus be significant (∼ 1
η

= 50). It is noteworthy that an activity-based mechanism realized in

the digital back-end will allow for further power-cycling of BB mode during extended idling

periods (i.e., night-time sleep).
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To allow differential recording of neural signals with respect to a common-reference electrode

from ECoG grid, each AMP employs a fully-differential topology. Considering that the dif-

ferential input impedance of AMP is approximately equal to 295MΩ at 60Hz (Cin=18pF)

and assuming 1kΩ electrode impedance with N=32, the input interface CMRR of a common-

reference scheme with similar recording and reference electrode impedance reaches 79.5dB.

However, the overall CMRR is still limited by AMP to 76.5dB as reported in Section 2.5.1.

Two switchable pathways are incorporated for dual-mode operation. In FB mode, the ampli-

fied signals are multiplexed using FB MUX with fast reset switches to mitigate the channel

ghosting and eliminate large artifact residues (Section 2.4.2). The multiplexed output is fur-

ther amplified, digitized by FB ADC (off-chip in this work), and processed by the external

digital back-end. In BB mode, NP 2 module performs feature extraction on amplified neural

signals based on the appropriate feature weights computed in the back-end (cf. Fig. 2.3(a)

and (b)). Extracted power envelopes are then multiplexed and digitized by off-chip BB

ADC prior to digital processing. Shaded in Fig. 2.3(b), NP 2 module carries out two main

operations: band-pass filtering (BPF) and envelope detection using power extraction and

averaging. A double-tuned fourth-order biquad realizes the BPF to capture high-γ-band

modulations. The center frequency fc and bandwidth fB (hence, the quality factor Q) of the

BPF are adjusted via AF , AL and AG parameters to achieve better selectivity, reduced pass-

band ripple and high out-of-band attenuation (Section 2.4.1). A multiplier-based square-law

circuit performs analog multiplication to obtain signal power and its conversion gain, Gc,

is optimized with respect to the input level to minimize signal-dependent noise folding and

voltage offsets (Section 2.4.3). Lastly, a low-pass filter (LPF) with a corner frequency of fm

extracts power envelopes that modulate high-γ-band signals. To match the characteristic

time scale of ECoG signals during movements, fm is adjusted via Gm,LPF .
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2.4 Circuit Design and Analysis

2.4.1 Dual-Mode Front-End Design

Fig. 2.3(b) shows the block diagram of the proposed DMFE. Based on our earlier work in [35],

AMP is realized by an operational transconductance amplifier (OTA) within a capacitive

feedback loop, which uses a differential stage with regenerative load to boost the open-loop

gain. The mid-band gain is set to 40 dB and the frequency response exhibits a high-pass

corner of ∼2 Hz and a low-pass corner of ∼200 Hz. All active and passive components

within AMP are adequately sized to minimize mismatch and process variations to attain

high CMRR. To improve the common-mode output resistance of tail current source in AMP

(see Amplifier II in [35]), and hence the CMRR, supply voltage in this design is increased to

0.8V to allow a higher drain-source voltage for a given bias current.

Figs. 2.4(a)-(b) depicts detailed realization of NP 2 module. The fourth-order Butterworth

BPF is realized by cascading two biquad Gm-C filters and an interstage LPF buffer with

high corner frequency to avoid loading effect of the second biquad. The filter characteristics

of each biquad section with center frequency, f0,k, bandwidth, BWk, and mid-band gain,

Hmid,k for k = 1, 2, are derived as follows:

f0,k =
1√

AG,kAL,k(AF,k + 1 +
AF,k

AL,k
)

GmF,k

2πCF
(2.2)

BWk =
AL,k + AG,k

AG,kAL,k(AF,k + 1 +
AF,k

AL,k
)

GmF,k

2πCF
(2.3)

Hmid,k ≈
AF,k

1 +
AL,k

AG,k

(2.4)

where AF,k = Ck/CF , AL,k = 2CL,k/CF and AG,k = GmF,k/GmB,k for k = 1, 2. While 80-160

Hz is designated in this work to be the maximum frequency range of interest, the desired
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neural features may reside within a narrower range of this band. Each BPF is designed to

allow for the required flexibility in frequency-range selection by tuning these parameters,

which are represented by the ratios of the same physical quantity. Therefore, they are less

prone to process/mismatch variation; an essential feature required in large-scale systems.

On the other hand, GmF,k/CF in (2.2) and (2.3) is more susceptible to the process variation,

which is calibrated in an open loop fashion by varying GmF,k through a tunable bias current

(7-bit current bank), IB,k for k = 1, 2, as shown in Fig. 2.4(c). While this digital calibration

incurs an area overhead that could be further addressed by sharing the same bias current

locally among a cluster of channels in favor of reduced die area, it alleviates the testing time

and complexity associated with off-chip current trimming in large-scale systems.

To control AG,k, the bias current of GmB,k cell is obtained from a current divider that takes

a reference current of IB,k and produces αkIB,k, where αk denotes the division factor for

k = 1, 2. Bias tuning of GmB,k is achieved by converting a 4-bit binary code to a 16-bit

thermometer code which is applied to current divider. Shaded in Fig. 2.4(c), a digitally

controlled current division circuitry is implemented using parallel PMOS switches, M1a−1p,

a diode-connected transistor, M2a, and a current mirror, M2b,c. Each switch acts as a small

parallel resistor when it is ON and as an open-circuit with minimal leakage current when it

is OFF. All PMOS switches have an equal output resistance except for M1a whose drain-

source voltage may differ slightly from M1b−1p. Fig. 2.5 shows the ideal and realized transfer

characteristics of current divider. αk is swept across every digital code from 0000 to 1111,

which scales IB,k (∼680pA) by α varying from 1 to 1/16. For a maximum division factor

of 1/16, the output current exhibits less than 6% error at ∼42.5pA. To accommodate wide

tunability of AF,k and AL,k, each Ck and CL,k is realized by a 4-bit binary-weighted capacitor

bank for k = 1, 2. Since independent tuning of f0,k and BWk is not viable, a look-up table

is generated off-line based on (2.2)-(2.4) for all possible combinations of AF,k, AL,k and AG,k

which spans the entire solution space. Thereafter, a subset of the solution space which

satisfies the desired specifications for f0,k, BWk, and Hmid,k for k = 1, 2 is found using brute-
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Figure 2.5: Linearity of current divider (ideal versus realized).

force search. Controlled by the digital back-end, this look-up table approach allows for a

robust mechanism to extract neural features by reconfiguring the parameters AF,k, AL,k,

AG,k, Gc, and Gm,LPF . It is worth mentioning that only one lookup table is used for all

channels since the same neural features are extracted from each one.

Shown in Fig. 2.4(b), the envelope detector consists of a four-quadrant multiplier (Gilbert

cell) and a source-degenerated OTA-C filter. Both multiplier and OTA-C filter use current

folding technique to limit transistor stacking and operate with low supply voltage. A 4-bit

binary-weighted current source is used to vary Ibias and adjust the conversion gain of the

multiplier. Transistors M9a,b mirror the current from a 4-bit binary-weighted current source

to allow tunability of transconductance, Gm,LPF , in OTA-C filter. To achieve a corner

frequency of a few Hz, source-degeneration and current splitting are applied to M7a−d to

greatly reduce Gm,LPF . The voltage waveforms at constituent stages of neural pre-processing

from a recorded ECoG signal are shown in Fig. 2.4(e). Fig. 2.6 shows the frequency response

of the double-tuned 4th-order biquad filter with a center frequency of 120 Hz and bandwidth

of 80 Hz and degnerated low-pass filter with a 3-dB corner frequency of 4 Hz.
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2.4.2 Post-Multiplexing and Interfacing Modules Design

Similar to [35], an external clock is provided to generate non-overlapping clocks (CLK1−32)

with 1/64 duty-cycle for FB/BB channel multiplexing with an additional option to select

individual channels. In FB mode, a digitally-programmable InAMP is used to accommo-

date 20–40 dB of additional post-multiplexing amplification with 3dB gain steps. Shown in

Fig. 2.7(a), the AC-coupling network with approximately 2-Hz highpass corner frequency

is employed between AMP and InAMP to filter out the voltage offset introduced by each

AMP during single-channel acquisition. For multi-channel acquisition, in order to avoid

large transients during channel-multiplexing, a reset/bootstrap mechanism is introduced to

the AC-coupling network in FB MUX. This is achieved by applying CLKFB to reset switches

during the non-overlapping intervals (TR), which ensures that the output voltage stays at

reference voltage Vref after each channel switching. To mitigate the long settling time of

AC-coupling network, an auxiliary pair of switches is used to bootstrap the voltages across

the AC-coupling capacitors to Vref . It is noteworthy that the AC-coupling network is ren-

dered ineffective in multi-channel acquisition due to the reset/bootstrap operation. Each
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Figure 2.7: Multiplexing operation: (a) full-band (b) base-band.

switch is realized by a T-network of transmission gates with dummy devices to mitigate

charge-injection and clock-feedthrough effects. Fig. 2.7(b) indicates the multiplexing oper-

ation in BB mode. No additional gain is required after envelope detection. Nevertheless, a

unity-gain buffer is placed before BB MUX switch to buffer the high-impedance output node

of envelope detector (Vout,BB) from the shared multiplexed output node (VMUX,BB). FB/BB

output buffers are used to drive an external ADC in this implementation.
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2.4.3 Noise Analysis of Multiplier-Based Square-Law Circuit

In this section, noise interactions that happen in the multiplier-based envelope detector are

further studied. The Gilbert-cell multiplier of Fig. 2.4(b) is modeled as three transconduc-

tors, Gm1, Gm2 and Gm3 in Fig. 2.4(d). It is evident that small-signal multiplication is

achieved by applying a small AC signal (i+/i−) to each bias current of Gm2 and Gm3. The

filtered neural signal and noise contributions from the previous stages are represented by Vsig

and V 2
n , respectively. Due to the non-linear behavior of analog multiplier, signal and noise

at the input undergo multiplication that results in an increased noise power. Three major

sources of noise contribution are identified in a multiplier-based envelope detector [40]: (a)

signal-dependent noise due to mixing between signal and noise, (b) noise self-mixing due to

mixing of noise with itself, and (c) intrinsic circuit noise, which is the sum of all existing

device noise (e.g., thermal and flicker noise) powers in the envelope detector. Therefore, the

total current noise power at the output of envelope detector I2
n,out is expressed, as follows:

I2
n,out = I2

n,sig + I2
n,n + I2

n,ED (2.5)

where I2
n,sig, I

2
n,n, I2

n,ED represent the signal-dependent, self-mixing, envelope detector current

noise powers. As discussed, high-γ brain signals are observed to be amplitude modulated

(AM) during kinetic movements, which can be thought of as a carrier signal with an un-

derlying modulating function. This AM signal is assumed to be a sinusoidal carrier fc at

the center of high-γ-band whose average power, A2
c/2, is equivalent to the total signal power

within the band modulated by a normalized baseband function, m(t), whose modulation

frequency and index are defined by fm and am, respectively. Hence, the signal at the input

of multiplier is readily expressed, as follows:

Vsig,AM = Ac[1 + amm(t)] cos(2πfct) (2.6)
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It is observed that power spectral density of brain signals follows a ( 1
f
)
p

characteristic where

p = 2 ∼ 4 [36]. Thus, the total signal power (A
f

)p across the high-γ bandwidth fB is

calculated by integration, as follows:

V 2
sig,γ =

∫ fc+0.5fB

fc−0.5fB

(
A

f
)
p

df =
Ap

(−p+ 1)
f (−p+1)

∣∣∣fc+0.5fB

fc−0.5fB
(2.7)

The average noise power from the front-end circuitry preceding the multiplier, V 2
n , is obtained

by integrating the overall power spectral density of all noise sources (i.e., thermal and flicker

noise) over fB. As such, the equivalent white power spectral density, V 2
n /fB, is readily used

to calculate the output noise of the envelope detector across the LPF bandwidth of fm.

Assuming m(t) has zero average value, I2
n,sig and I2

n,n are thus derived, as follows:

I2
n,sig = 6G2

cV
2
sig,γ[1 + a2

mm
2(t)]

fm
fB
V 2
n (2.8)

I2
n,n = 3G2

c

fm
fB

(V 2
n )2 (2.9)

where Gc

(
= Ibias/(2nVth)

2, where n represents sub-threshold slope
)

is conversion gain of

the multiplier.

The envelope detector average current noise power, I2
n,ED, is found by summing the thermal

and flicker noise contributions of transistors (M1−6), shown in Fig. 2.4(b), and integrating

its noise power spectral density over the bandwidth fm:

I2
n,ED = 8kTγ(gm1 + 2gm2 + 2gm3 + gm6)fm

+
2Kp

Cox(WL)1

[
g2
m1 +

Kn(WL)1

Kp(WL)2

(2gm2)2 +
Kn(WL)1

Kp(WL)3

(2gm3)2 +
(WL)1

(WL)6

(gm6)2

]∫ fm

0.1fm

(
df

f
)

(2.10)

where Kp and Kn denote the process-dependent flicker noise constants for PMOS and NMOS
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devices, respectively. Cox represents the gate-oxide capacitance per unit area. Shown in

Fig. 2.8, noise power of each contributing source at the output of multiplier is plotted for

an AM input signal, similar to (2.6), with the following parameters: Ac=50 µV, fc=120

Hz, fm=4 Hz and am=0.5. As expected, signal-dependent noise contribution is much more

significant compared to the intrinsic transistor noise of envelope detector and varies with the

input signal amplitude.

To arrive at the output SNR, one needs to find the average power of the output signal

(I2
sig2,out) which can be found by integration, assuming m(t) has zero average value:

I2
sig2,out = lim

T→∞

1

2T

∫ T

−T
(GcV

2
sig,AM)

2
dt

=
3

2
G2
c(V

2
sig,γ)

2
[1 + 6a2

mm
2(t) + a4

mm
4(t)]

(2.11)

Omitting small noise contribution of envelope detector for simplicity and assuming 50%

duty-cycled square wave for m(t), output SNR (SNRout) is found as a non-linear function
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of input SNR (SNRin) :

SNRout =
I2
sig2,out

I2
n,out

= SNRin
(1 + a2

m)
2

+ 4a2
m

4(1 + a2
m) + 2

SNRin

fB
fm

(2.12)

SNRin in (2.12) is a function of high-γ bandwidth and is derived from (2.7), i.e.,

SNRin =
Ap

V 2
n

(Q− 1/2)−(p−1) − (Q+ 1/2)−(p−1)

(p− 1)fp−1
B

(2.13)

As defined before, Q denotes the BPF quality factor. It is evident from (2.13) that lowering

Q by reducing fc (i.e., constant bandwidth) to contain only the neural features of interest

provides the highest SNRin. As predicted in [36], SNRin is expected to degrade with the

sharper roll-off (i.e., higher p value), particularly above 80 Hz. However, the premise of high-

γ AM modulations implies that with higher am, which may further improve over time with

co-adaptation of an implanted BMI, it is advantageous to perform low-noise analog power

envelope extraction to achieve higher SNR as derived in (2.12), while attaining significant

power-saving at the system-level. Two special cases of (2.12) are considered: (a) low and

(b) high input SNR. For (a), it can be seen that the output SNR becomes proportional to

SNR2
in. However, for (b), it is understood that with increasing the signal amplitude, the

signal-dependent noise term also increases and therefore, the output SNR is proportional to

SNRin.

2.4.4 Transient Analysis of Post-Multiplexing Modules

Since FB MUX operates at significantly higher frequency compared to BB MUX, subsequent

amplification stages in FB mode must satisfy more stringent settling time and bandwidth

requirements. Given nFB-bit resolution for FB ADC, the amplified output voltage is required

to reach its full-scale level within 0.69(nFB + ε)τFB for the conventionally adopted error
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margin of 1/2ε LSB (2 ≤ ε ≤ 4). τFB is defined as the time constant of an equivalent RC

circuit modeling the output load of the post-multiplexing amplification stage in FB mode.

Similarly, for nBB-bit resolution of BB ADC, the amplified output voltage is required to

settle within 0.69(nBB + ε)τBB, where τBB is the equivalent time constant in BB mode. The

output voltage settling required in each mode of operation should be succeeded within one

sampling period, i.e., 0.69(nFB + ε)τFB ≤ 0.5
fs,FB

and 0.69(nBB + ε)τBB ≤ 0.5
fs,BB

. Hence, the

ratio of the minimum required bandwidths for FB/BB post-multiplexing stages is expressed

as follows:

(
τBB
τFB

)
min

=
(nFB + ε)fs,FB
(nBB + ε)fs,BB

≈ nFB
nBB

1

η
(2.14)

(2.14) signifies that the minimum required bandwidth for post-multiplexing stages is approx-

imately two orders of magnitude higher in FB compared to BB mode for ε = 2 and η = 0.02,

given the different settling requirements. This is to be expected, as time-multiplexed FB

operation requires significantly higher sampling rate and resolution than BB operation.

2.5 Experimental Results

In this section, electrical and biomedical measurements are presented. Electrical characteri-

zation was done prior to any biomedical testing to ensure proper functionality and reliable

recording of the system. In vivo human tests involved EEG and ECoG measurements.

DMFE array recorded reliably in all testings and showed on-par performance with commer-

cial systems while consuming significantly less power.
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2.5.1 Electrical Measurements

The prototype is fabricated in 180nm CMOS process. Fig. 2.9 shows the chip micrograph

along with the custom-designed printed circuit board (PCB). An L-shaped geometry was

employed to accommodate DMFE array, placing each channel in the proximity of the pad

ring. The pads are located around the perimeter and incorporates a 2kV HBM ESD protec-

tion circuitry with a few pA of leakage current. Following a modular design, two 16-channel

DMFE arrays were constructed perpendicular to each other with shared building blocks,
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including InAMP, output buffers, digital circuitry and SPI placed at the intersection. This

approach is pursued to allow seamless integration of more channels with less routing over-

head and inclusion of other common blocks such as low-dropout (LDO) regulators, ADCs

and reference buffers in the finalized design. Global bias is provided externally and local

bias is generated internally within each module and is tuned via current banks. The custom-

designed PCB includes bias, SPI level shifters (LS), LDO regulators for chip supply, and

pre-amplifier (TI-INA826, not shown in Fig. 2.3(a)) before external ADC to meet the dy-

namic range requirements. The chip operates at 0.8V supply voltage and consumes 59.4 µW

in FB and 34.6 µW in BB mode (excluding bias). Each DMFE consumes 1.05 µW power

and 0.245 mm2 area, allocating 0.205 µW power and 0.145 mm2 area for feature extraction

only.

To characterize the overall amplification and input-referred noise in FB mode, an Agilent

33250A waveform generator with external attenuators and an Agilent E4448A spectrum

analyzer were used. The nominal gain setting of InAmp provides an additional 20dB of

gain, with 3dB steps up to ∼40 dB. Shown in Fig. 2.10, the total measured gain in different
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settings and input-referred noise are compared with simulation results. For an InAmp gain

setting of 23 dB, an overall gain of 63 dB and an RMS input-referred noise of 1.49 µV

were achieved across a 2-200-Hz bandwidth. While the lower corner frequency realized by

pseudo-resistor is expected to vary across the process corner, it is simulated and measured

to be below 2 Hz, which helps acquire low-frequency activity of the brain in θ-band (4-8 Hz).

For an input common-mode signal of 100mVpp, the measured CMRR and PSRR are better

than 76.5 dB and 79 dB, respectively. The calculated dynamic range of AMP for ∼1% total

harmonic distortion is 60.2 dB. Table 2.1 provides a performance summary of the DMFE and

comparison with similar prior works. Based on a dual-mode ASP architecture, the DMFE

consumes 1.05 µW of power and occupies 0.245 mm2 of die area per channel while achieving

an NEF of 4.09 and a PEF of 10.04. The DMFE achieves the lowest feature-extraction power

dissipation with superior NEF and PEF compared to prior works. The power consumption

of each block in the front-end is summarized in Table 2.2. The power dissipation of AMP

is represented by PU in (2.1), while InAMP and FB buffer constitute the post-amplification

stages. The power dissipated by biquads, interstage buffers, multiplier, degenerated LPF and

buffer sum up to represent PNP 2 . Lastly, BB buffer is used to approximate ηPU in (2.1). As

indicated, AMP takes a significant portion of the total power consumption in both BB and

FB mode given that the first-stage amplification requires more power dissipation to minimize

the input-referred noise. In NP 2 module, the multiplier introduces voltage offset that can

be minimized by increasing the bias current, and hence raising the power consumption.

Nevertheless, the BB-mode, compared to FB-mode operation, still achieves approximately

2 times lower power dissipation in the front-end with the premise that the mixed-signal

and digital back-end would require significantly less power, achieving 50× power-saving as

discussed in Section 2.3.
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Table 2.2: Front-End Power Consumption Breakdown

Block BB FB
AMP 798 nW 798 nW

Biquads 2.4 nW -
Int. Buffer 4 nW -
Multiplier 160 nW -

Degen. LPF 9.36 nW -
Buffer 80 nW -

InAMP∗ - 920 nW
FB Buffer∗ - 137 nW
BB Buffer∗ 25 nW -

Total 1.08 µW 1.86 µW

∗Power consumption of shared blocks is divided by channel count

2.5.2 Human Neurological Measurements

The experiments carried out in this study were approved by the Institutional Review Boards

of the University of California, Irvine and the Rancho Los Amigos National Rehabilitation

Center, and are considered non-significant risk. Two human subjects (A and B) provided

informed consent to participate in EEG and ECoG recordings, respectively. Single-channel

and multi-channel acquisition in FB were done for EEG, in conjunction with commercial sys-

tems to validate the performance on Subject A. Similarly, single-channel and multi-channel

ECoG recording in FB and BB were done at the bedside with Subject B, who was under-

going epilepsy treatment. A summary of correlation coefficients from all recordings in each

frequency sub-band is presented in Table 2.3. For brevity, methods and results from in vivo

ECoG recordings are described in the following sections.

Methods: One male patient undergoing ECoG implantation for epilepsy surgery evaluation

was recruited (Subject B). The subject had a 4×8 mini-grid (Integra LifeSciences, Plainsboro

NJ). Fig. 2.11 shows the location of implanted electrodes (derived by co-registering CT and

MR brain images). The ECoG grid placed over the left hemispheric (LH) motor arm area

was used to record brain activity during sleep (baseline) and a flexion task in FB and BB

modes, respectively. Fig. 2.12 shows the hospital setup for in vivo ECoG recording. 32

34



T
ab

le
2.

3:
S
u
b
-B

an
d

C
or

re
la

ti
on

C
o
effi

ci
en

ts

S
ig

n
al

/M
o
d

e/
A

cq
.

M
et

h
o
d

θ
(4

-8
H

z)
α

(9
-1

2
H

z)
β

(1
3-

30
H

z)
lo

w
-γ

(3
0-

70
H

z)
h

ig
h

-γ
(8

0-
16

0
H

z)
γ

(8
0-

10
0

H
z)

R
aw

E
E

G
/F

B
/S

in
gl

e
0.

98
2

0.
98

9
0.

98
4

0.
95

2
-

0.
90

7
0.

94
6

E
E

G
/F

B
/M

u
lt

ip
le

x
ed

0.
89

9
0.

91
4

0.
72

9
0.

68
6

-
0.

40
7

0.
87

1
E

C
oG

/F
B

/S
in

gl
e

0.
99

8
0.

98
9

0.
96

1
0.

94
8

-
0.

88
9

0.
92

4
E

C
oG

/F
B

/M
u

lt
ip

le
x
ed

0.
99

2
0.

98
7

0.
97

9
0.

84
2

0.
58

4
-

0.
96

4
E

C
oG

/B
B

/S
in

gl
e

-
-

-
-

-
-

0.
76

9
E

C
oG

/B
B

/M
u

lt
ip

le
x
ed

-
-

-
-

-
-

0.
60

-0
.8

4

35



Figure 2.11: MR-CT fused image from Subject B, showing implanted ECoG grid over arm
motor area of the brain.

electrodes from LH grid were used to record ECoG signals by custom (chip) and commercial

(Biopac EEG100C, NeXus-32) systems, simultaneously. The chip was battery-powered and

Biopac MP150 data acquisition was used to digitize the analog output. Arduino provided

the clock (CLK) and reset (RST) signals for the chip. A host PC was responsible for

chip configuration, synchronization between custom and commercial system outputs, de-

multiplexing and post-processing of ECoG recordings. For FB single-channel and multi-

channel recording, EEG100C and NeXus-32 were used in parallel with the chip to capture

baseline activity, respectively. The subject was asleep during these experiments. For both BB

single-channel and multi-channel recording, NeXus-32 was used in parallel with the chip. The

subject was verbally instructed to perform elbow flexion for two 15-second periods with an

idling period of 15 (single-channel) and 10 (multi-channel) seconds in between. Since NeXus-

32 did not natively extract envelopes, chip-equivalent processing (i.e., band-pass filtering,

power extraction and low-pass filtering) were applied in order to draw a comparison between

the two acquisition systems. As depicted in Fig. 2.11, a subset of LH electrodes, which
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Figure 2.12: Hospital setup.

was determined by clinical cortical mapping procedures to correspond to forearm/elbow

flexion, was used to collect brain activity for analysis during sleep (baseline) and an elbow

flexion task. Given separate reference electrodes for custom chip and NeXus-32, the split

reference was compensated for by common-mode averaging in post-processing [46]. The

Pearson correlation was calculated between the outputs of custom and commercial systems

for comparison. Additionally, correlations were calculated for physiological sub-bands to

further ascertain the accuracy of the chip in comparison with the commercial system.

Results: FB single-channel and multi-channel recordings from custom and commercial sys-

tems are shown in Fig. 2.13(a)-(b). For BB single-channel, the extracted envelope is shown

in Fig. 2.14, along with a spectrogram of raw ECoG from NeXus-32 which exhibits power

increase across high-γ-band during movement. For BB multi-channel recording, a few ex-

tracted envelopes are shown in Fig. 2.15. Unlike the FB-mode data, which can be seamlessly

compared between the commercial and custom systems, the comparison of the BB-mode data

requires extensive signal processing, as discussed earlier. Considering that the analog imple-

mentation introduces a number of noise sources (Section 2.4.3), the digital chip-equivalent

operators suffer mainly from insignificant quantization and rounding errors, giving rise to

lower correlations reported for the BB-mode data as compared to the FB counterpart.
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2.6 Conclusion

A dual-mode array architecture for high-density ECoG implantable BMIs was presented. The

180nm CMOS chip includes a 32-channel signal acquisition front-end capable of acquiring

and pre-processing of ECoG signals. Each channel employs a DMFE which consumes 1.05µW

and 0.245 mm2 area, allocating 0.205µW and 0.145 mm2 area for feature extraction only.

In vivo ECoG recordings have demonstrated the feasibility of extracting power envelopes

during movements using our ULP dual-mode prototype. Compared to commercial systems,

our chip is capable of acquiring power envelopes with significantly less power consumption.
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Chapter 3

Mixed-Signal Neural Data Acquisition

System for Implantable BMIs

3.1 Introduction

Restoration of neurological functions impaired by spinal cord injury necessitates implantable

brain-machine interfaces (BMIs), capable of neural signal acquisition, processing, and wire-

less connectivity to external base-station and end-effectors. While electrocorticography

(ECoG)-based BMIs provide superior signal stability, electrode longevity and spatial res-

olution/area coverage for accurate decoding of neural activity, the overall power dissipation

needs to be minimized to allow prolonged battery life which is a critical aspect of biomedical

implants. Existing neural decoding architecture for implantable BMIs is primarily based

on conventional power-hungry brain signal acquisition and processing approaches, which

are ill-suited for high channel-count systems [47]. Shown in Fig. 3.1, a standalone data

acquisition (DAQ) captures neural signals of varying amplitudes across a wide range of fre-

quencies (near DC up to 1 kHz) and provides digitized samples to a back-end processor for
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decoding purposes. However, the relevant physiological neural information, such as move-

ment intentions, is typically encoded within a fraction of frequency range (e.g., high-γ band)

whose content requires significantly less dynamic range and bandwidth compared to the

raw neural signal. As such, conventional DAQ is bound to operate with an excess dynamic

range and bandwidth that result in an unduly high data throughput, placing a significant

power and computing burden on digital signal processor (DSP). Recent works do not address

this prominent data-processing power bottleneck for massive channel-count systems, includ-

ing several neural recording architectures based on capacitively-coupled InAmp+ADC [48],

DC-coupled digitally-assisted amplifier [16] and direct conversion (time-based [49], delta-

sigma [50]) schemes.
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Inspired by our work in [51], the proposed mixed-signal neural DAQ (MSN-DAQ) enables

a novel low-power hybrid-domain neural decoding architecture for implantable BMIs by

adopting dual-mode acquisition that is intended for distinct use in training and decoding

procedures, with the latter accounting for the majority of operation time. In training mode,

raw neural signals are collected by MSN-DAQ during a set of clinical trials and transmitted to

an external base-station where decoder training takes place offline [52, 53]. While training

helps improve decoding accuracy and provides a means of calibration and validation, it

primarily involves data collection with increased bit-resolution and sampling rate, further

justifying the dual-mode acquisition. Once the decoder’s performance is optimized, identified

features and their corresponding weights are computed in a lookup table to be transferred to

DSP and subsequently applied to the channel-specific programmable weights on MSN-DAQ,

marking the transition to decoding mode. Similar to [51], feature extraction is performed

in analog domain using the stored weights, which facilitates the digitization with minimum

required bit-resolution and sampling rate. Hence, the DSP power dissipation is significantly

relaxed. Furthermore, no computationally-expensive algorithm needs to be executed on DSP

for decoding in this proposed framework, and therefore, the back-end’s complexity overhead

remains relatively low with increasing number of channels, a highly desired attribute for

real-time operation in implantable BMIs with multiple functionalities.

The rest of this chapter is organized as follows: Section 3.2 describes the proposed MSN-

DAQ system and its circuit implementation. Experimental results including electrical and in

vivo measurements are presented in Section 3.3, followed by concluding remarks in Section

3.4.
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3.2 Proposed Mixed-Signal Neural DAQ

Fig. 3.2 shows the top-level system block diagram of MSN-DAQ. The main modules include

a 32-element dual-mode front-end array with register banks to store channel-specific pro-

grammable weights, mixed-signal back-end consisting dual-mode multiplexer (DM-MUX),

programmable gain amplifiers (PGAs), analog-to-digital converters (ADCs) with distinct bit-

resolution and bandwidth requirements for training and decoding modes, and a digital core.

Other on-chip blocks include serial peripheral interface (SPI), bias circuitry for global current

generation, digitally-controlled ultra-low-level current banks and analog/digital input-output

(I/O) modules.

3.2.1 Dual-Mode Front-End and Analog Interface Circuits

The dual-mode front-end includes a newly-added low-noise, folded-cascode chopper-stabilized

amplifier array. Shown in Fig. 3.3 is the closed-loop amplifier incorporating two auxiliary

loops across the output and folding nodes: (a) DC servo loop to further attenuate low-

frequency signals and minimize the output offset, and (b) ripple reduction loop to minimize

chopping ripples introduced by up-modulated voltage offset of the input stage, Gm,1. Given

that the chopping mechanism eliminates the mismatch effect of transistors, high common-

mode rejection ratio (CMRR) can be achieved. To further improve CMRR, input capacitors

were adequately sized to reduce mismatch and the common-mode to common-mode atten-

uation was notably increased by using an input-injecting common-mode feedback (CMFB)

network, which remarkably improves the source impedance by an additional loop gain factor.

Depending on acquisition mode, raw neural signal or extracted neural features are time-

multiplexed and further amplified by the respective PGA. Since raw signals contain higher

dynamic range and bandwidth, the required settling time prior to digitization is significantly
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Figure 3.3: Schematic details of dual-mode front-end, incorporating DC-servo loop, ripple
reduction loop and common-mode feedback.

shortened. A higher unity gain-bandwidth product required in training mode is achieved

by increasing the transconductance, resulting in higher power consumption in this mode.

Conversely, neural features do not suffer from this problem, and thus, the PGA consumes

significantly less power in decoding mode.

3.2.2 Successive Approximation Register ADCs

To meet the stringent power requirements of neural data acquisition, successive approxima-

tion register (SAR) ADC is chosen. Shown in Fig. 3.4, the differential 12-bit SAR-ADC

includes a VCM -based binary-weighted capacitive digital-to-analog converter (DAC) array, a

multi-stage offset-canceling comparator and a compact modular non-redundant SAR logic

and control with minimum circuit overhead. The digitization begins with top-plate sampling

of the amplified differential input signal, followed by the energy-efficient bit-cycling that is
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accomplished by VCM -based switching scheme. To satisfy the required resolution, a combi-

nation of circuit and layout techniques have been utilized. Most notably, the comparator

employs three-stage pre-amplification with output offset cancellation (OOS) to minimize the

input-referred voltage offset and the kickback noise introduced by the regenerative latch.

Moreover, twisted differential signaling is applied between the DAC and the comparator

to suppress common-mode noise (Fig. 3.4). To implement the SAR algorithm, a compact

modular digital circuity based on non-redundant logic is used. Illustrated in Fig. 3.4, the

entire SAR logic consists of only 12 MUXed D-flipflops and 11 OR gates. Moreover, a unique

control circuitry (shaded in light blue) – consisting of only 1 D-flipflop, 1 inverter and 2 AND

gates for each bit – is implemented to accommodate the VCM -based switching procedure.

The working principle is as follows: Initially, each D-flipflop in the control circuitry is reset

by CKS/H during the sample and hold operation. Thus, all S3 switches are enabled in the

capacitive DAC, connecting the bottom plate of each capacitor to the common-mode voltage

(Vcm). Next, SAR logic produces a leftward-propagating pulse that is sequentially captured

by each stage in the shift register. Each in-between interval lasts for one clock period of

CKSAR and represents a comparison window. During each interval, one bit is resolved at a

time and the result is stored in the corresponding MUXed D-flipflop. Starting with the most

significant bit, the direction of binary search is determined by the stored value at the end of

each comparison window. Given the inherent sequential operation of SAR algorithm within

comparison windows, each control D-flipflop detects the transition instances and generate

the necessary control signals by a simple combinational circuit. Depending on the outcome,

the appropriate DAC switch (S1 or S2) is activated at the beginning of each comparison win-

dow immediately after S3 is turned off. The detection and control signal generation continue

until all bits have been resolved, and a new conversion takes place.
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Figure 3.4: Schematic details of SAR-ADC, highlighting the digital logic and control circuitry
for VCM -based capacitive DAC.

3.3 Experimental Results

3.3.1 Electrical Measurements

MSN-DAQ chip achieves a measured 42.5-dB minimum closed-loop gain, 1.03 µVrms input-

referred noise (2-200 Hz), 2.37 noise efficiency factor (NEF), 5.62 power efficiency factor

(PEF) at 1V supply voltage, and 88-dB average CMRR for a maximum 10mVpp interference

within 50-160 Hz range. Fig. 3.5(a) shows the measured frequency response of MSN-DAQ

across 3 neighboring channels and different gain modes for one channel. Based on measured

FFT of the 12-bit SAR-ADC output for 193.17-Hz tone (i.e., upper edge of the frequency

band) at maximum sampling rate of 15kHz, the ENOB, SFDR, and SNDR are 10.5, 65.2

dB, 64.78 dB, respectively, as depicted in Fig. 3.5(b).
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Figure 3.5: (a) MSN-DAQ measured frequency response and (b) ADC measured output
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3.3.2 Biomedical Testing and In vivo Measurements

To further validate MSN-DAQ operation within a clinical context, neural recordings were

carried out on an epileptic patient with implanted ECoG grids. The study was approved by

the Institutional Review Board of the Rancho Los Amigos National Rehabilitation Center

and the University of California, Irvine. Fig. 3.6 illustrates the experiment setup with con-

nections between the implanted ECoG girds and the recording systems, including hospital

clinical acquisition (i.e., Natus® QuantumTM) and MSN-DAQ placed in a shielding enclo-

sure. A similar setup was reproduced for the commercial Intan recording system (RHD2000),

substituting Intan for MSN-DAQ to allow comparison with the custom chip. The raw neural

data were acquired from 32 anteriorly placed electrodes over M1 (MG1-32) for ten 14-second

idle periods and ten 14-seconds move periods during a hip flexion task. Fig. 3.7(a) shows a

sample of acquired time-series data from three electrodes over the motor leg area that ex-

hibited behavioral modulation. Fig. 3.7(b) show the spectrogram demonstrating µ-β power

modulations for a pair of idle/move trials. After further statistical analysis of all the recorded

trials, the power for idle and move states within each frequency band were plotted for both

MSN-DAQ and Intan recording systems – as depicted in Fig. 3.8 – which exhibit similar
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Figure 3.6: Hospital experiment setup, including the custom chip (MSN-DAQ) and commer-
cial system (Intan).

distinguishable difference. Given that placement of ECoG grid was dictated by the pa-

tient’s clinical needs, the highly-localized gamma activity correlated to hip flexion appeared

to be less prominent, particularly for high-γ band which did not attain the expected dis-

tinguishable SNR range that have been previously observed in our prior works. Thus, the

extracted high-γ features in decoding mode did not contain meaningful information regard-

ing idle/move states. Nevertheless, to validate the operation in decoding mode, ECoG data

containing high-γ modulations from previous hospital experiments were fed to MSN-DAQ by

a high-resolution waveform generator. The extracted power envelope from an ECoG channel

exhibiting high-γ modulation in response to an upper extremity movement task is shown in

Fig. 3.9.
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Figure 3.7: (a) ECoG time-series sample data from motor grid (MG) electrodes and (b)
spectrogram of raw ECoG from MG6, acquired by MSN-DAQ.

3.4 Conclusion

A dual-mode mixed-signal neural data acquisition was presented. The 180nm CMOS chip

enables a novel low-power hybrid-domain neural decoding architecture for implantable brain-

machine interfaces that could achieve significant power-saving in high-channel count systems.

In addition to electrical measurements, the prototype has been validated in a hospital set-

ting with real-time human ECoG recording. A comparison with the most relevant prior

works in Table 3.1 shows that the proposed MSN-DAQ achieves excellent CMRR and noise

performance at lowest power consumption per channel.
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Table 3.1: MSN-DAQ Performance Comparison

JSSC’15 TBCAS’18 JSSC’19 TBCAS’20 This
[16] [54] [49] [55] Work

Tech. (nm) 65 180 180 65 180
Supply (V) 0.5 1.8 1.2 0.5, 2.5 1
Channel 64 16 4 64 32
Power/Ch.
(µW )

2.3 3.26 3.9 2.98 1.07

BW (Hz) 1-500 0.59-117 200 1-1k 2-200
IRN (µVrms) 1.23 2.02 1.3 1.66 1.03
NEF 3.7 3.36 4.9 2.21 2.37
PEF 6.9 20.32 28.81 - 5.62
CMRR (dB) 88 67.1 >75 76 88
ADC Res. 15 10 - 16 12
ENOB - 7.8 13.2 15.7 10.5

53



Chapter 4

Common-Mode Interference Analysis

in Biosignal Recording Systems

4.1 Introduction

The presence of common-mode interference (CMI) is highly undesirable in biomedical signal

acquisition and processing, as it necessitates an excessive dynamic range, higher linearity

and additional high-Q notch filtering, without which the system will completely fail to op-

erate. Historically, the 50/60-Hz power-line interference observed in biopotential recordings

(e.g., two/three electrode ECG monitoring) has been thoroughly studied in a number of

prior works [56, 57, 58], which provide detailed analysis and different mitigation techniques.

More recently, with the advent of miniaturized electrode arrays and nanoscale electronics,

implantable biomedical devices have introduced a new source of interference, namely the

stimulation artifacts in bi-directional brain-machine interfaces. Similar to the power-line

interference, electrical stimulation produces an in-band blocker with large common-mode

component (>100mV) that is orders of magnitude greater than the biosignal (10-100µV).
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Figure 4.1: (a) Conventional N -channel biosignal acquisition front-end with shared reference
(b) Simplified electrical model of the input interface [2].

While existing architectures rely on active shielding and bioamplifiers with high common-

mode rejection ratio (CMRR) to suppress CMI, there still remains a major bottleneck

within multi-channel recording systems that employ a shared-reference scheme. Shown in

Fig. 4.1(a), a typical N -channel biosignal acquisition front-end consists of an electrode array

and a set of differential bioamplifiers (BioAmps). Each BioAmp is connected to a biosignal

electrode, as indicated by Node A for every channel, and a shared reference electrode, Node

X. Since the latter node is attached to all N number of BioAmps, a systematic impedance

imbalance exists, which together with the electrode’s mismatch, give rise to unequal potential

divider effect [56]. This phenomenon converts CMI present at the tissue-electrode interface

to differential-mode interference (DMI), thereby limiting the maximum achievable CMRR

in the system.

A simplified electrical model of the input interface for an N -channel neural amplifier sys-

tem was presented in [2]. This model assumes an electrode impedance of Ze and an input

impedance of Zin for each BioAmp, as depicted in Fig. 4.1(b). Hence, the total CMRR
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(CMRRT) is expressed, as follows [2]:

1

CMRRT

=
1

ICMRR
+

2(Nε− 1)

2|Zin/Ze|+Nε+ 1
(4.1)

where ICMRR and ε represent the intrinsic CMRR of bioamplifier and the mismatch factor

for the shared reference electrode, respectively. The second term in Eq. (4.1) approximates

the CMRR degradation due to the unbalanced voltage division at the electrode-BioAmp

interface. However, in deriving (4.1), a number of limiting assumptions have been adopted,

which must be revised. For instance, 1) The input impedance of BioAmp is a combination

of differential and common-mode impedances, thus Zin needs to be revised in the foregoing

analysis to account for both contributions. 2) When speaking of CMI to DMI conversion, it

is important to note that the AC current flowing through the reference electrode may not be

equally distributed among all BioAmps, as will be discussed later. Thus, Zin/N illustrated

in Fig. 4.1(b) needs to be modified, accordingly. This work provides a complete electrical

circuit model of the input interface, followed by a generalized theory of CMRR degradation

in multi-channel bioamplifiers.

4.2 Proposed Input Interface Model

In this section, the conventional N -channel biosignal acquisition front-end in Fig. 4.1(a) is

revisited, where a complete representation of the input impedance of BioAmp is provided.

Next, an equivalent electrical circuit model of the input interface is developed that lays the

foundation for the subsequent analysis.
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Figure 4.2: BioAmp (a) topology (b) input impedance model (c) differential-mode and (d)
common-mode input impedance.

4.2.1 BioAmp Input Impedance

A widely used BioAmp is the capacitvely-coupled operational transconductance amplifier

(OTA) that uses pseudo-resistors in the feedback network [13], as depicted in Fig. 4.2(a).

Considering that the input impedance of BioAmp can be expressed in terms of a differential-

mode (ZDM) and a common-mode (ZCM) component, a simple T-network is used to illustrate

the input impedance of BioAmp, as shown in Fig. 4.2(b). Since OTA typically employs a

cascade of two stages, it is modeled by a differential input pair with an effective transcon-

ductance of A × gm. To derive ZDM , OTA is placed in a feedback configuration similar

to BioAmp with both common loads (ZL,1) and differential-mode loads (ZL,2) present at

the output, as shown in Fig. 4.2(c). Using half-circuit model, the odd impedance (Zodd)
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representing half of ZDM is readily calculated, as follows:

Zodd = Z1 +
(ro,p||ro,n)||(ZL,1||ZL,2

2
) + Z2

1 + Agm

[
(ro,p||ro,n)||(ZL,1||ZL,2

2
)
] ≈ Z1 (4.2)

where ro,p and ro,n denote the output resistance of PMOS and NMOS transistors, respectively.

Similarly, ZCM is found by taking into account the source degeneration and disregarding ZL,2,

as depicted in Fig. 4.2(d). Using half-circuit model, the even impedance (Zeven), which is

twice as large as ZCM , is readily calculated:

Zeven = Z1 + Zp||[Z2 + (ZL,1||ro,p)] ≈ Z1 + Z2 (4.3)

where Zp denotes the impedance of the parasitic capacitance at each input terminal of OTA.

For a typical closed-loop gain of 40 dB, BioAmp requires a capacitive ratio of C1/C2=100.

Therefore, ZCM of BioAmp is mostly dominated by the equivalent impedance of the feedback

capacitor (C2) and the parallel parasitic capacitance, which is approximated by Z2.

4.2.2 Electrode-BioAmp Interface

Based on the impedance representation in Fig. 4.2(b), the input impedance of each BioAmp

is modeled using a two-port network, and thus an equivalent electrical circuit model for the

electrode-BioAmp interface is developed, as depicted in Fig. 4.3. For each channel, Zin+

represents the input impedance seen from the channel electrode accounting for the loading

effects of the reference electrode and the remaining BioAmps. Likewise, Zin− represents the

input impedance seen from the reference electrode including the loading effect of channel

electrode. By further inspecting the input interface, two observations are made regarding

the CMRR degradation.

Unlike the circuit shown in Fig. 4.1(b), the two-port network representation exhibits a ”cou-
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Figure 4.3: Proposed input interface model.

pled path” between nodes A and X [59]. Hence, in the absence of the shared connections

at node X, the maximum achievable CMRR for a single channel is mainly determined by

impedance mismatch between the channel and reference electrodes relative to ZCM . Mean-

while, the shared connection in N -channel configuration creates unequal loading on each side

of the two-port network, which becomes a major source of CMI to DMI conversion. While

it is intuitive that the loading effect is more significant on the shared node, the extent of

CMRR degradation heavily depends on how CMI appears across the channels with respect

to the shared reference electrode, as will be discussed in Section 4.3.2. It is noteworthy

that several prior works have employed positive feedback techniques (e.g., capacitive neu-

tralization) to significantly boost ZDM as a way to circumvent the loading effect. However,

these techniques are known to pose instability issues, lower ZCM , and degrade the maximum

achievable CMRR, as mentioned above.
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4.3 Theoretical Analysis

4.3.1 Total and Intrinsic CMRR Derivations

Similar to Eq. (4.1), it is possible to define an overall CMRR for a multi-stage differential

system in terms of the following transfer functions: differential-to-differential mode gain

(GDD), common-to-common mode gain (GCC), common-to-differential mode gain (GDC)

and differential-to-common mode gain (GCD). Following the analysis in [59] and assuming

negligible contributions of GCD product terms, the total CMRR for n differential stages in

cascade is

CMRRT
−1 ≈

n∑
k=1

(CMRRk)
−1, (4.4)

CMRRk =


(
GDD

GDC

)
1
, for k = 1

(
GDD

GDC

)
k

k−1∏
i=1

(GDD

GCC
)i, for k > 1

(4.5)

In a typical biosignal recording system, the first stage consists of the electrode-BioAmp

interface, followed by a number of subsequent amplification stages. While it is straightfor-

ward to achieve high GDD/GCC ratio for each gain stage by employing a fully differential

architecture, it becomes challenging to improve GDD/GDC which is mostly limited by the

mismatches associated with on-chip passive and active devices. Since GDD/GCC ratio for

each differential amplification stage is very large, (GDD/GDC)n=2 has dominant effect on the

total CMRR. To quantify the main contributing sources to (GDD/GDC)n=2 (i.e., ICMRR),

mismatches are considered for the BioAmp model of Figs. 4.2(c)-(d) and the ICMRR is

readily calculated, as follows [60]:
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1

ICMRR
≈ 1

CMRROTA

+
1

CMRRFB

≈ ∆gm,A
gm,A(1 + 2gm,AZSS)

+
∆Z1

Z1
− ∆Z2

Z2

1− ∆Z1

2Z1
+ ∆Z2

2Z2

(4.6)

where [gm,A,∆gm,A], [Z1,∆Z1], [Z2,∆Z2] and ZSS represent the mean-value transconductance

of OTA’s first stage and its mismatch, feedback elements impedance and their associated

mismatches and source degeneration impedance, respectively. As seen in Eq. (4.6), the

ICMRR is limited by transconductance and feedback impedance mismatches. To minimize

the contribution of the former, ZSS can be increased. Meanwhile, the latter term is heavily

dependent on the technology node and layout techniques (e.g., minimum unit capacitance,

common-centroid placement) which sets an upper-limit for ICMRR if no trimming or en-

hancement technique is employed.

4.3.2 Input Interface CMRR Derivation

The electrode-BioAmp interface is yet another determining factor that affects the overall

CMRR, as it constitutes the first stage of differential acquisition without any amplifica-

tion. To avoid CMRR degradation, it is imperative to minimize (GDD/GDC)n=1 which is

mainly determined by the impedance imbalance in the interface. In this work, the extent

of impedance imbalance between nodes A and X for a given channel (BioAmp1 in Figs.

4.4(a)-(b)) is studied for two general case scenarios of CMI. Starting with Fig. 4.4(a), CMI is

assumed to be uniformly present across all channels with respect to the reference electrode.

The common-mode AC currents passing through the channel and reference electrodes are

absorbed by ZCM of each BioAmp. Thus, it can be mathematically shown that the shared

node experiences less loading effect as the equivalent input impedance looking into all re-

maining BioAmps is ≈ 2ZCM/(N −1), which is much larger than ZREF . On the other hand,

if only one channel experiences CMI with respect to the reference electrode (BioAmp1 in
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Fig. 4.4(b)), the equivalent input impedance at the shared node looking into all remaining

BioAmps is significantly reduced, giving rise to severe loading effect. Depicted in Fig. 4.4(b),

the AC current flowing from the reference electrode into the interference-free BioAmps cir-

culates back through the channel electrodes provided that (Ze,j +Z1)� Z2 for j = 1, ..., N ,

which holds true for a typical BioAmp. Hence, the equivalent input impedance looking into

BioAmps reduces to ≈ ZDM/(N − 1), causing significant CMRR degradation.

Since loading on the shared node depends on the number of channels experiencing CMI

with respect to the reference electrode, it becomes a necessity to obtain the input interface

CMRR, (GDD/GDC)n=1, for a given channel (e.g., BioAmp1) in terms of the voltage transfer

functions (TFs) from all inputs to node A and X. For this reason, five distinct voltage TFs

are identified in the input interface: (I) VA/VCH,1, (II) VA/VCH,m where m = 2, ..., N , (III)

VA/VREF , (IV) VX/VREF and (V) VX/VCH,j where j = 1, ..., N . Shown in Fig. 4.5(a), each

TF is distinguished by its signal path marked with an arrow. In addition, the channel
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electrode and T-network impedances are substituted by a π-equivalent circuit, as seen in the

dotted boxes. It is worth noting that contributions from TF-II is negligible and therefore, is

not considered in the derivations for the sake of brevity.

To find an expression for TF-I, -III and -IV, Zin+,1 and Zin−,j for j = 1, ..., N should be

derived. To begin with, Z-parameters of the two-port network modeling the BioAmp are

calculated, as follows:

Zparam =

Z1 + Z2/2 Z2/2

Z2/2 Z1 + Z2/2

 (4.7)

Subsequently, Zin+,1 terminated by ZL is determined:

Zin+,1 , Z11 −
Z12Z21

Z22 + ZL
= (Z1 + ZL)||(Z2/2) + Z1 (4.8)

where

Z−1
L = Z−1

TOT + Z−1
REF (4.9)

and

Z−1
TOT =

N∑
i=2

(Zin−,i)
−1 (4.10)

Similarly, Zin−,j terminated by the channel electrode, Ze,j for j = 1, ..., N , is calculated to

be:

Zin−,j , Z22 −
Z21Z12

Z11 + Ze,j
= (Z1 + Ze,j)||(Z2/2) + Z1 (4.11)

By examining the equivalent circuit of Fig. 4.5(b)(i), TF-I is derived in terms of Zin+,1 and

ZL, expressed in Eqs. (4.8) and (4.9):

VA
VCH,1

=
1

1 + Ze,1/Zin+,1

(4.12)
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Figure 4.5: (a) Signal paths in the input interface considered for voltage transfer function
analysis (b) equivalent circuits.

Similarly, TF-III and TF-IV are calculated based on the equivalent circuit of Fig. 4.5(b)(ii),

i.e.,

VA
VREF

≈ Ze,1/ZREF
1 + Zin−,1/ZL

(4.13)

VX
VREF

=
1

1 + ZREF
∑N

i=1 Z
−1
in−,i

(4.14)

In deriving Eq. (4.13), it is assumed Z2 � Z1 +Ze,1, which holds true for a typical BioAmp.

The π-equivalent circuit for each channel, as depicted in Fig. 4.5(a), helps simplify the

calculations involving the effect of TF-V. By applying Y-∆ transformation, each impedance

in π-network is readily expressed for the j -th channel, as follows:

Za,j = Ze,j + 2Z1 +
2(Ze,j + Z1)(Z1)

Z2

(4.15)

Zb,j = Ze,j + Z1 + Z2(1 +
Ze,j
2Z1

) (4.16)

Zc,j = Z1 +
Z2

2
(1 +

1

1 +
Ze,j

Z1

) (4.17)
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Assuming that CMI appears across the reference and M -number of channels, the equiva-

lent circuit of Fig. 4.5(b)(iii) is obtained by merging parallel π-networks with ZREF , whose

equivalent impedances are derived, as follows:

Z−1
a,eq =

M∑
i=1

(Za,i)
−1 + Z−1

REF (4.18)

Z−1
b,eq =

M∑
i=1

(Zb,i)
−1 (4.19)

Z−1
c,eq =

M∑
i=1

Z−1
c,i +

N∑
i=M+1

Z−1
in−,i (4.20)

Hence, the total voltage contribution to node X (i.e., summation of TF-IV and TF-V) is

readily calculated:

VX
VCM

=
Zc,eq

Za,eq + Zc,eq
, (4.21)

Based on Eqs. (4.12), (4.13) and (4.14), the input interface differential-to-differential mode

gain (GDD,int) is defined:

GDD,int , (VA − VX)/VDM

=
( VA
VCH,1

− VA
VREF

+
VX
VREF

)∣∣∣
VCH,1=VREF =VDM

(4.22)

The voltage contribution of
(
VX/VCH,1

)
|VCH,1=VDM

is omitted from the above expression since

it has negligible effect. Similarly, based on Eqs. (4.12), (4.13) and (4.21), the input interface

common-to-differential mode gain (GDC,int) is defined:

GDC,int , (VA − VX)/VCM

=
( VA
VCH,1

+
VA
VREF

)∣∣∣
VCH,1=VREF =VCM

− VX
VCM

(4.23)
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Finally, the total and the input interface CMRR, assuming (Z2 � Z1 � ZREF , Ze,j for

j = 1, ..., N), are derived:

1

CMRRT

=
1

ICMRR
+

1

CMRRint

(4.24)

CMRRint =
(GDD

GDC

)
int

=

1 +
1

1 + ZREF

2Z1
×N

1−
1

1 +
ZREF

Z2

M
|| 2Z1

N−M

(4.25)

where ICMRR is previously defined in Eq. (4.6). The closed-form expression in Eq. (4.25)

shows that for an N -channel acquisition front-end, the maximum CMRR is achieved when

M=N and degrades with higher values of N.

4.4 Numerical Results

In this section, theoretical and circuit simulation results for a previously designed and fab-

ricated 32-channel neural recording system in a 180nm CMOS process [51] are presented.

4.4.1 BioAmp CM & DM Input Capacitance

Simulated input capacitance of the BioAmp in [51] are compared with the model of Section

4.2.1. Each input and feedback capacitor is realized using MIM stacked structure with

a capacitance of 18 and 0.2 pF, respectively. Common-mode (CM) and differential-mode

(DM) capacitance for the BioAmp are shown in Fig. 4.6. Given that CM capacitance deviates

from the ideal value of 0.4 pF, a behavioral model is used for de-embedding the parasitic
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capacitances which contribute ∼640fF to each input terminal of OTA. Since no chopping

mechanism is employed in the BioAmp, the input pair transistors are sized adequately to

reduce flicker noise and therefore, introduce significant gate-to-bulk (CGB) and gate-to-drain

(CGD) parasitic capacitance. Furthermore, DM capacitance decreases as the loop gain of

the BioAmp drops beyond the 3-dB bandwidth which gives rise to higher impedance, as

predicted by Eq. (4.2) and deduced from Fig. 4.6.

4.4.2 Input Interface CMRR

The simulated input interface CMRR of the fabricated 32-channel electrocorticography

(ECoG) acquisition front-end in [51] is compared with Eq. (4.25) and the second term

of Eq. (4.1). Shown in Fig. 4.7, the simulated and predicted CMRRint versus frequency

is plotted for different values of M, assuming an electrode impedance of 1 kΩ (typical for

ECoG electrodes). As depicted, the CMRR degradation due to the impedance imbalance

increases with fewer number of channels experiencing CMI with respect to the reference

electrode, which closely follows the analysis in this work. Assuming that ICMRR and elec-

trode mismatches are not the limiting factors, the maximum achievable CMRR (CMRRmax),

coinciding with M=N, is found by evaluating Eq. (4.25) and Eq. (4.1) for different number

of channels and the same impedance values (at 1 kHz) used in Section 4.4.1, as shown in

Fig. 4.8.

4.5 Conclusion

In this brief, a detailed analysis of CMRR degradation is presented based on a proposed

electrical circuit model of the input interface for a multi-channel biosingal recording system,

exhibiting close agreement with circuit simulations.
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Figure 4.8: Maximum achievable CMRR for a multi-channel biosignal acquisition.
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