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Residual analysis of the water resonance signal in breast lesions imaged
with high spectral and spatial resolution (HiSS) MRI: A pilot study

William A. Weiss,a) Milica Medved, Gregory S. Karczmar, and Maryellen L. Giger
Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637

(Received 13 June 2013; revised 7 November 2013; accepted for publication 4 December 2013;
published 2 January 2014)

Purpose: High spectral and spatial resolution magnetic resonance imaging (HiSS MRI) yields infor-
mation on the local environment of suspicious lesions. Previous work has demonstrated the advan-
tages of HiSS (complete fat-suppression, improved image contrast, no required contrast agent, etc.),
leading to initial investigations of water resonance lineshape for the purpose of breast lesion classi-
fication. The purpose of this study is to investigate a quantitative imaging biomarker, which charac-
terizes non-Lorentzian components of the water resonance in HiSS MRI datasets, for computer-aided
diagnosis (CADx).
Methods: The inhomogeneous broadening and non-Lorentzian or “off-peak” components seen in the
water resonance of proton spectra of breast HiSS images are analyzed by subtracting a Lorentzian
fit from the water peak spectra and evaluating the difference spectrum or “residual.” The maxima
of these residuals (referred to hereafter as “off-peak components”) tend to be larger in magnitude
in malignant lesions, indicating increased broadening in malignant lesions. The authors considered
only those voxels with the highest magnitude off-peak components in each lesion, with the number
of selected voxels dependent on lesion size. Our voxel-based method compared the magnitudes and
frequencies of off-peak components of all voxels from all lesions in a database that included 15
malignant and 8 benign lesions (yielding ∼3900 voxels) based on the lesions’ biopsy-confirmed
diagnosis. Lesion classification was accomplished by comparing the average off-peak component
magnitudes and frequencies in malignant and benign lesions. The area under the ROC curve (AUC)
was used as a figure of merit for both the voxel-based and lesion-based methods.
Results: In the voxel-based task of distinguishing voxels from malignant and benign lesions, off-peak
magnitude yielded an AUC of 0.88 (95% confidence interval [0.84, 0.91]). In the lesion-based task of
distinguishing malignant and benign lesions, average off-peak magnitude yielded an AUC 0.83 (95%
confidence interval [0.61, 0.98]).
Conclusions: These promising AUC values suggest that analysis of the water-resonance in each HiSS
image voxel using “residual analysis” could have high diagnostic utility and could be used to enhance
current CADx methods and allow detection of breast cancer without the need to inject contrast agents.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4851615]

Key words: echo planar spectroscopic imaging (EPSI), breast computer-aided diagnosis, lesion
classification, water resonance lineshape, spectroscopic imaging

1. INTRODUCTION

It is estimated that 232 340 women will have been diagnosed
with and 39 620 women will die of breast cancer in 2013;1

thus there is a need for early and accurate detection of breast
cancer. Magnetic resonance imaging (MRI) is increasingly
being investigated as a screening tool, especially for those
women at greater lifetime risk.2

Dynamic contrast enhanced MRI (DCEMRI) using a
gadolinium-based contrast agent is often employed to en-
hance sensitivity to breast lesions.2, 3 Contrast enhancement
curves provide local physiological and microvasculature in-
formation which can increase the specificity of the scan. Char-
acteristic uptake and washout patterns may be utilized by
the radiologist in computer-aided diagnosis (CADx) of breast
lesions.4 The administration of contrast agent, however, intro-
duces undesirable risks. The injection itself is invasive, pre-
senting potential complications such as infection, bruising,

and bleeding. A doctor or nurse must be present to deal with
potential allergic reactions to the agent, and for those patients
with compromised renal function, the toxicity of Gadolinium
can lead to nephrogenic systemic fibrosis (NSF).5 As MRI is
being more frequently used for screening, intravenous con-
trast injection becomes impractical and carries too high a risk
for screening large numbers of women. Therefore, a contrast-
free MRI method is desirable.

High spectral and spatial resolution (HiSS) MRI can be
implemented as a noncontrast enhanced, echo planar spec-
troscopic imaging [EPSI (Refs. 6 and 7)] technique which
uses a rapidly alternating readout gradient that allows both
spatial and temporal data to be recorded simultaneously. A
series of gradient echo images are acquired with a temporal
resolution on the order of milliseconds, rapid enough to cap-
ture the full bandwidth of the free-induction decay (FID) in
each voxel of the image. The FID in each image voxel can be
processed to produce a proton resonance spectrum. Magnetic
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resonance spectroscopic imaging (MRSI) had been applied to
breast cancer imaging, where images of low concentrations
of metabolites are produced with large (∼1 cc) voxels.8 By
contrast, HiSS produces images of specific components of the
water or fat resonance, in small voxels, at the spatial resolu-
tion typical of conventional imaging methods. Signals from
metabolites that are present at the millimolar level are gener-
ally not resolvable with the high spatial resolution of HiSS.
However, the detailed structure of the water resonances de-
tectable in HiSS data are an important source of information
about local physiology.9–11

Images can be created from HiSS data in which the value
of each voxel is proportional to the amplitude of an individ-
ual spectral component. Using spectral postprocessing, HiSS
water-peak-height images produce fat suppression that is su-
perior relative to conventional fat suppression techniques,
without the disadvantages associated with fat suppression
pulses.12–14 Construction of an image from a single compo-
nent of the water resonance reduces blurring due to chemi-
cal shift effects and results in higher quality images.15 In pre-
liminary studies, 2D HiSS water-peak-height images yielded
performance similar to that of 2D and 3D dynamic contrast-
enhanced (DCE) MRI in separating benign from malignant
lesions.16, 17 Other work has explored variations in image
contrast in images produced from different spectral compo-
nents of the water resonance (obtained from HiSS data) and
their relevance to the diagnosis of lesions, with promising
results.12, 18, 19

Non-Lorentzian inhomogeneous broadening is often ob-
served in the water resonance in small voxels.9–11, 14, 18–20 This
indicates subvoxelar environmental effects that cannot be re-
solved with conventional MRI, in which all spectral compo-
nents of the water resonance combine in the time domain to
produce a single complex value associated with each image
voxel. Non-Lorentzian, or “off-peak,” components are often a
product of local magnetic susceptibility differences likely due
to inhomogeneous blood deoxyhemoglobin levels as well as
other sources of magnetic susceptibility gradients (e.g., mi-
crocalcifications). Non-Lorentzian features can also be due to
differences in the exchange rate of various Fourier compo-
nents of the water resonance with bound pools of water.

The magnitude and/or spectral location of these off-peak
components correlate with malignancy of breast lesions.18–20

Malignant lesions tend to contain increased levels of deoxy-
genated blood,21 motivating the hypothesis that malignant le-
sions may display larger, asymmetric broadening of the water
resonance. A previous study identified off-peak components
by finding the maximum of a residual spectrum after subtract-
ing a Lorentzian fit19 from spectra from voxels with water-
peak height above a noise threshold. It was found that ma-
lignant lesions tend to contain off-peak components at larger
positive frequency offsets, though no significant correlation
was found between off-peak component magnitude and ma-
lignancy.

The previous analysis, however, included many off-peak
components with amplitudes close to the noise level. These
components contribute little to the classification of breast le-
sions, as both malignant and benign lesions may contain low-

magnitude off-peak components. We modified this approach
by further processing the data to include in each lesion only
the largest magnitude off-peak components having positive
frequency offsets. Our approach seeks to eliminate off-peak
components whose magnitudes are near the noise level, thus
increasing the signal-to-noise ratio (SNR) of the off-peak
components used in the classification of breast lesions.

2. MATERIALS AND METHODS

Figure 1 illustrates our overall analysis method of obtain-
ing a quantitative imaging biomarker, which characterizes
non-Lorentzian components of the water resonance in HiSS
MRI datasets, for computer-aided diagnosis (CADx).

2.A. Data acquisition and database

In the acquisition of HiSS data, an alternating readout gra-
dient was used to encode time-domain data using echo-planar
spectroscopic imaging (EPSI). To reconstruct HiSS images,
the k-space data were Fourier transformed to produce images
with two spatial dimensions and one spectral dimension. In-
house software was developed to automatically identify the
water peak in each spectrum. Images were then created in
which the value of each voxel corresponds to the peak value
of the water resonance [water-peak height images, Fig. 1(b)].

FIG. 1. (a) Flowchart outlining the off-peak component analysis. The let-
ters in parentheses refer to parts (b), (c), and (d) of this figure, which contain
representative images of the given step (see text for details of each step).
(b) Water-peak height image of a breast containing an IDC grade II tumor.
The fuzzy c-means segmented lesion is shown in red. (c) Water resonance
originating from the voxel highlighted by the blue arrow in (b). The blue
spectrum is the original resonance normalized to the water-peak height and
the red spectrum is its least-squares Lorentzian fit. The residual spectrum
(original resonance-Lorentzian fit) is shown in green. The black arrow points
to the maximum of the residual (labeled as the “off-peak component”).
(d) Map of the off-peak component magnitudes for all voxels in the lesion
(left) and the corresponding map after removing voxels with low magnitude
offpeak components (right).
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All data were acquired on a 1.5 T Philips Achieva
MR scanner (Philips Healthcare, Andover, MA). Single-slice
sagittal acquisitions were performed with in-plane resolution
of 1 mm in a 512 × 256 mm2 field-of-view, 2 mm slice
thickness, TR = 500 ms, effective TE = 90 ms, flip angle
= 90◦, echo train length = 128, spectral resolution/bandwidth
= 5.6 Hz/716.8 Hz, and automatic shimming.

The 2D HiSS image data were collected retrospectively
and included 23 lesions from 23 patients with biopsy-proven
diagnoses. These lesions included: 15 malignant lesions
(eight IDC’s with associated DCIS, five IDC, one invasive
mucinous cancer, one adenoid cystic carcinoma), and eight
benign lesions (seven fibroadenomas and one fat necrosis).
Data for this project had been acquired with informed con-
sent from each patient, under an institutional review board-
approved protocol and in compliance with the Health Insur-
ance Portability and Accountability Act.

2.B. Lesion segmentation

Lesion segmentation was performed using an automatic 2-
class (lesion and nonlesion) fuzzy c-means (FCM) (Refs. 17
and 22) algorithm on a manually drawn, rectangular region of
the water-peak height image containing the lesion [Fig. 1(b)].
The water resonance peak intensity from each voxel of the
ROI serves as input to the FCM algorithm. Class-membership
weighting is initially assigned to each voxel as “lesion” or
“nonlesion” (summing to 1). The membership weightings are
then iteratively updated until the interclass variation is max-
imized and the intraclass variation is minimized. The class
with the largest water resonance is then labeled as the “le-
sion” class, and voxels with a membership weight above 0.4
in that class are considered to be within the lesion.

2.C. Off-peak component analysis

After normalizing to the water-peak height, off-peak com-
ponent analysis was conducted on the magnitude spectrum
in each voxel within the lesion following the procedure out-
lined in Fig. 1. Since normalizing spectra to the water-peak
height amplifies noise, we only included voxels with water-
peak heights at least four times the noise level of the spec-
trum. The noise level was determined by finding the root-
mean-squared value of a 56 Hz (10 spectral bins) area of the
spectrum between the water and fat resonances; a spectral fre-
quency region assumed to contain only noise.

We define an off-peak component as the largest non-
Lorentzian feature of a spectrum; therefore, a magnitude-
Lorentzian line shape was fit to and subtracted from the nor-
malized spectrum. The nonlinear least squares fit was per-
formed over a frequency range of 134.4 Hz, centered on the
water peak, in order to capture the water resonance while ex-
cluding areas of the spectrum that were primarily baseline
noise. The remaining residual spectrum then contains the non-
Lorentzian components of the normalized water resonance
[Fig. 1(c)]. Because earlier work revealed that off-peak com-
ponents tended to be positively shifted in malignant lesions,19

our analysis focused solely on non-Lorentzian spectral fea-

tures with positive frequency shifts relative to the peak of the
water resonance—specifically, only residual maxima in the
range [22.4 Hz, 67.2 Hz] from the water peak were consid-
ered. This range of frequencies was chosen because below
an offset of 22.4 Hz, the off-peak components are not well-
resolved from the main peak.

Off-peak components are often inhomogeneous in mag-
nitude within a lesion, probably due to the spatial inhomo-
geneity of, for example, tissue oxygenation and angiogene-
sis. In fact, both benign and malignant lesions tend to contain
many (and often mostly) voxels with low off-peak component
magnitudes. This may at first suggest that off-peak compo-
nent magnitudes are inadequate as a lesion classifier; how-
ever, we observed that malignant lesions tended to contain
greater numbers of relatively large magnitude off-peak com-
ponents than did benign lesions. Thus, in this work, we ap-
plied a “voxel elimination” step, based on the relative inten-
sity of the off-peak components. We retained for analysis the
voxels with the largest 10% off-peak components in a lesion,
but not less than 10 and no more than 50 voxels [Fig. 1(d)].
The 10% cutoff was selected as a trade-off between increased
algorithm performance and preserving enough relevant vox-
els for meaningful statistical analysis. Classifier analysis was
conducted on the voxels that remained after the off-peak com-
ponents with lower magnitudes were eliminated.

2.D. Evaluation and statistical analysis

Data processing was performed using MatLab (The Math-
Works, Inc., Natick, MA) and ROC-Kit (University of
Chicago, http://metz-roc.uchicago.edu/). Area under the ROC
curve (AUC) was used as the metric for assessing the perfor-
mance of the four classification tasks: voxel-based classifica-
tion using the off-peak magnitude of voxels within the lesions
before and after voxel elimination, voxel-based classification
using the off-peak frequency shift (i.e., the frequency differ-
ence between the main water peak and the off-peak compo-
nent) after voxel elimination, and lesion-based classification
using average off-peak magnitude and average off-peak fre-
quency shift after voxel elimination. To investigate whether
off-peak magnitude voxel classification performance varied
across frequency offsets, AUC values were also generated
postvoxel elimination considering voxels with off-peak com-
ponent at each frequency shift.

3. RESULTS

3.A. Voxel-based performance

Figure 2 compares the off-peak components from all le-
sions (∼8500 voxels) with those remaining after the low-
off-peak-magnitude voxel elimination process (∼550 voxels),
using box plots of the off-peak magnitude versus frequency
offset. After low signal-to-noise ratio voxel elimination, the
substantial upward shift of the off-peak component magni-
tudes from malignant lesions, with the much less pronounced
shift of those from benign lesions, corresponds to the in-
crease in voxel-based AUC on off-peak magnitude from 0.65
to 0.88 (95% confidence interval [0.84, 0.91]), for all spectral
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FIG. 2. Box-and-whisker plots of off-peak component magnitude vs frequency offset considering all voxels in all lesions (left) and only those voxels retained
after discarding low magnitude off-peak components from each lesion (right). The median of the distribution of malignant off-peak magnitudes at each frequency
offset shifts upwards considerably after voxel elimination, indicating improvement in distinguishing off-peak components from malignant and benign lesions.
The distributions across frequency offset do not change appreciably. A slight offset along the x-axis is used in the plot to clearly distinguish voxels from benign
and malignant lesions.

frequency bins combined. To examine whether a specific fre-
quency offset (or range of offsets) performed better than the
aggregate, ROC analysis was also performed on the off-peak
magnitudes at each offset. The results are presented in Table I,
where the 95% confidence intervals for individual frequency
offsets are shown to overlap with the aggregate CI for most
offsets. The high AUCs at larger offsets are likely due to the
small number of samples input to ROC analysis and are most
likely artificial.

Voxel-based ROC analysis of off-peak component fre-
quency offsets yields an AUC of 0.51 (95% C.I. [0.43, 0.55]);
therefore, this pilot study showed no relationship between ma-
lignancy and off-peak frequency. The ROC curves generated
for the task of classifying voxels from malignant from benign
lesions based on off-peak magnitude and off-peak frequency
offset are presented in Fig. 4.

3.B. Lesion-based performance

Figure 3 shows the distributions of average off-peak mag-
nitude and average off-peak frequency shift for both malig-
nant and benign lesions. The AUC generated from the mag-
nitude distributions is 0.83 (95% C.I. [0.61, 0.98]), indicating
promising performance in classifying malignant and benign
lesions. Average frequency offset did not perform well, with
an AUC of only 0.55 (95% C.I. [0.27, 0.83]). The ROC curves
generated for the task of classifying malignant from benign

lesions based on average off-peak magnitude and average off-
peak frequency offset are presented in Fig. 4.

4. DISCUSSION

From Fig. 2, it is apparent that the off-peak component
magnitude distributions from malignant and benign lesions
have similar medians, but that they are much more homoge-
neous in benign than in malignant lesions. Malignant lesions
tend to contain a larger minority of voxels with very large off-
peak component magnitudes. These largest-magnitude voxels
motivated our analysis.

A previous investigation reported that off-peak component
magnitude did not adequately distinguish malignant from be-
nign lesions,19 but that a correlation existed between malig-
nancy and off-peak component location. However, here we
took a different approach and maximized the signal-to-noise
ratio of the evaluated features by selecting only the largest off-
peak non-Lorentzian components in each lesion. In addition,
we evaluated only off-peak components at frequencies greater
than 22.4 Hz above the water resonance. Using this limited
range, we failed to show any significant correlation between
off-peak frequency offset and malignancy. Thus, in our ap-
proach, only the magnitude of off-peak components enabled
the classification of breast lesions.

An AUC of 0.5 corresponds to choosing a random clas-
sification, while an AUC of 1.0 indicates a perfect classifier.

TABLE I. Results of ROC analysis on the classification of voxels from malignant vs benign lesions considering off-peak component magnitudes separately at
each spectral frequency location (Hz from water peak) and for all bins together.

Spectral frequency
(Hz from water peak) 22.4 28 33.6 39.2 44.8 50.4 56 61.6 67.2 All
No. of voxels 127 102 71 62 59 40 40 27 31 559
AUC 0.82 0.91 0.89 0.88 0.85 0.90 0.86 1.00 0.95 0.88
95% C.I. [0.74, 0.90] [0.79, 1.00] [0.81, 0.97] [0.80, 0.96] [0.73, 0.97] [0.74, 1.00] [0.74, 0.98] [1.00, 1.00] [0.87, 1.00] [0.84, 0.92]

Medical Physics, Vol. 41, No. 1, January 2014
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FIG. 3. Distribution of average off-peak component magnitudes (left) and of average off-peak component frequency shifts (right) across all cases included in
this study.

These AUC’s correspond to an ROC curve with a slope of
1 from the origin and an ROC curve with slope zero across
the top of the plot, respectively. The performance of off-peak
frequency offset, for both voxel-based and lesion-based clas-
sifiers (AUC of 0.51 and 0.55, respectively) performed sim-
ilarly to randomly assigning a classification. However, the
95% confidence intervals for AUCs generated for off-peak
magnitude for both voxel-based and lesion-based classifiers

FIG. 4. ROC curves describing the performance of off-peak magnitude and
frequency offset in distinguishing voxels from malignant lesions and those
from benign lesions and the performance in distinguishing malignant and
benign lesions based on averaged voxel values. In our study, off-peak mag-
nitude performs well in the task of classifying both voxels and lesions, while
off-peak frequency offset does not.

(AUC of 0.88 and 0.83, respectively) do not include 0.5, indi-
cating that our result is statistically significant.

While the results of this pilot study are promising, there
are several possible areas for improvement by future stud-
ies. Our database, while small (n = 23 lesions), was suffi-
cient to assess the classification potential and feasibility of
our analysis method, but a higher number of cases is desired.
Ideally, every acquisition should image the entire 3D lesion;
however, because of scan-time limitations, we were restricted
to a single 2D slice. This should not be too limiting though, as
a previous study17 compared single-slice 2D HiSS data with
3D DCEMRI data of the entire lesions and found that they
performed similarly in the lesion classification task. Work
has been performed23 to use sensitivity encoding (SENSE) to
accelerate HiSS acquisitions, and in the future it will allow
acquisition of high resolution data from multiple slices. Ac-
quisition at 3.0T instead of 1.5T would increase the signal-
to-noise ratio (SNR) of our acquired data. This could make
low-magnitude off-peak components of water spectra more
readily visible. Frequency shifts due to magnetic susceptibil-
ity would also be greater at higher field strength, so off-peak
components may become better resolved from the main water
peak.

5. CONCLUSION

In conclusion, we have shown that off-peak components
of water-resonance spectra originating from voxels within
malignant breast lesions often have larger magnitudes rela-
tive to their water-peak height than those within benign le-
sions. We have developed an automated method of identify-
ing these largest off-peak components within HiSS-imaged
breast lesions. Our method also automatically extracts the
average of these largest off-peak components’ magnitudes
within a lesion as a means to classify lesions as malignant
or benign. We have shown that features extracted from HiSS

Medical Physics, Vol. 41, No. 1, January 2014
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data can be quite effective in separating malignant from be-
nign lesions even though HiSS images are acquired without
an injected contrast agent. In the future, it may be possi-
ble to combine these methods as well as other noncontrast
breast MR imaging methods (e.g., DWI) to further improve
accuracy of noncontrast-enhanced (e.g., screening and/or di-
agnostic) breast MRI exams.
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