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Largest Placement of One Convex Polygon inside Another�

Pankaj K� Agarwaly Nina Amentaz Micha Sharirx

December �� ����

Abstract

We show that the largest similar copy of a convex polygon P with m edges inside a
convex polygon Q with n edges can be computed in O�mn� logn� time� We also show
that the combinatorial complexity of the space of all similar copies of P inside Q is
O�mn��� and that it can also be computed in O�mn� logn� time�

Let P be a convex polygon with m edges and Q a convex polygon with n edges� Our
goal is to �nd the largest similar copy of P inside Q �allowing translation� rotation� and
scaling of P �� see Figure �� A restricted version of this problem� in which we just determine
whether P can be placed inside Q without scaling� was solved by Chazelle ��	� in O�mn��
time� See also ��� 
� ��	 for other approaches to the more general problem� in which Q is
an arbitrary polygonal region� �We remark that the complexity of the algorithms for the
general case is considerably higher� about O�m�n�� in ��	� O�m�n�� in ���	� and O�m�n��
in �
	��

Problems concerning the placement of one polygon inside another are important in
robotics and manufacturing� This restricted problem is also applicable to an approach
to object recognition recently proposed by Basri and Jacobs ��	� based on matching two

dimensional faces of polyhedral objects� The transformation which places the largest similar
copy of a polygon P derived from a face of an object model inside a polygon Q derived from
an image is a candidate for a transformation which matches the entire model to the image�
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Figure �� �i� The polygon P � �ii� The polygon Q and a largest copy of P inside Q

The geometric setup of the problem is as follows� We observe� following Baird ��	� that
similar placements of P can be parameterized nicely by referring to an arbitrarily chosen
reference point p � P � A placement � is represented by a quadruple �s� t� u� v�� where �u� v�
is a translation of p in the plane� and s � � cos �� t � � sin �� where P is rotated by � and
scaled by �� around p� Let P� denote the similar copy of P corresponding to the placement
�� The standard placement puts p at the origin� with � � �� � � u � v � �� Thus if
�x� y� is a vertex of P in the standard placement� its position at the placement �s� t� u� v� is
�sx � ty � u� tx � sy � v�� Such a placement of P lies fully within Q if and only if every
vertex �xi� yi� of P lies in every halfspace ajx� bjy � � containing Q and bounded by the
line supporting an edge of Q� see Figure �� That is� the placement �s� t� u� v� must satisfy
the following system of mn linear inequalities�

aj�sxi � tyi � u� � bj�txi � syi � v� � �

or
Li�j � �ajxi � bjyi�s� ��ajyi � bjxi�t� aju� bjv � � �

In other words� the space C of all similar placements of P inside Q is a �
dimensional
convex polyhedron formed by the intersection of mn halfspaces� This already implies that
the combinatorial complexity of C is O�m�n��� and that it can be constructed in O�m�n��
time ���	� However� we will improve this bound in what follows� exploiting the fact that C
is highly degenerate�

In order to �nd the largest similar copy of P inside Q� we need to �nd a point of C
that maximizes s� � t� � ��� Unfortunately� maximizing a convex function over a convex
polyhedral domain is not an LP�type problem �in the setup of ��	� where a linear
time
randomized solution for such problems is described�� so it appears that the algorithm of
choice is to examine each vertex of C and select the one with the largest value of s�� t� �the
maximum of such a convex function is clearly attained at a vertex of C�� Moreover� since
s�� t� depends only on s and t� it su�ces to project C onto the st
plane� and examine only
the vertices of that projection�
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The main result of the paper is

Theorem � �a� The total number of vertices of C is O�mn��� and they can all be computed

in time O�mn� log n��

�b� The vertices of the projection of C onto the st�plane can all be computed in time

O�mn� logn��

Remark� Although part �b� follows immediately from part �a�� we will give a direct proof
of �b�� which is somewhat simpler and provides more geometric insight into the structure
of the problem�

Proof of Theorem �� We prove both parts by applying the standard duality transform
that maps a point ���� ��� ��� ��� to the hyperplane ��s� ��t� ��u� ��v � � and vice versa�
We denote the coordinates in the dual space by s�� t�� u�� v�� For � � i � m and � � j � n�
let wi�j denote the point dual to the hyperplane bounding the halfspace Li�j � i�e��

wi�j � �ajxi � bjyi� �ajyi � bjxi� aj � bj��

The convex hull of the points in fwi�j j � � i � m� � � j � ng� denoted by D� is the
dual polytope of C� It is easy to verify that all the points wi�j are extreme points of D
�or� equivalently� that all the hyperplanes bounding the halfspaces Li�j contain facets of C��
Note that� for each �xed j corresponding to an edge of Q� the convex hull Gj of fwi�jg

m
i��

is a similar copy of P that lies in the �
plane �j � u� � aj � v
� � bj � The dual polytope

D� then� is the convex hull of n similar copies of P � placed in parallel �
planes in �
space�
Each facet of D corresponds to a placement � of P inside Q such that P� � Q and there
are at least four vertex
edge incidences between the vertices of P� and the edges of Q�

We begin with the proof of part �b�� We exploit the well
known fact that projection
in the primal is slicing in the dual� In more detail� let C� denote the projection of C onto
the st
plane u � �� v � �� as e�ected by the mapping �s� t� u� v� �� �s� t� �� ��� Then a line
�s��t � � in the st
plane is a supporting line of C� if and only if the hyperplane �s��t � �
is a supporting hyperplane of C in IR�� This is equivalent� in the dual� to having the point
��� �� �� �� belong to the boundary of D� Thus� computing C� is equivalent to computing
the cross section D� of D with the �
plane u� � �� v� � ��

Our strategy for computing D� is �rst to compute D�� the cross
section of D with the
hyperplane u� � �� and then to slice D� with the plane v� � �� Since it is trivial to intersect
a three
dimensional polytope with a plane� in time proportional to the complexity of the
polytope� we only consider the construction of D��

Without loss of generality� we can assume that none of the aj �s is �� Then each of
the polygons Gj lies outside the hyperplane u� � �� Hence� any vertex w of D� must be
an intersection of u� � � with an edge of D� connecting two vertices of a pair of distinct
polygons� Gi and Gj � where Gi lies above u� � � and Gj lies below� Moreover� w must also
be a vertex of the intersection of the convex hull of Gi�Gj with u� � �� So we can construct
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D� by taking the convex hull� in IR�� of every pair of polygons Gi� Gj � intersecting all of
these sub
hulls with u� � �� and then taking the convex hull of the resulting intersections�

Let us consider the geometry of one such sub
hull� The two parallel �
planes u� �
ai� v

� � bi and u� � aj � v
� � bj lie in the common �
plane Fi�j de�ned by

�bj � bi�u
� � �ai � aj�v

� � �biaj � bjai� � �

and so does the sub
hull determined byGi� Gj� The three
dimensional geometry of conv�Gi�

Gj� in Fi�j is as shown in Figure ��

Gj

Gi

Figure �� Convex hull of parallel polygons

The intersection of Fi�j with u� � � is the �
plane

u� � �� v� � �biaj � bjai���ai � aj�

which is also parallel to the two polygons Gi� Gj� Slicing the convex hull of the two parallel
polygons with a parallel plane� we get a third parallel polygon Gi�j which is the Minkowski
sum of appropriately scaled copies of Gi and Gj � This polygon has at most �m vertices�
and it is easy to compute directly from the vertices of Gi and Gj � Note that Gi�j lies in
both Fi�j and in u� � ��

The �
polytope D� in u� � � is the convex hull of all these polygons Gi�j � There
are O�n�� such polygons� each with at most �m vertices� so the total complexity of D� is
O�mn�� �which of course is also a consequence of the bound for the overall complexity of
D� as asserted in part �a� and proven below��

The algorithm is simply to form the polygons Gi�j � take their three
dimensional convex
hull� and intersect it with v� � �� Since the Minkowski sum of two convex polygons can be
computed in linear time ��	� we spend O�mn�� time in computing the polygons Gi�j � Their
convex hull can be computed in O�mn� logn� time� using the divide
and
conquer algorithm
of ���	 �which has now only O�logn� recursive levels� because we start with the already
available polygons Gi�j�� Hence� the total running time is O�mn� logn��

This completes the proof of part �b�� Note that in practical terms� the implementation
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of this algorithm is a straightforward setup followed by a three
dimensional convex hull
computation� which can be performed e�ciently with publicly available software� �

We now return to the proof of part �a�� We �rst consider the facets of D whose sup

porting hyperplanes are parallel to the �
plane u� � �� v� � �� The equation of such a
hyperplane hF of a facet F has the form �u� � 	v�� 
 � �� Hence� if hF contains a vertex
of some Gj � it must contain the entire polygon Gj � It then follows that F must be the
convex hull of the union of two polygons Gi� Gj �as in the proof of part �b� given above��
The facet F is dual to the placement of P in which it is shrunk to a point and all its vertices
are incident to the vertex of Q where edge i meets edge j �so that these two edges must
be consecutive edges of Q�� The number of such placements is n� and the complexity of
each of the corresponding facets is O�m�� since it is the �
dimensional convex hull of �m
points� �It is easily veri�ed that each of these hulls is indeed a facet of D�� It follows that
the overall complexity of these facets of D is O�mn�� Constructing all these facets is easy
to do in O�mn� time�

Next� consider the facets of D whose supporting hyperplanes are not parallel to the
�
plane u� � �� v� � �� Let F be such a facet of D� and let h be the hyperplane supporting
F � The equation of h can be written as t� � �s�� �u�� 	v�� 
 �for simplicity we assume�
without loss of generality� that � is never in�nite�� Then� for each j � �� � � � � n� the line
�j of intersection between h and the �
plane �j containing Gj either touches or is disjoint
from Gj � The equation of �j is t� � �s� � �aj � 	bj � 
� u� � aj � v� � bj � Note that the
coe�cient � uniquely determines the vertex of Gj nearest to �j � for every j� unless � is a
�critical� value equal to the slope of an edge of some Gj � There are � � mn such critical
slopes �� corresponding to the orientations at which an edge of P is parallel to an edge of
Q� and it is easy to compute them� in order� in time O�mn logn�� Let �� 
 �� 
 � � � 
 ��
be these critical slopes�

Let K be an open interval of �
coe�cients between two successive critical slopes� Then�
for each j � �� � � � � n� there exists a unique vertex wi�K��j of Gj � such that if h is any
supporting hyperplane of D whose �
coe�cient lies in K� then h can touch Gj � if at all� only
at wi�K��j� In other words� such an h is also a supporting hyperplane of SK � fwi�K��jg

n
j��

�h must of course touch at least one of these vertices� and at least four if it contains a facet
of D�� For two adjacent intervals K and K�� the set SK� is obtained from SK by replacing
one vertex w by another vertex w� �both being adjacent vertices of some Gj�� It easily
follows that every facet F of D not parallel to u� � �� v� � � is either a facet of conv�SK��
for some interval K� or� if the �
coe�cient of F is a critical value� a facet of conv�SK�SK���
for some pair of consecutive intervals K and K�� If the vertices of P and Q are in general
position� these latter facets correspond to placements in which an edge of P is incident to

�For example Ken Clarkson�s hull program	 at http���netlib�att�com�netlib�voronoi�hull�html	
or Ioannis Emiris� chD	 available by ftp from robotics�eecs�Berkeley�edu in �pub�ConvexHull� These
and other convex hull programs are listed on the computational geometry software Web page at
http���www�geom�umn�edu�software�cglist� Using either of these programs gives a randomized algorithm
which runs in time O�mn� logmn�	 slightly worse than our theoretical result�
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an edge of Q� In fact� we can prove the following stronger claim� Assuming �� � �� and
���� � ��� let Ki be the open interval ��i� �i���� for � � i � �� With a slight abuse of
notation� let Si � SKi and let �i denote the unique element of Si n Si��� for � � i � ��

Lemma � Every facet F of D that is not parallel to u� � �� v� � � is either a facet of the

convex hull conv�S�� or a facet of the convex hull conv�Si�� � f�ig� incident to �i for some

� � i � ��

Proof� Let F be a facet of D that is not parallel to u� � �� v� � � and that is not a
facet of conv�S��� Let W be the set of vertices of F � and let i � � be the index such that
the �
coe�cient of the hyperplane supporting F lies in the �semi
open� interval ��i��� �i	�
Then� by the above argument� W � Si�� � f�ig� Suppose j � i is the largest index such
that �j �W �i�e�� Sj is obtained from Sj�� by inserting one of the points of W and deleting
a point of Sj���� Then it is easily seen that W � Sj�� � f�jg� Hence� F is a facet of
conv�Sj�� � f�jg� incident to �j � as asserted� �

This lemma suggests that we should compute conv�S�� and� for each � � i � �� we
compute the facets of conv�Si���f�ig� incident to �i� Since the hyperplanes containing the
facets of conv�Si���f�ig� incident to �i have only three degrees of freedom� this problem can
be formulated as a three
dimensional convex hull problem� and can be solved in O�n logn�
time� the number of these facets� as well as their overall complexity� is O�n�� Notice that the
set S� and the vertices �i� for � � i � �� can be computed in O�mn logn� time� Repeating
this algorithm for all � � i � � and computing conv�S��� the algorithm produces a total of
O�mn�� facets� of O�mn�� overall complexity� in time O�mn� logn��

These arguments prove that the total number of facets of D is O�mn��� and that their
overall complexity� and hence the overall complexity of C� is O�mn��� Unfortunately� the
algorithm might produce additional spurious facets� which are not facets of D� Indeed� a
facet F of conv�Si�� � f�ig� corresponds to a placement � of P such that there are at least
� vertex
edge incidences between the vertices of P� and the edges of Q� and F is spurious if
P� 	� Q� If the �
coe�cient of F lies in the interval Ki�� �Ki� then it follows by de�nition
that F cannot be spurious� However� if this �
coe�cient lies in another interval Kj� for
some j 	� fi � �� ig� then F may be spurious� because P� may violate a constraint Lu�v

corresponding to some vertex wu�v � Sj n �Si�� � Si�� See Figure � for an example� Let
�i be the critical slope at which the edge p�p� of P is parallel to the edge e	 of Q� Then�
by construction� Si�� � fw
��� w	��� w���� w���� w��	� w��
g� and �i � w��	� It is easy to verify
that conv�fw	��� w���� w���� w��	g� is a facet of Si���f�ig incident to �i � w��	� but� as shown
in Figure �� the corresponding copy of P does not lie inside Q �this facet is �violated� by
w�����

Hence� to complete our algorithm� we need to detect and discard the facets of the hulls
conv�SK� which are not facets of D� This is accompished as follows� We triangulate each
computed facet F into O�jF j� tetrahedra� using the bottom
vertex triangulation scheme
described in ��	� Let � denote the set of resulting tetrahedra� j�j � O�mn��� Let D� be






e�

�i�

e�

p�

p�
p�

p�

p�

p� e�

e�

e�

e�

�ii�

p�

e�
e�

p�
e�

e�

p�

p�

p�

p�
p�

e�

p� e�

P

Q

Figure �� Spurious facets generated by the algorithm� �i� The orientation of P lies in Ki���
where �i � w��	� �ii� A placement of P corresponding to a spurious facet of Si�� � fw��	g�

the bottom
vertex triangulation of the boundary of D� We want to discard those tetrahedra
of � that are not facets of D�� For a vertex w� let �w � � be the subset of tetrahedra
incident to w� and let Vw be the set of vertices of the tetrahedra in �w� It is easily veri�ed
that a tetrahedron � ��w is a facet of D� if and only if � is a tetrahedron in the bottom

vertex triangulation of the boundary of conv�Vw�� which is necessarily incident to w� We
therefore compute the facets of conv�Vw� that are incident to w� by the reduction� noted
above� to a �
dimensional convex hull construction� and then compute the bottom
vertex
triangulation of each such facet� Note that these facets can be computed in O�jVwj logn�
time� since the vertices of Vw lie on only n �
planes� so that the convex hull computation
requires only O�logn� recursive levels� we omit the easy details� We can now discard those
tetrahedra in �w that do not lie on the boundary of conv�Vw�� Repeating this procedure
for all vertices w of D gets rid of all spurious facets computed by the algorithm�

The running time of this step is
P

w O�jVwj logn�� where the sum extends over all vertices
w of D� Since

P
w jVwj � �j�j � O�mn��� the total time spent is O�mn� logn��

This completes the proof of part �a�� �

An immediate corollary of Theorem ��b� is the following�

Corollary � The largest similar copy of P inside Q can be computed in O�mn� log n� time�

We conclude this paper by constructing a pair of polygons P and Q� with m and n

vertices� respectively� such that there are ��mn�� placements of P inside Q� each of which
induces four incidences of the form �p� e�� where p is a vertex of P and e is an edge of Q�
This implies that the combinatorial bound of Theorem ��a� is tight in the worst case�
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Figure �� Polygons P and Q for which there exist ��mn�� similar placements of P in Q

with four vertex
edge incidences per placement

The construction is depicted in Figure �� Let n be of the form �l� �� for some positive
integer l� m an even integer� and o the origin� The �rst n�� vertices q�� � � � � qn�� of Q
are evenly distributed along the arc of the unit
radius circle� centered at o� which goes
from ���
 to ��
 �in counterclockwise direction�� The vertices qn���� � � � qn are evenly
distributed along a tiny arc of a larger circle� say the circle with radius �� � � and center
���� ��� and we let the tiny arc span the orientations between � � �

������� and � � �
������� �

so that its arc length is �� The value of � will be chosen su�ciently small� in a manner to
be detailed in a moment�

We place one vertex pm of P at the origin o and the remaining m � � vertices� equally
spaced� on a circular arc of radius ���� centered at ����� ��� that spans the orientations
between � �

��l and � �
��l �

Claim� If � is chosen su�ciently small then the following holds� For every triple n���� �
i � n� � � j 
 n��� and � � k � m � �� there is a placement of P inside Q� using

translation� rotation� and scaling� such that the vertex pm of P coincides with the vertex qi
of Q� and such that the edge pkpk�� of P coincides with the edge qjqj�� of Q�

Notice that every such placement of P induces four vertex
edge incidences between P
and Q� and is thus a vertex of C�

Proof� We consider the scaling� rotation� and translation of P that places pkpk�� on the
line � supporting qjqj�� and also places pm at qi�
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Figure �� Proof of claim

As in Figure �� let q be the center of edge qjqj��� q is also the orthogonal projection
of the origin o onto the line � supporting qjqj��� Let q� be the projection of pm� which is
placed at qi� onto �� Let q�� be the projection onto � of o�� the center of the small circle
whose boundary contains the points p�� � � � � pm��� which is appropriately shifted with P �
Let q��� be the intersection of the line from pm � qi through o� with �� Finally� let s be the
intersection of the line supporting pmpm�� �at this placement of P � with ��

The distance from q to q� is at most �� The angle q���pmq
� is the same as the angle q���o�q���

which� by the construction of P � is at most �
��l � The angle spmq

��� is exactly �
��l � Since the

distance from pm to q� is at most � � �� the distance from q to s is

d�q� s� � � � �� � �� tan
�

��l
�

Since the distance from q to qj�� is sin �

l � � can be chosen small enough so that

�� �� � �� tan
�

��l

 sin

�


l
�

which then implies that this placement of P fully lies below the segment pmqj��� An
analogous argument shows that P lies above the segment pmqj � so P lies inside Q� as
claimed�

We therefore obtain the following result�

Theorem � There exist a convex m�gon P and another convex n�gon Q such that there are

��mn�� placements of similar copies of P inside Q� each of which induces four vertex�edge

incidences between P and Q�

Remarks� ��� A weakness of the above lower bound construction is that it only yields
placements of P with �degenerate� vertex
edge contacts� including a vertex
vertex contact
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and an edge
edge containment� Is there another construction� in which there are ��mn��
similar placements of P inside Q� such that at each of them four distinct vertices of P touch
four distinct edges of Q� This extends a similar open problem� asking for ��mn�� congruent
placements of P inside Q� each with three contacts of distinct vertices of P with distinct
edges of Q� see ��	 for details�

��� Another open problem is whether the algorithm for �nding the largest similar placement
of P inside Q can be improved� Such an improvement could be by at most a logarithmic
factor if we have to compute the entire space C� as is implied by the above lower bound�
Can we do better if we only need to compute the largest placement of P�
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