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Abstract. This study proposes two new dynamic assignment algorithms to match 
refugees and asylum seekers to geographic localities within a host country. The first, 
currently implemented in a multiyear randomized control trial in Switzerland, seeks 
to maximize the average predicted employment level (or any measured outcome of 
interest) of refugees through a minimum-discord online assignment algorithm. The 
performance of this algorithm is tested on real refugee resettlement data from both the 
United States and Switzerland, where we find that it is able to achieve near-optimal 
expected employment, compared with the hindsight-optimal solution, and is able to 
improve upon the status quo procedure by 40%–50%. However, pure outcome maxi
mization can result in a periodically imbalanced allocation to the localities over time, 
leading to implementation difficulties and an undesirable workflow for resettlement 
resources and agents. To address these problems, the second algorithm balances the 
goal of improving refugee outcomes with the desire for an even allocation over time. 
We find that this algorithm can achieve near-perfect balance over time with only a 
small loss in expected employment compared with the employment-maximizing algo
rithm. In addition, the allocation balancing algorithm offers a number of ancillary ben
efits compared with pure outcome maximization, including robustness to unknown 
arrival flows and greater exploration.

Funding: Financial support from the Charles Koch Foundation, Stanford Impact Labs, the Rockefeller 
Foundation, Google.org, Schmidt Futures, the Stanford Institute for Human-Centered Artificial 
Intelligence, and Stanford University is gratefully acknowledged. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.0445. 
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1. Introduction
Host countries have, in recent years, been faced with 
increasing flows of refugees and asylum seekers. Cur
rently, the United Nations Refugee Agency estimates 
that there are over 35 million refugees worldwide 
(United Nations 2023). In most countries that accept 
refugees and/or asylum seekers, refugees and asylum 
seekers are assigned and relocated across various local
ities by migration authorities. The capacities or target 
distributions of refugees across the localities are deter
mined by authorities on a yearly or other regular basis.

The goal of host countries is to help these new arrivals 
achieve economic self-sufficiency and other positive 
integration outcomes. Accordingly, a number of coun
tries have begun to explore and implement outcome- 
based geographic matching in their refugee resettlement 
and/or asylum programs. Therefore, recent research 
studies the problem of efficiently assigning refugees 

to localities in order to maximize outcomes such as 
employment (Bansak et al. 2018, Ahani et al. 2021). This 
research falls within a broader area of policy interest as 
national resettlement programs seek new approaches to 
help ever-increasing flows of refugees and asylum see
kers to better integrate (e.g., find employment) in their 
host countries (e.g., Andersson et al. 2018, Mousa 2018, 
Gölz and Procaccia 2019, Olberg and Seuken 2019, 
Acharya et al. 2022, Ahani et al. 2023).

Outcome-based matching was introduced in the con
text of refugee and asylum-seeker assignment by Bansak 
et al. (2018), with the goal of leveraging administrative 
data to improve key refugee outcomes (e.g., employ
ment in the host country) by optimizing refugees’ geo
graphic assignment within a country. To do so, machine 
learning methods are used to predict refugees’ expected 
outcomes in each possible landing location as a function 
of the refugees’ personal characteristics. Those expected 
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outcomes are then used as inputs into constrained 
matching procedures to determine a location recom
mendation for each refugee.

A greedy approach to the refugee assignment 
problem—one that assigns each refugee to the location 
(among those that are available) with the highest pre
dicted outcome—is suboptimal when the resettlement 
locations have capacity constraints. This is the case in 
practice, where each location only has a certain number 
of slots in a given time period. For the United States, 
the time period is one year, but this can vary across 
host countries. Therefore, Bansak et al. (2018) and other 
previous studies on outcome-based refugee matching 
(e.g., Gölz and Procaccia 2019, Ahani et al. 2021) have 
proposed optimal matching approaches to the refugee 
assignment problem that take into account these capac
ity constraints.

This paper, along with the concurrent work of Ahani 
et al. (2023), are the first two papers to consider the 
dynamic aspect of the outcome maximization matching 
problem. In many countries—including the United States, 
Switzerland, Sweden, Netherlands, and Norway— 
refugees and asylum seekers must be assigned to a local
ity virtually immediately upon being processed by reset
tlement authorities. As a result, each arriving refugee or 
asylum-seeker case (an individual or family) is typically 
assigned in an online fashion, and these assignments can
not be reversed. The dynamic aspect of this problem 
introduces a key trade-off between immediate and future 
rewards: assigning a current case to a location results in 
an immediate reward (namely, the employment score of 
the current case at that location), but also uses up a slot at 
that location for future arrivals.

This paper introduces two new dynamic matching 
algorithms. The first is a “minimum-discord” algo
rithm that seeks to maximize expected employment 
(or any alternative outcome of interest) and is cur
rently employed in a pilot implementation in Switzer
land, undertaken by the Swiss State Secretariat of 
Migration in collaboration with academic researchers. 
Details on the implementation in Switzerland are pro
vided in Section 5. The minimum-discord algorithm 
achieves near-optimal employment compared with 
the hindsight-optimal solution on real-world U.S. and 
Swiss data. However, it can result in an imbalanced 
allocation to the localities over time, which leads to 
implementation difficulties and an imbalanced work
load for the resettlement offices.

The second algorithm proposed in this paper is an 
extension that integrates principles of load balancing 
into the objective. Because each locality has a given 
amount of resources (e.g., resettlement officers and 
service providers) that cannot be transferred across 
localities, maintaining a steady workload is a first- 
order concern of resettlement agencies. Hence, build
ing on the minimum-discord outcome maximization 

algorithm and borrowing ideas from queuing theory, 
the second algorithm incorporates wait time minimiza
tion into the assignment process. This allows refugees to 
be dynamically assigned to localities in a way that 
improves their expected employment scores, while also 
maintaining a balanced allocation across the localities 
over time. Furthermore, the allocation balancing algo
rithm also offers ancillary benefits. In particular, it natu
rally handles the real-world scenario in which the total 
number of arrivals in a given period is not known in 
advance and helps to improve the resilience of the 
underlying learning system through greater exploration.

This paper uses data from both the U.S. and Swiss con
texts to demonstrate the expected performance of the pro
posed approaches. Furthermore, we discuss real-world 
constraints, phenomena, and difficulties that arose dur
ing Swiss implementation and our proposed solutions.

1.1. Contributions
1. Minimum-discord outcome-maximizing dynamic 

assignment algorithm. We propose a “minimum- 
discord” online algorithm that assigns arriving refugees 
to locations within a host country. The goal of the algo
rithm is to maximize the sum of individual outcomes 
along a horizon, while obeying the capacity constraints 
of each location. This is accomplished through a Monte 
Carlo-sampling-based method that seeks to minimize 
the probability of choosing the “wrong” assignment in 
each time period compared with an offline benchmark. 
The proposed algorithm is a special case of the Bayes 
Selector algorithm (Vera and Banerjee 2020).

2. Allocation balancing dynamic assignment algo
rithm. We demonstrate that an outcome-maximizing 
assignment (even a hypothetical implementation of the 
hindsight-optimal solution) can result in severe imbal
ance across the localities over time because of clustered 
arrivals of refugees with similar characteristics. Thus, 
we develop a second online algorithm that explicitly 
balances the trade-off between outcomes and having a 
balanced allocation to the localities over time using a 
single parameter, γ, that controls the weight placed on 
allocation balancing versus outcome maximization.

3. Results on real refugee resettlement and asylum- 
seeker data. The results of the proposed methods are 
tested on real asylum-seeker data from Switzerland and 
refugee-resettlement data from one of the largest reset
tlement agencies in the United States. In both cases, the 
proposed algorithms are able to improve upon the sta
tus quo assignment procedures by roughly 40%–50% 
and achieve 95%–98% of the hindsight-optimal solution. 
Using the allocation balancing algorithm, we demon
strate the trade-off between total employment and hav
ing a balanced allocation over time as γ varies. In both 
contexts, we find that near-perfect balance over time can 
be achieved with little loss in employment.
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4. Implementation details. We describe practical 
constraints and learnings that arose during implemen
tation in Switzerland. For example, we discuss how 
capacity updating throughout the year (resulting from 
uncertainty about the total number of individuals that 
will arrive each year) and a requirement to balance the 
geographic distribution of certain nationalities are trea
ted in practice.

1.2. Related Literature
This paper is related to the existing literature on refu
gee assignment, online stochastic bipartite matching, 
and matching with queues. In what follows, we pro
vide an overview of the most relevant literature from 
each stream.

1.2.1. Geographic Assignment of Refugees and Asy
lum Seekers. Prior research has proposed different 
schemes for refugee matching both across and within 
countries based on refugee and/or host location prefer
ences (Moraga and Rapoport 2014, Fernández-Huertas 
Moraga and Rapoport 2015, Andersson and Ehlers 
2020, Nguyen et al. 2021, Delacrétaz et al. 2023). How
ever, the lack of systematic data on preferences has thus 
far been a barrier to implementing these preference- 
based schemes.

In contrast, outcome-based matching was introduced 
in the context of refugee and asylum-seeker assignment 
by Bansak et al. (2018), with the goal of leveraging 
already-existing data to improve key refugee outcomes 
(e.g., employment in the host country). However, the 
dynamic aspect of the problem is not considered by 
Bansak et al. (2018), nor by most previous studies on 
outcome-based refugee matching (Gölz and Procaccia 
2019, Ahani et al. 2021, Acharya et al. 2022). Although 
Andersson et al. (2018) consider dynamically matching 
asylum seekers to localities, they focus on the goals of 
Pareto efficiency and envy-freeness across localities, as 
opposed to outcome maximization.

Ahani et al. (2023) is the closest to this paper. Like 
this paper, Ahani et al. (2023) propose a dynamic 
matching algorithm to assign arriving refugees to loca
tions within host countries with the goal of outcome 
maximization. The potentials method proposed in Ahani 
et al. (2023) is currently implemented by a resettlement 
agency in the United States. For each newly arriving 
household, both the algorithm proposed in this paper 
and that of Ahani et al. (2023) use a sampling procedure 
to solve many instances of the offline matching prob
lem for the remaining horizon. Ahani et al. (2023) then 
propose using dual variables from the offline problems 
to inform the assignment of the current arrival—a 
method referred to as the potentials method. The algo
rithm proposed in this paper, on the other hand, 
assigns the current arrival to the location that mini
mizes the probability of a disagreement between the 

online algorithm and an offline benchmark. Both meth
ods perform similarly on the data used in this paper. 
Our “minimum-discord” method, however, both is eas
ily explainable and extends naturally to include alloca
tion balancing, which is the focus of this paper.

Recent work also considers the relationship between 
the prediction and matching stages of dynamic refugee 
assignment (Bansak et al. 2023, Kasy and Teytelboym 
2023) and group-fairness concerns (Freund et al. 2023).

1.2.2. Stochastic Online Bipartite Matching. Refugee 
matching is a special case of stochastic online bipartite 
matching, which has been a focus of operations and 
computer science researchers since the seminal work of 
Karp et al. (1990).

Two key features differentiate the refugee-matching 
setting from the classic online matching problem. First, 
it is a weighted matching problem. Second, there is 
effectively an infinite number of arrival “types,” 
because of the large number of underlying covariates 
used to predict the outcome weights. Although 
weighted online matching problems are well-studied, 
most existing methods rely on an assumption of finite 
types (Devanur and Hayes 2009, Vee et al. 2010, Jaillet 
and Lu 2012, Bumpensanti and Wang 2020). Although, 
in theory, the covariate domain could be discretized 
and adapted to a finite-type setting, this is undesirable. 
Although there is prior research on distribution-free 
resource allocation problems, the performance guaran
tees of these algorithms nonetheless rely on a statio
narity assumption (Devanur et al. 2019), which would 
not hold in practice in our setting. Rather, we seek to 
develop explainable methods that perform well and 
do not focus on theoretical performance guarantees. 
The proposed method bears similarities to recent work 
by Vera and Banerjee (2020).

Vera and Banerjee (2020) introduce a new framework 
for designing online policies, given access to an offline 
benchmark. This framework is used to develop a meta- 
algorithm (“Bayes Selector”) for implementing low- 
regret online decisions across a broad class of allocation 
problems, including the assignment problem. In each 
state, the Bayes Selector chooses an action at each time 
interval that minimizes the likelihood of disagreement 
with an offline benchmark.

When the number of arrival types is finite, Vera and 
Banerjee (2020) show that the Bayes Selector algorithm 
achieves constant regret for many special cases of the 
online assignment problem. This result is also proven in 
Arlotto and Gurvich (2019) for the multisecretary prob
lem. In this paper, we propose an outcome maximiza
tion algorithm that can be thought of as a special case of 
a Bayes Selector with infinite arrival types. When arrival 
types are drawn from a continuous distribution, Bray 
(2019) shows that the multisecretary problem—which is 
a special case of the refugee matching problem with 
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only two locations—no longer has bounded regret. 
Additionally, Freund and Banerjee (2019) extend the 
methods introduced in Vera and Banerjee (2020) to 
more general decision-making problems, in particular, 
showing that the uniform regret bound does not hold in 
settings with large uncertainty about the time horizon, 
which is likely to be the case in the refugee matching 
context.

1.2.3. Allocation Balancing. This paper develops an 
online matching algorithm that not only improves out
comes for refugees, but also balances the allocation to 
receiving locations (or, more generally, assignment 
options) over time. This aspect of the paper is related to 
one-sided matching with queues. In our setting, each 
location can be thought of as having a dedicated queue 
because location assignments are made immediately 
and cannot be changed.

A subset of online bipartite matching literature con
siders queuing systems. The topology of the queuing 
system is critical to the analysis method, and most 
research in this area either focuses on optimally 
designing the underlying topology or has topology 
that is substantially different from the refugee match
ing context (e.g., Vera et al. 2020, Afeche et al. 2022, 
Leshno 2022).

Balseiro et al. (2021) propose an algorithm for online 
resource allocation that combines a welfare-maximizing 
objective with an arbitrary regularizer on the total con
sumption of each resource. This regularizer term can 
model what they call “load balancing”—ensuring that 
the total level of consumption of each resource is bal
anced at the end of the horizon. Although this has a 
similar flavor to our problem, we are interested in main
taining evenness in the allocation throughout the horizon.

The kidney-exchange literature also considers queue
ing models. For example, Ünver (2010) develops an 
online mechanism for allocating kidneys with the goal 
of reducing wait time. Bertsimas et al. (2013) develop 
online kidney-allocation policies that balance efficiency, 
fairness, and wait times. Recent work by Ding et al. 
(2018) also considers trade-offs between efficiency and 
fairness. However, unlike in our setting, the kidney- 
exchange problem has a single queue.

Because of the structure of the refugee matching 
problem (namely, the fact that each location has its 
own queue, and decisions are irrevocable), the alloca
tion balancing problem bears similarity to load balanc
ing in computer science (Azar 1998). However, the 
utility of load-balancing algorithms is limited in our 
setting because of our additional goal of outcome max
imization. Thus, in this paper, we develop a new 
approach that combines the objective of maximizing 
employment outcomes with achieving a balanced allo
cation over time.

The remainder of the paper is organized as follows. 
Section 2 provides background on the refugee resettle
ment processes in the United States and Switzerland 
and more details on the data sets used in this study. 
Section 3 defines notation and describes the assump
tions of the model and dynamics. Section 4 formulates 
the offline outcome maximization assignment prob
lem, proposes an algorithm for the online setting, and 
demonstrates the performance of the method using the 
U.S. and Swiss data. Section 5 provides further details 
on the implementation in Switzerland, including prac
tical constraints and challenges. Section 6 introduces 
the allocation balancing component of the problem 
and proposes a new heuristic that balances employ
ment outcomes and wait time. Section 7 concludes.

2. Settings and Data
This section provides more detail on the two specific 
contexts from which data are used in this paper: the ref
ugee resettlement process in the United States and the 
asylum procedure in Switzerland. The proposed meth
ods are also applicable to many other countries where 
refugees and asylum seekers must be dynamically 
assigned to localities, including Sweden, Netherlands, 
and Norway.

2.1. Settings and Dynamics
In the U.S. context, we focus on the resettlement 
of United Nations High Commissioner for Refugees 
(UNHCR) refugees, who are granted refugee status in 
the United States prior to their arrival. In the United 
States, the target number of refugees that will be 
resettled each year is determined by an annual cap set 
in advance of the start of the year. Refugees who are 
accepted into the United States are then distributed 
across ten nongovernmental resettlement agencies. 
Finally, each of those agencies maintains its own net
work of localities to which they assign newly arrived 
refugees, with capacities for each locality also deter
mined in advance.

In the Swiss context, we focus on asylum seekers, who 
request admission and asylum at a port of entry after 
entering a host country. In Switzerland, asylum seekers 
whose claims are not rejected are assigned on a case-by- 
case basis by the Swiss State Secretariat for Migration 
(SEM) to one of the 26 Swiss cantons. The assignment of 
asylum seekers across the cantons must follow an annu
ally mandated proportionality key, which dictates the 
cantons’ relative capacities to receive asylum seekers as 
a function of their population sizes.

In both the U.S. and Swiss contexts, the geographic 
placement for some refugees/asylum seekers is prede
termined for reasons of family reunification, medical 
needs, or other special circumstances. For refugees and 
asylum seekers whose placement is not predetermined, 
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decisions in both the United States and Switzerland 
are driven primarily by capacity constraints at the 
locations, without a systematic attempt to optimize 
with respect to refugee/asylum-seeker outcomes. In 
Switzerland, the assignment to cantons is explicitly 
done on a quasi-random basis, subject to the propor
tionality key.

Finally, the assignment batch size also varies by coun
try. In Switzerland, the assignment is done on a one-by- 
one basis for each family after their postarrival proces
sing, and a number of other countries (e.g., Netherlands) 
follow a similar procedure. In the United States, assign
ment decisions are made on a weekly basis. Although 
the paper focuses on one-by-one assignment, Online 
Appendix EC.4 discusses how the proposed methods 
can be readily extended to settings with batching.

2.2. Data and Scope
For the U.S. context, we use (de-identified) data on 
refugees of working age (ages 18–64) who were re
settled in 2015–2016 into the United States by one of the 
largest U.S. refugee resettlement agencies. For the Swiss 
setting, we use (de-identified) data on adult asylum see
kers geographically assigned in 2015–2016 who eventu
ally received full protection status specified under the 
Geneva Convention, as well as those whose claim for 
Geneva protection status was rejected, but were awarded 
subsidiary protection.

In both contexts, placement officers centrally assigned 
each case (individual or family) in the data set to one of 
the possible locations—the 26 cantons in Switzerland 
and about 30 resettlement locations in the U.S. agency’s 
network. Both data sets contain details on the refugees’/ 
asylum-seekers’ characteristics (such as age, gender, ori
gin, etc.), their assigned locations, and their employment 
outcome to be used for optimization. In the U.S. context, 
the outcome is whether each refugee was employed 
90 days after arrival at their assigned location. Refugees’ 
employment status 90 days after their arrival is the key 
(and only) outcome metric that the resettlement agencies 
are required to report and that is tracked by the U.S. gov
ernment. In Europe, labor market integration is typically 
more challenging and takes longer for asylum seekers, 
and, hence, we use a longer-term employment outcome 
in the Swiss context. Specifically, we focus on whether 
each asylum seeker attained any employment within 
their first three years after assignment.

In both contexts, only “free cases” (those without 
prior family ties in their host country) are included in 
this study. This allows us to present a model and algo
rithm that aligns with the ongoing Swiss implementa
tion, which is scoped to include only free cases, as will 
be described in Section 5. However, Online Appendix 
EC.3 also shows how the proposed approaches can be 
extended to include cases with family ties, as may be 
the case in future implementations.

For each case, a vector of employment scores is 
constructed, where each element corresponds to the 
average probability for individuals within that case 
of finding employment (within 90 days for the United 
States and within three years for Switzerland) if 
assigned to the particular location. To generate each 
case’s outcome score vector, the same methodology is 
employed as in Bansak et al. (2018). Specifically, we use 
the data to generate models that predict the expected 
employment success of an individual at any of the loca
tions, as a function of their background characteristics. 
These models were then applied to the cases who were 
assigned in 2015–2016 (n� 1,919 for the United States 
and n� 4,523 for Switzerland) to generate their ex
pected employment success at each location. This 
paper assumes that the employment scores are given 
for each case and evaluates the proposed assignment 
algorithms relative to these predicted values.

The free cases that were assigned in 2016 (n� 1,175 for 
the United States and n� 1,502 for Switzerland) are trea
ted as the test cohorts in this paper. That is, the proposed 
algorithms are applied to these particular cohorts, in the 
specific order in which the families are logged as having 
actually arrived. The 2015 arrivals are utilized as histori
cal data in the proposed algorithms. To further mimic 
the real-world process by which these cases would be 
assigned dynamically to locations, real-world capacity 
constraints are also employed such that each location 
can only receive the same number of cases that it actu
ally received.

3. Notation and Model
Throughout, [K] denotes the set of integers {1, : : : , K}, 
and 1{·} denotes the indicator function. Additionally, 
ej denotes a vector with a value of one in the j-th com
ponent and zeros elsewhere. For a matrix W ∈ RN1×N2 

and vector w ∈ RN2 , [w; W] ∈ R(N1+1)×N2 denotes a new 
matrix whose first row is w.

We will assume throughout most of the paper that 
the total number of arrivals in a given year is known in 
advance. This assumption is generally not true and is 
discussed further in Section 5.3. In reality, the projected 
arrival numbers determined by resettlement authori
ties (for instance, the numbers projected by each of the 
ten U.S. resettlement agencies in consultation with 
the U.S. State Department) are revised throughout the 
year. Under this assumption, without loss of generality, 
we will assume that one case arrives each time period 
and, thus, let T denote both the number of arrivals and 
the time horizon. Let M be the number of localities, 
indexed by j, with capacities/slots sj, and 

PM
j�1 sj � T. 

The capacities represent the number of individuals that 
each location can accommodate.

The arriving cases are indexed by t. For simplicity of 
exposition, it will be assumed that each case comprises 

Bansak and Paulson: Dynamic Refugee Assignment 
Operations Research, 2024, vol. 72, no. 6, pp. 2375–2390, © 2024 INFORMS 2379 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
01

:6
46

:4
30

0:
d8

40
:b

95
c:

bc
4b

:d
43

e:
f4

27
] 

on
 1

3 
Ja

nu
ar

y 
20

25
, a

t 1
0:

30
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



exactly one individual or, equivalently, that the capaci
ties are set at the case level (instead of the individual 
level), which aligns with the ongoing implementation 
in Switzerland. This is further discussed in Online 
Appendix EC.3.1, which also shows how the proposed 
methods can be extended to account for varying case 
sizes, along with individual-level capacities, as may be 
the situation in future implementations. We will let 
aj(t) be the number of cases allocated to location j after 
the allocation at time t and define s̃j(t) :� sj� aj(t) as the 
remaining slots at location j after time t (i.e., at the start 
of time t+1).

The assignment of case t to location j results in a sca
lar outcome, wtj. In the U.S. context, the value of wtj 
represents the probability that case t will find employ
ment within 90 days if assigned to location j, and in the 
Swiss context, it is the likelihood of finding employ
ment within the first three years. In this paper, the out
come scores wtj are assumed to be known. In practice, 
they are estimated using a machine learning model 
that takes a large number of covariates as input (see 
Bansak et al. 2018). In the online assignment problem, 
an arriving case is completely defined by its employ
ment score vector, wt (which is a function of the case’s 
underlying covariates). Thus, we will use the matrix W 
with elements wtj to denote an arbitrary population of 
T cases. Additionally, let Wt be shorthand for a popu
lation of arrivals from time t through T. We will 
assume that every free case can be assigned to any 
location with remaining capacity. In reality, even free 
cases may have idiosyncratic restrictions on which 
locations they can be assigned to (e.g., for medical rea
sons). This is further discussed in Online Appendix 
EC.3.3.

We will work in the underlying probability space 
(Ω,F ,P), where ω ∈Ω denotes a sample path of arrivals. 
Thus, there is a one-to-one correspondence between Ω
and the set of all matrices W, and fixing ω also fixes wt 
for all t ∈ [T]. The vectors s̃(t� 1) and set {wl}l∈[t] fully 
describe the state of the online assignment problem at 
time t. Therefore, let St :� (s̃(t� 1), {wl}l∈[t]) denote the 
state at time t. Note that if the arrivals in each time 
period are assumed to be independent, then the state 
could be described simply by s̃(t� 1) and wt. To formal
ize the dynamics of the problem, the following features 
are assumed: 

1. Blind Sequentiality: The cases are assigned in an 
order that is exogenously determined and unknown in 
advance, and each case t must be assigned before case 
t+ 1 is assigned.

2. Nonanticipativity: Each case t is assigned without 
knowledge of the outcome scores of the future arrivals.

3. Permanence: Assignments cannot be changed 
once they are made.

These features are representative of the real-world 
dynamics in many countries. Online Appendix EC.4 

demonstrates how batching, which violates the nonan
ticipativity assumption, can be incorporated into the 
proposed algorithms, resulting in performance gains.

The binary variables ztj are the key decision vari
ables, with ztj� 1 if case t is assigned to location j and 
ztj� 0 otherwise. Let Φ denote a full assignment of cases 
to locations such that the capacity constraints are satis
fied, and let φ(t) denote the assignment for case t (and, 
thus, ztφ(t) � 1). Therefore, wtφ(t) is the outcome of case t 
under assignment Φ, which could also be written as 
P

j∈[M]ztjwtj. The total employment score of matching Φ 
is given by

w(Φ) :�
XT

t�1
wtφ(t) �

XT

t�1

XM

j�1
wtjztj: (1) 

3.1. Queueing Model
To capture the allocation balancing problem, each loca
tion will be treated as a server with a dedicated queue. 
Although there are no physical queues, this modeling 
framework captures the relevant trade-offs. To that 
end, it is assumed that each location has a processing 
rate, ρj, based on the resources (i.e., resettlement officers, 
service providers, and other related resources) at that 
location. This is the rate at which location j can handle 
incoming cases. For example, if ρj � 1=2, then location j 
is able to handle one case every two periods, on aver
age. Resettlement officers, service providers, and local 
community resources cannot be moved across loca
tions. Therefore, for simplicity of exposition, we assume 
that ρj is stationary. However, it is straightforward to 
adapt the analysis and proposed techniques to settings 
where ρj varies over time or by features of the cases. We 
will assume throughout that capacities are set to be 
commensurate with processing rates, so that ρjT � sj. 
Note that this assumption is essentially met by design 
in the resettlement program, as capacities for each loca
tion are programmatically decided on the basis of the 
resources at each location. However, in practice, the 
value of ρj could also be determined through interviews 
with case officers, particularly to understand case-level 
heterogeneities in processing rates.

The build-up of location j at time t, for t> 2, is given 
by

bj(t) � max{0, bj(t� 1)� ρj} + ztj, (2) 

with bj(1) � z1j for all j ∈ {1, : : : , M}. This is the build-up 
up to and including the assignment at time t, but before 
the processing at time t. This represents the number of 
cases either waiting or in process at time t. For each 
location, the ideal build-up level is in the interval (0, 1], 
indicating that the location is actively settling a case, 
and no cases are waiting. When bj(t) > 1, cases are wait
ing to be processed at location j, and when bj(t) � 0, 
location j is idle.
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4. Outcome Maximization
This section proposes a minimum-discord online 
assignment algorithm that seeks to maximize the sum 
of outcome scores across the horizon. In this section, 
the build-up at each location is not considered. Section 
6 will extend this algorithm by proposing a modified 
version that additionally seeks to minimize build-up.

First, we introduce the offline version of the outcome 
maximization problem. For a given set of arrivals W, 
the offline optimization problem is:

(OUTCOMEMAX) 

max
Z

XT

t�1

XM

j�1
wtjztj

s:t:
XM

j�1
ztj � 1 ∀ t ∈ [T]

XT

t�1
ztj � sj ∀ j ∈ [M]

Z ∈ {0, 1}T×M, 

where Z is the assignment matrix with elements ztj. The 
solution to OUTCOMEMAX is the outcome maximizing 
assignment for a population W. When a particular pop
ulation or sample path is specified, we may write this 
problem as OUTCOMEMAX(W) or OUTCOMEMAX(ω), and 
its optimal objective value represents an upper bound 
for any assignment of that population or sample path. 
It is well known that an optimal solution to OUTCOME
MAX can be found by solving the linear programming 
(LP) relaxation of OUTCOMEMAX (Bertsimas and Tsitsik
lis 1997). Thus, solving OUTCOMEMAX is generally fast 
(e.g., for T ≤ 3,000, OUTCOMEMAX can be solved in less 
than one second). See Online Appendix EC.5 for 
detailed run-time metrics.

The true online assignment problem is a dynamic 
program. In other words, the algorithm must make an 
assignment, given the current state, without knowl
edge of the outcome score vectors of future arrivals. 
Because of the online nature of the problem, it is helpful 
to let the notation OUTCOMEMAX(Wt, s̃(t� 1)) describe 
solving OUTCOMEMAX for time steps t onward for popu
lation Wt, starting with capacities s̃(t� 1).

In theory, the optimal solution to the dynamic prob
lem could be found by solving Bellman’s equation, 
given by

Vt(St) � max
φ(t)∈[M]

 

wtφ(t) +

Z

ω∈Ω
P(ω |St)Vt+1(s̃(t�1)� eφ(t),

{wl}l∈[t] ∪w(ω)t+1)

!

s:t: eφ(t) ≤ s̃j(t�1) ∀j∈ [M]: (3) 

The optimal policy is the maximizer of the right-hand 
side of the equation above. Because of the so-called 
“curse of dimensionality” (Bellman 1966) arising from 
the large number of locations and continuous outcome 
scores, Problem (3) cannot be solved directly, even if 
the probabilities P(ω |St) were known. Many heuristics 
and approximation methods have been proposed to 
solve Problem (3). Our chosen solution method, a spe
cial case of the Bayes Selector method introduced in 
Vera and Banerjee (2020), is described in the following 
section.

4.1. Minimum-Discord Online Algorithm
Let

Q(φ(t), St) :�

(

ω ∈ Ω : φ(t) ∉ arg max
j
(wtj

+ Vt+1(s̃(t� 1)� ej, {wl}l∈[t] ∪ w(ω)t+1))

)

,

(4) 

be the event that assigning case t to location φ(t) is not 
optimal, according to OUTCOMEMAX(ω). This definition 
allows for the possibility that there are multiple optimal 
decisions, according to the offline benchmark. Further
more, let q(φ(t), St) :� P[Q(φ(t), St) |St] be the disagree
ment probability. The most general version of the Bayes 
Selector algorithm proposed by Vera and Banerjee 
(2020) chooses the location at time t that minimizes 
q(φ(t), St). The algorithm proposed in this paper 
chooses the location that minimizes an approximation 
of these disagreement probabilities in each time period. 
This approach is referred to as minimum-discord because 
the goal is to minimize the likelihood of disagreement 
with the offline optimal solution at time t. We note that 
this method does not take into account the degree of 
disagreement. An alternative approach could select the 
location that minimizes the expected optimality gap, 
as opposed to minimizing the likelihood of making a 
suboptimal decision. This is elaborated on in Online 
Appendix EC.8.

Vera and Banerjee (2020) establish performance 
guarantees for the Bayes Selector algorithm in many 
settings; however, the assumptions that underlie these 
guarantees do not hold in our setting, which places no 
assumptions on the underlying arrival distribution. 
The focus of this paper is on proposing explainable 
algorithms with strong empirical performance on the 
real-world setting. Nonetheless, in Online Appendix 
EC.1, we provide a characterization of the expected 
regret of any online algorithm in terms of the disagree
ment probabilities, following lemma 1 of Vera and 
Banerjee (2020).
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Because there are no assumptions placed on the 
arrival process, we use a Monte Carlo sampling proce
dure to estimate q(φ(t), St). The intuition is as follows. 
When case t arrives, we generate K random trajectories 
of future arrivals t+1 through T, denoted by {Wk

t+1}
K
k�1. 

For each random trajectory k ∈ [K], the offline problem 
OUTCOMEMAXt([wt; Wk

t+1], s̃(t� 1)) is solved.
Let nj(t) be the number of times that case t is assigned 

to location j across the K trajectories. The quantity 
1� q(j, St)—namely, the probability that location j is an 
optimal action—is approximated by nj(t)=K. Therefore, 
minimizing our approximation of q(j, St) is equivalent 
to assigning case t to location arg maxjnj(t)—that is, the 
location that they were assigned to most often in the 
random instances. The proposed method is formally 
defined below.

Method 1 (MINDISCORD). Case t is assigned to location

φ(t) :� arg max
j∈[M]

XK

k�1
zk

tj, 

with ties broken randomly, where

Zk � arg max
Z

OUTCOMEMAX([wt; Wk
t+1], s̃(t� 1)):

The Monte Carlo sampling approach requires a 
“sampling population” from which to draw a sample, 
which we denote by A. In this paper, A comprises the 
2015 arrivals. Algorithm ONLINEMINDISCORD, defined 
below, is the online assignment algorithm that employs 
Method 1 in each time period. We note that the choice 
of A should depend on the level of nonstationarity in 
the arrival process. If the data are highly nonstationary, 
A could comprise a shorter, more recent window of 
arrivals.

Algorithm ONLINEMINDISCORD (Min-Discord Online Assignment) 
1: initialize s̃j(0) ← sj for all j ∈ {1, : : : , M}
2: for t in 1, : : : , T do
3: for k in 1, : : : , K do

4: Wk
t+1← T� t randomly drawn cases from set 

A with replacement
5: Zk← arg max OUTCOMEMAX([wt; Wk

t+1], s̃(t 
� 1))

6: end for
7: φ(t) ← arg maxj

P
kzk

tj (with ties broken randomly)
8: s̃(t) ← s̃(t� 1)� eφ(t)
9: end for

10: return ΦMD � {φ(t)}t�1:::T

4.2. Performance of ONLINEMINDISCORD
Figure 1 shows the results of applying ONLINEMINDIS
CORD to the 2016 arrivals (both U.S. and Swiss). Through
out the paper, unless otherwise specified, we use K� 5 
for ONLINEMINDISCORD. We compare ONLINEMINDISCORD
to four benchmarks: the actual historical assignment, 
the hindsight-optimal solution, greedy assignment, 
and random assignment. The first benchmark assigns 
each case to the location to which they were assigned 
in reality under the status quo procedures. Although, 
for this benchmark, we could measure employment 
according to whether the cases actually found employ
ment in reality (because this is contained in the data), 
for all benchmarks, we measure employment accord
ing to the predicted employment scores, W, so that 
they are all evaluated with respect to the same metric. 
(We note, however, that using actual employment 
results in an almost identical total employment score 
for this benchmark.)

The hindsight-optimal solution, OfflineOpt, is in
cluded as a benchmark because, although it cannot be 
performed in a real-world dynamic context, it sets an 
upper bound of what is achievable by any algorithm. In 
the greedy algorithm, each case is assigned sequentially 
to the location with the highest expected employment 
score for that case, out of locations with remaining 
capacity. Finally, the employment score under random 
assignment for case t is given by 

P
j∈[M]wtjsj=T, which 

we include as a simple reference point. A comparison 
of ONLINEMINDISCORD to the method proposed by Ahani 
et al. (2023) is also included in Online Appendix EC.6, 

Figure 1. Results of Online Algorithms and Benchmarks on U.S. Data (Left) and Swiss Data (Right) in 2016 
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though we note that the methods perform quite 
similarly.

Figure 1 shows the results. On the U.S. data, ONLINE

MINDISCORD achieves 96% of the employment score of 
the hindsight-optimal solution. This is compared with 
the greedy, random, and actual historical assignment 
benchmarks, which achieve 87%, 69%, and 72% of the 
hindsight optimal employment levels, respectively. On 
the Swiss data, ONLINEMINDISCORD achieves 98% of the 
employment score of the hindsight-optimal solution. In 
this case, the greedy, random, and actual historical 
assignments achieve 86%, 64%, and 64% of the hind
sight optimal solution, respectively. Outcomes by cer
tain subgroups (e.g., nationality and sex) are shown in 
Figure EC.8 in the online appendix.

The optimality gap of ONLINEMINDISCORD is primarily 
because of nonstationarity in the arrival processes. 
When the arrival dates of the cases are randomly per
turbed and A is taken to be the 2016 arrivals— 
mimicking a stationary process—the optimality per
centage of the proposed algorithm compared with the 
hindsight-optimal solution increases to about 99.5% on 
both the U.S. and Swiss data. This was calculated as the 
average optimality percentage across 50 random 
instances, where in each instance, the arrival dates of 
the cases are randomly shuffled; in each of these 
instances, the optimality percentage was between 
99.4% and 99.7%. However, the focus of this paper is 
on the performance of the proposed algorithms on the 
real, nonstationary, arrival data.

5. Implementation Details
This section provides details on the current pilot imple
mentation of ONLINEMINDISCORD in Switzerland. Addi
tionally, we discuss implementation complexities that 
motivated the development of a second algorithm, 
described in Section 6.

5.1. Background
In coordination with the SEM in Switzerland and a 
multiuniversity collaboration between researchers from 
ETH Zurich, Stanford University, Dartmouth College, 
Harvard University, and the University of California, 
Berkeley, a multiyear pilot implementation of ONLINE

MINDISCORD is ongoing in Switzerland. The pilot began 
in January 2020 and is projected to end in 2024. As 
described further below, the pilot includes a random
ized control trial (RCT) and targets the optimization 
of three-year employment outcomes; for this reason, 
results are not yet available, and the final results will 
not be available until three years after the completion of 
the pilot. The objective of the pilot is to generate rigor
ous evidence of impact on asylum-seeker employment, 
based upon which a broader and more permanent 

implementation of these methods can then be consid
ered by the SEM.

The pilot implementation applies to all adult asylum 
seekers (or families that include at least one adult) who 
(a) obtained subsidiary or Geneva Convention protec
tion status (and, hence, who are granted asylum and 
allowed to stay in Switzerland), (b) who are free to be 
assigned to any canton (i.e., do not have pre-existing 
family ties, medical constraints, or other special arrange
ments), and (c) are part of the “accelerated procedure” 
track in the Swiss asylum process. The accelerated pro
cedure is used for relatively uncomplicated cases, whose 
status—whether they will be granted asylum or will 
be removed from Switzerland—can be designated in a 
relatively prompt manner, with a target of less than 
100 days.

5.2. Pilot Setup
As described earlier, placement officers in Switzerland 
are in charge of determining the cantonal assignment 
of asylum seekers. In our pilot implementation, the 
placement officers have been provided with special
ized software that generates a recommended canton 
for each asylum seeker case (i.e., family or individual). 
The placement officers maintain the ability to override 
the recommendation, if necessary, but they are encour
aged to take the recommendation; as mentioned, the 
pilot scope includes only asylum-seeker cases that can 
be assigned to any canton. The RCT design is simple: 
each asylum-seeker case that will be assigned is first 
randomly allocated to either the control or treatment 
condition. In the control condition, the canton recom
mendation is generated randomly. In the treatment 
condition, the canton recommendation is generated 
via ONLINEMINDISCORD.

The distribution of asylum seekers in Switzerland fol
lows a cantonal proportional distribution key. Accord
ingly, in our implementation, the assignment of asylum- 
seeker cases is subject to canton capacity constraints 
that follow this proportional distribution key, which is 
enforced separately for the treatment and control cases. 
In other words, the treatment and control cases have 
fully independent capacity at each canton to limit inter
ference in the RCT. The capacity for cases that are out 
of scope (e.g., cases with family ties) are also indepen
dent from the pilot. Furthermore, capacities are set for 
each of the treatment and control cohorts at the case 
level in the pilot implementation. Hence, the imple
mentation of ONLINEMINDISCORD is applied as described 
in the text with cases as the units of interest, though 
with one additional consideration: the proportional dis
tribution constraints must be achieved independently 
for six different nationality groups, in accordance with 
a Swiss legal requirement. The six groups comprise 
asylum seekers from (1) Afghanistan, (2) Turkey, (3) 
Georgia, (4) the Maghreb countries, (5) a handful of 
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specially identified countries (Albania, Benin, Burkina 
Faso, Bosnia and Herzegovina, Ghana, Guinea, Gam
bia, India, Moldova, the Republic of North Macedo
nia, Mongolia, Nigeria, Kosovo, Senegal, and Serbia), 
and (6) all other countries. The need to achieve pro
portional distribution independently for each of these 
six groups is tantamount to—and, hence, is achieved 
by—implementing ONLINEMINDISCORD separately and 
independently for each of these six groups.

5.3. Challenges
Because there is no advance processing prior to the 
arrival of asylum seekers, flows of asylum seekers can 
be somewhat unpredictable. Regional and global events, 
such as conflicts and wars, can lead to sudden changes 
in the types of asylum seekers who are arriving and 
their rate of arrival. Relative to the context of assigning 
UNHCR resettled refugees, this poses a more significant 
challenge for setting and controlling the capacity con
straints, given that the number of cases that will need 
to be assigned by the end of the year (or within any 
period of time) is fundamentally uncertain. This uncer
tainty results in a violation of the modeling assumption 
that T—the total number of arrivals—is known in 
advance.

Nonetheless, ensuring that the distribution of the 
assignments across cantons meets the proportional 
allocation key by the end of each calendar year is of 
critical administrative importance, which requires that 
our capacity targets not exceed the actual number of 
annual arrivals without knowing what that number 
will be in advance. We employ intermittent updating 
of the capacity constraints to deal with this challenge 
in the pilot implementation. Because resources to pro
cess and receive new asylum seekers within each can
ton are limited and cannot freely move across cantons, 
it is also important that assignments to any given can
ton are not too concentrated within a period of time 
(e.g., if a canton’s quota for the entire year were assigned 
to it in a single month).

To deal with both of these issues, we employ recent 
trends to project the number of arrivals in shorter inter
vals (e.g., one to four months) and intermittently add 
capacity, according to the proportional allocation key, 
over the course of the year. In doing so, we are able to 
avoid overloading any canton and protect against a 
divergence from the proportional allocation key. The 
cost, however, is inefficiency in two regards. First, the 
updating process itself entails analyses that cannot be 
easily automated and, hence, requires additional human 
labor. Second, introducing smaller chunks of capacity 
intermittently over time can cut into the ability of the 
algorithm to maximize gains.

These considerations and learnings from the pilot 
implementation have thus motivated our proposal for a 
second algorithm, (ONLINEBALANCE), presented in the 

following sections, that maintains a balanced geographic 
distribution over time. By incorporating this allocation 
balancing component, ONLINEBALANCE not only ensures 
that all locations have a steady stream of arrivals 
throughout the year, thus ensuring that local resources 
in any location are not outstripped by a sudden imbal
anced influx of arrivals at any given time, but also natu
rally ensures that the overall distribution of cases will 
meet the proportionality targets, regardless of uncer
tainty in the arrival numbers.

6. Allocation Balancing
Motivated by learnings from the pilot implementation 
of ONLINEMINDISCORD, this section presents an extension 
that strives to maintain a balanced, proportional alloca
tion over time to each locality by considering each 
locality to be a server with a dedicated queue (see Sec
tion 3.1 for the modeling details).

6.1. Imbalance Under Outcome Maximization
Although ONLINEMINDISCORD performs well in terms of 
maximizing outcomes, it results in a significant imbal
ance in the allocation to localities over time. Figure 2
shows the cumulative allocation to the largest nine loca
tions over the horizon for the U.S. data (left) and Swiss 
data (right) obtained by using ONLINEMINDISCORD.

For the U.S. data, the average queue length (defined 
as max(bj(t)� 1, 0) at location j at time t) across all loca
tions resulting from ONLINEMINDISCORD is 7.5. For com
parison, the average queue length under the actual 
historical assignment is 3.1. Thus, switching to an opti
mization approach does indeed lead to longer queues 
and wait times than under the status quo procedure. 
Similarly, for the Swiss data, the average queue length 
of ONLINEMINDISCORD is 6.3, compared with 3.3 under 
the actual historical assignments. We note that this is 
not simply a consequence of the particular choice of 
online algorithm, nor entirely a consequence of the 
online nature of the problem: even the hindsight- 
optimal solution results in imbalance over time (see 
Figure EC.7 in the online appendix).

This imbalance is primarily driven by nonstationar
ity in the arrival process. Indeed, when ONLINEMINDIS

CORD is applied to the same 2016 data, but with a 
randomly perturbed arrival sequence (and with A set 
to be the 2016 arrival cohort), mimicking a stationary 
process, the average queue length across five random 
instances is 1.7 (see Section EC.6 in the online appen
dix). Because refugee inflows are, in part, because of 
international events, there can be clustering of arrivals 
with specific background characteristics—particularly 
with respect to country of origin, which is one of the 
predictors that underlies the employment scores. This 
can lead to clustering in the subsequent assign
ment, causing imbalance. As described in Section 5, 
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this phenomenon encourages a conservative capacity 
updating approach in order to ensure that no location 
exceeds their proportionality key at the end of the hori
zon. An imbalanced allocation is also highly undesir
able for resettlement service providers who cannot 
move between locations. The allocation balancing 
method, described in the following sections, mitigates 
these issues and provides ancillary benefits.

6.2. Offline Benchmark
Because the number of slots at each location is fixed, 
minimizing queue length/wait time is effectively equiv
alent to minimizing wait time and idle time. Therefore, 
we focus on minimizing wait time explicitly, while also 
noting the subsequent impact of the proposed methods 
on idle time. For simplicity of exposition, we will assume 
that the cost of wait time is identical across locations, 
although extending the algorithm to the nonidentical 
case is straightforward.

First, consider a new variant of the offline benchmark 
that penalizes wait time, given by:

(BALANCE) 

max
Z, b

XT

t�1

XM

j�1
wtjztj � γ

XT

t�1

XM

j�1
⌈bj(t)� 1⌉ 1{bj(t) > 1}

s:t:
X

j∈[M]
ztj � 1 ∀ t ∈ [T]

X

t∈[T]
ztj � sj ∀ j ∈ [M]

bj(t) � max{0, bj(t� 1)� ρj} + ztj

∀ t ∈ {2, : : : , T}, j ∈ [M]

bj(1) � z1j ∀ j ∈ [M]

Z ∈ {0, 1}T×M
:

Recall that bj(t) denotes the build-up at location j at 
time t, and ρj is, again, the processing rate of location j. 
In the objective function of BALANCE, wait time cost is 
incurred when bj(t) > 1, and ⌈bj(t)� 1⌉ is the number of 

cases waiting at time t. The parameter γ (assumed to be 
nonnegative) is a weight that balances the trade-off 
between outcomes and wait time and can be thought of 
as the relative cost of wait time. In practice, this parame
ter could be set either according to a cost-benefit analy
sis, such that the units of measure were commensurate 
with one another, or according to an empirically driven 
decision on a value that results in acceptable balance 
across locations over time.

Let BALANCE(Wt, s̃(t� 1), b(t� 1)) denote solving 
BALANCE from time t onward, for population Wt with 
capacities s̃(t� 1) and initial build-up b(t� 1). Recall 
that in ONLINEMINDISCORD, OUTCOMEMAX is solved K 
times for each new arrival, each time using a randomly 
generated sample of future arrivals. This same approach 
will be used to develop the new online allocation balanc
ing assignment algorithm.

However, unlike OUTCOMEMAX, BALANCE cannot be 
solved to optimality as a linear program. The variables 
bj(t) are defined by nonlinear expressions, the objective 
function of BALANCE is nonlinear, and, finally, the 
assignment variables are binary. Because of advances 
in mixed-integer programming (MIP), BALANCE can still 
be solved using state-of-the-art MIP solvers, and one 
can obtain partial speed-ups by linearizing and relax
ing parts of the problem. However, these approaches 
nonetheless result in substantially increased run-time 
compared with OUTCOMEMAX (see Online Appendix 
EC.5 for further discussion). Thus, instead of using 
BALANCE as our offline problem, we propose an alterna
tive method that uses a greedy version of BALANCE. We 
show that this approach results in strong empirical per
formance and argue why a greedy approach is reason
able for allocation balancing.

6.3. Online Allocation Balancing Algorithm
In this section, we propose a greedy version of BALANCE

to use as the offline problem in the online allocation bal
ancing algorithm. In an online setting, the past assign
ments to each location are readily observable. Thus, at 

Figure 2. Allocation to Nine Largest Locations over Time for U.S. Data (Left) and Swiss Data (Right) Using ONLINEMINDISCORD
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time t, the online algorithm has access to bj(t� 1) for all 
locations j. Consider the following problem at time t:

(GBALANCE) 

max
Z

XT

l�t

XM

j�1
wljzlj�γ

XM

j�1
ztj

&
bj(t�1)�ρj

ρj

’

1{bj(t�1)> 0}

s:t:
X

j∈[M]
zlj � 1 ∀ l∈ {t, : : : ,T}

XT

l�t
zlj � s̃j(t) ∀ j∈ [M]

Z∈ {0,1}N×M
:

GBALANCE takes b(t� 1) as input and weights the 
employment score of case t by the wait time cost 
incurred by case t. The wait time that case t experiences 
if assigned to location j is the length of time until all 
earlier cases are done being processed, starting from 
time t—namely, 

�
(bj(t� 1)� ρj)=ρj

�
. Because b(t� 1) is 

known prior to the t-th arrival, GBALANCE has a linear 
objective function. Thus, as with OUTCOMEMAX, the opti
mal solution to GBALANCE can be found by solving its LP 
relaxation. In fact, solving GBALANCE is as fast as solving 
OUTCOMEMAX, making this problem appealing for use in 
an online setting.

To build intuition for GBALANCE, we present the follow
ing lemma, which bridges BALANCE and GBALANCE. The 
proof of Lemma 1 can be found in Online Appendix EC.2.

Lemma 1. The objective function of BALANCE is equivalent 
to

XT

t�1

XM

j�1
wtjztj

� γ
XT

t�1

XM

j�1
ztj

&
bj(t� 1)� ρj

ρj

’

1{bj(t� 1) > 0}: (5) 

Notice that the objective function of GBALANCE is a greedy 
version of Expression (5)—namely, it does not calculate 
wait time for the entire horizon, but does so only for the 
current arrival (hence the name GREEDY BALANCE).

Although the greedy method does not work well 
when it comes to outcome maximization, it does work 
well for minimizing wait time. In terms of wait time, 
taking a slot from location j immediately increases the 
build-up at location j. This makes it less likely for arri
vals in the near-future to be assigned to location j, 
which could be consequential, especially if, for some of 
these arrivals, location j is highly desirable. However, 
this effect is short-lived: it is only relevant if an arrival 
in the near future (i.e., before the current arrival can be 

fully processed) would also be assigned to location j. 
Thus, if there are many locations, or if location j has few 
slots (implying that the probability of any given arrival 
being assigned to location j is small), this effect is 
mitigated.

Accordingly, we propose a new assignment method. 
Method 2 is similar to Method 1, but assigns the current 
arrival based on the solution to GBALANCE, instead of 
OUTCOMEMAX as in Method 1.

Method 2 (ALLOCATION-BALANCING MINDISCORD). Case t is 
assigned to location

φ(t) � arg max
j∈[M]

X

k∈[K]
zk

tj, 

with ties broken randomly, where

Zk � arg max
Z

GBALANCE([wt; Wk
t+1], s̃(t� 1), b(t� 1)):

The online algorithm based on Method 2 is presented 
as Algorithm ONLINEBALANCE.

Algorithm ONLINEBALANCE (Allocation-Balancing Online 
Assignment) 

1: initialize s̃j(0) ← sj for all j ∈ {1, : : : , M}
2: for t in 1, : : : , T do
3: for k in 1, : : : , K do
4: Wk

t+1← T� t randomly drawn cases from set 
A

5: Zk← arg max GBALANCE([wt; Wk
t+1], s̃(t� 1), 

b(t� 1))
6: end for
7: φ(t) ← arg maxj

P
k∈[K]zk

tj (ties broken randomly)
8: s̃(t) ← s̃(t� 1)� eφ(t)
9: b(t) ←max{0, (b(t� 1)� r)1t>1 + eφ(t)}

10: end for
11: return ΦGB � {φ(t)}t�1:::T

6.4. Performance of ONLINEBALANCE
Recall that the parameter γ controls the trade-off be
tween allocation balancing and outcome maximization. 
Therefore, using historical data, the policymaker can 
tune this parameter to obtain the desired level of 
employment and allocation balance. In situations in 
which the payoff/cost of outcomes, wait time, and idle 
time can all be measured in or converted to a common 
metric (such as dollars), policymakers might want to 
set γ to the specific value that leads to optimization of 
that common metric.

Figure 3 shows the employment level and average 
queue length incurred by various values of γ on both 
the 2015 and 2016 arrivals from United States and Swit
zerland. The vertical axis of Figure 3 shows the employ
ment level under a particular value of γ divided by the 
employment level when γ� 0 (i.e., under pure outcome 
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maximization). The x-axis shows the average queue 
length across affiliates and arrivals. In practice, we 
would not know the “best” value of γ to choose in a 
given year in hindsight and would need to base this 
decision on historical data. Therefore, for the 2016 
cohorts, the value of γ should be chosen using the top 
row of Figure 3 (which uses 2015 data), and the resulting 
employment and build-up can be seen in the bottom 
row. Interestingly, in the 2016 U.S. data (Figure 3, bottom 
left), the highest employment level is not achieved when 
γ� 0, but when γ is slightly positive, likely because of 
idiosyncratic nonstationarities in the arrival process.

As can be seen from Figure 3, build-up can be dra
matically reduced with little loss in employment. The 
ideal region in Figure 3 is the top left—where build-up 
is minimized, and employment is maximized. Based on 
the top row of Figure 3, a policymaker could choose an 

appropriate value of γ to achieve their desired balance 
of employment versus allocation balancing for the 2016 
cohorts.

To illustrate these results in greater detail, Figure 4
shows the allocation of the 2016 arrivals using ONLINE
BALANCE with γ � 0:005. This can be compared with 
Figure 2. From visual inspection alone, it is clear that 
ONLINEBALANCE results in a much more balanced alloca
tion over time. Indeed, the average queue length is less 
than one. Furthermore, the total employment level 
obtained using ONLINEBALANCE with γ � 0:005 is 98% of 
the level obtained with ONLINEMINDISCORD. On the Swiss 
data, the results are similar: the average queue length is 
less than one, and the employment level obtained is 95% 
of the level obtained under ONLINEMINDISCORD.

Thus, with little loss in employment, ONLINEBALANCE
is able to achieve a highly balanced allocation over 

Figure 3. Trade-Off Between Outcome Maximization and Allocation Balancing for U.S. Data (Left) and Swiss Data (Right) 

Note. The top row shows the results using 2015 data, and the bottom row uses the 2016 data.

Figure 4. Allocation to Nine Largest Locations over Time Using ONLINEBALANCE with γ � 0:005 for U.S. Data (Left) and Swiss 
Data (Right) 
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time. A balanced allocation results in an even workload 
for resettlement officers and immediately solves many 
issues associated with updating capacities over time, 
discussed in Section 5. Specifically, the capacity of each 
location could be set according to an upper confidence 
bound on the number of arrivals, without running the 
risk of particular locations exceeding their proportion
ality key by the end of the horizon.

6.5. Ancillary Benefit: Increased Exploration
Although this paper does not focus on the outcome 
prediction methodology, the prediction and assign
ment steps are not independent (as discussed in Kasy 
and Teytelboym 2023). In this paper, it was assumed 
that the outcome scores are known. In practice, these 
outcome scores are estimated from historical data. To 
use the proposed methods, reliable scores must be 
determined for every combination of covariates and 
locations. If these scores are generated via statistical 
estimation procedures, maintaining some degree of 
exploration—assigning similar cases to different 
locations—is crucial to the resiliency of the estimation 
procedure, given the nonstationarity of the environ
ment. The need for exploration in these situations is a 
well-known issue and is not unique to the refugee 
matching context.

A nonstationary constrained contextual bandit frame
work could be used to formally address this problem. 
However, without formalizing the bandit version of this 
problem, we note that ONLINEBALANCE achieves higher 
levels of exploration than ONLINEMINDISCORD. Intuitively, 
because of the balancing component of the objective 
function in GBALANCE, the assignment of a case not only 
depends on their predicted employment score and the 
remaining capacity vector, but also depends on the cur
rent build-up at each location, effectively adding a 
degree of randomness to the assignment.

To demonstrate this idea, we run ONLINEMINDISCORD

and ONLINEBALANCE 100 times each for the first 100 
arriving U.S. cases in 2016, where the arrival order is 
randomly permuted in each of the 100 instances. Let 
case i be the case that arrived i-th in the true arrival 
sequence. In the 100 random instances, they could 
arrive on any of the 100 days. For each case, we com
pute the number of times that they are assigned to each 
location. Let ℓi, 1 be the location to which case i is most 
often assigned, ℓi, 2 be their second most assigned loca
tion, etc. Let nℓi,k be the number of times that case i was 
assigned to their kth-most-assigned location out of the 
100 instances. Figure 5 shows a bar chart of the average 
value of nℓi, k=100 under ONLINEMINDISCORD and ONLINE

BALANCE. Note that 
P

knℓi, k � 100 for each case i. If 
nℓi, 1 � 100, then nℓi,k � 0 for all k>1, and case i did not 
“explore” at all. The more uniform the values of nℓi, k , 
the greater the exploration.

As shown in Figure 5, under ONLINEBALANCE, the aver
age value of nℓi, 1=100 is about 0.61 (meaning that a case 
was assigned to their “top” location 61% of the time), 
whereas under ONLINEMINDISCORD, the value is about 
0.74. Additionally, the average number of unique loca
tions that the same case was assigned to under ONLINE
MINDISCORD was 3.97, versus 5.31 under ONLINEBALANCE. 
This suggests that ONLINEBALANCE may be preferable to 
ONLINEMINDISCORD from a resiliency perspective, natu
rally maintaining a higher degree of exploration.

7. Conclusions
This study proposed two assignment algorithms for 
matching refugees to localities. The first method, ONLI
NEMINDISCORD, seeks to maximize the employment 
scores of all refugees over a horizon by minimizing the 
probability of disagreement between the online algo
rithm and an offline benchmark. On the Swiss asylum- 
seeker data used in this study, this method is able to 
achieve 98% of the hindsight-optimal employment 
score. This is a significant improvement over the actual 
historical assignment, random assignment, and greedy 
assignment, which achieve 64%, 65%, and 87% of the 
hindsight-optimal employment scores, respectively. 
Similar results are found using U.S. data. ONLINEMIN
DISCORD is currently employed in a multiyear pilot in 
Switzerland.

However, ONLINEMINDISCORD—and any outcome 
maximizing algorithm—may result in severe periodic 
imbalance across the localities in the presence of non
stationary arrivals. This creates implementation chal
lenges and an imbalanced workload for the local 
caseworkers, service providers, and other community 
members who help each newly arriving family get set
tled. Furthermore, if local capacities must be revised 
throughout the year because of larger or smaller 
arrival numbers than anticipated, imbalance in the 
allocation over time makes that capacity revision 
process more challenging. Therefore, we proposed a 
second assignment algorithm that directly seeks to 
balance the allocation over time to the localities, while 
still achieving high employment levels. On the U.S. 
and Swiss refugee resettlement data used in this 

Figure 5. Average Probability of Being Assigned to the kth 
Ranked Location, Where Locations Are Ranked at the Case 
Level According to Their Assignment Probabilities 
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study, the allocation balancing method is able to signifi
cantly increase balance with little loss in employment.

By all indications, the challenges and scale of forced 
migration will continue to grow into the future. The 
methods presented here build upon recent research on 
outcome-based refugee assignment and could be inte
grated into refugee resettlement and asylum programs 
in many host countries—such as the United States, 
Netherlands, Switzerland, Sweden, and Norway—to 
help improve the lives of some of the world’s most vul
nerable populations.
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