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ABSTRACT: High concentrations of air pollutants on roadways, relative to
ambient concentrations, contribute significantly to total personal exposure.
Estimation of these exposures requires measurements or prediction of roadway
concentrations. Our study develops, compares, and evaluates linear regression
and nonlinear generalized additive models (GAMs) to estimate on-road
concentrations of four key air pollutants, particle-bound polycyclic aromatic
hydrocarbons (PB-PAH), particle number count (PNC), nitrogen oxides
(NOx), and particulate matter with diameter <2.5 μm (PM2.5) using traffic,
meteorology, and elevation variables. Critical predictors included wind speed
and direction for all the pollutants, traffic-related variables for PB-PAH, PNC,
and NOx, and air temperatures and relative humidity for PM2.5. GAMs
explained 50%, 55%, 46%, and 71% of the variance for log or square-root
transformed concentrations of PB-PAH, PNC, NOx, and PM2.5, respectively,
an improvement of 5% to over 15% over the linear models. Accounting for
temporal autocorrelation in the GAMs further improved the prediction,
explaining 57−89% of the variance. We concluded that traffic and
meteorological data are good predictors in estimating on-road traffic-related
air pollutant concentrations and GAMs perform better for nonlinear variables, such as meteorological parameters.

I. INTRODUCTION

Numerous studies have linked traffic-related air pollutant
exposures to adverse health effects including respiratory
illnesses, cardiovascular diseases,1 pregnancy outcomes, and
mortality.2,3 Exposures to traffic-related pollutants are strongly
influenced by time spent near traffic emission sources, such as
in-vehicle travel, because in the commuting environment,
concentrations of traffic related pollutants like ultrafine particles
(UFP) and volatile organic compounds can be as much as an
order of magnitude higher than in ambient outdoor environ-
ments.4−6 It has been estimated that around 33−45% of UFP7

and 30−55% of diesel particulate matter (PM)8 exposure for
nonsmoking urbanites in Los Angeles comes from population
average time in vehicles. Our previous work indicated that in-
vehicle travel time explained approximately 48% of the variance
in daily exposure to particle-bound polycyclic aromatic
hydrocarbons (PB-PAH) using personal measurements.9

Only a limited number of epidemiological studies10−13 have
specifically examined exposure to traffic-related air pollutants
from commuting, including two in Southern California.11,12

Ritz and Yu12 found an increased risk of low birth weight for
women who traveled more than 60 min to work [unadjusted
odds ratio (OR): 5.57; 95% confidence interval (CI): 1.16−
26.8] using a census-based measure of commuting level.
McConnell et al.11 reported an association of severe wheeze
with commuting time in asthmatic children and the association
was stronger in analysis restricted to children with commuting
times 5 min or longer (adjusted OR: 1.97; 95% CI: 1.02−3.77).
Accurate exposure assessment during commute requires

measurements or predictions of on-road concentrations. In our
previous work, we developed the models for linking roadway
concentrations to in-vehicle concentrations.14,15 These models
can predict in-vehicle particle number concentrations based on
driving and vehicle characteristics and ventilation setting, if
roadway concentrations are known. However, few on-road
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concentration models have been developed. Of the most
relevant studies, Fruin et al.7 developed multiple linear
regression models that explained up to 60−70% of the variance
in the concentrations of particle number (PNC), black carbon
(BC), nitric oxide (NO), and PB-PAH on the arterial roads and
freeways in Los Angeles. Recently, Aggarwal et al.16 used two-
way stratified multilinear regression to predict UFP number
concentrations on Minnesota freeways with a varying perform-
ance (R2: 0.41−0.89) across different size distributions. The
previous studies were generally based on linear models and
limited by the sampling time of day and sampling routes
(mainly on freeways).
Although nonlinear relationships may exist between pollutant

concentrations and predictor variables (e.g., meteorology),17

multiple linear regression has been mostly used in ambient18,19

and on-road7,16 air pollution exposure assessment except for a
few studies. Singh et al.20 modeled ambient nitrogen dioxide
(NO2) and sulfur dioxide (SO2) concentrations using
polynomial regression and artificial neural network. Several
studies obtained improved results using generalized additive
models (GAMs) to predict ambient concentration of UFP and
PM2.5

21,22 as well as NOx and NO2.
23,24 Compared with the

other nonlinear models, GAMs provide a more flexible
modeling framework because of their capabilities of utilizing
both quantitative and qualitative variables, and using a
semiparametric rather than parametric approach to capture
the nonlinear relationship. This provides the potential for better
fits to measurements.25

The aim of this study was to examine the associations
between on-road pollutant concentrations and predictive
variables (traffic, meteorology, and elevation), and to develop
robust models to estimate on-road concentrations of four
important air pollutants, namely, PB-PAH, PNC, NOx, and
PM2.5. The on-road models developed in this study can be
combined with air exchange rates and inside-to-outside ratios to
estimate in-cabin concentrations and personal exposures in
commuting.14

II. MATERIALS AND METHODS
Study Region. The study region (Figure S1 of Supporting

Information) in the metropolitan Los Angeles area covers 3120
km2 and includes Los Angeles and Orange counties in Southern
California. This region has a high population density of 2702
inhabitants per square kilometer and is one of the most densely
populated urbanized areas in the United States.26 It
encompasses a high density of complex roadway networks
and has high levels of traffic congestion,27 which contributes
notably to the air pollution problem in the region.
Measurement of Air Pollutant Concentrations. A

hybrid vehicle (2010 Honda Insight) was used as a mobile
measurement platform that was operated in “green mode”
which shuts off the engine when stationary. This generally
removes any chances of sampling platform exhaust (Section 2.1
of Supporting Information for details). The instruments were
powered using marine batteries and drew air samples from a
fan-driven sampling duct installed across the rear windows to
effectively decrease instrument response time. For consistency,
the mobile monitoring platform was driven in the central
freeway lane, when possible. The sampling routes (Figure S1 of
Supporting Information) included six major commuter and
truck transport freeways, and some arterial and local roads,
totally covering over 210 miles of roads (approximately 75% on
freeways and 25% on surface streets) during 20 days ranging

from March 25 to June 16, 2011 (5:00 a.m. to 23:00 p.m.).
Most of the measurements were conducted periodically (4−10
h a day with a run on a sampling route lasting about 4−5 h)
during 18 weekdays and 2 weekends.
On-road concentrations were measured for four key air

pollutants: PB-PAH was measured using EcoChem PAH
Analyzer (Model PAS 2000; detection limit: 3 ng/m3); PNC
was measured using a condensation particle counter (CPC, TSI
Inc. model 3007; detection size range 10−1000 nm and
detection limit <0.01 particles/cm3); NOx was measured using
2-B Technology NOx analyzer (model 401−410; resolution:
higher of 1.5 ppb or 2% of reading); PM2.5 was measured using
TSI Dust-Trak DRX (Model 8533; detection range: 0.001−100
mg/m3). Regular flow and zero reading checks were conducted
to ensure data quality (Section 2.2 of Supporting Information).
Instruments were periodically calibrated and time was
synchronized to be within 1 s with the Global Positioning
System (GPS) device (Garmin GPSMAP 76CSC, position: <10
m, typical; velocity: 0.05 m/s steady state). The GPS device
also recorded speed of the vehicle and elevation. Data were
recorded by instruments at 1−10 s intervals, which were
visually aligned to adjust for instrument response time and then
time-averaged into one-minute concentrations for model
development.

Predictor Variables. On-road pollutant concentrations are
affected by on-road emission sources, regional background
concentrations, meteorology, and elevation.
Traffic variables tested included the following [(1)−(4)]:
(1) Roadway type serves as an indicator for traffic volume

and roadway configuration.7,16 Road data were extracted
from the ESRI street database based on the 2003
TeleAtlas roadway network (http://www.esri.com).
Roadway types were recorded based on GPS field
observations and calibrated against the classification of
ESRI street database (Section 3.1 of Supporting
Information). In model development, we classified four
types of roadways as dummy variables: freeway/highway
connectors (the roads connecting to different freeways/
highways), freeways/highways, major arterials, or local
roads.

(2) Real-time traffic and diesel truck counts were compiled
from the comprehensive database on freeways and
highways at a 5-min resolution based on measured
total traffic counts and estimated truck counts from the
California Department of Transportation (Caltrans)
Performance Measurement System (PeMS) (http://
pems.dot.ca.gov/) (1720 counters in total). Since the
real-time PeMS measurements only covered 64−69% (in
length) of the freeway/highway roads of the sampling
routes, these variables may be unsuitable for locations
without these traffic data, but are of interest to assess
their predictive power. Therefore, as an alternative to
limited PeMS data, we also obtained the segment-level
2002 annual average daily traffic (AADT) counts (the
latest year available) that were produced by Caltrans staff
based on a combination of measurements and modeled
values. The AADT data covered continuous road
segments for freeways/highways and major surface
streets. Length-weighted AADT was calculated as [sum
(AADT X road length on each segment)/sum (road
length for all segments)]. We selected the 500 m buffer a
priori because we wanted to incorporate local traffic
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impacts while avoiding influences from background and
regional sources. We also tested the influence of different
buffer distances and 500 m seemed a reasonable choice
(Section 3.2 and Figure S2 of Supporting Information).

(3) The number of roadway lanes was derived from the
Caltrans roadway data as an indicator of design volume/
capacity of the roadways.

(4) Traffic speed (miles/hour) was derived from the vehicle
speed based on the GPS device on the mobile platform.
In the field measurement, the driver always attempted to
follow traffic (compared to speeding or too slow), thus
vehicle speed generally reflected surrounding traffic
speed. Traffic speed varied by roadway type (local
roads/arterial vs freeways/highways)15 and traffic con-
dition (e.g., congestion).

Because pollutant concentrations are also strongly influenced
by meteorological parameters such as air temperature, wind,
and humidity,28 we also examined the following meteorological
parameters [(5)−(6)] in the models:

(5) Hourly ambient meteorological parameters (air temper-
ature, °C; relative humidity, %; wind speed, meters/
second abbreviated as m/s; and wind direction) were
obtained from the nearest 14 weather monitoring
stations operated by National Weather Service and
South Coast Air Management District (Figure S1 of
Supporting Information). Wind variables were incorpo-
rated into the models as the product terms by
multiplying wind speed with sine and cosine functions
of wind direction, with positive sine value representing
wind from the east and positive cosine value representing
wind from the north.29 Some studies29,30 have shown
that using the product terms of wind speed by direction
is a good way to incorporate both wind variables in the
GAM. Additionally, we tested the predictive power of the
product terms of wind speed multiplying sine and cosine
functions of the angle between wind direction and
roadway orientation.

(6) On-road air temperature (°C) and relative humidity (%)
differed from ambient temperature and humidity and
were collected simultaneously with pollutant measures at
10-s temporal resolution, and averaged over 1 min. On-
road meteorological parameters were recorded using the
TSI Qtrak monitor.

(7) Although elevation has been used to model ambient air
pollution,31−33 no studies have incorporated it in
modeling on-road pollutant concentrations. We exam-
ined the elevation (meter) for each sampling location
based on the 10-m resolution remote sensing images
from the U.S. National Elevation Data (NED) set
(http://nationalmap.gov/), as a potential predictor.

Data Analysis and Selection of Predictors. Exploratory
data analysis was conducted, i.e., summary statistics, box plots
for identifying outliers, Q−Q plots for normal transformations,
correlation analysis (including correlation coefficients and
scatter plots) for examining the linear or nonlinear relationships
between predictive variables and concentrations (or their
transformations), as well as comparison by groups of roadway
type, ambient wind speed, and air temperature to investigate
their respective influence on variation of on-road concen-
trations. We used R 2.11.1 (Bell Laboratories, New Jersey,

USA) for all the analysis. Section 4.1 of Supporting Information
presents technical details for the data analysis.
Correlation analysis was used for variable screening. To avoid

multicollinearity issues, variance inflation factors (VIFs) were
then used to identify the weakly correlated variables (VIF < 10)
and highly correlated (VIF ≥ 10) groups of variables (traffic
group and meteorology group). Backward-selection was
iteratively conducted until the optimal set of variables were
selected with the maximum R2 or minimum Akaike’s
information criterion (AIC)24 (more details in Section 4.2 of
Supporting Information).

Predictive Models. We examined and compared three
models: linear regression, nonlinear generalized additive models
(GAMs), and autoregressive nonlinear models.
Linear regression model is a widely used regression model in

estimating ambient air pollution. Its version with factor
variables as dummy variables was detailed in Munro.34 We
also compared the relative effects of predictable variables on
different scales on the on-road pollutant concentrations (the
outcome variable) in linear regression by standardizing the
predictive and outcome variables as the standard score (z-
score), i.e., the number of standard deviations an observation or
datum is off its mean over the valid measurement periods (thus
removing the difference in units).35

Multivariable GAMs incorporate both continuous (quantita-
tive) and categorical (qualitative) variables, as well as linear and
nonlinear relationships. The models specify a distribution (e.g.,
normal or binomial) of the dependent variable and a link
function, g relating the expected value of the distribution to the
m predictor variables, and attempt to fit functions f i(xi) to
satisfy:
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where μ̂u is the estimate of the expected on-road concentration
at the location, u; β0 is the model’s intercept; wsu ([wind speed]·
sine([wind direction]) and wcu ([wind speed] · cosine([wind
direction]) represent the product terms of wind speed by
direction, at u; and xu

i , xu
j , and xu

k are other independent
variables among which xu

i are q continuous nonlinear variables,
xu
j are p continuous linear variables, and xu

k are m dummy
variables as factors. fw(wsu,wcu) and f i(...) are the nonparameter
smooth functions used to construct the nonlinear relationships
between (wsu, wcu) or xu

i and g(μ̂u), βj is the linear coefficient for
xu
j , and g(...) is the link function of the expected value and the
independent variables. Here, we assumed that the log or square-
root transformation of the average concentration was normally
distributed based on the normality test (Q−Q plot) under
which assumption, μ̂u = g(μ̂u). In GAMs, each categorical
variable (xu

k, e.g., roadway type) was transformed by the factor
functions to dummy variables with their differential intercept
coefficients solved.36 ε was the normal random error term (ε ∼
N(0, σ2)). Since the smooth functions may be fit using
parametric or nonparametric means, the GAM provides the
potential for more adaptive fits to data than other methods. We
used Wood’s integrated approach25 (mgcv package for R) for
model selection and automatic smoothing parameter selection
with the generalized cross-validation (GCV) criterion to
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determine the smoothing parameters (Section 5 of Supporting
Information). This approach selects the optimal degrees of
freedom for the derivative-based penalized thin plate splines,
and thus the smoothed splines can properly represent the
observed correlation trend while minimizing overfitting.
Autoregressive nonlinear models incorporate significant tem-

poral autocorrelation that the continuous measurement data
may have due to the short averaging time (one minute). With
significant temporal autocorrelation, the uncertainty of the
predictive coefficients may be underestimated. We used the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) to measure temporal autocorrelation and
developed autoregressive models based on eq 1. Here, ε
includes serially correlated errors and is not negligible. The
errors from regression models were assumed to be not
independent in the time series data and that the process
generating the regression errors was stationary. That is, all of
the errors had the same expectation and the same variance (σ2),
and the covariance of two errors depended only upon their
separation s in time. After the empirical test of the residuals
from the independent model (eq 1), we found autocorrelated
regression errors were sufficiently described with a term for the
first-order autoregressive process, AR(1):

ε ϕε= +− vt t t1 (2)

where the ‘random shocks’ νt are assumed to be Gaussian white
noise, vt ∈ N(0, σ). Similar to Zwack et al.,21 we used GAMM
to conduct autoregressive nonlinear modeling in R.

Model Validation. We used the 10 times × 10 folds cross
validation (CV) procedure proposed by Arlot et al.37 that is
suitable for time-series analysis. In the CV, the sampling data
on each day were evenly divided into 10 segments by time
(more details in Section 6 of Supporting Information). One
segment was selected as test data (this was repeated 10 times so
that each segment was used once as test data). For each
segment of test data, training data came from the remaining 9
segments with the constraint that an interval of at least 10 min
between the measurement time of the training samples and that
of the test samples was maintained to avoid temporal
autocorrelation between the test and training data. The above
procedures were repeated 10 times to derive the mean R2 of CV
results. Section 6 of Supporting Information presents the
specific procedures for the CV. Our data showed little temporal
autocorrelation (<0.2) for measurements at 10 min or longer
time intervals. We examined the CV R-squared (R2) between
measured values and predicted values. We also evaluated the
generalizability of the model by conducting independent tests
for each day using the data of all the other days to train the
model and for each freeway or highway using the data of all the
other routes to train the model.

Additional Analysis. Since real-time total traffic and
estimated truck counts were only available on 64−69% of the

Figure 1. Comparison of air pollutant concentrations by roadway (L: local roads, A: arterial roads, F: freeways and highways, C: freeway/highway
connectors; mean: the bar, median: the short line close to the bar’s top), and by ambient wind speed and air temperature (mean for the interval).
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freeway/highway routes surveyed, we examined the effective-
ness of the two variables for modeling traffic-related pollutants
on freeways/highways. Further, we examined the predictive
power of five ambient pollutants, i.e., NO2, NOx, carbon
monoxide (CO), PM2.5, and SO2 from government-operated air
monitoring stations as extra predictors. We matched the
minute-level on-road samples with hourly ambient pollutant
concentrations by time and the shortest distance to the
monitoring stations.

III. RESULTS AND DISCUSSION

On-Road Pollutant Concentrations. The average on-road
concentration was 57.7 ng/m3 for PB-PAH, 35010 particles/
cm3 for PNC, 118.9 ppb for NOx, and 23.1 μg/m3 for PM2.5.
Summary statistics for one-minute average concentrations are
listed in Table S1 of Supporting Information. Data loss was
12.9% for PB-PAH, 55.4% for PNC, 0.4% for NOx, and 25% for
PM2.5, mostly due to low reliability or complete loss due to
instrument malfunction. PB-PAH and PM2.5 were log-trans-
formed and PNC and NOx were square-root transformed to be
normal. The Q−Q plots (Figure S3 of Supporting Information)
showed that the transformations of concentrations were
normally distributed.
The measurements of air pollutant concentrations were

consistent with the previous studies except seasonal and
regional differences (Table S2 of Supporting Information).
The average PNC, NOx, and PM2.5 concentrations of two
earlier studies in Los Angeles6,7 were higher than ours since
their measurements were mainly in winter and spring 2003 and
stable atmospheric conditions occur more often in the cool

season than in the warm season.24 Further, the implementation
of the air quality regulations, especially for the goods movement
corridors, also led to lowering of pollutant concentrations in
more recent years.38

Relationship between Air Pollutant Concentrations
and Predictor Variables. Higher concentrations were
generally observed on freeways/highways and their connectors,
and at lower wind speed (Figure 1). All differences were
statistically significant by Student t and Wilcoxon statistics
(Table S3 of Supporting Information). Moderate to strong
linear Pearson’s or Spearman’s correlation (>0.35) was
observed between traffic-related variables and transformed
concentrations of PB-PAH, PNC, and NOx (Table S4 of
Supporting Information). Among the traffic-related variables,
real-time total traffic and estimated truck counts were only
weakly positively correlated (0.1−0.3) with pollutant concen-
trations, likely due to partial spatial coverage of the traffic data
and uncertainty in estimated truck counts. In addition, large
differences in truck counts were accounted for by the road type
variable. Road-length weighted AADT had slightly higher
correlation with transformations of concentrations than AADT.
Scatter plots (Figure 2 a−c) also showed linearly increasing
trends between traffic variables and transformed concentra-
tions. Unlike the other three pollutants, PM2.5 correlations with
air temperatures and wind speed were stronger than that with
traffic variables, reflecting the secondary photochemical origins
of much of PM2.5 in Southern California.
Linear correlation may obscure significant contributions of

nonlinear variables to the prediction of concentrations.21,24 In
Figure 2, we paired typical linear (blue dashed) and nonlinear

Figure 2. Scatter plots of four covariates with log or square-root (sqrt) transformed pollutant concentrations with GAM-fitted lines (red solid curve)
and linear regression lines (blue dashed line).
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(red solid) regression lines in the scatter plots. For ambient
meteorological variables such as wind product terms (Figure S4
of Supporting Information) and air temperature (Figure 2 d),
nonlinear correlative patterns could more objectively represent
such a nonmonotonic trend even though its Pearson’s linear
correlation was not high.
Predictor Variables. We found that traffic-related variables

and wind product terms were the most important contributors
to PB-PAH, PNC, and NOx, while air temperatures, wind
product terms, and relative humidity were the most important
predictors for PM2.5. Table 1 lists the final models, including
the variance explained by each variable and the coefficients for
linear regressors or the degrees of freedom for nonlinear
regressors (in the paired parentheses) and Table S5 of
Supporting Information lists differential intercept coefficients
for the factor variable, roadway type. Figure S5−S8 of
Supporting Information show the fitted spline plots of the
variables in GAM and the curves show the associated trends
between predictor variables and the transformed concentra-
tions.
Traffic Predictors. Traffic variables (including roadway type,

weighted AADT, traffic speed, and number of lanes) together
accounted for a significant portion of the variance explained in
both linear regression (35−40%) and GAM models (12−23%)
for traffic-related pollutants. The traffic variables presented a
closely linear correlation (increasing trend) with concentra-
tions. In the standardized linear regression, the influence of
each traffic-related variable was similar across the traffic-related
pollutants, PB-PAH, PNC, and NOx, i.e., coefficients for
standardized independent traffic variables only differed slightly
among different pollutants (Table S6 of Supporting Informa-
tion). The trends of associations between predictors and
concentrations were also similar (increasing) in GAM for PB-
PAH, PNC, and NOx (Figure S5−S8 of Supporting
Information). This is expected since these variables indicate
traffic emission sources whose strength is likely linearly related
with concentrations.
Among the traffic-related variables, roadway type was a

significant predictor, accounting for about 10.2−11.8% of the
total variance in linear regression and 5.0−12.2% of the total
variance in GAM. Differential intercept coefficients for
freeways, highways, and their connectors were much higher
than those for local roads and arterials, indicating several-fold
higher pollutant concentrations on freeways and highways than
arterial and local roads (approximately 4.5 times for PB-PAH,
3.6 times for PNC, 3.0 times for NOx) (Figure S4-a, b, c of
Supporting Information). Our result is consistent with the
previous studies: Westerdahl et al.6 reported that roadway type
strongly influenced variations of on-road concentrations of PB-
PAH, BC, and NOx; Fruin et al.7 also found that PNC
concentrations on arterial roads were roughly one-third of
those on freeways. However, roadway type was not used as a
predictor in previous studies that focused mainly on freeways or
highways.
Due to insufficient spatial and temporal coverage (64−69%)

on the freeways/highways, the PeMS 5 min average total traffic
and estimated truck counts were statistically insignificant and
thus not selected in the final models. In comparison with the
study of Fruin et al.,7 we discussed use of traffic and truck
counts based on the sensitivity test on the freeways/highways
in Section 7 of Supporting Information (Table S7 and S8).
Traffic speed, as indicator for traffic emission sources, was

positively associated with concentrations and was the only real- T
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time on-road variable selected in the models for traffic-related
pollutants. The removal of traffic speed (the other variables
remained unchanged) only slightly influenced the prediction
performance of the models of the traffic-related pollutants
(Table S9 of Supporting Information). In linear regression, the
removal of traffic speed was compensated by more variance
explained by weighted AADT in the absence of the traffic speed
variable (20.7−23.6% vs 9.3−11.0%).
Meteorological Predictors. Compared with traffic variables,

meteorological variables had nonlinear relationships with the
pollutant concentrations (Figure S4−S8 of Supporting
Information). For example, ambient air temperature presented
a nonmonotonic trend with PM2.5 (Figure 2-d). In particular,
the product terms of wind speed by direction presented a more
complex relationship (varying surfaces, Figure S4 of Supporting
Information) with the concentrations.
Among the meteorological variables, wind speed and

direction were important predictors for all the pollutants.
Strong winds were associated with lower pollutant concen-
trations (Figure 1) but pollutant concentrations were not
linearly correlated with wind speed and thus the contribution of
wind speed and direction was much higher in GAM than linear
regression (14.8−21.2% vs 1.2−4.3%). Further, we found that
the product terms of wind speed by direction and those of wind
speed by angle to roadway generated similar results in model
performance (Table S10 of Supporting Information).
Meteorological rather than traffic-related variables contrib-

uted considerably to PM2.5 concentrations (overall R2: 0.66−
0.71), which agrees with previous literature indicating PM2.5 is a
regional pollutant39 that is more affected by regional or
background concentrations than by local traffic contributions.40

Particularly, hourly ambient air temperature had a stronger
influence on PM2.5 than the other three pollutants (accounting
for 24.9−34.5% of variance for PM2.5 vs 0.1−12.0% for the
other three pollutants). Real-time on-road air temperature and
relative humidity were also significant predictors for PM2.5
(Table 1), but not for the other pollutants. The removal of on-
road air temperature and relative humidity from the models
decreased the variance explained by approximately 10.0−14.0%
for PM2.5 (Table S9 of Supporting Information). The
significant contribution of air temperatures on PM2.5
concentration is expected since there was a positive correlation
between air temperature and photochemical conversion and
oxidation of gaseous PM precursors to PM mass, which was
higher in the summer.41 Interestingly, ambient and on-road air
temperatures were just moderately correlated (Pearson’s
correlation: 0.49) and did not produce multicollinearity (VIFs
in linear regression were <10: 3.8 and 2.3, respectively),
allowing both variables to be used in the PM2.5 model. Other
than the difference in the temporal resolution of measurements
(by hour vs minute), on-road temperature measurements may
reflect the combined effects of ambient temperature and waste
engine heat, hot pipe emissions, and the warm-up of roads and
asphalt.
Elevation. In our models, elevation had a small contribution.

Although having limited variation in our measurement data,
elevation may likely influence on-road pollutant concentrations
because of different local emissions and pollutant dispersion
patterns in hilly areas.28,31

Model Performance. Cross validation results are shown in
Table 2. Linear regression had moderate predictive power (CV
R2: 0.36−0.51). GAM had moderately better predictive power
in general (CV R2: 0.46 for PB-PAH, 0.50 for PNC, 0.43 for

NOx, 0.66 for PM2.5), improving the variance explained by
about 7% to 15% over linear regression. Overall, the R2 for the
independent tests of model generalizability by day and by
freeway/highway (Table S11 of Supporting Information),
although slightly lower, were similar to the results of the
cross validation tests.
For PB-PAH, PNC and NOx, the traffic variables (such as

traffic speed and weighted AADT) accounted for less variance
in the GAM than in linear regression but meteorological
variables (ambient air temperature and the wind product
terms) accounted for more variance in the GAM. As a
nonparametric approach, GAMs can more efficiently model
nonlinear relationships (such as those between meteorological
variables and the concentrations). But for a predictor (such as
traffic speed) closely linearly related to the target variable,
GAMs may not achieve significant gains over linear regression,
as demonstrated in our test of univariate models (Table S12 of
Supporting Information).42,43 Further, in a multivariate GAM,
the predictive power may not be simply an additive function of
the contribution of each variable.25 In other words, the effect of
a predictor depends on the other predictors that may be
potential confounding indicators.44 In GAMs, the addition of
nonlinear meteorological predictors that improved the
predictive power adversely affected (confounded) the pre-
dictive power of the traffic variables. We also tested the overall
predictive power of the combined set of traffic variables
(without meteorological variables included) in the multivariate
models and the result (Table S13 of Supporting Information)
showed that the GAM had slight improvement (by 3−5% in
the variance explained) over linear regression for traffic-related
pollutants (PB-PAH, PNC, and NOx). The above comparisons
show that choice of the models (linear regression vs GAMs) is
important for predictive power of the nonlinear variables such
as meteorological ones.
Temporal autocorrelation (based on ACF) of 1 lag (one

minute) was 0.63−0.70, indicating strong temporal autocorre-
lation. The model that incorporated lag 1 (one minute)
temporal autocorrelation (AR1 = 0.63−0.70) had better CV R2

(0.57 for PB-PAH, 0.68 for PNC, 0.72 for NOx, 0.89 for PM2.5),
a significant improvement over the GAM in the R2 by 11% to
more than 20% for the four pollutants (Table S14 of
Supporting Information). The application of autoregressive
models may be unpractical in epidemiological studies where
measurement data of time series are usually difficult to acquire.

Influence of Ambient Air Pollutant Concentrations.
The significant contribution of ambient meteorological
variables in the GAM was attributed to their nonlinear

Table 2. Cross Validation Results for Linear Regression and
GAM

linear regression
generalized additive

model

Generala CVb Generala CVb

PB-PAH Samples 3740 3336 3740 3336
R2 0.42 0.38 0.50 0.46

PNC Samples 1778 1570 1778 1570
R2 0.45 0.43 0.55 0.50

NOx Samples 4434 3950 4434 3950
R2 0.37 0.36 0.46 0.43

PM2.5 Samples 3405 3041 3405 3001
R2 0.51 0.51 0.71 0.66

aGeneral: no cross validation. bCV: cross validation.
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relationship with the on-road pollutant concentrations that was
influenced by urban-scale meteorological and air pollutant
phenomena.24 The sensitivity test (Table S13 of Supporting
Information) using ambient air pollutants as predictors shows
that the ambient concentrations performed similarly to the
meteorological variables. The incorporation of ambient air
pollutant concentrations along with meteorological variables in
the models slightly to moderately improved the model
performance. For PM2.5, a regional pollutant, addition of
ambient pollutant concentrations had the highest improvement
(20% for linear regression and 10% for GAM).
Limitations. This study has several limitations. First, the

models were based on 1 min average concentrations.
Compared to the models using a longer averaging time, the
residuals of our models were temporally autocorrelated and
produced overly small confidence limits in the linear regression
model. Longer averaging times (e.g., 5 min), however, reduced
the sample size and increased uncertainties in the variables,
particularly roadway and traffic variables, as 5 min travel on
freeways can be 10 km in distance. With 5 min averaging time,
model performance was not as good (e.g., R2 ranged 0.23−0.30
for linear regression and 0.35−0.44 for GAM). Second, due to
limited spatiotemporal coverage for total traffic counts and
uncertainty in truck count estimates, traffic and truck counts
were not directly used in our final models although they were
significant regressors in the freeway/highway models. Their
related alternatives such as roadway type used in the final
models captured most but not all of the spatial variability in the
counts. Third, 2002 AADT was used with 2010 on-road
concentrations and other predictor variables to train the model.
This temporal nonalignment may have produced some bias,
although AADT explained only a small fraction of the observed
variance (2.4−11.0%). Finally, overfitting is always a risk in
nonlinear GAM. In our case, the degree of freedom in our
GAM was 5−12, generally considered acceptable to ensure that
overfitting will not occur with more than 1500 samples with a
large variance.25 Furthermore, the mgcv package used for
modeling controlled the complexity of the splines by imposing
a penalty on the parameters of the splines, lowering the
overfitting risk.25

IV. IMPLICATIONS
In a metropolitan area with a high density of population and
complex roadway networks, we found that traffic variables
(traffic speed and weighted AADT) were linearly correlated
with traffic-related pollutants (PB-PAH, PNC, and NOx) and
explained most of the total variance in linear regression for
these pollutants. Compared to linear regression, the non-
parametric GAM more adequately captured the nonlinear
relationship between meteorological variables (e.g., the product
terms of wind speed by direction, air temperatures) and air
pollutant concentrations, thus improving the total variance
explained by 19−23% over linear regression for traffic-related
pollutants and 39% for PM2.5. For future studies, traffic
variables (e.g., at least roadway type) should be examined in
models for traffic-related air pollutants, while meteorological
variables should be examined for regional pollutants such as
PM2.5. Short-term exposure assessment and health effects
studies may require similar exposure estimates at a high
temporal resolution (e.g., daily or even hourly). In this study,
we suggest the use of GAM rather than linear regression since it
would be favorable to incorporate meteorological impacts, and
as demonstrated in this paper, the relationship between air

pollutant concentrations and meteorological parameters are
likely nonlinear.
The measurements of ambient pollutant concentrations, if

added into the model as predictors, had a slight or moderate
improvement in the prediction. Therefore, ambient air
pollutant variables, if available, should also be examined and
used in models for future studies.
Our study is one of the first studies on the prediction of on-

road pollutant concentrations. Among the few published
studies, Fruin et al.7 was based on arterial roads (2.5 h total
over two days) and freeways (12 h total over four days) in Los
Angeles (R2: 0.60−0.70), while Aggarwal et al.16 was based on
Minnesota freeways (40 h total over 19 days in summer) (R2:
0.41−0.89). Compared with the previous studies, our measure-
ments covered a much longer time (approximately 112 h total
over 20 days) and longer and more diverse routes
(approximately 210 miles including local roads, arterial, and
freeways/highways). Although the previous models had a good
performance, they are limited to specific conditions with
narrower applications, whereas our models have more general
applications to other locations, times, and air pollutants.
Further, the two previous studies were based on linear models,
while our study demonstrated the usefulness of the GAM
approach in modeling nonlinear variables such as meteoro-
logical parameters.
Our study identified linear relationships between traffic

variables and on-road concentrations of traffic-related air
pollutants, and nonlinear relationships between meteorological
variables and the on-road concentrations. The inherit relation-
ship (linear vs nonlinear) between predictors and the air
pollutant dependent variable determines the utility of linear
regression or GAM for the exposure modeling. In this study,
GAM performed better for nonlinear variables (e.g., meteoro-
logical variables) and for the prediction of PM2.5, the on-road
concentration of which was more greatly influenced by
meteorology and regional background particle concentrations
rather than local traffic.
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