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ABSTRACT OF THE DISSERTATION  

 

 

Assessing the Resilience of Desert and Southern California Farming  

Systems to Water Scarcity 

 

by 

 

Arisha Ashraf 

 

Doctor of Philosophy, Graduate Program in Environmental Sciences 

University of California, Riverside, March 2018 

Dr. Ariel Dinar, Chairperson 

 

This study addresses the shortcomings in the literature by collecting primary 

farm-level data via a questionnaire for several productive regions of California that are 

often overlooked in agricultural analyses. Farm-level analyses help develop bottom-up 

incentives for adapting to climate change and addressing water scarcity. Because it is the 

localized climate directly observed by the economic agent, microclimate is more likely to 

impact production decisions than sub-regional averages. I study the impacts of change in 

microclimate on agricultural productivity in Desert and Southern California regions while 

controlling for other micro-level effects such as grower, farm, and water source 

characteristics. I also analyze the extent to which microclimate influences the adoption of 

two important water management strategies: soil moisture and salinity monitoring. In 
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addition, I analyze microclimatic impacts on productivity and land sales at the parcel-

level. 
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Chapter 1: Introduction 

Increasing temperatures and higher variability in precipitation in California are 

part of a larger regional trend in the Western United States (Hoerling et al. 2013; 

Dettinger et al. 2011; Barnett et al. 2008; Groisman and Knight 2008; Trenberth et al. 

2007). This is consistent with global trends that indicate that 2000-2010 has been warmer 

at the Earth’s surface than any preceding decade since 1850 (Hartmann et al. 2013). 

Observed increases in temperature and precipitation extremes in semi-arid regions, such 

as Southern California, clearly translate into more severe future impacts than analogous 

trends in temperate regions, such as projections of increased frequency and duration of 

heat waves and droughts over the remainder of the current century (Hoerling et al. 2013; 

Mastrandea et al. 2011; Cayan et al. 2010; Seager et al. 2007).  

 Previous studies suggest that agriculture in the largely irrigated Western United 

States may not be as susceptible to precipitation trends as agriculture in the more 

temperate East (Schlenker and Roberts 2011; Schlenker, Hanemann and Fisher 2007). 

This holds for long-run mean precipitation conditions (i.e., precipitation normals). 

However, this conclusion minimizes the severity of the recent drought experienced in 

California with historically low precipitation and soil moisture levels (Williams et al. 

2015; Griffin and Anchukaitis 2014). The recurrence and longer duration of droughts in 

California over the past two decades has greatly affected the agricultural industry, which, 

on average, uses about 80% of freshwater resources (Walthall et al. 2012). Figure 1.1 

illustrates the percentage of California’s area in drought from 2000-2016. Not only does 

this reveal the large spatial and temporal extent of the most recent drought, but the colors 
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reveal the large area under extreme (red area) and exceptional (maroon area) drought 

from mid-2013 to 2017. The most immediate economic impacts are lost agricultural 

revenue emanating from fallowed acres and yield declines, and farm job losses for one of 

the most vulnerable socioeconomic groups. For example, the 2009 drought resulted in 

revenue losses of $370 million with fallowing of 285 thousand acres in the San Joaquin 

Valley, and almost 10 thousand farm jobs losses (Howitt, MacEwan, and Medellin-

Azuara 2011).  

 

 

Figure 1.1: Spatial and Temporal Extent of Drought in California (2000-2016) 
Source: National Drought Mitigation Center 

 

Arguably the most important variables explaining how agriculture will be affected 

by climatic changes are those of human ingenuity at the farm level. Human ingenuity is 

simply another word for adaptation to climate change in order to minimize welfare losses. 

Thus, the overarching theme of our three subsequent analyses is quantifying grower 

responsiveness to farm-level microclimate in Southern California, our study area. Using 

original survey data, we study differential impacts of short-run weather and long-run 

Abnormally Dry Moderate Drought Severe Drought Extreme Drought  Exceptional  Drought 
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climate—based on farm size, type, and water source—on productivity per acre and 

likelihood of adopting water management practices, which have not been studied in 

previous county-level analyses. Further, we are able to decompose water sources into 

price, pricing structure, frequency of rate increases, senior water rights, quality, and type 

of source (district and/or groundwater). In addition to studying farm-level productivity, 

we study short-run fluctuations in weather on likelihood of adoption of water 

management technologies and practices, and on parcel-level land sales. 

Our contribution to the literature is based upon an original survey instrument we 

developed and disseminated to growers in the region (see Annex 3.4). The contact 

information was taken from the respective county Agricultural Commissioner Offices. 

This survey is comprised of 28 multiple choice and fill-in questions on grower, farm, and 

water source characteristics. This was disseminated via mail by a team of 3 

undergraduate students, to growers in the study region, with a 14.6% response rate. 

We focus on Southern California agriculture, specifically Imperial, Riverside, San 

Diego, and Ventura counties. The region is often overlooked as analyses tend to focus on 

the Central Valley, California’s most productive agricultural region. Yet, there are several 

crops for which 50% or more of California’s production originates in these four counties, 

including raspberries, lemons, flowers and foliage, avocado, and sudan hay. All of the 

state’s date and sugar beet production originates in these four counties (CDFA 2015). 

Imperial, Riverside, San Diego, and Ventura counties are amongst the top 15 agricultural 

counties in the state, representing approximately 16% of statewide agricultural revenue 

(CDFA 2015). They also represent the diverse climate of the region with two coastal (San 



4 
 

Diego and Ventura), and two desert (Riverside and Imperial) counties. The 4 counties 

also vary in farm size with San Diego County having the largest share of farms under 10 

acres, and, at the other extreme, Imperial County having the largest share of farms (32% 

of all Imperial farms) with 1000 or more acres (Figure 1.2). There is also a wide 

distribution in gross revenue across these counties (Figure 1.3). 

 

Figure 1.2: Distribution of Farm Sizes Across Study Region 

Data Source: USDA Farm and Ranch Irrigation Survey, County Summary Highlights 2012 
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Figure 1.3: Number of Farms in Each Gross Revenue Category 

Data Source: USDA Farm and Ranch Irrigation Survey, County Summary Highlights 2012 

 

The dissertation is organized into 7 chapters, including this introductory chapter. 

Chapter 2 discusses the analytical framework and key hypotheses for the 3 subsequent 

analyses. Similarly, Chapter 3 discusses the data sources and variable transformations for 

each of the 3 analyses. It provides detail on our original survey research, as well as 

external data sources supplementing the survey data. Our empirical analyses are 

presented in chapters 4 - 6. Chapter 4 applies the Ricardian framework to quantify the 

marginal economic impact of human capital and farm-level variables on farm 

productivity under varying (with respect to the cross-section of farms) climatic, water 

source, and soil conditions. Chapter 5 also uses data from our questionnaire to examine 

choices of irrigation management technologies and practices by Southern California 
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growers. Chapter 4 explores adaptation to climate change implicitly, whereas Chapter 5 

explicitly evaluates two important irrigation management practices: soil moisture 

monitoring and salinity monitoring. Chapter 6 departs from our original survey data, and 

includes two analyses of short-run weather fluctuations with respect to parcel level data 

from the Riverside County Assessor’s Office: (1) an exploratory panel analysis of farm 

sales, and (2) a Ricardian analysis on land values using the same dataset. Chapter 7 

concludes the dissertation with broad policy implications of agricultural adaptation to 

climate change. 
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Chapter 2: Analytical Framework and Key Hypotheses 

This chapter presents the analytical framework for the three complementary 

analyses in this study: (1) the Farm-Level Ricardian (Chapter 4), (2) the Discrete Choice 

of Adoption (Chapter 5), and (3) the Parcel-Level Models (Chapter 6). All three analyses 

illuminate our understanding of adaptive responses to climate change and drought. The 

first study implicitly models adaptation, while the latter two do so explicitly.  

The Ricardian analysis quantifies the marginal economic impact of critical human 

capital (experience, education) and farm-level variables (percent income generated from 

agriculture, farm size, ownership) on farmland productivity under varying climatic, water 

source, and soil conditions. While previous studies have aggregated heterogeneous 

climates, water sources, and soil conditions at the county level (Deschenes and Kolstad 

2011; Mendelsohn and Dinar 2003; Mendelsohn, Nordhaus and Shaw 1994), we examine 

the marginal economic impact of these variables at the farm-level.  

The resilience of the agricultural sector will be determined by the ability of 

farmers to adapt to an increasingly warm and dry climate through adopting technologies 

and management practices. The discrete choice analysis examines the extent to which the 

probability of implementing two important water management practices—(1) soil 

moisture monitoring, and (2) salinity monitoring—is determined by a set of farm-level 

variables. This analysis tests many of the same variables in the Ricardian analysis with 

the addition of variables representing water scarcity perceptions and sources of 

information used for irrigation management. We also study the influence of short-run 
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fluctuations in weather, in addition to the climate normals presented in the farm-level 

Ricardian analysis. 

Using Riverside County as a case study, our third empirical chapter examines the 

impact of short-run fluctuations in weather on both the likelihood of land sale, and on 

productivity at the parcel level during 2000-2016. This period will fully capture two 

historic drought cycles: 2007-2009; and 2011-2016. The analyses of the Riverside 

County land sale examine to what extent certain categories of agricultural land are more 

vulnerable to sales or productivity loss during periods of drought (high temperatures and 

low precipitation captured by 5-year or 10-year averages) while controlling for soil 

characteristics (available water storage, drainage class), population, and access to reliable 

surface water from 4 major water districts (Coachella Valley Water District, Eastern 

Municipal Water District, Palo Verde Irrigation District, Western Municipal Water 

District). 

Spatial Scale in County vs. Farm-level Analyses  

Selection of spatial scale often guides the suite of explanatory variables included 

or, equally important, omitted, in a given analysis. Analogous to earlier studies on the 

effects of spatial scale on global climate model (GCM) projections, one may find 

inconsistent yield estimates between coarse and finer scale models (Adams, McCarl, and 

Mearns 2003). In addition, it may misrepresent the variability in the true model. This 

introduces the potential for measurement error on explanatory variables.  
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An immediate concern with aggregation at the county level is the omission of data 

on decision-maker/grower (e.g., experience, education), farm (e.g., farm size, farm type, 

percent agricultural income), and detailed water source attributes (e.g., number of water 

sources, surface or groundwater, senior water rights holder, water price). Excluding such 

information assumes a priori a limited role of the economic agent to influence farmland 

productivity. It also simplifies the inherent complexity in representing farm and water 

source characteristics. It is not for lack of explanatory power that these variables are 

excluded. It is more likely that they would have been studied had they been available in 

existing data sources. The USDA Farm and Ranch Irrigation Survey (FRIS), a major 

source of US agricultural data for economic analyses, does not provide these variables at 

the farm level to researchers. There is, however, little reason to assume that the climate, 

soil, and water variables in county-level studies are correlated with any of these micro-

level variables, thus ruling out the potential bias in climate, soil, and water estimators.  

Aggregation at the county level also leaves the model susceptible to measurement 

error on certain explanatory variables (e.g., microclimate and soil quality). Measurement 

error is defined as an imprecise measure of an economic variable, dependent or 

explanatory, which has a well-defined quantitative meaning (Woolridge 2006). 1 

Following the classical errors-in variable (CEV) assumption, this could lead to estimators 

                                                           
1 This situation is in contrast to a variable that cannot be directly quantified for which a proxy variable is 

used instead. 
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that are asymptotically inconsistent and biased downward in their respective probability 

limits (Woolridge 2006). 2   

 The remaining sections in this chapter present the theoretical framework behind 

each of the 3 empirical analyses in this dissertation: (1) the Farm-Level Ricardian, (2) the 

Discrete Choice of Adoption, and (3) the Parcel-Level Models. Each subsection also 

includes hypotheses on the impact of climate and other key variables on the respective 

dependent variables (gross revenue per acre, likelihood of adoption, likelihood of land 

sale, land value per acre).  

Farm-Level Ricardian Model 

Following the classic paper by Mendelsohn, Nordhaus, and Shaw—MNS (1994), 

this study models farmland productivity using gross revenue per acre.3 The Ricardian 

approach quantifies the impact of climate and other site-specific variables (e.g., soil 

                                                           
2 The proceeding proof follows from Woolridge (2006). Under the CEV assumptions, the observed value, 

x1, is correlated with measurement error, m1, such that 

𝐶𝑜𝑣(𝑥1, 𝑢 − 𝛽1𝑚1) = 𝐶𝑜𝑣(𝑥1, 𝑢) − 𝛽1𝐶𝑜𝑣(𝑥1, 𝑚1) = −𝛽1𝐶𝑜𝑣(𝑥1, 𝑚1) = −𝛽1𝜎𝑚1
2  

Note that the observed value and error term, u, are uncorrelated following standard OLS assumptions. And, 

the final RHS term is derived from 

𝐶𝑜𝑣(𝑥1, 𝑚1) = 𝐸(𝑥1, 𝑚1) = 𝐸(𝑥1
∗𝑚1) + 𝐸(𝑚1

2) = 𝜎𝑚1
2  

where x1
* is the true (unobserved) value such that 𝑥1

∗ = 𝑥1 − 𝑚1 . The proof of (in)consistency follows:  

𝑝𝑙𝑖𝑚(^𝛽1) = 𝛽1 +
𝐶𝑜𝑣(𝑥1𝑢 − 𝛽1𝑚1)

𝑉𝑎𝑟(𝑥1)
= 𝛽1 (

𝜎𝑚1
2

𝜎𝑥1
∗

2 + 𝜎𝑚1
2

) = 𝛽1 (
𝑉𝑎𝑟(𝑥1

∗)

𝑉𝑎𝑟(𝑥1)
) 

By construction, Var(x1
*) < Var(x1). Thus, the probability limit of the estimator is always closer to zero 

than the true value.  

3 We do not use profits as our dependent variable because of limited data on farm level operational costs. 

We also do not use land value per acre, as in the original MNS 1994 paper, because available data from the 

County Assessor does not represent market value. California Proposition 13 (People’s Initiative to Limit 

Property Taxation of 1978) caps the rate of private property appreciation at 2% annually. 
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quality, market access, population density) on farmland productivity. The approach 

exploits cross-sectional variation in climate (and these other variables) to determine the 

respective marginal impacts to farmland productivity, as represented by gross revenue. 

Two major assumptions of the Ricardian model are: (1) interest rate, rate of capital gains, 

and capital per acre are equal for all parcels (and thus for all growers); and (2) growers 

have fully adapted to local climatic, economic, and environmental conditions.  

 Farmland is a special case in which land rents are generally proportional to land 

productivity, which is represented by gross revenue per acre in our model. The value of a 

given farming practice changes in response to increasing temperature. Climate has a 

positive impact on productivity of a given agricultural activity up to a point where 

productivity reaches an optimum, after which changing climatic conditions (higher 

temperatures in Figure 2.1) introduces declining marginal productivity. At point C in 

Figure 2.1, a profit maximizing grower will switch to another activity rather than 

experience declining returns from the original one. Under the assumption that growers 

have fully adjusted or adapted to long-run conditions, gross revenue is equivalent to the 

envelope function, represented by the bold lines in Figure 2.1. 
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Figure 2.1: Crop Shifting as an Adaptation to Increasing Temperature 

Source: Mendelsohn, Nordhaus, and Shaw 1994 

Farmland value, V, for the ith individual reflects the net present value of long run revenue 

generated from farming represented by Equation 2.1 (Mendelsohn and Dinar 2003): 

𝑉𝑖 = ∫ [∑ 𝑃𝑗𝑄𝑗(𝑋, 𝐶, 𝑆, 𝑊, 𝐺, 𝐹) − ∑ 𝑅𝑋] 𝑒−𝜑𝑡𝑑𝑡 

where X is a vector of purchased inputs required for the production of each crop, j,  which 

we represent as irrigation technology;4 C is a vector of climate variables (30-year normals 

for seasonal temperature minimums and maximums, and precipitation); S is soil quality 

(available water within the soil top 100 cm); W is a set of water source variables (e.g., 

surface or groundwater; salinity; senior water rights; water price); G is a vector of human 

capital variables (education, experience); F is a vector of farm characteristics (farm 

acreage, farm type, percent income generated from agriculture, ownership, zoning); and 

                                                           
4 Ultimately, we find that irrigation technology is partitioned based upon crop choice. Thus, we do not 

include it in our final analysis.  

(2.1) 
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R is a vector of input costs required for the production of each crop. 𝜑 is the discount 

rate. 

Ricardian Model Hypotheses  

There are general hypotheses that can be formulated based on previous work even 

though study areas in previous research have different climates, soils, and underlying mix 

of crops. We will infer these hypotheses, using the results in Chapter 4. 

Climate Variables 

We expect a nonlinear relationship (e.g., logarithmic, quadratic) between climate 

variables and gross revenue. This is consistent with the underlying nonlinearity in crop 

growth biology. It is also consistent with the detrimental yield effects of climate 

extremes, such as heavy rains, droughts, excess freezing, and heat waves (Mendelsohn 

and Dinar 2009:10-31). 

It is expected that an increase in minimum temperature will have a negative marginal 

impact on gross revenue, particularly as many of the farms in the study region grow 

orchards. Increasing the minimum temperature is thought to have a negative impact on 

productivity because many tree crops require cooling at night, particularly during the 

cooler seasons (Lobell and Field 2011). 

Increasing the maximum temperature is expected to exhibit a negative marginal impact as 

well (Deryng et al. 2014; Lobell and Field 2007). It will be interesting to explore which 

effect is stronger—higher minimum or higher maximum temperatures. 
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Grower characteristics (education, experience)  

Educational levels are expected to have a hill-shaped relationship with productivity (Das 

and Sahoo 2012). We expect to observe an increasing trend until a Bachelor’s degree. 

Education after a BA is expected to exhibit declining marginal benefits to farm 

productivity, as the opportunity cost of devoting this knowledge capital to farming 

relative to off-farm income (e.g., lawyers, medical doctors) becomes more expensive. 

Years of growing experience is expected to have a positive marginal impact on 

productivity (Maddison et al. 2007). This is also expected to have a hill shape, with 

decreasing marginal productivity for increasing experience after a median level of 

experience.  

Water source variables (senior water rights, type of water source, number of sources, tds, 

water price)  

Unit water price exhibits a complex relationship with productivity per acre, and is given 

limited attention, so far, in Ricardian analyses of California agriculture (Schlenker, 

Hanemann, and Fisher 2007; Mendelsohn and Dinar 2003). High water price could be a 

limiting factor at the extensive margin (i.e., increasing the acreage), however price may 

influence intensive margin (i.e., increasing the productivity per unit acre) improvements 

based on empirical evidence on adoption of irrigation technologies in California (Green 

et al. 1996; Dinar, Campbell, and Zilberman 1992; Caswell and Zilberman 1985; Caswell 

1982).  
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Senior water rights are expected to exhibit a positive relationship with productivity due to 

greater water security (Mukherjee 2013). Senior water rights holders in our sample also 

have the lowest water price per acre-foot. 

It is expected that the number of water sources will have a positive impact on 

productivity, as growers are able to use an alternative source should the primary source 

become less reliable, have greater water security (Mukherjee and Schwabe 2014). 

Salinity level in water (as represented by total dissolved solids in ppm) is expected to 

exhibit a negative relationship with productivity, particularly for growers with a high 

relative price of water and fewer water sources (Mukherjee and Schwabe 2014). Lower 

quality water requires more monitoring (as well as more leaching) in order to minimize 

crop damage, and this is costly as the price of water increases and fewer alternative 

sources are available. 

Farm-level variables (ownership, percent income generated from agriculture, soil, farm 

type, county, zoning) 

Percent ownership of land is expected to exhibit a positive marginal impact on 

productivity because there is more incentive to invest in productivity improving changes 

as a landowner (Maddison et al. 2007).  

Percent of income generated from agriculture, is expected to exhibit a positive impact on 

productivity. Increasing percentage of income generated from agriculture increases the 

incentive to maximize output. 
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Soil quality, as measured through available water moisture in the top 100cm of the soil, is 

expected to exhibit a positive relationship with gross revenue per acre as higher quality 

soil improves productivity (Schlenker et al. 2007; Mendelsohn and Dinar 2003). 

Orchards and vineyards tend produce higher values per acre (Mukherjee and Schwabe 

2014), whereas field crops tend to produce the lowest. 

Farms in San Diego County will exhibit a strong positive relationship with productivity 

relative to the other counties due to the high price of land and water, and high percentage 

of orchards and vineyards.  

The relationship between agricultural zoning and gross margin is expected to be positive 

because farms in these areas have greater access to the agricultural industry (e.g., 

extension and industry experts, input suppliers, distribution companies) (Mukherjee 

2013). 

Discrete Choice of Soil Moisture and Salinity Monitoring Model 

In addition to studying the impact of climate and other relevant variables on 

farmland productivity, we study the factors influencing the adoption of technologies to 

monitor soil moisture and salinity.5 Adoption of climate-effective monitoring practices is 

particularly important as projections of prolonged drought continue throughout the 

current century. Most growers in our sample have already adopted micro-irrigation 

(micro-sprinkler, drip, sub-surface drip) practices for vegetables, orchards, and vineyards, 

                                                           
5 We expect growers monitoring soil water moisture and salinity to have better information to make water-

related decisions.  
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and extension experts suggest that consistent and/or sophisticated monitoring of growing 

conditions represents the next stage of irrigation efficiency adaptations (Gispert 2015).  

Soil moisture monitoring practices help ensure precise frequency and duration of 

irrigations. Salinity monitoring affects water availability in both the short and long run. 

Too much leaching leads to water waste and, ultimately poor irrigation and economic 

efficiency. Too little leaching affects soil salinity and water quality at both the farm and 

basin level, and ultimately water availability at the farm-level in the long run.  

We implement logistic regression, consistent with previous studies on technology 

adoption (e.g., Escalera, Dinar, and Crowley 2015; Mendelsohn, and Dinar 2003; 

Caswell and Zilberman 1985), to study the factors influencing adoption of at least one 

soil moisture monitoring practice (of the following: gravimetric approaches, 

tensiometers, gypsum blocks, and dielectric sensors), or at least one water salinity 

monitoring practice (of the following: water provider updates, handheld TDS/salinity 

meter, laboratory salinity assessments).  

We expect that a profit-maximizing grower, i, will implement at least one soil (or 

salinity) monitoring practice. The perceived profit per acre to grower i of monitoring or 

not monitoring soil (where j is the binary probability {0,1}), is represented as: 

𝜋𝑖𝑗 = 𝑄𝑖𝑗 + 𝜀𝑖𝑗  

where Q is the non-stochastic component of perceived profit, while the errors, εij, 

represent the stochastic component. If the observations are indeed drawn at random, as in 

(2.2) 
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our survey sample, then it can be assumed that the error is an iid random variable 

(McFadden 1978). The reduced form of the value function is represented as:  

𝑄𝑖𝑗 = 𝑄𝑖𝑗
∗ (𝐼, 𝑋, 𝐶, 𝑆, 𝑊, 𝐺, 𝐹) + 𝜀𝑖𝑗    ∀ 𝑗 ∈ {0,1}          

where the vectors 𝑋, 𝐶, 𝑆, 𝑊, 𝐺, 𝐹 are the same as in Equation 2.1, with the addition of a 

vector of perception and information source variables, I. Empirical evidence on 

California avocado growers suggests that receiving information from the UC Cooperative 

Extension positively influences the decision to improve irrigation efficiency (Escalera, 

Dinar, and Crowley 2015). There is also evidence that growers who feel threatened by 

current or recent drought are more likely to believe in the existence of future droughts 

(Diggs 1991; Taylor, Stewart, and Downton 1988). This study extends the previous 

research cited above by testing the probability of adopting soil moisture and salinity 

monitoring practices given a grower feels threatened by drought (Equations. 2.4 – 2.5):  

              𝑃𝑖1 = Pr(𝑄𝑖1 > 𝑄𝑖0)      

             𝑃𝑖1 = Pr(𝜀𝑖0 − 𝜀𝑖1 < 𝑄𝑖1
∗ − 𝑄𝑖0

∗ ). 

 The binary probability of the ith grower selecting at least one monitoring practice 

(moisture or salinity) is: 

 

𝑃𝑖𝑗 =
𝑒𝑄𝑖𝑗+𝜀𝑖𝑗

1 + 𝑒𝑄𝑖𝑗+𝜀𝑖𝑗
  ∀𝑗 ∈ {0,1}   

And, the multinomial logistic regression with four choices (implements both monitoring 

practices, implements neither practice, implements salinity monitoring only, implements 

soil moisture monitoring only) is represented as: 

𝑃𝑖𝑗 =
𝑒𝑄𝑖𝑗+𝜀𝑖𝑗

1 + ∑ 𝑒𝑄𝑖𝑗+𝜀𝑖𝑗
  ∀𝑗 ∈ {1,2,3,4}   

(2.3) 

(2.6B) 

(2.4) 

(2.5) 

(2.6A) 
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Discrete Choice Model Hypotheses 

Based on previous work, we identify below several hypotheses that will be 

inferred, using the results in Chapter 5. 

Water price is expected to have a positive relationship with the probability of adopting at 

least one soil moisture or salinity monitoring technology (Dinar, Campbell, and 

Zilberman 1992; Caswell and Zilberman 1985, Caswell 1982). 

Hotter/drier micro-climates are expected to have a positive impact on the adoption 

probability (Mendelsohn and Dinar 2003). 

High-value crops are expected to be associated with higher values of adoption probability 

(Green et al. 1996; Dinar, Campbell, and Zilberman 1992; Caswell and Zilberman 1985). 

Human capital variables such as education and experience may positively influence 

adoption probability exhibiting a hill shape (Schuck et al. 2005; Genius et al. 2014). 

Receiving information from extension agents and other government sources is expected 

to have a positive impact on the probability to adopt soil moisture and salinity monitoring 

technologies (Escalera, Dinar, and Crowley 2015; Genius et al. 2014).  

With respect to the multinomial logistic regression, we expect to identify micro-level 

variables that influence the adoption of both practices when one practice has been 

adopted. This is analogous to bundling complementary technologies (Fleischer, 

Mendelsohn, and Dinar 2011). 
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Water source type (district or groundwater) or number of water sources may influence the 

likelihood of adoption, analogous to the Ricardian literature (Mukherjee 2013). 

Acreage is expected to have a positive impact on adoption probability, suggesting an 

economy of scale impact (Dinar, Campbell, and Zilberman 1992).  

Growers with a higher percentage of income generated from agriculture will have more 

incentive to adopt monitoring practices (Dinar, Campbell, and Zilberman 1992). 

Growers who rank drought as a top threat to water scarcity will be more likely to adopt 

water moisture and salinity monitoring (Schuck et al. 2005) 

Soil quality is expected to have an inverse relationship with soil moisture monitoring, as 

poor quality soil will require more monitoring (Green et al. 1996; Caswell and Zilberman 

1985). Analogously, a higher level of total dissolved solids (i.e., lower quality with 

respect to this metric) is expected to increase the likelihood of salinity monitoring. Crops 

that are more salt sensitive will increase the probability of salinity monitoring (Caswell et 

al. 2001).  

Parcel-Level Models 

The empirical studies in Chapter 6 depart from our 4-county questionnaire data, 

and narrow the focus from farm- to parcel-level. Using a dataset on 17 years (2000-2016) 

of agricultural parcel sales in Riverside County, we implement two analyses to test the 

impact of short-run weather fluctuations at the parcel level: (1) panel logistic regression 

model to study the factors influencing the likelihood of land sale, (2) Ricardian analysis 
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of impacts and implicit adaptation. Among the menu of adaptation measures, leaving 

agriculture (whether through selling a subset of parcels or the entire farm) is an extreme 

form of adapting to climate extremes. 

Previous work has focused on which factors influence the value (i.e., long-run 

productivity) of farmland (e.g., Mukherjee and Schawabe 2014; Mendelsohn and Dinar 

2003; Mendelsohn, Nordhaus and Shaw 1994). It is equally important to understand what 

is influencing the sale of farmland in response to climatic shocks in the first place. We 

focus on Riverside County parcel sales from 2000-2016 to examine the following in a 

population averaged panel regression:  

Pr (𝑠𝑎𝑙𝑒𝑖𝑡|𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑖𝑡, 𝑠𝑜𝑖𝑙𝑖, 𝑤𝑎𝑡𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑖, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖, 𝑢𝑠𝑒𝑐𝑜𝑑𝑒𝑖, 𝑎𝑐𝑟𝑒𝑖) 

where sale is a dichotomous variable representing whether a given agricultural parcel, i, 

in a given year, t, was sold or not. Weather is a vector of a 10-year (or 5-year) average of 

maximum or minimum temperatures, precipitation, and variability for a given parcel i, 

sold in year, t. Soil represents a vector of soil quality of parcel i (measured as available 

water moisture in the top 100cm of the soil; and slope gradient), watdistrict (dummy for 4 

major water districts represented in our analysis) represents access to reliable water 

supply from a water institution, population is the municipal population in which parcel i 

is located, crop zone is the specific agricultural zoning as defined by Riverside County 

(Table 6.1), and acre is the size of parcel i. 

In addition to land sales, we study the impact of short-run fluctuations of weather 

on farmland value using the Ricardian framework as in Equation 2.1. Since we are not 

using survey data, we do not have information on human capital variables. Thus, we 

(2.7) 
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return to the original Ricardian equation where land value is a vector of exogenous 

variables (Mendelsohn and Dinar 2003).  

Parcel-Level Model Hypotheses  

We identify below several hypotheses that will be inferred, using the results in 

Chapter 6. 

We expect an increase in the short-run precipitation mean to increase likelihood of parcel 

sales and parcel value. This is because the short-run perception of drought reduces the 

profitability of farming. 

We expect an increase in the 5-year coefficient of variation in precipitation to decrease 

likelihood of sales and parcel value. A larger coefficient of variation implies more 

extreme disparities in annual precipitation events associated with the drought. 

It is expected that parcels located in areas experiencing the highest population growth are 

more likely to be sold and have the highest value (Platinga, Lubowski, and Stavins 2002). 

We expect that soil quality will cause an increase in sales and value (Schlenker et al. 

2007; Mendelsohn and Dinar 2003). 

We expect that the number of sales in the urban districts (Western Municipal Water 

District and Eastern Municipal Water District) and that the value of parcels will be 

greater in these districts compared to non-urban districts. Land in urban water districts 

has higher development value (Platinga, Lubowski, and Stavins 2002). 
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In general, we expect sales and value to follow the same trend, i.e., variables that 

stimulate increasing sales will also stimulate increasing value. 

 

To summarize, this chapter discusses the analytical framework and key 

hypotheses for the three complementary empirical analyses in this study (in chapters 4-6). 

The farm- and parcel-level Ricardian analyses examine the impact of both long-term 

(farm-level model) and short-term (parcel-level model) temperature and precipitation 

expectations on farmland productivity. Additionally, we explore how land sales may be 

related to farmland productivity and temperature/precipitation expectations. The discrete 

choice model explicitly studies potential adaptations of important irrigation monitoring 

practices. 
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Chapter 3: Data Collection and Variable Construction  

This chapter details data collection methods, procedures, and data sources, as well 

as how key variables are constructed. The primary dataset for Chapters 4 and 5 was 

constructed using four methods: (1) a semi-structured survey instrument, (2) spatial GIS 

analysis (land value, climate, soil properties, groundwater, zoning) supplemented by 

Google Earth when spatial data were unavailable (3) other external sources (crop 

production and prices, and water prices), and (4) survey of water districts on rate 

structure. Survey design and implementation are discussed first, since this is our 

contribution to the dataset. This is followed by a description of external data sources, and 

survey of water districts. Following this, data sources for Chapter 6 are presented. This 

chapter concludes with a brief discussion of data collection challenges.  

Survey Design  

The impact on long-run productivity and adoption of advanced irrigation 

technology and other water management practices are inherently farm-level aspects. We 

collect our own data using a survey instrument. As Salant and Dillman (1994) suggest, a 

robust original data source is the foundation for a strong survey.  Thus, as further 

justification for pursuing a survey method of data collection, we found an excellent 

spatial dataset from the respective county-level Agricultural Commissioners’ Offices, 

which could be supplemented with important farm/farmer, water sources, and water 

management variables from our survey. And, it could be linked to existing spatial climate 
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and soil data. In administering the survey, we went through several stages that are 

described below.  

Pilot Survey  

Prior to implementing the pilot survey, we received approval from the UCR 

Institutional Review Board.6 There were two primary objectives to the pilot survey: (1) 

field-test survey questions, and (2) gauge response rate. Rather than rely on focus groups 

to field-test the survey questions, we chose to disseminate a pilot survey. The major 

benefit of sending a pilot survey is that we could potentially receive valuable input from 

respondents who could not participate in focus groups due to financial, time, or physical 

constraints. A second benefit was time savings in survey implementation. Focus groups 

require managing multiple schedules to find a convenient meeting time and place, and 

possibly funding travel and accommodation.  

Although we planned to disseminate an online survey, we had not yet at that stage 

secured assistance from either Agricultural Extension or Farm Bureaus in each county to 

host our survey. In order to save time, we sent the pilot survey via postal (“snail”) mail 

using contact information from the Agricultural Commissioner Pesticide Permit Database 

(i.e., our original dataset). An informal team of fellow graduate students and 

family/friends helped prepare the pilot phase mailings. Each mailing package included 

invitation letters (Annex 3.1), consent documents (Annex 3.2), first version of 

questionnaire (Annex 3.3), and a self-addressed return envelope.  

                                                           
6 We were subsequently approved for amending the questionnaire prior to mailing the final survey. 
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Using a random-number function7 in Microsoft Excel, we randomly selected 300 

respondents in total from Riverside and San Diego counties. We selected these counties 

as they are representative of the type of agriculture found in the region (row and field 

crops, vineyards, and orange and avocado groves). Based on our discussions with 

extension experts,8 we were sensitive to the potential apprehension with which Imperial 

County growers, in particular, would react to our survey. Growers in Imperial County 

have held senior water rights for over a century due to the Seven-Party Agreement.9 They 

are aware that they have been criticized for using less efficient irrigation practices (e.g., 

flooding, gated pipe), and many fear that they will be mandated to change these practices 

(Bradshaw, 2014). Thus, they may be hesitant to providing any information on irrigation 

and other practices. In order to minimize Imperial growers’ time burden, we chose to 

field test the survey on a potentially more receptive audience, and send only the final 

survey to Imperial. Since Ventura County has a relatively similar distribution of farm 

types as San Diego County (Figure 3.1), we also decided to exclude Ventura from the 

pilot.   

The pilot survey consists of 20 questions, including grower characteristics (5), 

farm characteristics (3), water source characteristics (1), water management practices (4), 

perceptions of water scarcity (7), and an open-ended comment space at the end of the 

                                                           
7 For uniform distribution on the interval [1, n), where n=total number of growers in each respective county 

dataset, we used: RAND( ) *(n-1) + 1. We copied this formula to 150 rows, and rounded up to the nearest 

whole number. 
8 These included Dr. Khaled Bali, who was at that time Director of UCCE Imperial County, and Dr. Oli 

Bacchi, Crop Extension specialist in the same county. 
9 Both Palo Verde Irrigation District and Coachella Valley Water District are also parties to this agreement. 

However, these growers do not represent all of farming in Riverside County whereas IID growers represent 

the majority of farming in Imperial County. 
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survey (Annex 3.3). The majority of these questions are multiple choice often with an 

“other” choice that included an option to write in a response that was not pre-determined. 

Eight questions are fill-in style.  

We received a roughly 10% response rate from the pilot phase (n=31), and 

learned valuable lessons on question structure for preparing the final survey. First, there 

were far too many questions on water scarcity perceptions, which could be consolidated 

into fewer questions. Second, income questions were better placed at the end of the 

survey to minimize participant suspicion. We also discovered that both water source and 

crop questions needed to be simplified. We achieved this by only asking for water source 

rank and name, which could be used to search external data for total dissolved solids, 

water price, and (in the case of district water) percent of supplier revenue generated from 

selling water to agricultural consumers. We simplified the crop question to only ask for 

the top 3 highest value crops, based on feedback from survey respondents. 

Final Survey Data Collection Plan 

The final survey consisted of 28 questions (Annex 3.4). Questions associated with 

farm, farmer and water source characteristics were straightforward to construct (e.g., 

education, percent agricultural income, years of farming experience, water sources, 

acreage, crop type), and we used either fill-in or close-ended questions. Water 

management practices (e.g., irrigation, soil moisture monitoring, salinity monitoring, 

water scheduling, and water flow monitoring technologies) required reliance on previous 

surveys (FRIS 2013; Escalera, Dinar and Crowley 2015; Dinar and Campbell 1990) and 
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help from agricultural extension and resource conservation experts.10 Two questions on 

water scarcity perceptions were also included (Diggs 1991; Taylor, Stewart, and 

Downton 1988).  

The original data collection method was an on-line survey via the Survey Monkey 

platform that would be disseminated by the respective Agricultural Extension agencies or 

Farm Bureaus for the four counties. The greatest strength of an on-line vs. mail-in survey 

is the time saving both in disseminating the survey and inputting/coding data. One also 

has the ability to “force” responses for the most critical data, thus reducing incomplete 

surveys (of course, too many of these questions may frustrate respondents and cause them 

to quit).  

The Agricultural Extension agencies, Imperial County in particular, were hesitant 

to host a survey on their websites. Ultimately, the Farm Bureaus in Riverside and San 

Diego counties hosted our survey. After being hosted on the Riverside Farm Bureau site 

for one month, the survey only received two complete responses (and three incomplete 

ones). San Diego Farm Bureau did not directly host the survey on their website, but 

agreed to disseminate the survey via an email newsletter. This yielded two responses after 

one month. The pilot mail-in survey had a higher response rate than the on-line final 

version. Thus, we made a decision to implement a mail-in survey using the same dataset 

as from our pilot survey.  

                                                           
10 Eta Takele, Jose Aguiar and Carmen Gispert from UCCE Riverside County; Paul Lake and Lance 

Anderson from the Resource Conservation Districts; Steve Pastor from Riverside Farm Bureau; and Khaled 

Bali from UCCE Imperial County. 
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We mailed the survey to 1277 potential respondents in a staggered sequence 

following the timeline in Figure 3.1. We mailed the entire list in Imperial and Riverside 

counties due to the relatively smaller number of growers. For San Diego and Ventura 

counties, we used a random number generator to randomly select 300 recipients from 

each county. The mailing packets contained: invitation letter, informed consent, survey, 

and self-addressed return envelope. We also offered a $25 incentive if we were to receive 

the survey by the two-month deadline stipulated in the informed consent. We had a 

dedicated team of three undergraduate students to assist with the initial and follow-up 

mailings. These students later assisted with data entry. We received 221 responses, of 

which 187 were valid, resulting in a 14.6% response rate.11 

March – June 2015: Develop general understanding of survey design (question types, questionnaire 

structure; common sampling/measurement errors) and sampling strategies (Salant and Dillman 1994; 

CIMMYT 1993; Cohen and Cohen 1983). Read previous surveys (Escalera, Dinar, and Crowley 2015; 

CIMMYT 1993; Dinar and Campbell 1990). 

June – August 2015: Pilot phase survey dissemination 

August -- September 2015: Finalize survey based on pilot phase findings 

September – October 2015: On-line survey dissemination 

October – November 2015: Send Mail-in survey (due to poor response rate on-line) to Riverside 

and San Diego counties 

January 2016: Send follow-up letter to non-respondents in Riverside and San Diego counties. 

Preliminary coding and database creation 

February – April 2016: Send mail-in survey sent to Imperial County; continue data entry; send 

follow-up letter to Imperial county non-respondents 

April – June 2016: Send mail-in survey sent to Ventura County; continue data entry; send follow-up 

letter to Ventura county non-respondents 

Figure 3.1: Survey Milestones and Timeline 

                                                           
11 Of the 221 responses received, we excluded nurseries, anonymous responses, and growers who did not 

sell commercially. 
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Questionnaire Dataset 

The observations in the original dataset, used for the pilot and final surveys, were 

obtained from the County Agricultural Commissioners’ Offices in Imperial, Riverside, 

San Diego, and Ventura counties via a Public Information Request Form. There is no 

formal name for this dataset, though it is informally called “Pesticide Permit Data”. It 

represents agricultural entities who applied for Restricted Materials Permits at a given 

time. Conservative estimates suggest that these data represent roughly 75% of growers in 

each county (Mulherin, 2014). We used 2014 as our reference year, because we wanted 

to ask growers about the prior year when we started our analysis in mid-2015. The dataset 

includes contact information, location, and commodity information (crop type, planted 

acreage) at the agricultural field level (with site-ID) for each grower. Importantly, these 

excel data are linked to geospatial data.  

These data are not linked to email addresses, preventing us from using the dataset 

in an on-line survey. As discussed earlier, our primary reason for abandoning on-line 

survey dissemination was the poor response rate. Additionally, the Agricultural 

Commissioner has GIS field boundaries for each farm, which allow us to accurately link 

land value, climate, and soil to specific agricultural fields. This will subsequently be 

explained in more detail. 

Imperial County 

The original dataset from Imperial County contained 312 entities. 87 entities were 

excluded as ineligible (uncultivated agriculture—6, research or management 
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companies—54, non-agricultural use—22, misc--5). The survey was mailed to n=225 

growers. The final survey sample size for Imperial County is n=30. 

Riverside County 

The original dataset from Riverside County contained 481 entities. Twenty-nine 

entities were excluded as ineligible (apiary--4, aquaculture--1, poultry--5, management 

companies--11, misc.--8). The survey was mailed to n=452 growers.  The final survey 

sample for Riverside County is n=60.  

San Diego County 

The original dataset from San Diego County contained 2075 entities. In order to 

control for non-commercial farms, we excluded 890 growers with less than 5 acres.12 We 

also excluded 17 other growers (apiary—3, management companies—5, water utilities—

9). Thus, the cleaned dataset included 1168 entries, of which we randomly selected 300. 

The final survey sample for San Diego County is n=48. 

Ventura County 

The dataset from Ventura County was particularly noisy. Although we had 

requested only agricultural parcels, we received data on pest control, golf courses, water 

utilities, etc. After excluding 310 ineligible entities (pest control—35, management 

companies—45, parks—15, golf courses—23, utility—33, apiary—5, growers with less 

                                                           
12 Even though we excluded growers with less than 5 acres, several respondents in San Diego County 

reported less than 5 acres on their surveys. This reveals a discrepancy between reported acres in the 

Agricultural Commissioner dataset, and actual planted acres. 
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than 5 acres—112, misc.—42), the size went down from 1170 entities to 860, of which 

we randomly selected 300. The final survey sample for Ventura County is n=49. 

Farm Types Data 

The Agricultural Commissioner Dataset provides information on the planted 

acreage of each crop on each field for each grower. We categorized each crop as either 

field/grain (G), nursery (N), vegetable (R), tree/orchard (T), vineyard (V), or a mix of 

more than one category (M) based on a field guide of California agriculture (Starrs and 

Goin 2010). After each crop was categorized, we calculated the percent of each crop 

category with respect to total planted acres on farm.13 If 75% or more of the planted 

acreage was devoted to a particular crop category, then farm type was labeled as such.14  

 

 

 

 

 

 

 

                                                           
13 Note that planted acres is different from the total farm acreage. It may be larger than the total acreage 

because of annual crop rotations. Or, it may be smaller when the entire field is fallowed.  
14 The USDA does not have a method to categorize farms with multiple crops. We use >/= 75% acreage as 

a conservative estimate, as 75% is commonly used to represent the mathematical majority. 
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Figure 3.2: Distribution of Farm Types in the Original Dataset 

 

 

(a) Imperial  

(d) Ventura  (c) San Diego  

(b) Riverside  
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Water Source Data  

There are two broad categories of water sources in our sample: district water and 

groundwater. Water source names and relative importance were collected from the 

survey. More than half of growers (62%) have only a single water source, and this is most 

likely district water (Figures 3.3 and 3.4). 

 

 

Water District Data 

Water district variables (water price, salinity, percent revenue from agricultural 

accounts) were derived from Consumer Confidence Reports (CCRs), Annual Reports 

(ARs), and other supplemental documentation (Annex 3.5). Water district boundaries are 

represented in Figure 3.5.  

Figure 3.3: Histogram of Number of Water 

Sources 

Figure 3.4: Histogram of Water Source Types 
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Imperial County provides the least complexity in this regard as there are only two 

water providers in the dataset for that county. They include Imperial Irrigation District 

(IID), which provides the majority of water to the predominantly agricultural county. IID, 

a member of the 1931 Seven-Party Agreement, receives all of its water from the 

Colorado River via the All-American Canal. Bard Water District also provides water to 

smaller growers in the region. 

San Diego County has several small (relative to IID) water districts servicing 

agriculture. These are, in decreasing order of survey representation, Rainbow Valley 

Water District, Valley Center Municipal Water District, Ramona Valley Water District, 

Rancho California Water District, Fallbrook Public Utilities, City of Escondido, and 

Vista Irrigation District.  

Figure 3.5: Water Districts Represented in Survey Sample 

Note: This map was created in ArcMap using water service area maps for the 18 water agencies 

represented in different colors to make them more visible. We could not locate service maps online for 

Bard Water District or Gage Canal.  
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Riverside County is relatively more complex in agricultural water distribution, 

where two districts (Coachella Valley Water District and Palo Verde Irrigation District) 

hold senior water rights to the Colorado River via the Seven Party Agreement. Other 

districts represented in the survey include Western Municipal Water District, Rancho 

California Water District, Riverside Public Utilities, Eastern Municipal Water District 

(reclaimed water), and Lake Hemet Municipal Water District. Though it is not considered 

a water agency, Gage Canal also represents an important source of agricultural water 

from the Santa Ana River for citrus growers in the city of Riverside.  

Ventura County is arguably the most complex county with respect to agricultural 

water. There are 3 major wholesalers in the county: United Conservation District 

(associated basin: Santa Clara River), Casitas Municipal Water District (Ventura River), 

and Calleguas Municipal Water District (Calleguas Creek). Ventura County also has a 

proliferation of smaller entities that are either Mutual Water Companies or Private Water 

Companies. The former are commonly owned by their shareholders, while such 

ownership is not necessary in the latter. Mutual Water Companies are loosely regulated 

by the Public Utilities Commission, while Private Water Companies are not. The majority 

of mutual water companies receive water from the nearest groundwater basin (Detmer, 

2016), thus we derive total dissolved solids information based on the nearest groundwater 

well, as explained in the proceeding section on groundwater data. We still code mutual 

water companies as water districts because, even though these are smaller than the other 

water districts represented in this study, they still represent institutions with governing 

rules for members (North 1990). Mutual water companies represented in our survey 
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include Farmers Irrigation, Del Norte Mutual Water Company, Fillmore Irrigation 

Company, Crestview Mutual Water Company, Southside Improvement Company, and La 

Loma Ranch Mutual Water Company. In addition to wholesalers and mutual/private 

water companies, mid-sized water districts also operate in Ventura County. Those 

represented in our survey include Camrosa Water District, Ventura County District 1, 

Ventura County District 19, and the City of Simi Valley. 

Groundwater Data 

Total dissolved solids (TDS) in ppm is used as a measure of water quality, where 

higher tds values imply lower water quality. It is calculated in ArcMap using USGS 

Groundwater Ambient Monitoring and Assessment (GAMA) reports for Riverside, San 

Diego, and Ventura counties (Goldrath et al. 2009; Montrella et al. 2009; Wright et al. 

2005)15. Maps of sample wells from these reports were converted to ArcMap documents, 

and TDS data (also in these reports) were linked to each sample well. The centroid 

location of respondents using groundwater as their primary water source was linked to 

the sample well maps using inverse distance weighting. Inverse distance weighting is a 

spatial interpolation technique in ArcMap that averages the values in the neighborhood of 

each data point, giving a decreasing weight as distance increases. This resulted in a given 

respondent’s TDS value equal to a weighted average of surrounding sample wells 

represented in the USGS data (Annex 3.6). 

                                                           
15 Imperial County does not have any respondents using groundwater. 
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Groundwater price is assumed to equal the marginal extraction cost, which in 

turn, is assumed to equal electricity cost of pumping groundwater.16 Equation 3.1 

represents the electricity cost for lifting one acre-foot of water, 𝑝𝑔𝑤,17 (Peacock 1996): 

𝑝𝑔𝑤 = 1.024𝑔ℎ𝑝𝑢 

where gh is the pumping height in feet, and pu is the unit price of electricity per kWh. 

Groundwater height is also calculated using inverse distance weighting from the same 

GAMA monitoring wells used for TDS calculation (Annex 3.6). The nearest electric 

                                                           
16 Due to the static nature of our analysis, marginal user cost is assumed to be constant. 
17 The constant 1.024 is the ratio of 1 acre-foot of water in lbs (=2.719x106 lbs) and 1 kWh (=2.655x106 ft-

lbs). 

Figure 3.6: Electric Utility Providers Servicing Respondents (green points) with 

Groundwater 

Source: This map was created from SCE, IID, and SDG&E service area maps. 

 

(3.1) 
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utility provider to each relevant respondent is found using the service maps from utility 

providers available online (Annex 3.7). And, once an electric utility provider is identified, 

the electricity price per kWh is used to calculate the cost per acre-foot of water pumped.  

Crop Salt Tolerance 

We classify crops in our data as sensitive, moderate sensitive, moderate tolerant, 

and tolerant, based on Tanji and Kielen (2002). Due to the low number of crops in our 

sample classified as moderate sensitive or moderate tolerant, we combine these categories 

into a general “moderate” category. We utilize a lowest-common-denominator approach 

to classify farms, where the existence of a salt-sensitive crop renders the entire farm salt 

sensitivity. Thus, we select the highest sensitivity among all crops listed in the survey to 

represent the sensitivity of the farm. We do not include weights by area because these are 

qualitative categories. 

Climate Data 

Following the practice of previous hedonic property studies in California, climate 

data were obtained from the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) Group housed in Oregon State University (Mukherjee and Schwabe 

2014; Deschenes and Kolstad 2011; Schlenker, Hanemann and Fisher 2007). These are 

spatially interpolated datasets collected from a range of climate monitoring networks, 

which provide more intra-county variability than the limited number of California 
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Irrigation Monitoring Information System (CIMIS) weather stations18 (PRISM Climate 

Group 2016). We used a 30-year average monthly climate normals (1981-2010) for 

maximum daily temperature (tmax) and minimum daily temperature (tmin) measured in 

Celsius. To clarify, tmax (tmin) implies the monthly average of the daily maximum 

(minimum) temperature, and not the maximum (minimum) temperature recorded each 

month. We also include the 30-year normal for precipitation (ppt), which represents the 

total monthly rainfall and snowmelt in millimeters averaged over the 30-year period.19 

GIS files of the national climate data were downloaded at a resolution of 800m, 

and clipped to represent the 4-county region of analysis. The polygon data in the 

Agricultural Commissioner files was first converted to points. Using the Extraction tool 

in ArcMap, climate data values were assigned to these points. Due to limited “within-

field” variability of climate variables, the centroid point value was assigned to each field. 

We then took a weighted average of the field-level data in order to determine the farm-

level climate normal.  

Soil Moisture Capacity 

We included a variable representing soil moisture defined as available water 

storage (0-100 cm). This is the total volume of water (in centimeters) that could be 

available to plants when the soil, inclusive of rock fragments, is at field capacity for the 

top 100 cm of the rootzone (NRCS n.d.). Soil data was constructed from USDA NRCS 

                                                           
18 For example, in Riverside County, there are no stations with 30-year normal data from 1984-2014. And, 

only nine stations have data from 2000-2014.  
19 Note that precipitation is a sum of total rainfall and snowmelt for each month, whereas temperature is the 

average daily temperature for each month. 



41 
 

Geospatial Data Gateway shapefiles by performing a spatial intersect between NRCS and 

Agricultural Commissioner field boundary shapefiles in GIS, similar to the land value 

calculation. Thus, it is not the centroid value, but a weighted average of soil moisture at 

the field level. For farms with multiple fields, a second weighted average is calculated at 

the farm level. Across all 4 counties, 72 respondents were not included in the NRCS 

Geospatial Data. For these respondents, we had to manually input latitude and longitude 

information obtained from Google Earth into the Web Soil Survey online (USDA 2016). 

Previous models that have included multiple soil variables (Schlenker, 

Hanemann, and Fisher 2007; Mendelsohn and Dinar 2003; Mendelsohn, Nordhaus and 

Shaw 1994) have also had larger sample sizes, roughly 10 orders of magnitude greater 

than our sample. We were more parsimonious in representing soil quality in order to 

avoid over-fitting our models. Available water storage captures that aspect of soil quality 

that is most relevant for irrigation management purposes, namely soil moisture capacity.   

Crop Price Data 

Data on crop prices is necessary for the gross revenue analysis. Yield data for the 

top 3 crops on each farm was taken from our survey, and this was subsequently 

multiplied with crop price data from the county-level 2014 Crop Reports, compiled by 

the respective Agricultural Commissioners’ offices. Total revenue was divided by total 

yield (tons) to generate a price per ton. If this data was unavailable for a given crop, the 

USDA NASS Quarterly Agricultural Price Reports for 2014 were consulted. 

 



42 
 

Zoning Data 

Zoning data were obtained from the Planning Departments in each county. These 

data include zoning codes and maps. The codes for Agricultural zoning are presented in 

Annex 3.8. We coded each field as 1=inside agricultural zone, and 0=outside agricultural 

zone based on whether the field centroid was in an agricultural zone. Latitude and 

longitude from Google Earth was used for San Diego County respondents whose GIS 

data were unavailable.  

Water Agency Surveys 

We developed a 5-question survey for the water districts in our survey area 

primarily to ask how long their current pricing structure for agricultural clients was in 

place and how frequently they had increased their water price for agricultural clients in 

the past decade. Two undergraduate students emailed and telephoned 27 water agencies 

for these data (Annex 3.9). 

Data Sources for Chapter 6 

Data on all existing agricultural parcels from 2000-16 is from the Riverside 

County Assessor Office, which includes use code and acreage. Data on actual agricultural 

parcel sales is from ParcelQuest, a subscription-based website that is used by the majority 

of County Assessors in the state. 5-year (and 10-year) climate variables are derived from 

the PRISM Group GIS data in an analogous fashion to our survey. Soil quality data are 

collected from the NRCS SSURGO spatial data, as with our survey data. We use the 

following soil files: az656, ca678, ca679, ca680, ca681, ca695, and ca777. Water district 
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service maps are taken from the Riverside County Open Data Warehouse Major Water 

Districts spatial data. Population data is derived from the US Census and Riverside 

County Open Data Warehouse. To account for parcels that are not directly located in a 

major urban center, we divide the population rate and mean variables by a distance factor 

(i.e., equal to the number of miles the parcel is located from the nearest urban center). 

This equals 1 if a given parcel is within or less than 1 mile away from the nearest urban 

center. 

Data Challenges 

Constructing a complex dataset is a time-consuming endeavor. Using a paper 

survey compounded this challenge as we manually input all survey data. Some 

questionnaires were only partially complete when mailed back to us. Some growers were 

not producing commercially, others were coded as tree crops when in reality these were 

nursery trees. And, we ultimately excluded all nurseries from our dataset because these 

do not rely on the soil or, in the case of indoor nurseries, on climate, in the same way as 

conventional, open-space crops.  

In addition to missing or irrelevant data from the questionnaires, the spatial 

datasets also created a few challenges. First, the spatial data from the Agricultural 

Commissioner on field boundaries was quite noisy, including multiple permit years with 

slightly different acreages for identical crop fields. The same polygons were redrawn on 

top of one another in ArcMap several times. We corrected for this by selecting 2014 as 

the reference permit year. Even after doing this, several growers who were in the 2014 
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excel file originally requested from the Agricultural Commissioner were missing 2014 

spatial data. To correct for this, we used the next chronological year of spatial data.  

We experienced a similar challenge with the Assessor Data. Only Assessor Parcel 

Numbers (APN) were included in the spatial data, and not land values. Thus, we had to 

separately purchase land value data for agricultural parcels from the respective Assessor 

offices. These data also introduced missing values since not all APNs in the spatial data 

were available in the land value data. Agricultural Commissioner spatial data for San 

Diego County presented the greatest challenge. Several growers in the original dataset 

were missing completely from the spatial data. We used the physical address of the 

farm/grove/vineyard to find the centroid latitude and longitude in Google Earth prior to 

geospatial analysis. Additionally, several respondents were not represented in the soil 

shapefiles. We supplemented this data with the Web Soil Survey as discussed in the soil 

moisture data section of this chapter. Overall, we addressed these data collection 

challenges in the most efficient and robust means at our disposal in order to minimize 

respondent attrition. 
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Chapter 4: Farm-level Ricardian Model  

We begin with our first of three empirical chapters. The Ricardian framework 

allows one to exploit cross-sectional differences in key production variables to 

approximate the marginal impact of climate, at a given time period. Previous studies have 

aggregated data at the county level, which involves strong simplifying assumptions of 

county homogeneity in farmer characteristics, water source, soil type, irrigation 

technology, and other key inputs. Perhaps most relevant for an analysis on climate 

impacts, such data aggregation assumes a homogeneous county climate. 

Using data from our farm questionnaire, we study the impacts of change in 

microclimate on agricultural productivity in Desert and Southern California regions while 

controlling for other micro-level effects such as grower, farm, and water source 

characteristics. We define microclimate as the average climate of all cropped fields on a 

given farm.20 Figure 4.1 illustrates our survey region and respondent distribution. What is 

the marginal impact of these micro-level variables on productivity after long-run 

adaptations by the grower are taken into account? To what extent do such variables, 

which provide more accurate representation of both the grower and farm, help explain the 

variation in gross revenue per acre in Desert and Southern California agriculture?  We 

explore these questions using two, non-linear specifications of the farm-level value 

function with respect to climate: log-log and quadratic transformation. 

 

                                                           
20 Note that in Chapter 6, microclimate is defined at the parcel level since that is our unit of analysis. 
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Figure 4.1: Survey Respondent Map 

Literature Review 

The Ricardian specification (Chapter 2 presents the theoretical framework) allows 

us to implicitly capture long-run production decisions, many of which are the result of 

complex historical relationships with local climate, water, and soil conditions. This is 

particularly true in Southern California where growers in the hottest regions tend to have 

access to senior water rights. Mendelsohn, Nordhaus and Shaw (1994) is one of the first 

studies to elegantly represent economic decision-making by the grower while analyzing 

the impacts of climate change on US agriculture.21 Cross-sectional differences in climate 

across 2933 US counties reveal the relative contribution of temperature and precipitation 

normals to farm productivity. Ultimately, these authors find that previous studies 

overestimate the loss in agricultural profits as they do not allow for reasonable 

                                                           
21 Johnson and Haigh (1970) is an earlier hedonic property study incorporating climatic impacts.  
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adjustments to baseline production practices that incur substantial losses under a 

changing climate.22  

Although previous Ricardian studies account for responsiveness to climatic 

change, most studies do not include characteristics of the decision-makers on farm, which 

are likely to directly influence productivity. This is not to say that socioeconomic 

variables are entirely excluded from earlier analyses. Previous Ricardian models have 

included a limited number of socioeconomic variables (various measures of population, 

income per capita, farm wages) wrapped up at the county level (Schlenker, Hanemann, 

and Fisher 2007; Mendelsohn and Dinar 2003; Mendelsohn, Nordhaus, and Shaw 1994). 

These studies have found that population density, particularly urban population density, 

has a relatively strong, positive impact on land value, while population density squared 

and population growth rate have negative impacts. Income per capita also has a positive 

impact on productivity. However, these are ultimately measures of market access and not 

ability of the economic agent to influence productivity as, at the aggregate county level, 

total population, urban population, and income per capita may all capture level of 

urbanization. We study characteristics such as education, farming experience, farm 

ownership, farm size, and water price. We represent urbanization, using a zoning 

variable. 

                                                           
22 More colloquially, they are improving upon the “dumb farmer” scenario in which the farmer makes no 

adjustments in crop mix, fallowed land, or adopted technology to mitigate the damages from a changing 

climate. 
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Microclimate is important to study because it is the localized climate directly 

observed by the economic agent (i.e., grower), and thus more likely to impact production 

decisions rather than county averages. Microclimate is defined as a set of local 

atmospheric conditions that differs across space, where climate difference could be less 

than a degree, and the spatial distance could be a few feet.23  Climate variables in many 

previous studies represent county averages (Deschenes and Kolstad 2011; Mendelsohn 

and Dinar 2003; Mendelsohn, Nordhaus, and Shaw 1994). However, some studies 

incorporate microclimate at different spatial scales (Mukherjee 2013; Schlenker, 

Hanemann and Fisher 2007).  Mukherjee (2013) uses a sub-county scale by connecting 

farm parcels to the nearest California Irrigation Management Information System 

(CIMIS) weather station. Schlenker, Hanemann and Fisher (2007) use spatially 

interpolated PRISM data at the centroid of each farm in their dataset.24 We define 

microclimate at the agricultural field level, using PRISM data to generate the centroid 

value of each field. We then take the weighted average of all fields in the farm. 

We include a climate variability measure to capture large differences in monthly 

climate variables observed within a year. Thus, our variability measure captures climate 

extremes across seasons. In their study of US counties, Mendelsohn et al. (2007) find that 

inter-annual temperature variance (1988-2002) for April and July have lower marginal 

impacts on productivity than variance of April and July temperature normals. However, 

inter-annual temperature variance has a greater impact on productivity in October than 

                                                           
23 As stated earlier, we use the average of all cropped fields within a farm to quantify farm-level 

microclimate. 
24 See Data Sources (Chapter 3) for more information on PRISM data. 
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the temperature normal. This finding suggests that growers are expecting more 

predictability (i.e., lower variance) in fall temperatures. Mendelsohn and Dinar (2003) 

also account for inter-annual variability in their model of US agriculture. Temperature 

variability has a lesser impact than the respective climate normals in January and 

October, while it has greater impact in July. 

Descriptive Statistics 

In this section, we briefly analyze several farm-level variables from our survey 

sample. While several of these variables do not reveal a statistically significant 

relationship with our primary measure of productivity (i.e., gross revenue per acre), they 

provide an important socioeconomic snapshot of our survey sample. For the subsequent 

discussion, we implement mosaic plots, which are powerful tools for visualizing the 

distribution of categorical variables. This descriptive analysis is supplemented with 

summary statistics in Table 4.1.  

The average grower has about 27 years of experience and obtained a Bachelor’s 

degree in their education. He owns more than half of his property (66%) and farms an 

average of 649 acres. Roughly 25-50% of his income is derived from farming. Figure 4.2 

illustrates how farm characteristics (e.g., farm type and percent income from agriculture) 

are distributed with respect to gross revenue per acre. Vegetable farms (=R) have the 

highest median value with respect to revenue per acre relative to other farm types, even 

higher than orchards (=T) and vineyards (=V). Notably, the mean gross revenue per acre 
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for the ≥75% category (=4) is highest relative to other categories. However, growers with 

<25% income from agriculture (=1) have the second highest gross revenue per acre.  

 

 

Education and Experience 

The left panel in Figure 4.3 represents the distribution of education categories 

across the four counties. While a large proportion of growers hold a Bachelor’s degree 

across all counties, Imperial County has the largest proportion (74% of all Imperial 

growers in the sample). However, the proportion of post-graduate degrees is lowest in 

Imperial, whereas postgraduate degrees are highest in San Diego County (50% of all San 

Diego growers within our sample). The right panel indicates that Imperial County 

growers have the highest median years of experience, whereas San Diego County 

growers have the lowest. Additionally, Ventura County has the highest variance in years 

of growing experience. 

 

Figure 4.2: Farm Type (ftype) on Left, and Percent Income from Agriculture (ftaginc) on Right 
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Figure 4.3: Distribution of Grower Education (left) and Experience in Years (right) by County 

Notes: (1) NB=Education less than Bachelors, B=Bachelors, PB=Education higher than Bachelors; 

(2) I=Imperial, R=Riverside, SD=San Diego, V=Ventura 

 

Climate 

Annex 4.1 presents a correlation matrix, which reveals a high degree of 

correlation between the seasonal climate variables. In order to limit multicollinearity 

problems and increase the degrees of freedom (given our relatively small sample size), 

we use annual climate variables in our empirical models. Annual minimum temperature 

is the mean of monthly minimum temperature normals, which are, in turn, the mean of 

daily minimum temperature normals. The range of annual minimum temperatures (in °C) 

for the sample is [2.69, 23.29]. Annual precipitation is the sum of total annual 

precipitation (in mm), with a range of [50.46, 607.94]. We also study the effects of 

climate variability within year using the coefficient of variation for each grower. 

The graphs in Figure 4.4 illustrate the distribution of minimum temperature and 

precipitation variables (annual means and coefficient of variation-CV) accounting for the 

five farm types in our sample. Grain/field crops farms (colored in black) have the 
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smallest temperature and precipitation range as illustrated by the cluster of black points. 

It is also apparent that tree crops farms (colored in blue) make up the largest percentage 

in our dataset, with a relatively large distribution of climate values. However, it is clear 

that tree crops clustered around lower temperatures and higher levels of precipitation. 

Vegetable farms (green), vineyards farms (cyan), and mixed farms (red) fall somewhere 

in between tree and field/grain farms in the various graphs in Figure 4.4. 

 

 

Note: Color Coding of Farm Types Follows: Black=Grain/Field, Red=Mixed, Green=Row/Vegetable, Blue=Tree, Cyan=Vineyard 

Figure 4.4: Relationship of Gross Revenue and Climate Variables by Farm Type 
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Figure 4.5: Distribution of Groundwater (left) and Senior Water  

Rights (right) by Farm Category  
 

Notes: (1) y-axis=farm type: V=vineyard, T=tree, R=vegetable, M=mixed, G=field/grain 

(2) x-axis: left panel=Access to Groundwater; right panel=Senior Water Rights 

 

Water Sources 

Figure 4.5 illustrates the distribution of farm types between two water source 

variables: access to groundwater (left panel) and senior water rights (right panel). Tree 

crops farms have the best access to groundwater, whereas field crop farms have the best 

access to senior water rights. 

Variable Construction and Transformation 

Gross Revenue  

Several Ricardian studies have used revenue or gross revenue as the dependent 

variable in addition to or in lieu of land value (Deschenes and Kolstad 2011; Mendelsohn 

et al. 2007; Mendelsohn, Nordhaus, and Shaw 1994). Due to the implications of 

Proposition 13 in California, assessed land value does not accurately represent market 
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value of land unless the property has been recently sold or transferred.25 As such, we use 

gross revenue per acre as an alternative measure of agricultural productivity for the 

reference year of 2014. However, use of gross revenue is an annual measure and does not 

represent long-term productivity. 

Yield data for the 3 highest value crops (across all 2014 seasons) for each grower 

is derived from our questionnaire. We requested the top 3 crops from each grower in 

order to maintain questionnaire consistency across all counties, minimize survey length, 

and ensure completion of the questions by the respondents. Requesting yield data for all 

crops would be infeasible for growers in Imperial and Riverside counties, where quite a 

large number of crops are grown annually on each farm. Figure 4.6 illustrates that we 

have a rich distribution of crops in our sample. We use equation (4.1) to obtain gross 

revenue per acre on farm (using the three main crops grown on each farm):    

(4.1)       (∑ 𝑔𝑖𝑝𝑖

3

𝑖

) 𝑎𝑖⁄       ∀𝑖 ∈ {1,2,3}      

where g is total yield in tons for the ith crop, p is the price26 per ton for the ith crop, and a 

is the total acreage of  the i crops. We emphasize that this is not the total farm acreage. 

                                                           
25 California Proposition 13 (People’s Initiative to Limit Property Taxation), enacted in 1978, restricts 

annual increases of assessed value to 2% per year or less. 
26 Chapter 3 provides details on crop price data sources. 
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Figure 4.6: (log) Crop Acreage in Dataset 

Multiple Imputation of Agricultural Income Variable 

Percent income derived from agriculture is an important variable, as it captures a 

given grower’s level of investment in his/her farm. Even though we created broad 

categories for this variable (divided in quartiles), this was a sensitive question for 15 

growers who left it blank. We use multiple imputation to keep the percent income from 

agriculture variable in our analysis and avoid list-wise deletion (King et al. 2001; Rubin 

1976). We use the Amelia package in R where the underlying algorithm for imputing 

missing values is expectation maximization using maximum likelihood estimation. In the 

first step, the (expected value of the) log likelihood is evaluated using current estimates 

for the parameters. The second step maximizes this likelihood function to generate new 

parameters, which then update the first step, and so forth. Several imputed datasets are 
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generated from this iterative process (we use the standard number of m=5 imputed 

datasets), and the expected value of a given missing value is the mean of this value across 

the m imputed datasets. 

Empirical Framework 

Based on the literature reviewed and discussed earlier, the following empirical 

models are estimated.  The dependent variable, y, represents gross revenue per acre 

(Equations 4.2-A and 4.2-B below). The dependent variables are explained and presented 

with their descriptive statistics in Table 4.1 below. 

(4.2 − A)       log(y)

= 𝛽0 + 𝛽1𝑙𝑜𝑔𝑤𝑎𝑡𝑝𝑟𝑖𝑐𝑒 + 𝛽2𝑟𝑎𝑡𝑒_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽3𝑑𝑒𝑓𝑖𝑐𝑖𝑡 + 𝛽4𝑓𝑡𝑦𝑝𝑒𝑅 + 𝛽5𝑓𝑡𝑦𝑝𝑒𝑀

+ 𝛽6𝑓𝑡𝑦𝑝𝑒𝑇 + 𝛽7𝑓𝑡𝑦𝑝𝑒𝑉 + 𝛽8𝑎𝑔𝑖𝑛𝑐2 + 𝛽9𝑎𝑔𝑖𝑛𝑐3 + 𝛽10𝑎𝑔𝑖𝑛𝑐4 + 𝛽11𝑔𝑤𝑎𝑡𝑒𝑟

+ 𝛽12𝑙𝑜𝑔𝐶𝑉𝑎𝑛𝑛𝑚𝑎𝑥 + 𝛽13𝑙𝑜𝑔𝐴𝑉𝐺𝑎𝑛𝑛𝑚𝑎𝑥 + 𝛽14𝑠𝑒𝑛𝑖𝑜𝑟𝑤𝑎𝑡 

(4.2 − B)     𝑦 = 𝛾0 + 𝛾1𝑤𝑎𝑡𝑝𝑟𝑖𝑐𝑒 + 𝛾2𝑟𝑎𝑡𝑒_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛾3𝑑𝑒𝑓𝑖𝑐𝑖𝑡 + 𝛾4𝑜𝑤𝑛 + 𝛾5𝑓𝑡𝑦𝑝𝑒𝑅

+ 𝛾6𝑓𝑡𝑦𝑝𝑒𝑀 + 𝛾7𝑓𝑡𝑦𝑝𝑒𝑇 + 𝛾8𝑓𝑡𝑦𝑝𝑒𝑉 + 𝛾9𝑎𝑔𝑖𝑛𝑐2 + 𝛾10𝑎𝑔𝑖𝑛𝑐3 + 𝛾11𝑎𝑔𝑖𝑛𝑐4

+ 𝛾12𝐴𝑁𝑁𝑝𝑝𝑡 + 𝛾13𝐴𝑉𝐺𝑤𝑖𝑛𝑡𝑒𝑟𝑝𝑝𝑡2 + 𝛾14𝑎𝑐𝑟𝑒 + 𝛾15𝑠𝑒𝑛𝑖𝑜𝑟𝑤𝑎𝑡 

As Figure 4.7 illustrates, gross revenue per acre has a right-skewed distribution that can 

be addressed by using log transformation. We also explore (log-log) quantile regression 

to control for the heterogeneous farm types in our sample. We do not find the coefficients 

at the 25th, 50th, or 75th quantiles to be statistically different from the log-log OLS 

specification.  
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Discussion of Results 

We study the impact of climate on marginal productivity of farmland using a 

large set of micro-level variables collected from our questionnaire. The right-skewed 

distribution of the dependent variable improves with natural log transformation (Figure 

4.7), and indeed the log-transformed specification (Table 4.2) results in greater 

explanatory power relative to the quadratic counterpart.27 We interpret log-transformed 

coefficients as elasticities, i.e., percentage change in the geometric mean of the dependent 

variable with 1% unit increase in the geometric mean of a given independent variable 

(Wooldridge 2006).28 We removed one outlier from the regression (Cook’s 

Distance=0.18), which improved the robustness of the overall model and reduced the 

RMSE. We subsequently discuss only the results from the log-transformed specification 

as this is the more robust of the two specifications. 

 

                                                           
27 The log transformed model has almost 3 times the explanatory power based on the F-statistic. 
28 Recall, the geometric mean is the nth root of a product of n numbers. 

Figure 4.7: Distribution of Gross Revenue per Acre 
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Table 4.1: Descriptive Statistics for Ricardian Dataset 

Variable 
Mean (n=165)a 

Range 

[Min, Max] Type Description 

Logrevacre 
8.44 (0.996) 

[5.06, 10.85] 

continuous 

natural log transformation of per acre 

revenue in 2014$ 

Revacre 
7268.92 (7609.71) 

[158.3, 

51435.9] continuous 

per acre revenue in 2014$ based on top 

3 crops 

County 

-- 

 

factor, 4 levels 

county fixed effect for Imperial, 

Riverside, Ventura, & San Diego. 

Imperial is the benchmark. 

Acre 648.78 (1437.61)  [0.25, 10625] continuous total planted acres on a given farm 

Water deficit 
0.40 (0.49) 

[0,1] 

factor, 2 levels 

Did the grower experience a water 

shortage in 2014? 

Gwater 

0.39 (0.49) 

[0, 1] 

factor, 2 levels 

Does the grower have access to 

groundwater? This does not mean that 

groundwater has to be the primary 

water source. 

Seniorwat 
0.29 (0.45) 

[0, 1] 

factor, 2 levels 

Does the grower belong to a district with 

senior water rights? 1=yes 

Edu 
--- 

 

factor, 3 levels 

NB= No Bachelors; B=Bachelors; PB=Post 

Bachelors 

Exp 27.59 (15.45) [2, 90] continuous Years of growing experience 

Own (land) 
0.66 (0.47) 

[0, 1] 

factor, 2 levels 

Does the grower own all of her 

property? 1=yes 

Agzone 
0.75 (0.44) 

[0, 1] 

factor, 2 levels 

Does 75% or more of the acreage 

classify as agricultural zone? 1=yes 

CVannmin 
0.45 (0.15) 

[0.25, 1.16] 

continuous 

Standard deviation of each month 

divided by annual mean  

CVannppt 
0.97 (0.13) 

[0.70, 1.63] 

continuous 

Standard deviation of each month 

divided by annual mean 

AVGannmin 
11.25 (2.58) 

[2.69, 23.29] 

continuous 

12-month average minimum 

temperature normal (1981-2010) 

annppt 
308.93 (175.24) 

[50.46, 

607.94] continuous 

Total annual precipitation  for normal 

(1981-2010) in mm 

aws0100 
10.79 (4.10) 

[2, 18] 

continuous 

weighted average of available water 

supply in the top 100cm of soil 

rate_frequency 
6.48 (4.52) 

[0, 13] 

continuous 

Number of times water rate has 

increased over the past 10 years 
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Variable 
Mean (n=165)a 

Range 

[Min, Max] Type Description 

ftype 

-- 

 

factor, 5 levels 

G=field crops; R=vegetable/row; 

V=vineyard; T=orchard; M=mixed. G is 

the benchmark. 

price_structure 

0.26 (0.44) 

[0, 1] 

Factor, 2 levels 

Does the water district (or electric 

provider) have a tiered pricing 

structure? 1=yes 

watprice 434.12 (530.54) [20, 2498.08] continuous Water price per acre foot. 

tds 
722.46 (281.16) 

[189.46, 

1597.88] continuous Total dissolved solids in ppm 

aginc 

2.35 (1.37) 

[1, 4] 

factor, 4 levels 

percentage of income from farming. 

1=[0,0.25); 2=[0.25, 0.5); 

3=[0.5,0.75);4=[0.75,1]. Level 1 is the 

benchmark. 

aNotes: Standard errors appear in parentheses. This includes all variables tested in the empirical model 
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Table 4.2: Log of Gross Revenue per Acre Regression Results 

Dep. Var.= log(gross revenue per acre)a Coefficient 
Robustb 
St. Err. t-value p-value 

      

constant 5.180 0.950 5.45 0.000 

      

Percent Agricultural Income:     

(Baseline= <25%)     

25 - 49% 0.342 0.208 1.65 0.101 

50 - 74% 0.652 0.194 3.36 0.001 

75 - 100% 0.538 0.165 3.26 0.001 

      

water deficit -0.212 0.141 -1.50 0.136 

access to groundwater 0.520 0.142 3.67 0.000 

senior water rights 1.309 0.285 4.59 0.000 

log(water price per acre-foot) 0.284 0.081 3.52 0.001 

water price increase frequency 0.032 0.020 1.57 0.118 

log(annual min temp normal) 0.272 0.305 0.89 0.374 

log(variation in annual min temp normal) -0.602 0.270 -2.23 0.027 

      

Farm Type:     

(Baseline=orchard)     

mixed -0.290 0.314 -0.92 0.358 

vegetable crop 0.209 0.239 0.88 0.382 

field crop -1.581 0.299 -5.29 0.000 

vineyard -0.296 0.158 -1.87 0.063 

      

n 164    

F-stat  18.45    

p-value of F-stat 0.000    

Adjusted R2 0.494     

Standardized RMSEc 0.088    
a: All log transformations are natural log 

b: Huber-White sandwich estimator 

c: Root Mean Square Error is standardized by dividing by the mean of the dependent variable 
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Table 4.3: Gross Revenue per Acre (Quadratic in Climate Variables) Regression Results 

Depen. Var. = gross revenue per acre Coefficient 
Robust 
St. Err.a t-value p-value 

      

constant -10233.050 3722.020 -2.750 0.007 

      

Percent Agricultural Income:     

(Baseline= <25%)     

25 - 49% 1875.710 2180.650 0.860 0.391 

50 - 74% 4178.280 1719.180 2.430 0.016 

75 - 100% 5535.320 1621.570 3.410 0.001 

      

Farm Type:     

(Baseline=field crop farms)     

mixed crop 7057.030 2133.460 3.310 0.001 

vegetable crop 9863.760 2424.630 4.070 0.000 

orchard 7462.620 3271.550 2.280 0.024 

vineyard 4009.940 2939.280 1.360 0.175 

      

deficit supply -1610.700 1050.390 -1.530 0.127 

senior water rights 9205.510 3380.560 2.720 0.007 

Own (land) 3603.460 1408.260 2.560 0.012 

water price per acre-foot 2.010 1.230 1.630 0.104 

water price increase frequency 296.680 148.960 1.990 0.048 

annual precip. normal 11.760 16.280 0.720 0.471 

 square annual precip. normal -0.090 0.020 -0.370 0.710 

acre -1.120 0.420 -2.650 0.009 

          

N 164    

F-stat  6.400    

p-value of F-stat 0.000    

Adjusted R2 0.300    

Standardized RMSEb 0.920    
a: Huber-White sandwich estimator. 

b: Root Mean Square Error is standardized by dividing by the mean of the dependent variable. 

 

 



62 
 

Both variability and mean climate conditions are included in the regression results 

in Table 4.2 as this gives more accurate measures of the respective partial effects 

(Mendelsohn et al. 2007). One of our most important results is the negative and 

statistically significant impact of increased variability in the average monthly minimum 

temperature normal. For example, a 5% increase in variability results in a 3% decline in 

gross revenue per acre.29 This result captures fluctuations in long-run (i.e., 30-year) 

minimum temperature expectations across a given year. There are several negative 

implications associated with an increase in variability. It implies that certain seasons are 

experiencing extremes in heat or cooling, which are detrimental to crop growth 

(Mendelsohn and Dinar 2009). Thus, an increase in variability may be correlated with a 

decline in annual predictability. And, if a grower is unable to accurately predict seasonal 

climate from year-to-year, they are less likely to develop an optimal seasonal 

production/adaptation plan. Variability also makes it difficult for the average grower to 

follow a consistent production plan throughout the year. There are costs associated with 

adjusting production practices on a seasonal basis, such as adding more fertilizer, cover, 

or even fallowing a portion of the land. In the case of permanent crops (i.e., trees and 

vineyards), additional costs are incurred from damage to the plant or fruit during hotter 

seasons.  

                                                           
29 βi = -0.602 (where i=log(CVmin)). A 5% increase in variability implies 1.05 -0.602 = 0.971. This is roughly 

a 3% decline in gross revenue per acre. Please refer to Table 4.2 for coefficient value. 
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The data present a counterintuitive relationship mean annual daily (minimum and 

maximum) temperatures (Figure 4.4).30 Although the positive marginal effect is not 

statistically significant for either temperature normal, it may reveal a complex 

relationship amongst productivity, temperature, and senior water rights, given that some 

of the most productive regions are in the desert (Coachella, Blythe, Imperial County). 

The potentially negative impact of high temperatures is likely offset by a reliable and cost 

effective water supply. However, even a superior water supply is unable to offset the 

negative impact of seasonal variability in minimum temperature on gross revenue per 

acre. The negative impact of variability in minimum temperature also captures the 

extremes in heat, which are dampened in the annual mean. 

Consistent with our hypothesis, neither total annual precipitation nor variability in 

annual precipitation significantly impacts productivity. Southern California growers have 

adjusted to the largely semi-arid climate, particularly as no grower in our sample relies 

solely on rainwater for irrigation. We find that growers who perceive to be experiencing a 

water shortage have roughly 20% (e-0.212) less productivity per acre than growers who do 

not have this perception as represented by the deficit supply variable.31 

The marginal impacts of water source characteristics reveal important findings. 

Four water variables capitalize, to varying degrees, into gross revenue per acre. Contrary 

to our hypothesis, water salinity does not have a statistically significant impact. Relative 

                                                           
30 Please note that only the data and results for the minimum temperature normal are presented in Figure 

4.4 and Table 4.1, respectively. 
31 At a 14% significance level. 
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to non-rights holders, growers with senior water rights have 3.7 times (e1.309) the level of 

productivity per acre. Senior water rights holders (Imperial Irrigation District, Palo Verde 

Irrigation District, Coachella Valley, and Bard Water District) also have the lowest water 

prices in our sample, ranging from $20-33 per acre-foot.32 Even accounting for this, water 

price exhibits a positive (and significant) relationship with gross revenue per acre. For 

example, a 5% increase in water price results in a 1.4% increase in productivity per acre. 

This suggests that access to senior water rights may capture more than a low price, and 

likely captures the value of holding priority water rights. This finding may also suggest 

that, ceteris paribus, a higher water price motivates growers to improve water efficiency. 

We also find that increasing the frequency of price increases by one unit, increases 

productivity per acre by 3.3% (e0.032).33 This suggests that sending growers a signal of 

scarcity, such as more frequent price increases, growers respond positively by improving 

their productivity per acre. Access to groundwater also exhibits a positive and statistically 

significant relationship with productivity per acre. Growers with access to groundwater 

have 68% (e0.520) higher productivity per acre than those without. This is lost likely due to 

the fact that groundwater provides growers with a more secured supply of water. 

We also find that county fixed effects are not statistically significant, and farm 

type better captures the sub-groups within the dataset. As expected, farm type has a 

relatively large and significant impact on productivity. We use orchards as the baseline 

category. As expected, field crops are less productive than orchards. This is quantified as 

                                                           
32 One grower receives water from Bard Water District, which gives priority to Native American growers. 

This price is even more subsidized at $5/acre-foot. 
33 At an 11% level of significance. 
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80% (e-1.581) less productive, based on our sample. We also find that vineyards are 74% 

(e-0.296) less productive per acre than orchards. Assuming that income derived from 

agriculture is proportional to the amount invested in the farming enterprise, one would 

expect higher productivity per unit area as the percentage of income from agriculture 

increases. This is consistent with our results, although our results suggest declining 

marginal productivity per acre of this investment. That is, growers earning nearly all of 

their income from agriculture are 71% (e0.538) more productive than growers earning less 

than the baseline (i.e., 25% income from agriculture). And, growers earning half to ¾ of 

income from agriculture are 92% (e0.652) more productive than the baseline.  

 Growing experience and education do not reveal a significant relationship with 

productivity per acre. These variables may be better explored in a more homogenous 

analysis, i.e., one that focuses on a single farm type or agricultural income strata. Soil 

quality is not significant likely because fertilizer and other amendments substitute for soil 

quality. Additionally, it may already be captured by the farm type since marginal lands 

tend to grow field crops.   

Conclusions 

Farm-level analyses are instrumental in developing bottom-up incentives for 

adapting to climate change and addressing water scarcity. We find a significant 

relationship between grower productivity and climate and water source variables. As our 

results suggest, growers may need more predictability ability with respect to seasonal 

maximum temperature variability. Education and grant programs could target 
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technologies and practices that help growers achieve this predictability, exploiting free-

access data such as the California Irrigation Management Information System (CIMIS). 

We also find evidence that water price and the frequency with which this price is 

increased serve as incentives for increasing productivity per acre. This may not apply to 

senior water rights holders who continue to face a highly subsidized water price. We do 

not find a significant relationship between farm-level productivity and most of the grower 

and farm characteristics tested. This is likely due to the heterogeneity of farm types 

represented and relatively small sample size.   



67 
 

Chapter 5: An Analysis of Choice in Soil and Salinity Monitoring Technologies 

In this chapter, we use data from our survey instrument to examine choices of 

irrigation management technologies by Southern California growers. The previous 

chapter explores adaptation to climate change implicitly, whereas this chapter explicitly 

evaluates the determinants of adaptation by adopting two important irrigation 

management practices: soil moisture monitoring and salinity monitoring.  

There are several reasons growers monitor soil moisture. Most immediately, it 

allows them to learn if they are applying an excessive volume of water, which is 

particularly important when they are testing new crops or crop varieties. Related to this, it 

provides growers information on the optimal amount of time lapse between irrigations 

under climatic conditions that are changing the timing and duration of the growing season 

(Cayan et al. 2010). Additionally, soil moisture monitoring provides information on 

distribution uniformity, which is a measure of how evenly water reaches each plant or a 

portion of the field in a given irrigation boundary (Escalera, Dinar, and Crowley 2015; 

Burt et al. 1997). Distribution uniformity is a key factor in ensuring that crop yield meets 

industry criteria (e.g., size, weight, color) relatively uniformly (Mission RCD, No date), 

and ultimately is a measure of efficiency. Based on discussions with extension specialists 

and previous survey research in California (Aguiar 2015; Gispert 2015; Escalera, Dinar, 

and Crowley 2015; USDA 2013), we constructed a list of soil moisture technologies. 

This was later refined after analyzing the results from our pilot survey. Ultimately, we 

included two less sophisticated soil moisture-monitoring approaches (i.e., gravimetric 
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approaches using auger, cap or an oven; and tensiometers) and two more sophisticated 

methods (i.e., gypsum block and dielectric sensors).34  

Monitoring the salinity of irrigation water and soil extract also serves multiple 

purposes. Growers want to be sure the salinity of the irrigation water is viable for the 

crops they grow. This requires regular monitoring as salinity levels fluctuate seasonally 

and through time. Salt accumulation in the soil must also be monitored as high 

concentrations of certain ions could inhibit plant germination and create drainage 

problems (Burt and Styles 2011, Tanji and Kielen 2002). Salt accumulation in the soil is 

sometimes even caused by fertilizer application. Salinity monitoring also serves the 

purpose of potentially reducing sub-optimal leaching. If a grower leaches too much then 

water is obviously wasted. However, if a grower leaches too little, water is also wasted 

through the production of a poor quality crop (where this water could have been allocated 

to other crops of presumably higher quality) and excess concentration of ions in the soil 

for the next round of crops. We implemented an analogous strategy as we did when 

developing the soil moisture-monitoring list, relying on extension specialists, previous 

survey research, and our pilot survey. Our survey included three salinity monitoring 

practices in order from least to most sophisticated: (1) consulting with water provider for 

information on salinity in water supply; (2) using a handheld salinity monitor or pen; and 

(3) sending water and soil samples to a lab.  

                                                           
34 We also included an “other” category in the survey for both soil moisture and salinity practices in 

addition to the ones we defined.  
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We have three key objectives in this chapter. First, we are interested in 

incorporating the diverse institutional arrangements, climate, land quality, and crop 

choices of agricultural counties in Southern California into a single, meaningful analysis. 

Figures 4.4 and 4.5 in the previous chapter illustrate the diverse climate, water 

institutions, and farm types in our sample. Previous adoption studies in California have 

focused on the Central Valley, which tends to have more homogenous growing 

conditions relative to Southern California (Osgood 1999; Green, Sunding, Zilberman and 

Parker 1996; Dinar, Campbell and Mendelsohn 1992; Putler and Zilberman 1988; 

Caswell and Zilberman 1985; Caswell 1982).  

Second, we are interested in the extent to which adoption of water management 

technologies represents adaptation to an increasingly warm and dry climate. Monitoring 

practices represent the next generation of efficient on-farm water management (Gispert 

2015). These require growers to be more pro-active in scheduling irrigations (in the case 

of soil moisture monitoring), and in minimizing wasteful leaching practices (in the case 

of salinity monitoring).  

Finally, we are interested in the extent to which growers may bundle water 

management practices to maximize benefits (Fleischer, Mendelsohn and Dinar 2011). 

Specifically, we explore the extent to which microclimate and other control variables 

influence the decision to jointly adopt oil moisture and salinity monitoring. We evaluate 

this by implementing a multinomial logistic regression.  
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This chapter starts with a review of the adoption literature, followed by a 

discussion of key variables and descriptive statistics. We then discuss the basic empirical 

models and the various permutations. This is followed by a discussion of results. We 

conclude with broad policy recommendations to be discussed in more detail in the final 

chapter of the dissertation. 

Literature Review 

The next generation of efficient water management moves beyond installing an 

irrigation system to actively monitoring water use (Gispert 2015). However, few studies 

focus on factors influencing adoption of monitoring technologies. As discussed in this 

section, previous studies focus on the adoption of irrigation systems. 

Semi-arid conditions, coupled with being the national leader in agricultural 

production, mean that California growers are generally receptive to optimizing water use 

(Walthall et al. 2012; Jackson et al. 2012). California was the first US state to run trials 

on drip irrigation, and berry farmers in San Diego County were the first to adopt this 

technology (Caswell 1982). During the late 1970s, subsurface drip irrigation was the 

latest technology to improve water application and reduce water waste. In her empirical 

analysis of subsurface drip adoption amongst perennial crop growers in the San Joaquin 

Valley, Caswell (1982) finds that water cost and farm type are significant in predicting 

the likelihood of adopting drip relative to traditional irrigation technology (furrow and 

flood). Caswell and Zilberman (1985) extend this analysis to include sprinkler irrigation, 

and confirm the previous results that water cost and farm type are significant in 
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increasing the likelihood of adopting more efficient (drip or sprinkler) relative to 

traditional technology. Caswell and Zilberman (1985) also find that water source, 

specifically groundwater relative to surface water, increases the likelihood of adopting 

either sprinkler or drip irrigation. At the time of their analysis, many water districts did 

not have the appropriate infrastructure to deliver pressurized water needed for the newer 

technologies.  

Green et al. (1996) compare three technologies in their survey of San Joaquin 

Valley:  two mature technologies (furrow and high-pressure sprinkler) and a new one 

(drip). They find that the adoption of high-pressure sprinkler has similar characteristics to 

that of furrow, suggesting that the former may also be nearing the end of its product life 

cycle. For example, it is statistically unlikely that higher water costs would lead to 

adopting high-pressure sprinkler. As expected, crop choice positively and significantly 

influences the decision to adopt drip, with the adoption likelihood higher in citrus, 

deciduous fruit, and vineyards relative to truck crops. Both an increase in slope and soil 

quality (permeability) positively and significantly impact adoption of drip. 

Water price is an important metric and, indeed, policy instrument with respect to 

irrigation technology adoption, but it tends to capture more than drought-related scarcity 

(e.g., fixed and variable costs related to daily operations). When measuring the extent to 

which such adoption represents adaptation to climate change, it is thus important to 

control for climate, as done in subsequent studies. Dinar, Campbell, and Zilberman 

(1992) also find that water cost and farm type increase the likelihood of adopting modern 

(drip or sprinkler) technology at both the farm and field levels. In addition, they find that 



72 
 

acreage has a positive and significant impact at the field level, indicating that economies 

of scale exist at the field level. They also include climate variables (7-year weather data 

on temperature and precipitation) in their analysis. Schuck et al. (2005) also study 

irrigation technology adoption as an adaptation to climate change. While they do not 

include climate variables in their analysis, they evaluate irrigation technology adoption 

(sprinkler or gated pipe versus gravity systems) amongst Colorado growers immediately 

following a historic drought. They find that growers who switch irrigation systems 

following the drought were more likely to switch from gravity to gated pipe rather than 

gravity to sprinkler. This is an example of how growers tend to minimize the cost of 

transitioning to a new technology rather than maximize benefits from saving the most 

water possible by adopting the most efficient technology. There is also an income effect 

to this finding, as those who adopted gated pipe instead of sprinkler tended to have lower 

income. Schuck et al. (2005) also found that level of education had a positive and 

significant impact on adoption of sprinkler during the drought. Leasing land had a 

negative and significant impact on adoption of sprinkler. Mendelsohn and Dinar (2003) 

run individual logistic regressions on percent cropland irrigated by a given technology 

across a large sample of US counties. They find that the likelihood of adopting gravity 

and drip irrigation is significant with high temperatures, while there is a significant 

negative relationship with sprinkler systems and high temperatures. Higher precipitation 

increases the likelihood of adopting sprinkler, but at a declining rate. Increasing 

allocation of surface water also increases the likelihood of adopting sprinkler irrigation, 

while higher soil salinity levels increase the likelihood of adopting drip systems. At the 
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nation-state scale, Su and Moaniba (2017) find that innovations in climate-technology 

may be driven by anthropogenic climate change. Specifically, they find that the number 

of climate-patents is positively associated with GHG emissions from certain fuel sources. 

Studies also find a significant relationship with adoption of efficient irrigation 

technologies and sources of information, particularly information from agricultural 

extension. Escalera, Dinar, and Crowley (2015) study the adoption of a broad range of 

soil monitoring technologies among California avocado growers. They find that the 

likelihood of adopting tensiometers to monitor soil moisture is positively and 

significantly related to receiving farming information from University of California 

Cooperative Extension. Genius et al. (2014) study adoption of drip or sprinkler amongst 

olive growers in Crete. They find that extension services (public and private) and social 

networks significantly increase the rate at which either of these technologies are adopted. 

In addition, measures of human capital (age, education) also have a significant impact on 

increasing the adoption rate. 

Key Variables and Descriptive Statistics 

The dataset used for the analysis in this chapter is larger than that used for the 

Ricardian model (Chapter 4) with a total of n=187 observations. In spite of a larger 

number of observations, the summary statistics of this dataset are similar to that presented 

in Table 4.1, and will not be alluded to further in this chapter. For detailed summary 

statistics for this chapter, please refer to Annex 5.1. Prior to analyzing the distribution of 

water management practices, we examined the distribution of micro-irrigation (e.g., 
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micro-sprinkler, drip, sub-surface drip) across our sample.35 We initially hypothesized 

that a sufficient number of high value crop growers would still be using traditional 

methods (e.g., furrow and flood), and we could study characteristics of adopting micro-

irrigation practices in high value crops. We also hypothesized that this variable would be 

continuous from [0,1] suggesting that growers may not homogenously adopt one type of 

irrigation method. Our hypotheses proved invalid on both counts. As Figure 5.1 

illustrates, micro-irrigation is relatively neatly partitioned according to farm type, 

particularly with field crops (=G), orchards (=T), and vineyards (=V). And, growers in 

our sample generally do not use different irrigation practices on different crops.36  This is 

not to say that they may not use different methods across the life-cycle of a crop, but this 

aspect is out of the scope of our analysis. 

 

                                                           
35 To create our micro-irrigation variable, we calculated the percent acreage devoted to micro-irrigation 

practices (micro-sprinkler, drip, sub-surface drip) with respect to total acreage devoted to the top 3 crops. 
36 Six growers had decimal values for this variable (ID#: 50; 97; 113; 158; 174; 175), and we rounded these 

values accordingly.  

 

               

 

Figure 5.1: Distribution of Micro-irrigation Technology by Farm Type 
Note: Green=Adopted micro-irrigation; Yellow=Did not adopt micro-irrigation 

 



75 
 

Dependent Variables for Binary Logistic Regressions 

Figure 5.2 illustrates that individual water management practices amongst 

growers in our sample are not widespread. Studying adoption of any of these practices 

individually may lead to a loss of power. Instead, we follow Caswell et al. (2001) and 

define adoption of soil moisture (or salinity) monitoring as the use of at least one of the 

soil (or salinity) technologies we identify in our survey (including an “other” category to 

capture any technology we may have missed). As such, our analysis does not distinguish 

between growers who may be using more than one monitoring technology, or may be 

using one technology more frequently than another grower using the same technology.  

 

Figure 5.2: Relative Frequency of Different Soil Moisture and Salinity Monitoring Practices 

 

Figure 5.3 illustrates that mixed (=M) farm types and orchards (=T) have the 

greatest proportion of growers using soil monitoring practices, whereas orchards have the 

greatest proportion of growers using salinity monitoring practices. 
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Dependent Variable for Multinomial Logistic Regression 

 The dependent variable for the multinomial logistic regression represents four 

levels of choice: (1) implements both monitoring practices, (2) implements neither 

practice, (3) implements salinity monitoring only, (4) implements soil moisture 

monitoring only (Figure 5.4). This sorts the data differently from the individual binary 

logistic regressions in that it distinguishes between selecting only one practice (soil or 

salinity monitoring) and selecting both. 

 

Figure 5.3: Soil Monitoring (left) and Salinity Monitoring (right) with Respect to Farm Types 

Correlation coefficient between dependent variables: ρ = 0.426 

Green= Adopted monitoring Gray= Did not adopt monitoring 
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Figure 5.4: Relative Frequency of Multinomial Logit Categories 

 

Other Key Variables 

As with the soil and salinity monitoring technologies, we created categories for 

primary threats to water scarcity and primary source of information from extension 

experts, previous surveys, and our pilot survey. We found that population growth and 

drought are the top concerns amongst growers in our sample. Both population growth and 

drought are irreversible trends that affect the sustainability of agriculture in the region. 

These may incentivize growers to improve productivity through intensive margin 

improvements such as soil moisture and salinity monitoring. Intensive margin adaptations 

are those that improve the efficiency per unit area compared to extensive margin 

adaptations that improve efficiency of the total planted area. We also found that industry 

and social networks (i.e, friends and neighbors who are also farmers) are the primary 

sources of information. 
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Variable Transformations 

We also performed multiple imputation37 for the percent agricultural income 

(aginc) variable, which is missing 23 values out of a total dataset of 187, or we would 

lose 12% of our dataset if we used list-wise deletion.  

Empirical Specifications 

Binary Logistic Regressions 

We test several permutations of the following general logistic specification 

(Equation 5.1): 

                                                           
37 As in Chapter 4, this was implemented via an expectation maximization algorithm using the Amelia 

package in R. 

Figure 5.5: Primary Threat to Water 

Supply

Population (31.91%)

Drought (29.79%)

Government (22.87%)

Environmental Opposition (10.11%)

No Threats (5.32%)

Figure 5.6: Primary Information 

Source

Industry (31.91%)

Neighbor (30.85%)

Government (17.02%)

Popular Press (7.45%)

Undisclosed (6.91%)

Manager (5.85%)
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(5.1)      ln (
𝑝

1 − 𝑝
)

= 𝜃0 + 𝜃1𝑓𝑡𝑦𝑝𝑒𝑅 + 𝜃2𝑓𝑡𝑦𝑝𝑒𝑀 + 𝜃3𝑓𝑡𝑦𝑝𝑒𝑇 + 𝜃4𝑓𝑡𝑦𝑝𝑒𝑉 + 𝜃5𝑎𝑔𝑖𝑛𝑐2 + 𝜃6𝑎𝑔𝑖𝑛𝑐3

+ 𝜃7𝑎𝑔𝑖𝑛𝑐4 + 𝜃8𝑤𝑎𝑡𝑝𝑟𝑖𝑐𝑒 + 𝜃9𝑎𝑛𝑛𝑚𝑎𝑥𝑛𝑜𝑟𝑚𝑎𝑙 + 𝜃10𝑎𝑛𝑛𝑚𝑎𝑥5𝑦𝑟 + 𝜃11𝑎𝑛𝑛𝑚𝑎𝑥10𝑦𝑟

+ 𝜃12𝑎𝑐𝑟𝑒 + 𝜃13𝑤𝑠𝑜𝑢𝑟𝑐𝑒 + 𝜃14𝑟𝑎𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝜃15𝑠𝑎𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 + 𝜃16𝑔𝑜𝑣𝑡𝑖𝑛𝑓𝑜

+ 𝜃17𝑠𝑎𝑙𝑡𝑚𝑜𝑛                                                                                                       

 

where p is the probability of adopting at least one soil moisture monitoring technology. 

There is an analogous equation for salinity monitoring. The coefficient for any given 

independent variable, xi, represents how the likelihoods (of using at least one soil moisture 

monitoring device versus using none) change with a 1-unit increase in xi while holding all 

other variables constant. The coefficient for a log (base k)-transformed variable, xj, 

represents how the likelihood ratio changes with a k-fold increase in xj. Note that the results 

in Tables 5.1 and 5.2 present likelihood ratios, and not the coefficients. 

Multinomial Logistic Regression 

The multinomial logistic regression has four categories: (1) implements both monitoring 

practices, (2) implements neither practice, (3) implements salinity monitoring only, (4) 

implements soil moisture monitoring only. It is represented as follows (Equation 3): 

 (5.2)    ln (
𝑝𝑗

𝑝𝑘

) = 𝛼0 + 𝛼1𝑓𝑡𝑦𝑝𝑒𝑅 + 𝛼2𝑓𝑡𝑦𝑝𝑒𝑀 + 𝛼3𝑓𝑡𝑦𝑝𝑒𝐺 + 𝛼4𝑓𝑡𝑦𝑝𝑒𝑉 + 𝛼5𝑎𝑔𝑖𝑛𝑐2 + 𝛼6𝑎𝑔𝑖𝑛𝑐3

+ 𝛼7𝑎𝑔𝑖𝑛𝑐4 + 𝛼8𝑤𝑎𝑡𝑝𝑟𝑖𝑐𝑒 + 𝛼9𝑎𝑛𝑛𝑝𝑝𝑡5𝑦𝑟 + 𝛼10𝐶𝑉𝑎𝑛𝑛𝑝𝑝𝑡5𝑦𝑟 + 𝛼11𝑎𝑐𝑟𝑒

+ 𝛼12𝑤𝑠𝑜𝑢𝑟𝑐𝑒 + 𝛼13𝑟𝑎𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛼14𝑠𝑎𝑙𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 + 𝛼15𝑔𝑜𝑣𝑡𝑖𝑛𝑓𝑜 

where the subscript, k, represents the baseline, and subscript, j, represents the 3 choices 

other than the baseline. 
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Discussion of Results 

Based on Chi-Square tests on the Wald statistics, the fit for both the soil moisture 

and salinity models is significantly different from the respective null models. The 

McFadden R2 for both models is somewhat below the standard acceptable range of [0.20, 

0.40] (Hensher and Stopher 1979). We use a natural log transformation on the acreage 

variable due to the large range in values [0.25, 10625], and find that the transformed 

variable is statistically significant. A 2.7-fold increase in acreage increases the likelihood 

of adopting soil moisture and salinity monitoring by 40% and 45%, respectively. This is 

consistent with our hypothesis that farms with more acres will, on average, be more likely 

to adopt monitoring practices. The “acreage effect” may be more relevant for small- and 

medium-sized farms since it takes an almost 3-fold increase to increase the likelihood of 

adoption. Indeed very large farms also tend to derive 75-100% of their income from 

farming activities, and we do not find a significant relationship with monitoring activities 

in these farms. Farms with 50-74% income from agriculture are 4.2 times more likely to 

adopt soil moisture monitoring than those with less than 25% agricultural income. And, 

farms with 25-49% income from agriculture are 2.6 times more likely to adopt salinity 

monitoring relative to those with less than 25% agricultural income.38 

 

 

 

 

 

 

 

                                                           
38 At an 11% level of significance. 
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Table 5.1: Adoption of Soil Moisture Monitoring 

 

depvar=soil moisture monitoring Odds Ratio 
Robust 

Std. Error z P>|z| 

          

Constant 0.009 0.0185 -2.38 0.017 

      

farm type      

(baseline=tree )     

mixed  0.687 0.437 -0.59 0.555 

vegetable  0.161 0.130 -2.26 0.024 

field 0.222 0.159 -2.10 0.035 

vineyard 1.132 0.664 0.21 0.832 

      

%age income from agriculture      

(baseline=less than 25%)     

25 – 49 1.703 0.926 0.98 0.328 

50 – 74 4.246 2.705 2.27 0.023 

75 – 100 1.168 0.697 0.26 0.795 

      

ln (acre) 1.408 0.182 2.65 0.008 

access to groundwater 0.974 0.386 -0.07 0.948 

govt primary source of info 3.117 1.353 2.62 0.009 

water rate frequency 1.090 0.062 1.51 0.131 

ln (ppt 5-year mean) 1.637 0.570 1.42 0.157 

ln (ppt 5-year variation) 2.015 2.922 -2.38 0.017 

      

n=187      

McFadden R2 0.15    

Sensitivity 48.00%    

Specificity 87.50%    
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Table 5.2: Adoption of Salinity Monitoring 
 

 

 

depvar=salinity monitoring Odds Ratio 
Robust Std. 

Error z P>|z| 

          

Constant 0.001 0.002 -2.87 0.004 

      

farm type:     

(baseline= tree)     

mixed  0.544 0.369 -0.90 0.370 

vegetable  1.111 0.949 0.12 0.902 

field crop 0.589 0.496 -0.63 0.530 

vineyard 1.202 1.031 0.21 0.830 

      

%age income from agriculture:     

(baseline=less than 25%)     

25 - 49 2.588 1.566 1.57 0.116 

50 - 74 1.007 0.642 0.01 0.991 

75 - 100 1.352 0.781 0.52 0.602 

      

access to groundwater 1.314 0.551 0.65 0.516 

  govt primary source of info 2.888 1.511 2.03 0.043 

     

crop salt tolerance:     

(baseline=moderate tolerance)     

sensitive 2.876 1.897 1.60 0.190 

tolerant 2.176 2.074 0.82 0.414 

      

ln (acre) 1.466 0.179 3.14 0.002 

water rate_frequency 1.157 0.063 2.66 0.008 

ln (ppt 5-year mean) 2.372 0.992 2.07 0.039 

ln (ppt 5-year variation) 7.719 11.199 1.41 0.159 

      

n=187      

McFadden R2 0.17    

Sensitivity 65.93%    

Specificity 70.83%    
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Farm type is a significant predictor of adopting at least one soil monitoring 

practice. Relative to orchards (i.e., baseline), vegetable and field crop farms are 84% and 

76% less likely to adopt soil moisture monitoring. Additionally, growers who primarily 

receive their information from state and federal institutions (e.g., UCCE, NRCS, CDFA) 

are roughly 3 times more likely to adopt either monitoring practice than those who 

receive from other sources (e.g., neighbors, industry, popular press, farm managers). 

Contrary to our hypothesis, poor soil moisture quality (i.e., available water supply) is not 

a significant predictor of soil moisture monitoring. This may suggest that the underlying 

soil quality has little to do with actual moisture retention due to the large quantity of 

amendments growers add to soils.  

Access to groundwater, number of water sources, or type of water source (district, 

groundwater, or both) do not significantly predict adopting either monitoring practice. 

We did not find a significant relationship between the level of total dissolved solids in 

irrigation water and adoption of salinity monitoring. This is contrary to our hypothesis 

that growers with higher salinity levels would be more likely to adopt salinity monitoring. 

However, when we included a variable on salt tolerance of the plant, we discovered why 

we may have observed this contradiction. Growers are concerned about the specific 

tolerance of their crops rather than broadly concerned about salinity levels. We found that 

growers with sensitive crops were almost 3 times more likely to adopt salinity monitoring 

than growers with moderate crops.39  

                                                           
39 At a 19% level of significance. 
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Perhaps the most counter-intuitive result from our analysis is that water price is 

not a significant predictor of adopting at least one of these practices, which is contrary to 

the empirical evidence on irrigation technology adoption in the literature. However, when 

we included a variable on the frequency with which the water price has increased over 

the past decade, we found that a one-unit increase in frequency of rate increase (i.e., 

adding one more time the rate was increased over the past decade), a grower is 9% and 

16% more likely to, respectively, adopt soil moisture and salinity monitoring. We do not 

observe a significant relationship with any of the climate normals, but find a significant 

relationship with short-run (5-year mean) total annual precipitation. The results in Tables 

5.1 and 5.2 suggest that a positive increase in the precipitation mean results in positive 

likelihood of adopting either monitoring practice.40 Additionally, the coefficient of 

variation across 5 years of precipitation also positively influences adoption of either 

monitoring practice.41 It is counter-intuitive that we do not observe a significant 

relationship with human capital (education and growing experience). Perhaps education 

is a more important variable in developing countries (Maddison, Manley, and 

Kurukulasuriya 2007) where it is equated with access to information. Experience may be 

reflected across different time horizons based on farm type, i.e., it may take longer to 

acquire experience for more complex farm systems with multiple crops. Additionally, 

perceptions of water scarcity do not significantly impact the likelihood of adopting either 

                                                           
40 The 5-year precipitation mean is significant at the 16% level with respect to adoption of soil moisture 

monitoring. 
41 The 5-year coefficient of variation is significant at the 16% level with respect to salinity monitoring. 
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of these practices. This may suggest that growers are monitoring soil moisture and 

salinity to improve crop health rather than optimize water use.  

Due to the issue of endogenous regressors, we could not test our theory of 

“bundling” both monitoring practices with binary logistic regression. The multinomial 

logistic regression is more informative in identifying factors that influence adoption of 

both types of monitoring practices (Table 5.3). We find that percent of income derived 

from agriculture, farm type, and using government institutions as the primary source of 

information may increase the likelihood of jointly adopting both monitoring practices. 

We use “both practices” as the baseline in order to compare this to the implementation of 

“soil only” or “salt only”. Due to the overlap in confidence intervals of these variables 

across the different categories, we cannot distinguish the effects of a single category 

relative to the baseline. A 2.7-fold increase in the 5-year precipitation mean results in 

roughly a 64% decline in likelihood that neither practice is being implemented, or that 

only soil moisture monitoring is implemented (with respect to baseline. The effect of 

variability is more modest. 
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Table 5.3: Multinomial Logistic Regression 
 

 

  Dep. Var. = monitor Odds Ratio 
Robust St. 
Err. z Pr>|z| 

          

both 
(base 
outcome)     

          

none         

       

constant 1338.092 2.498 2.88 0.004 

aginc      

   25-49% 0.284 0.654 -1.93 0.054 

   50-74% 0.256 0.777 -1.76 0.079 

   75-100% 0.589 0.709 -0.75 0.456 

access to groundwater 0.856 0.495 -0.32 0.753 
govt primary info 
source 0.217 0.598 -2.56 0.011 

farm type       

(baseline=tree ):      

   mixed  1.908 0.707 0.91 0.361 

   vegetable  8.125 1.065 1.97 0.049 

   field 8.846 0.89 2.45 0.014 

   vineyard 1.448 0.691 0.54 0.592 

ln (acre) 0.631 0.167 -2.75 0.006 

water rate frequency 0.814 0.064 -3.24 0.001 

ln (ppt 5-year mean) 0.372 0.439 -2.25 0.024 

ln (ppt 5-year variation) 0.028 1.868 -1.91 0.056 

salt monitoring only         

       

constant 16.760 3.068 0.92 0.358 

aginc      

   25-49% 0.220 0.796 -1.90 0.057 

   50-74% 0.033 1.262 -2.71 0.007 

   75-100% 0.525 0.657 -0.98 0.327 

access to groundwater 0.864 0.520 -0.28 0.779 
govt primary info 
source 0.320 0.605 -1.89 0.059 
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 Odds Ratio 
Robust St. 

Err. z Pr>|z| 

farm type      

(baseline=tree ):     

   mixed  0.178 1.109 -1.56 0.12 

   vegetable  6.398 0.998 1.86 0.063 

   field 1.761 1.116 0.51 0.612 

   vineyard 0.584 0.929 -0.58 0.562 

ln (acre) 0.992 0.174 -0.04 0.965 

water rate frequency 0.880 0.088 -1.45 0.148 

ln (ppt 5-year mean) 0.596 0.535 -0.97 0.333 

ln (ppt 5-year variation) 0.057 2.12 -1.35 0.176 

soil monitoring only      

       

constant 86.747 4.026 1.11 0.268 

aginc      

   25-49% 1.119 E-07 0.906 -17.67 0 

   50-74% 0.199 1.217 -1.33 0.185 

   75-100% 0.253 1.223 -1.12 0.262 

access to groundwater 0.559 0.868 -0.67 0.503 
govt primary info 
source 0.254 0.881 -1.56 0.12 

farm type       

(baseline=tree ):      

   mixed  0.164 1.61 -1.12 0.261 

   vegetable  0.729 1.425 -0.22 0.825 

   field 0.564 1.409 -0.41 0.685 

   vineyard 1.933 1.277 0.52 0.606 

ln (acre) 1.171 0.224 0.71 0.479 

water rate frequency 0.762 0.110 -2.48 0.013 

ln (ppt 5-year mean) 0.352 0.768 1.36 0.173 

ln (ppt 5-year variation) 0.005 2.329 -2.25 0.024 

          

n=187      

log pseudolikelihood -192.76     

McFadden R2 0.19     

Wald chisq(39) 1487.84     

Prob>chisq 0       
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Conclusions 

Growers who monitor soil moisture and salinity monitoring are more likely to 

receive their information from government institutions, yet this is not where the bulk of 

growers receive their information. According to Figure 5.6, more than half of growers in 

our sample receive information from industry or friends/neighbors who are also farmers. 

This suggests that government programs may benefit from strategic partnerships with 

industry and small farmers’ groups. Such programs may also need to reach out to annual 

crop growers, and generally lower value crop growers. These crops tend to represent 

more acreage, and therefore represent an untapped opportunity. Finally, monitoring 

practices do not seem to be a conscious attempt by the grower to combat an increasingly 

warm and dry climate. Forging this connection may increase the number of growers 

implementing these practices, particularly as almost 1/3 of growers in our sample view 

drought as their primary threat to water security (Figure 5.5). 
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Chapter 6: The Impact of Short-Run Weather Fluctuations on Farmland Sales and 

Values: Case Study of Riverside County 

In this chapter, we study the impact of climate on the likelihood of land sale and 

land value in two complementary analyses. We focus on Riverside County for these 

analyses because it presents the greatest within-county variation in crop mix, climate, and 

water district characteristics within our 4-county study region. Riverside County has a 

complex relationship amongst quality farmland (i.e., good soil), senior water rights, 

urbanization, and high value crop production. In these ways, it is a microcosm of the 

future threats to the sustainability of agriculture in California. 

The first empirical analysis is on the extent to which climate impacts the 

likelihood of agricultural land sales. This is particularly challenging to study because 

agricultural land is not sold very often. On average, 3-5% of agricultural parcels are sold 

in the US annually (Gloy et al. 2011). Climate extremes, such as drought, are more likely 

to influence the likelihood of a land sale than average climate conditions. Thus, the time 

horizon for the analysis (2000-2016) includes two major drought events (2007-09; 2011-

16). We note that there are two types of land sales: one in which agricultural land is sold 

to another agricultural producer; and another in which agricultural land is sold to non-

agricultural users. While climate extremes potentially influence both types of land sales, 

this chapter focuses on land that remains in agricultural production after it is sold. Indeed, 

more studies exist on the sale of agricultural land for non-agricultural uses (Hoppe and 

Korb 2006; Zollinger and Krannich 2002; Kimhi and Bollman 1999). Agriculture-to-

agriculture land sales are less understood, warranting further analysis. This analysis is 
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also warranted because there is limited understanding of the extent to which 

microeconomic variables influence the likelihood of land sales of both types. Previous 

work on agricultural land sales has focused on macroeconomic variables (Devadoss and 

Manchu 2007; Huang et al. 2006; Just and Miranowski 1993).   

In the second empirical analysis, we return to the Ricardian framework to assess 

the extent to which short-run shocks, such as the droughts experienced in California from 

2007-09 and 2011-2016, influence the value of the farming enterprise. We depart from 

the basic assumption of the Ricardian model that long-run climate patterns (as 

represented by 30-year normals) are the sole climatic effect on farmland value. Long-run 

averages minimize the contribution of extreme events. Yet, the recent California droughts 

are more severe than many experienced over the historical record, with projections for 

increased frequency and duration of these events (Hartmann et al. 2013). For example, 

the precipitation level from 2012-14 was the lowest of any 3-year running average on 

record (Williams et al. 2015). Further, 2012-14 represents the most severe reduction in 

soil moisture for California of any 3-year period over the past 1200 years (Griffin and 

Anchukaitis 2014). In addition to meteorological evidence, perceptions of the severity of 

drought events may be more prevalent. Our survey research indicates that almost 1/3 of 

growers in our southern California 4-county sample view drought as the primary threat to 

their water security.  

Controlling for land quality, access to reliable water, and urban growth, we 

evaluate the impact of short-run temperature and precipitation (mean and variability) 

characteristic of the recent extreme drought conditions in California. We are cognizant of 
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the extent to which the housing market crash in 2007-2008 may have impacted non-

agricultural land values, though some argue that historically low interest rates may have 

caused farmland values to remain relatively high (Nickerson et al. 2012). This may 

suggest a dampened or ambiguous effect of the housing crisis on farmland values, 

allowing us to study climatic and weather impacts. Riverside County witnessed a drop in 

both county-wide agricultural revenue and farmland sales during the period of the 

housing crisis (Figures 6.1 and 6.2). 

 

Figure 6.1: Total Gross Revenue from Agriculture in Riverside County (2000-2015) 
Data Source: Riverside County Agricultural Commissioner Reports 
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Figure 6.2: Total Parcels Sold in Dataset (2000-2016) 

We begin with an exploratory analysis of land sales, analyzing the extent to which 

land sales are impacted by short-run fluctuations in weather. Our dataset represents 

parcels that have remained in agricultural production across a 17-year period (2000-2016) 

with access to irrigation water from 4 major districts (Coachella Valley Water District, 

Eastern Municipal Water District, Palo Verde Irrigation District, Western Municipal 

Water District). This is followed by an analysis of the impact of these short-run 

fluctuations on land values using the same dataset. This ensures that parcels in our dataset 

are being purchased for agricultural use rather than conversion to other uses. Our purpose 

here is to study farmland value, rather than capture the value of alternative land uses. 

We conclude the chapter by discussing results from both analyses on the extent to 

which short-run weather fluctuations affect the probability of selling, and value of, 

agricultural land. While this chapter is ultimately focused on quantifying the impact of 
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short-run weather fluctuations on parcel-level land value, we also explore how the 

likelihood of this sale may be connected to these same fluctuations in short-run weather. 

This has not been studied previously, and we present preliminary thoughts on how land 

sales may be linked to farmland values.  

Literature Review 

Positive expectations about the future viability of farming drive capital investment 

and potentially reduce land sales. Wheeler et al. (2012) survey Murray Darling Basin 

farmer attitudes to having their children take over farming operations following the 

historic drought. They find that farmers who plan to have their children inherit their farm 

are more likely to have made irrigation efficiency improvements and less likely to have 

sold any land in the prior 5 years. Zollinger and Krannich (2002) survey Utah growers to 

determine the factors influencing their expectation to sell land for non-agricultural uses. 

They find that increased profitability over the past five years has a significant negative 

influence on the expectation to sell land, while the perception of increased urbanization 

exerts a significant positive influence. 

Deschenes and Kolstad (2011) study how weather and expectations on weather 

influence farmland productivity in California across a 20-year period. They assume that 

such expectations are derived from observing past weather, and thus include a 5-year 

moving average in their time-series model. Although none of their weather variables (5-

year averages or annual) are significant, their study provides general intuition on the 

magnitude of these variables. The magnitude of the expected degree-day variable is 
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larger than the annual average, suggesting that changes in expectation are more costly 

than annual weather changes.  

This section has highlighted micro-level analyses of likelihood of selling 

farmland. These studies differ from the subsequent analysis on likelihood of land sales 

because these do not include climatic impacts. Additionally, these focus on agricultural 

land sales for non-agricultural uses whereas our study focuses on agriculture-to-

agriculture land sales. This section also highlights land value studies that focus on short-

run fluctuations in weather, which we build upon for the subsequent Ricardian analysis. 

More detailed review of the Ricardian literature is presented in Chapter 4. 

Empirical Specifications  

Exploratory Land Sales Analysis 

Studying the likelihood of US farmland sales is complicated by the fact that very 

few such sales take place in a given year relative to the total number of agricultural 

parcels. Approximately 3-5% of agricultural parcels are sold in the US in a given year 

(Gloy et al. 2011). On average, 6% of parcels in our panel dataset were sold annually 

from 2000-2016. We explored the extent to which the land sales are influenced by 

extremes in temperature and precipitation as measured by coefficient of variation on 5- or 

10-year expectation periods. The population-averaged panel model, where q is 

probability of a land sale, is represented as: 

(6.2) 
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𝑙𝑜𝑔
𝑞

1 − 𝑞
= 𝛼0 + 𝛼1𝑝𝑝𝑡_𝑚𝑒𝑎𝑛𝑡−𝑘 + 𝛼2𝑝𝑝𝑡_𝑐𝑣𝑡−𝑘 + 𝛼3𝑡𝑚𝑎𝑥_𝑐𝑣𝑡−𝑘 + 𝛼4𝑝𝑜𝑝_𝑟𝑎𝑡𝑒𝑡−𝑘

+ 𝛼5𝑠𝑞_𝑝𝑜𝑝_𝑟𝑎𝑡𝑒𝑡−𝑘 + 𝛼6𝑢𝑠𝑒_𝑐𝑖𝑡𝑟𝑢𝑠 + 𝛼7𝑢𝑠𝑒_𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑

+ 𝛼8𝑢𝑠𝑒_𝑣𝑖𝑛𝑒𝑦𝑎𝑟𝑑 + 𝛼9𝑢𝑠𝑒_𝑑𝑎𝑡𝑒 + 𝛼10𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝐸𝑀𝑊𝐷

+ 𝛼11𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝑃𝑉𝐼𝐷 + 𝛼12𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝑊𝑀𝑊𝐷 + 𝛼13𝑦𝑒𝑎𝑟 + 𝑢𝑡 

Variable descriptive statistics and definitions are presented in Table 6.1. The subscript (t-

k) is added to time lagged variables, where t = current year and k represents the number 

of lagged years (5 or 10).  

Ricardian Analysis  

In addition to land sales, we study the impact of short-run fluctuations in weather 

on farmland value using the Ricardian framework. The empirical equation is represented 

as: 

log⁡(sale_acre_2014)

= 𝜎0 + 𝜎1𝑝𝑝𝑡_𝑚𝑒𝑎𝑛𝑡−𝑘 + 𝜎2𝑝𝑝𝑡_𝑐𝑣𝑡−𝑘 + 𝜎3𝑡𝑚𝑎𝑥_𝑐𝑣𝑡−𝑘
+ 𝜎4𝑝𝑜𝑝_𝑟𝑎𝑡𝑒𝑡−𝑘 + 𝜎5𝑠𝑞_𝑝𝑜𝑝_𝑟𝑎𝑡𝑒𝑡−𝑘 + 𝜎6𝑢𝑠𝑒_𝑐𝑖𝑡𝑟𝑢𝑠

+ 𝜎7𝑢𝑠𝑒_𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 + 𝜎8𝑢𝑠𝑒_𝑣𝑖𝑛𝑒𝑦𝑎𝑟𝑑 + 𝜎9𝑢𝑠𝑒_𝑑𝑎𝑡𝑒

+ 𝜎10𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝐸𝑀𝑊𝐷 + 𝜎11𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝑃𝑉𝐼𝐷 + 𝜎12𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡_𝑊𝑀𝑊𝐷

+ 𝜎13𝑦𝑒𝑎𝑟 + 𝑢𝑡 

Once again, the subscript (t-k) is added to time lagged variables, where t = current year 

and k represents the number of lagged years (5 or 10). 

 

 

 

 

(6.1) 

(6.2) 
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Table 6.1: Variable Description and Summary Statistics 

Variable Mean  Std. Dev. Min Max Description 

Acre 28.65 37.1 0.19 466 parcel acreage 

sale_year NA NA 2000 2016 year parcel sold 

sale_acre_2014 20510.52 17985.44 60.82 80157.45 sale price per acre in $2014 

Slopegradd 12.35 15.1 1.00 53.00 soil slope gradient 

Usecode 2.38 1.06 1.00 5.00 type of agricultural use, 5 levels 

District NA NA NA 4.00 water district, 4 levels 

pop_rate_10 
0.12 0.14 -0.04 1.06 

population rate 10 years prior to 
sale 

pop_mean_10 
4.3 6.68 0.15 30.56 

population mean 10 years prior 
to sale divided by 10,000 

ppt_mean_10 
220.96 162.87 49.39 638.75 

annual precipitation mean 10 
years prior to sale 

ppt_cv_10 
0.56 0.12 0.41 0.97 

annual precipitation variation 10 
years prior to sale 

tmax_mean_10 
28.54 3.32 23.24 32.43 

annual maximum temp. mean 10 
years prior to sale 

tmax_cv_10 
0.02 0.01 0.01 0.04 

annual maximum temp. variation 
10 years prior to sale 

tmax_mean_5 
28.54 3.36 22.96 32.61 

annual maximum temp. mean 5 
years prior to sale 

tmax_cv_5 
0.02 0.01 0.00 0.05 

annual maximum temp. variation 
5 years prior to sale 

ppt_mean_5 
199.73 150.3 27.28 626.10 

annual precipitation mean 5 
years prior to sale 

ppt_cv_5 
0.57 0.18 0.13 1.32 

annual precipitation variation 5 
years prior to sale 

pop_rate_5 
0.07 0.49 -6.58 0.95 

population rate 5 years prior to 
sale 

pop_mean_5 
4.61 6.92 0.16 31.62 

population mean 5 years prior to 
sale divided by 10,000 

ppt_normal 234.32 169.64 75.48 544.14 30-year precipitation normal 

tmax_normal 
28.51 3.19 23.68 32.00 

30-year annual maximum temp. 
normal 

sq_pop_rate_5 
0.24 2.51 0.00 43.34 

square of population rate 5 years 
prior to sale 

sq_pop_rate_10 
0.03 0.08 0.00 1.12 

square of population rate 10 
years prior to sale 
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Dataset and Variable Construction/Transformation 

Dataset 

The annual parcel data (Assessor Parcel Number, Crop Zone, Sale Year, Sale 

Value) comes from the Riverside County Assessor and ParcelQuest, as stated in Chapter 

3. There are 985 parcel sales that include land value within the 4 major water districts in 

this analysis. This translates into 16,785 observations (985x17) for the land sales model. 

ParcelQuest includes a greater number of observations of sales than of value associated 

with these sales. However, we chose to use observations in dataset, which have both sales 

and value of sales, in order to make the two analyses more comparable even if this meant 

fewer observations in the land sales analysis. 

Variable Construction/Transformation 

Climate variables are central to our analysis and are represented as follows: 

𝐸(𝑥𝑖,𝑡) =
1

𝑘
∑ 𝑥𝑖,𝑗

𝑡−1

𝑗=𝑡−𝑘

 

 

𝐶𝑉(𝑥𝑖,𝑡) =
𝑘

(𝑘 − 1)1/2
(∑ (𝐸(𝑥𝑖,𝑡) − 𝑥𝑖,𝑗)

2𝑡−1
𝑗=𝑡−𝑘 )

∑ 𝑥𝑖,𝑗
𝑡−1
𝑗=𝑡−𝑘

 

where xi represents either the annual precipitation or maximum temperature. Year of sale 

is t, and k is either 5 or 10 depending on whether a 5 or 10-year lag is represented. The 5- 

and 10-year values for precipitation and temperature were calculated using the annual 

(6.3) 

(6.4) 
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average for daily maximum temperature and total annual precipitation (mm) from the 

PRISM Group (see Chapter 3). 

We do not include temperature mean values in the regression because of the high 

degree of correlation with precipitation mean values.1 Even though temperature is an 

important variable when studying drought, Williams et al. (2015) suggest that 

precipitation is the primary driver of drought.2 Further, our descriptive statistics indicate 

that there is more variance between the precipitation normal and 5- and 10-year mean 

precipitation values than the analogous maximum temperature normal and maximum 

temperature 5- and 10-year means.  

Population growth rate, ɤ1, for the ith parcel, represents the slope of the line 

through the 5- or 10-year period prior to the year of sale as follows: 

𝑝𝑜𝑝𝑖 = 𝛾𝑖,0 + 𝛾𝑖,1𝑦𝑒𝑎𝑟 

where pop is the population and year is the given year of this population. The slope is 

taken at 5 or 10 years prior to the year of sale. For example, if the year of sale is 2000, 

then the 5-year population rate is calculated using annual population data for 1995-1999. 

  

                                                           
1 For example, the correlation between the maximum temperature normal and precipitation normal is -0.97. 
2 Williams et al. (2015) found that anthropogenic warming contributed to 8-27% of the drought anomaly 

from 2012-14. 

(6.5) 
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Table 6.2: Population-Averaged Panel Land Sales Analysis 

 Dependent variable 
= likelihood of land 
sale Odds Ratio 

Robust 
Std. Err. z P>|z| 

      

(Intercept) 0.075 0.313 -8.28 0 

      

ppt_mean_5 1.000 0.001 -0.36 0.717 

tmax_cv_5 0.002 7.196 -0.88 0.379 

ppt_cv_5 1.137 0.296 0.43 0.665 

pop_rate_5 0.676 0.105 -3.72 0 

sq_pop_rate_5 0.961 0.017 -2.35 0.019 

      

Land Use Code:     

(Baseline=Avocado)     

Citrus 0.790 0.129 -1.84 0.066 

General Irrigated 0.815 0.151 -1.35 0.176 

Vineyard 0.669 0.153 -2.63 0.009 

Date 0.785 0.184 -1.31 0.189 

      

Water District:     

(Baseline=CVWD)     

EMWD 1.154 0.169 0.84 0.398 

PVID 0.828 0.087 -2.18 0.029 

WMWD 1.075 0.160 0.45 0.655 

      

Year Dummies:     

(Baseline=2008)     

2000 4.145 0.207 6.89 0 

2001 2.219 0.222 3.58 0 

2002 1.889 0.208 3.05 0.002 

2003 2.026 0.207 3.42 0.001 

2004 2.489 0.185 4.94 0 

2005 1.797 0.185 3.16 0.002 

2006 1.163 0.192 0.79 0.432 

2007 0.718 0.218 -1.52 0.129 

2009 0.748 0.209 -1.39 0.164 

2010 1.038 0.198 0.19 0.851 

2011 1.315 0.193 1.42 0.155 
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 Odds Ratio 
Robust 
Std. Err. z P>|z| 

2012 1.616 0.189 2.54 0.011 

2013 1.606 0.210 2.26 0.024 

2014 1.730 0.197 2.79 0.005 

2015 2.479 0.221 4.11 0.000 

2016 2.667 0.247 3.98 0.000 

      

      

Wald chi2(28)       252.42    

Prob > chi2         0    
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Table 6.3: Parcel-level Ricardian Analysis 

Dependent variable = log land sale per 
acre Coefficient 

 Robust 
Std. Error t value Pr(>|t|) 

(Intercept) 8.312 0.773 10.756 < 2.2e-16 

ppt_mean_5 0.004 0.001 4.803 1.82E-06 

tmax_cv_5 -33.887 12.167 -2.785 0.005 

ppt_cv_5 -0.820 0.320 -2.563 0.011 

pop_rate_5 0.617 0.256 2.415 0.016 

sq_pop_rate_5 0.116 0.044 2.634 0.009 

      

Land Use Code:     

(Baseline=Avocado)     

Citrus 0.773 0.202 3.836 0.000 

General Irrigated 1.051 0.256 4.113 4.24E-05 

Vineyard 0.772 0.258 2.991 0.003 

Date 1.495 0.338 4.418 1.11E-05 

      

Water District:     

(baseline=CVWD)     

EMWD -0.247 0.313 -0.789 0.430 

PVID -1.245 0.169 -7.381 3.41E-13 

WMWD 0.266 0.299 0.890 0.374 

      

Year Dummies:     

(Baseline=2008)     

2000 0.971 0.711 1.367 0.172 

2001 1.461 0.732 1.995 0.046 

2002 1.450 0.731 1.985 0.047 

2003 1.527 0.686 2.226 0.026 

2004 1.409 0.698 2.019 0.044 

2005 1.480 0.727 2.037 0.042 

2006 1.090 0.785 1.390 0.165 

2007 1.575 0.689 2.287 0.022 

2009 1.354 0.708 1.914 0.056 

2010 0.995 0.693 1.436 0.151 

2011 1.263 0.703 1.797 0.073 

2012 1.037 0.718 1.444 0.149 

2013 1.509 0.709 2.128 0.034 
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 Coefficient 
 Robust 

Std. Error t value Pr(>|t|) 

2014 1.162 0.695 1.673 0.095 

2015 2.026 0.730 2.774 0.006 

2016 2.030 0.744 2.730 0.006 

     

     

     

Fstat 14.903    

pval (Fstat) 2.20E-16    

Average MSE from cross-validation 0.79    
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Discussion of Results 

We test the impact of 5 and 10 year lags of weather on both the likelihood of sale 

and value of farmland. We focus on the precipitation mean, as this has the greater 

contribution to drought relative to temperature (Williams et al. 2015). As previously 

discussed, the high degree of correlation (i.e., ρ = -0.97) between precipitation and 

maximum temperature means would introduce multicollinearity if both were included in 

our analyses. In addition to including the mean precipitation values, we test the impact of 

short-run (5 or 10 year) temperature and precipitation variability on likelihood of sales 

and land sale value.  

 None of the climate variables studied impact the likelihood of selling farmland in 

Riverside County from 2000-2017. The 5-; 10-; and 30- (normal) year mean precipitation 

also do not impact farmland value. This is similar to the results in Deschenes and Kolstad 

(2011). However, short-run precipitation variability has a significant influence on 

farmland value. A unit increase in the 5-year precipitation coefficient of variation reduces 

the value of farmland by 56% per acre. 

 Population rate exhibits a significant relationship with both likelihood of land 

sales and land value.  For example, a unit increase in the 5-year population rate decreases 

the likelihood of selling farmland by 32%, and increases farmland value by 85%. The 

exact relationship varies across model specifications, but remains significant. Further, 

population rate exhibits a U-shaped relationship with likelihood of land sales and a hill-

shaped relationship with land value. The U-shaped pattern is explained by the 
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relationship found between urbanization and land value dynamics. Urbanization naturally 

follows from population increase, and urbanization tends to increase the value of 

farmland (Platinga, Lubowski, and Stavins 2002). This may provide incentives to 

growers to hold on to their land, rather than selling it. However, the marginal productivity 

of farmland continues to decline with increasing urban encroachment (square of 

population rate). And, this makes selling farmland more attractive.  

 Citrus and vineyard are less likely to be sold than avocado, while all land uses 

(citrus, general irrigated, vineyard, and date) tend to be more valuable per acre than 

avocado. The significance of citrus and vineyards tends to vary across model 

specifications, although that of general irrigated agriculture and dates remains robust 

across these specifications. At the water district level, the results suggest that more 

valuable farmland is more likely to be sold. Coachella Valley Water District has the most 

valuable farmland compared to the other 3 districts. This suggests that, controlling for 

other factors, the characteristics of a given water district may add significant value and 

may be sold to achieve a positive return rather than minimize a loss.  

Conclusions 

Based on our two analyses, we suggest that the relationship between likelihood of 

farmland sales and farmland value is attribute specific. That is, factors that influence the 

likelihood of land sale (e.g., land use) may not increase land value, as we had originally 

hypothesized. Our results suggest that short-run fluctuations in precipitation reduce the 

value of farmland. This suggests that the droughts experienced during this period may 

have influenced expectations on the future viability of farming in Riverside County.  
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Water district influences likelihood of land sales and land value in the same 

direction. In particular, Coachella Valley Water District has higher sales and value 

relative to Palo Verde Irrigation District, the other district in Riverside County holding 

senior water rights. This suggests that expectations on the viability of farming in 

Coachella Valley Water District are higher even relative to Palo Verde Irrigation District. 

Other attributes, such as land use, influence farmland sales likelihood and land value in 

opposite directions. For example, avocado sales relative to other land uses (citrus and 

vineyard) increased during this period, whereas land value for avocado declined relative 

to these other uses. This suggests that avocado orchards may have been sold in Riverside 

County during the study period due to declining value both relative to other agricultural 

uses and due to precipitation variability associated with the drought.  

The relationship between land sale and value is, as suggested earlier, attribute-

specific. Higher (lower) land value does not necessarily result in a higher (lower) 

likelihood of land sale. And, our preliminary results do not reveal a direct relationship 

between precipitation extremes (mean or variability) and likelihood of land sale. We have 

some indirect evidence that increasing likelihood of sale of avocado parcels may be 

related to declining land value. And, declining land value is, on average, related 

increasing precipitation variability. Studying the extent to which selling avocado parcels 

may represent an adaptation to extreme weather (or climate) is an important area of future 

research. Avocados are amongst the most valuable crops with respect to gross revenue 

per acre. However, as the frequency and duration of drought persists in Southern 

California, we may witness more avocado land being sold not only to other agricultural 
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producers, but to non-agricultural users as well. In addition, farm survey research would 

benefit from including questions on dates of actual parcels sold and purchased. This 

could provide more insight into the microeconomic influences on the likelihood of land 

sales. 
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Chapter 7: Conclusions and Policy Implications 

 

Resilience to water scarcity is fundamentally related to grower responsiveness to 

the external environment. We have quantified grower responsiveness to farm- and parcel-

level microclimate in two desert (Imperial and Riverside) and two coastal (San Diego and 

Ventura) counties in Southern California, using primary survey data (Annex 3.4). Our 

metrics include gross revenue per acre (Chapter 4), likelihood of technology adoption 

(Chapter 5), land value per acre (Chapter 6), and likelihood of land sale (Chapter 6). 

Although we study several grower and farm characteristics, climate, water source, farm 

type, and share of income from agriculture are the most robust variables in our farm-level 

analyses. The results of the parcel-level analyses of Riverside County in Chapter 6 

suggest that short-run variability in annual precipitation may have negatively impacted 

land value over the past 17 years, though a relationship with precipitation variability and 

the likelihood of land sale during this same period is not supported by our results. 

Our analysis of grower responsiveness begins with a farm-level Ricardian model 

using several micro-level variables collected from our survey instrument (Chapter 4). We 

study the climatic impact on gross revenue per acre in 2014, which is an annual measure 

of farmland productivity. In Chapter 5, we evaluate the extent to which adoption of 

irrigation management practices (soil moisture monitoring and salinity monitoring) 

represents adaptation to an increasingly warm and dry climate. These monitoring 

practices require growers to be more pro-active in scheduling irrigations (in the case of 

soil moisture monitoring), and minimizing inefficient leaching practices (in the case of 



108 
 

salinity monitoring), and thus represent the next generation of on-farm water 

management advances. The parcel-level analysis of Riverside County in Chapter 6 

includes two complementary analyses: (1) an exploratory analysis of the extent to which 

likelihood of land sales are impacted by short-run fluctuations in weather; and (2) an 

analysis of the impact of these short-run fluctuations on land values. These studies focus 

on adaptation to extreme climatic events, such as the droughts experienced in Southern 

California from 2007-2009 and 2011-2016.  We introduce two sets of dynamic variables 

into the analysis: climate and population. Not only do we explore the extent to which 

these dynamic variables individually impact parcel sales and value, but we explore a 

preliminary relationship between likelihood of a sale and the relative value of the parcel. 

In addition to our empirical analyses, we learned how to construct a complex 

spatial dataset from primary data (our questionnaire) and existing public data sources on 

agricultural land values, climate, soil, groundwater, zoning, and utility boundaries. 

Chapter 3 provides detail on the questionnaire development as well as these multiple 

external data sources. Ultimately, the benefits of creating a rich dataset outweighed the 

cost in time. 

There are several farm-level policy implications, based on our analysis of the 

original survey data:  

 We observe a connection between soil moisture/salinity monitoring and short-run 

precipitation. The 5-year total annual precipitation mean and 5-year total annual 

precipitation variability are both significant in both our binary logistic regression 
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analyses. The positive relationship between the precipitation mean and adoption (of either 

monitoring practice) is counter-intuitive. We would expect this relationship to be 

negative because a decrease in precipitation associated with the drought would influence 

growers to monitor water quantity/quality if this grower were using monitoring as an 

adaption to the drought. We also observe a positive relationship with 5-year total annual 

precipitation variability, as we expected if monitoring were truly an adaptation to the 

drought. It is challenging to reconcile these seemingly contradictory results, and 

ultimately we are cautious about drawing a strong conclusion either way. Precipitation is 

a complex phenomenon, and further analysis with a larger sample may be necessary. 

Farm type and percentage of income generated from agriculture may be stronger 

determinants of adoption. Adoption that is not consciously tied to perceived changes in 

climate is often called “autonomous adaptation” (Janowiak et al. 2016; Stein et al. 2014; 

Anwar et al. 2013). This is often observed in the short-run as relatively quick-fixes to 

production plans. Given projections of increased frequency and duration of droughts 

during the current century, growers will develop the most effective, cost-minimizing 

strategies if they are intentionally addressing these long-run climatic changes today.  

Almost 1/3 of growers in our sample view drought as their primary threat to water 

security, and a greater link between monitoring and drought mitigation may even increase 

the level of adoption in the short-run. In addition to UC Cooperative Extension (UCCE) 

programs, there are several competitive grants (CDFA State Water Efficiency and 

Enhancement Program, NRCS Environmental Quality Incentives Program, NRCS 

Conservation Innovation Grants) that could incentivize growers to think in these 
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intentional terms. As such, monitoring soil moisture and salinity could be a gateway into 

managing for long-run climatic changes.  

More than half of the growers in our sample receive their farming information from 

industry or friends/neighbors (Figure 5.5). Yet, based on the results from our logistic 

regression, growers who primarily receive their information from state and federal 

institutions are roughly 3 times more likely to adopt either monitoring practice than those 

who receive from other sources (e.g., neighbors, industry, popular press, farm managers). 

This suggests that government programs may benefit from strategic partnerships with 

industry and small farmers’ networks, without compromising their neutral political role. 

UCCE and NRCS, in particular, may be able to streamline and leverage their water 

conservation initiatives with other state government institutions (e.g., California 

Department of Food and Agriculture, California Department of Water Resources, 

California Environmental Protection Agency, California Energy Commission, California 

Department of Energy).   

Water price and frequency of water price increases may influence growers to be 

more productive. Our results from the farm-level Ricardian model suggest that a 5% 

increase in water price increases gross revenue per acre by 1.4%.1 We also study how 

frequently water price has increased over the past decade. We find that increasing the 

number of times the price has increased by one unit (e.g., from once to twice over the 

past decade), increases productivity per acre by 3.4%. This suggests that water price may 

                                                           
1 All results from the farm-level Ricardian analysis reported in this chapter refer to the log-log 

specification. 
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direct growers to produce higher value crops. Future research on the role of price 

increases and frequency of these increases for lower value crop farms is important. The 

challenge is that crops with the lowest value per acre (i.e., field crops) tend to be 

produced in districts with senior water rights, which do not regularly implement water 

price increases (e.g., Imperial Irrigation District, Palo Verde Irrigation District, and Bard 

Water District). Notably, although Coachella Valley Water District holds senior water 

rights, they have increased agricultural water price 4 times over the past decade. 

As expected, field crop growers have low productivity per acre. Relative to orchards 

(i.e., baseline), field crop farms garner almost 80% less revenue per acre. Field crop 

farms are 41% and 78% less likely to adopt salinity and soil monitoring practices, 

respectively. Adaptation programs may need to reach out to lower value crop growers. 

These crops tend to represent more acreage, and therefore represent an untapped 

opportunity.  

Public data sources are noisy and incomplete. In constructing our dataset, we 

benefitted greatly from the spatial data from several generous agencies (Agricultural 

Commissioners, Assessors, NRCS). We also lost both time and data due to poor quality 

data, which these agencies dedicate valuable resources to collect. Most surprising was the 

lack of standardization in parcel identification numbers between files from the same 

agency (e.g., excel file records did not completely match with GIS file records). There 

may be a role for academics in setting standards or creating repositories of quality data.  
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It is more challenging to identify policy implications for the land sales analysis in 

Chapter 6 since only 3-5% of agricultural parcel are sold in the US annually (Gloy et al. 

2011). We can, however, understand factors influencing sales, and the extent to which 

parcel-level land value exhibits an analogous relationship with these factors: 

Short-run precipitation variability has a significant influence on parcel value. Based 

on our results, a unit increase in the 5-year precipitation coefficient of variation reduces 

the value of farmland by 56% per acre in our Riverside County sample. This is consistent 

with the negative impact of the annual variability in the maximum temperature normal on 

farm-level productivity per acre (Chapter 4), though we are cautious to directly compare 

the two analyses. Broadly, the parcel- and farm-level analyses suggest that variability in 

weather/climate negatively impact productivity per acre, whether annually or seasonally. 

Population rate exhibits a significant relationship with both land sales and value.  

For example, a unit increase in the 5-year population rate decreases the likelihood of 

selling farmland by 32%, and increases farmland value by 85%. This may suggest 

pursuing synergies in urban and agricultural planning. 

Water district type positively influences both land sales and value. In particular, 

Coachella Valley Water District has higher sales and value relative to Palo Verde 

Irrigation District, the other district in Riverside County holding senior water rights. 

Higher farmland values in Coachella Valley Water District may partially be attributed to 

their proactive irrigation efficiency measures over the past 20 years, as well as increasing 

water price more frequently than other districts that hold senior water rights. 
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Avocado land sales may reflect an adaptation to drought during this period. 

Avocado sales relative to other land uses (citrus and vineyard) increased during this 

period, whereas land value for avocado declined relative to these other uses. This 

suggests that avocado orchards have been sold in Riverside County during the study 

period due to declining valuation both relative to other agricultural uses and due to 

precipitation variability associated with the drought. 

Broadly, factors that influence the likelihood of selling land may not increase land 

value, as we hypothesized. The results from the two analyses in Chapter 6 suggest that 

the relationship between farmland sales and farmland value is attribute specific. 

Population influences sales and value in the opposite direction, whereas water district and 

land use attributes influences sales and value in the same direction.  

Even with limited resources, we were able to collect complete data on 187 

growers. This suggests that growers are responsive to providing information to 

universities. We included a comments page in our survey, which we did not evaluate in 

our empirical analyses. Many of the comments suggested these individuals were 

receptive to information that would help them with their production plans (e.g., 

comparative analyses of rootstocks), but they did not know how to find or even translate 

the information. One grower even commented, “We are not your farmers. You are our 

research university.” There is high potential to foster a positive relationship with growers 

both directly and, indirectly, through extension research. Perhaps growers could serve as 
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partners in collecting quality data (likely anonymously) that would prove invaluable to 

academic research.2  

Caveats and Possible Future Work 

 We did not anticipate the large share of tree crop growers in our sample. This 

suggests that such growers are both more abundant, and likely more responsive to 

surveys. Coupling this with the results from Chapter 6, which reveal that avocado parcels 

were most devalued and more likely to be sold in Riverside County, warrants a focused 

analysis on tree crop growers. It also warrants a separate analysis of field crop growers. 

More data, both across time and space, is needed to evaluate the likelihood of land sale 

and the potential implications of climate change. As analytics become increasingly 

accessible, it will be interesting to evaluate the adoption of these data tools (particularly 

those monitoring climate and weather) and the extent to which productivity is affected. 

 

                                                           
2 Large companies, such as DuPont and John Deere, already use sensors and GPS to collect detailed data 

from farmers. Even start-up, such as the Farmers Business Network, provides pricing and other data to 

growers. 
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ANNEX 3.1 PILOT PHASE INVITATION LETTER 

 

 

Dear {blank}, 

I received your contact information from the Public Records Department of the County 

Agricultural Commissioner’s Office. I am writing from the University of California, Riverside to 

request your participation in a brief survey on farming practices in Riverside County. It is part of 

my Ph.D. dissertation research with the Department of Environmental Sciences, under the 

mentorship of Professor Ariel Dinar. With over $1.3 billion in gross agricultural production value 

in 2013, it is clear that Riverside farmers are among the most productive in California.  Riverside 

farmers have developed some of the most resilient farming systems in the nation in spite of being 

located in the desert.  

As a student of agricultural economics, I am interested in learning about your farming experience. 

Most people will agree that several factors affect farmland value, such as soil quality, proximity 

to urban centers, and, to some extent, climate. It is less obvious how irrigation technologies and 

management practices may influence land value. Common sense suggests that there is an indirect 

relationship through improving land quality. Could certain practices directly improve land value? 

Once I am finished with my research, I will provide you with my best response to this question 

based on rigorous and unbiased research. 

My survey is made up of general questions on farm size, crops planted, irrigation technologies, 

and management practices. I am only requesting the most general level of information. I am not 

requesting crop variety, brand of technologies, or any other detailed proprietary information. I 

also ask general questions on how the drought may have affected you. Even then, I assure you 

that individual responses will not be published. My analysis is on the aggregate results from all of 

the surveys. 

I would like to emphasize that, under the University of California System, we are committed to 

protecting your privacy. Your individual information will only be known to my 5-person research 

team. This team is made up of: Professor Ariel Dinar, 3 undergraduate research assistants, and 

myself. We will not share your individual information with the government, private companies, 

or any other entity or person. 

Please feel free to email or call with any questions. 

Sincerely, 

 

Arisha Ashraf 
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ANNEX 3.2 PILOT PHASE CONSENT DOCUMENT 

 

Document of Consent: Please read and sign this document before proceeding with the survey. 

What is the purpose of the study? 

This study will help me understand how Southern California farmers have maintained successful farming 

systems in spite of the often harsh climate, particularly during the current drought. I am interested in how 

farming practices (e.g., irrigation, soil monitoring, leaching, etc.) are connected to farm performance, as 

measured by production value. The results from my research will ultimately inform state policy on the 

benefits of existing farming practices in the region. There are no right or wrong answers for this survey, 

and I am not making any recommendations to you. You are the experts! 

What are my rights during the survey? 

Responding to the survey is voluntary. You may quit the survey at any point.  

Will I receive compensation for completing the survey? 

No, you will not receive any compensation for completing this survey. 

How will my privacy be protected? 

Your information will be password protected and only accessible by project staff (Arisha Ashraf, Ariel 

Dinar, and an undergraduate assistant). Your survey is assigned an ID# so that your individual contact 

information (including farm name and any other information that may reveal your identity) is stored 

separately from the rest of the survey questions. Your individual responses will not be published, even 

without your name. We will only publish aggregate results. 

What if I have questions about the survey? 

You have the right to ask, and have answered, any questions about the survey. If you have questions at any 

time you should contact Arisha Ashraf by phone or email. 

What if I have questions about my rights as a survey participant? 

All research with human volunteers is reviewed by a committee that works to protect your rights and 

welfare. If you have questions or concerns about your rights as a survey participant you may contact, 

anonymously, if you wish, our Principal Human Research Review Board Analyst. 

Participant’s Agreement: 

By checking the box below, I indicate that: (1) I have read the information provided above, and (2) I 

voluntarily consent to participate in this survey. 

 

 

 

____________________________________________                                              ___________________ 

Participant Signature       Date 

Yes, I agree to participate. 

No, I do not agree to participate. 
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ANNEX 3.3 PILOT PHASE QUESTIONNAIRE 

Please note that the survey structure and format has been abbreviated for the Annex. 

1. What is your annual farm income bracket? 

a. Less than $20K 

b. 20,000 – 39,999 

c. 40,000 – 74,999 

d. 75,000 – 149,999 

e. 150,000 – 300,000 

f. Over 300,000 

2. What is the highest level of education you have attained? 

a. Did not complete high school 

b. High school diploma 

c. Bachelor’s degree or 4 years of active military duty 

d. Graduate school 

e. Postgraduate 

3. Which percentage of your income is generated from farming? 

a. Less than 25% 

b. 25 - 49% 

c. 50 – 74% 

d. 75 – 100% 

4. Do you own or lease your farming operation? 

a. Own 

b. Lease 

5. What is the your approximate total land value? 

6. How many acres is your farming operation? 

7. How many years of farming experience do you have? 

8. What are all of your water sources, and how many acre-feet of water do you consume from each 

source? 

9. Have you ever experienced any water reduction during your time farming this property?  Yes  No 

10. If yes to Q.9, please describe when and why: 

11. What do you believe are the biggest threats to your water supply? 

a. I do not believe there are any threats to my water supply. 

b. Urban population growth 

c. Drought in California 

d. Drought along the Colorado River 

e. Heat waves 

f. Government Regulations 

g. Other (please explain) 

12. If you did not answer “a” to question 11, please rank your top 3 concerns in Q 11. 

13. Please rank your concern with water scarcity affecting crop production prior to the drought: 

a. It was not a concern 

b. It was somewhat of a concern 

c. It was an important concern 

d. It was my top concern 

14. Please rank your concern with water scarcity affecting crop production during the drought: 
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a. It was not a concern 

b. It was somewhat of a concern 

c. It was an important concern 

d. It was my top concern 

15. Please rank your concern with water scarcity affecting crop production during potential future 

droughts: 

a. It was not a concern 

b. It was somewhat of a concern 

c. It was an important concern 

d. It was my top concern 

16. Please list your top 3-5 crops based total annual revenue for each season: 

 

FALL SEASON 

Crop 

Acres 

Planted 

Water application 

technology 

How many years have you 

used this technology? 

        

        

        

        

        
Note that only the FALL SEASON table is printed in Annex 3.3. WINTER, SPRING and 

SUMMER tables were printed in the original pilot survey. 

17. How do you currently schedule your irrigations? Do you use CIMIS or any other irrigation 

scheduling software? 

18. Have you attended any farm workshops on water conservation over the past 3 years? 

19. Do you currently use any of the following water conservation methods: 

a. Change mix of crops planted to reduce water use 

b. Fallow part of my crop land 

c. Implement pressurized irrigation systems 

d. Implement run-off recovery systems 

e. Plant transplants 

f. Other (please explain) 

20. What are your main barriers for implementing water conservation practices: 

a. Many of the technologies are too expensive 

b. I do not have the time to learn about new farming practices 

c. I know about these practices, but I believe there is no way these will benefit me 

d. I do not know about these practices 

21. Additional Comments: 
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ANNEX 3.4 FINAL SURVEY DOCUMENTS 

 

Dear {blank}, 

I received your contact information from the Riverside County Agricultural Commissioner’s Office. This is 

part of my PhD research in Agricultural Economics at UC Riverside. I am studying the relationship 

between farm performance and various farming practices, including irrigation, leaching, soil monitoring.  

Your participation is critical to developing the most accurate picture of farming in Southern California. I 

would like to emphasize that I am a Southern Californian, and the main reason I chose this topic was that I 

noticed a gap between the research that goes on in the university system and farmer needs. Cooperative 

Extension addresses this gap, but it is still important that the universities directly reconnect with farmers.  

As the Consent Document guarantees, no individual information will be published nor will it be shared 

with any person or entity outside my research team. This research team is made up of myself, my primary 

advisor (Dr. Ariel Dinar), and an undergraduate Research Assistant (Jessica Gonzalez). 

For your convenience, I have included a print copy and self-addressed stamped envelope. The survey takes 

about 20 minutes to complete. I assure you that it looks longer than it is partly because I used big font, and 

partly because most of these are quick questions. Unlike superficial surveys from private companies which 

may only be 4 or 5 questions long, I would like to understand your unique situation with more depth. This 

requires more questions, but not as many as the US Department of Agriculture or government surveys. 

If you prefer, you could take the survey on-line on the Riverside Farm Bureau’s website under “What’s 

New?”. I would also be happy to chat with you over the phone or in-person. I value your time, and look 

forward to receiving your survey. 

Hope you and your family have a Happy Thanksgiving. 

Kind regards, 

 

Arisha Ashraf, PhD candidate 

Enc.  

Tel:  

Email:   
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Document of Consent: Please read and sign this document before proceeding with the survey. 

Thank you for considering participation in my survey. You probably take several surveys, and I appreciate 

your time. This survey is part of my PhD research in Agricultural Economics for the University of 

California, Riverside on farming practices in Southern California. 

Simply stated, I am a Southern Californian who would like to get to know my farmers. Unfortunately, 

California farmers have been disconnected from the urban/suburban populations they serve. They have also 

been disconnected from the research going on in the university system. Your participation is one, modest 

effort to bridge these gaps. Thanks again for your time! 

What is the purpose of the study? This study will help me understand how Southern California farmers 

have maintained successful farming systems in spite of the often harsh climate, particularly during the 

current drought. I am interested in how farming practices (e.g., irrigation, soil monitoring, leaching, etc.) 

are connected to farm performance, as measured by production value. The results from my research will 

ultimately inform state policy on the benefits of existing farming practices in the region. There are no right 

or wrong answers for this survey, and I am not making any recommendations to you. You are the experts! 

What are my rights during the survey? Responding to the survey is voluntary. You may quit the survey 

at any point.  

Will I receive compensation for completing the survey? You have the option of receiving $25 if we 

receive your completed survey by September 15, 2016. If you wish to waive this option, please check the 

appropriate box at the end of this survey. Your check will be mailed 6-8 weeks after receiving your 

completed survey.  

How will my privacy be protected? Your information will be password protected and only accessible by 

project staff (Arisha Ashraf, Ariel Dinar, and an undergraduate assistant). Your survey is assigned an ID# 

so that your individual contact information (including farm name and any other information that may reveal 

your identity) is stored separately from the rest of the survey questions. Your individual responses will not 

be published, even without your name. We will only publish aggregate results. 

What if I have questions about the survey? You have the right to ask, and have answered, any questions 

about the survey. If you have questions at any time you should contact Arisha Ashraf by phone or email. 

What if I have questions about my rights as a survey participant? All research with human volunteers 

is reviewed by a committee that works to protect your rights and welfare. If you have questions or concerns 

about your rights as a survey participant you may contact, anonymously, if you wish, our Principal Human 

Research Review Board Analyst. 

Participant’s Agreement: By checking the box below, I indicate that: (1) I have read the information 

provided above, and (2) I voluntarily consent to participate in this survey. 

 

 

                     Only for those who agree to participate: I do not wish to receive the $25. 

 

 

Participant Signature:     Date: 

Yes, I agree to participate. 

No, I do not agree to participate. 
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FINAL SURVEY: Note formatting has been modified for this annex. 

 

1. In your opinion, what are the top 3 threats to your water supply? To save yourself time, 

please rank only the top 3, with 1=top threat, and so on.  

      ____ I do not believe there are any threats to my water supply. Please move to Q2. 

Rank  

____ Lack of federal or state government planning for alternative water sources 

____ California or Colorado River drought 

____ Competition for water from non-agricultural population 

____ Competition for water from other farmers 

____ Environmental movement opposed to desalination 

____ Delta smelt (fish) issue 

____ Other (Briefly describe):  

 

2. Compared to an average water year, did you experience a lower water supply in 2014? 

a. Yes 

b. No 

 

3. In the past 3 months, how have you received new information on farming practices? 

Please rank your top 3 choices only, with 1=greatest benefit, and so on. 

 

Rank  

____ Popular media outlets (via TV, internet, radio) 

____ Social media outlets 

____ Friends and neighbors who are also farmers 

____ Farm manager 

____ Irrigation industry or trade association publications (print or on-line) 

____ Cooperative Extension (UCCE), Natural Resource Conservation Service 

(NRCS), US Dept. of Agriculture (USDA) or other government publications 

(print or on-line) 

____ Irrigation industry or trade association events 

____ UCCE, USDA or other government events 

____ Other 
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4. Please list all of your water 

sources in order of importance. 

Combine all of your individual 

wells under one source. Use the 

list to the right to save time. 

 

Water source #1: 

 

Water source #2:  

 

Water source #3:  

 

 

5. For well water only: what is 

the approximate total dissolved 

solid (TDS)? For your 

convenience, a conversion 

table is to the right. 

A. Less than 300 ppm 

B. 300-600 ppm 

C. 601-900 ppm 

D. Greater than 900 ppm 

 

6. How do you manage drainage water? Please select all that apply. 

A. This is managed by my irrigation or drainage district. 

B. Evaporation ponds 

C. Lateral drainage tiles 

D. Use of salt tolerant crops 

E. Use of irrigation technology that produces less drainage 

F. Fallowing portion of my land where drainage is poor 

G. Other (please specify):  

 

7. How do you decide when to schedule water use? To save yourself time, please rank only 

those choices that apply.  1=most important, and so on. 

 

Rank  

____ I do not have a choice. I can only schedule water use when it is delivered or made 

available by my irrigation water supplier. Please select this choice only if you 

cannot use any methods below. 

____ Personal calendar schedule 

____ Condition of crop (observation or experience) 

____ Feel of soil 

____    When neighbors begin to irrigate 

____ Use of soil moisture-sensing devices (e.g., gypsum block, tensiometer, etc.) 

ANSWER CHOICES FOR Q. 4 

A = Well water 

B = Coachella Valley Water District 

C = Eastern Municipal Water District 

(Reclaimed   water) 

D = Gage Canal 

E = Imperial Irrigation District 

F = Palo Verde Irrigation District 

G = Western Municipal Water District 

H = Rancho California Water District 

I = Other  

 

CONVERSION TABLE 

1 mg/L = 1 ppm 

1 mg/mL = 1000 ppm 

1 dS/m = 640 ppm (for less than 5 dS/m) 

1 dS/m = 800 ppm (for 5 dS/m or greater) 
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____ Use of plant moisture-sensing devices (e.g., pressure/chamber bombs, IR 

thermometer, etc.) 

____ Use of irrigation scheduling services, including commercial and government 

____ Use of reports on crop-water evapotranspiration (ET) via internet, print, radio 

sources 

____ Computer simulation models (not from a commercial service) 

 

8. For all: Roughly how many total planted acres was your farm/grove/nursery in 2014?  

9. For tree crops: Roughly how many total trees did you have in 2014? 

10. How frequently do you (or your farm manager) use the following to monitor TDS or 

salinity? 

 

11.  Please list your top 3 crops based on value in 2014, starting with the most valuable. For 

nursery crops, please list general categories  

 

 

12. Approximately, what was your total yield for each crop in 2014?  

 

 

Never 

Every 

week 

Every  1-3 

months 

Every   4-6 

months 

Every      

7-12 

months 

I observe how my crops 

are growing under 

current conditions. ○ ○ ○ ○ ○ 

I check with my water 

provider. ○ ○ ○ ○ ○ 

I use a handheld 

TDS/salinity meter. ○ ○ ○ ○ ○ 

I send water samples to 

a lab. ○ ○ ○ ○ ○ 

Other (please specify 

below) ○ ○ ○ ○ ○ 

  Name 

Planted 

Acres 

Duration of growing season 

(e.g., Nov-Feb) 

Crop #1       

Crop #2       

Crop #3       
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13. How do you irrigate your top crops? 

Please select a letter from the table on 

your right, or write in the name if you 

select “other”.  

 

Crop #1: 

 

Crop #2:  

 

Crop #3:  

 

14. Approximately how many years have 

you been using each technology? 

Crop #1: 

 

Crop #2:  

 

Crop #3:  

 
15. If you selected FURROW or FLOOD system, please select which type. If not, please skip 

to the next question. 

A. Down rows/furrow from open ditches 

B. Down rows/furrow from poly pipe, lay-flat tubing, or above-/underground pipe 

C. Controlled flooding within field borders from open ditches 

D. Controlled flooding within field borders from poly pipe, lay-flat tubing, or above-

/underground pipe 

E. Uncontrolled flooding (e.g., pasture or rangeland) including open discharge from a 

well or pump 

 

16. If you selected FURROW or FLOOD system, do you have a tail-water recovery system? 

A. Yes 

B. No 

17. For ROW or FIELD crops: Roughly how many total acre feet of water did you apply to 

each crop category during the growing season in 2014? If it is easier to present this 

information in another time horizon (i.e., weekly or monthly), please specify time 

horizon.  

Crop #1: 

Crop #2: 

Crop #3: 

ANSWER CHOICES FOR Q.13 

A = Gravity system (furrow or flood) 

B = Micro-sprinkler 

C = Surface drip system 

D = Subsurface drip system 

E = Drip tubing (for 

greenhouse/nursery) 

F = Overhead misters (for 

greenhouse/nursery) 

G = Boom irrigation (for 

greenhouse/nursery) 

H = hand-watering by dragging a hose 

(for greenhouse/nursery) 

I = Gated pipe 

J = Center pivot system  

K = Linear/hand move system 

L = Other (Please write in next to the 

crop #) 
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18. For TREE (non-nursery) crops: Roughly how many total gallons of water did you apply 

during the 2014 growing season? If it is easier, how many gallons of water did you apply 

per tree per week during the 2014 growing season?  

Crop #1: 

Crop #2 

Crop #3: 

 

19. For NURSERY crops: Roughly how many total acre-feet of water did you apply to each 

crop category in 2014? You may also report the water usage on a monthly basis, if it is 

easier.  

Crop #1:  

Crop #2: 

Crop #3:  

 

20. Please skip this question if you do not use drip or sprinkler systems. How frequently do 

you (or your farm manager) use the following methods to monitor your water pressure? 

 

 

Never 

Every 

week 

Every 1-3 

months 

Every 4-

6 months 

Every   7-

12 months 

Adjust lateral hose 

bibs ○ ○ ○ ○ ○ 

Check pressure 

regulator at initial 

water line ○ ○ ○ ○ ○ 

Check pressure 

regulators along 

lateral lines ○ ○ ○ ○ ○ 

Other (please specify 

below) ○ ○ ○ ○ ○ 
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21. How frequently do you (or your farm manager) use the following methods to monitor soil 

moisture? 

 

 

Never 

Every 

week 

Every 1-

3 months 

Every 

4-6 

months 

Every 7-

12 

months 

Hand feel/appearance of 

soil ○ ○ ○ ○ ○ 

Gravimetric (e.g., auger, 

cap, oven) ○ ○ ○ ○ ○ 

Tensiometer ○ ○ ○ ○ ○ 

Gypsum block ○ ○ ○ ○ ○ 

Dielectric sensors ○ ○ ○ ○ ○ 

Other (please specify 

below) ○ ○ ○ ○ ○ 

 

22.  How frequently do you (or your farm manager) use the following methods to monitor 

your water use? 

 

 

 
Never Every week 

Every 1-3 

months 

Every 4-6 

months 

Every 7-

12 

months 

Review my water bill ○ ○ ○ ○ ○ 

Walk lateral lines to check that 

crops are irrigated uniformly ○ ○ ○ ○ ○ 

Check the flow meter at the initial 

water line ○ ○ ○ ○ ○ 

Check the flow meters along 

lateral lines ○ ○ ○ ○ ○ 

For well water only: I use a tool 

to measure water table height ○ ○ ○ ○ ○ 

Other (please specify below) ○ ○ ○ ○ ○ 
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23. In your opinion, how important is each monitoring method (questions 10, 20, 21, 22) for 

scheduling irrigations? Please rank, with 1= most important, and so on. Or, check the 

appropriate spaces below. 

            ____ All monitoring methods are equally important.  

            ____ None of these are important for scheduling irrigations. 

 

Rank 

____ TDS/salinity monitoring (Q. 10) 

____    Water pressure monitoring (Q. 20) 

____ Soil moisture monitoring (Q. 21) 

____ Water use/flow monitoring (Q. 22) 

 

24. How many years of farming experience do you have: 

a. At this property: _____________________________ 

b. In total:               _____________________________ 

 

25. Which percentage do you own versus lease this property? 

a. Own:  _______________ 

b. Lease: _______________ 

 

26. What is the highest level of education you have attained? 

a. High school   d. 4 years active military duty 

b. Associate’s Degree  e. Master’s Degree 

c. Bachelor’s Degree  f. Doctor of Philosophy 

 

27. What is your before-tax income bracket (farm + non-farm)? 

a. Less than $50,000   d. $150,000 to $199,999 

b. $50,000 to $99,999   e. $200,000 or greater 

c. $100,000 to $149,999   f. Decline to respond 

 

28. Which percentage of your before-tax income is generated from farming? 

a. Less than 25%   c. 50 to 74%  e. Decline to respond 

b. 25 to 49%   d. 75 to 100% 

 

  

 

E n d  o f  s u r v e y .  T h a n k  y o u  f o r  y o u r  t i m e .  
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ANNEX 3.6 GROUNDWATER TDS AND DEPTH 

ID County Longitude Latitude IDW_TDS WellDepth 

198 V -119.163 34.311 1563.995 598.528 

170 V -118.922 34.373 1004.152 296.630 

169 V -119.024 34.240 1438.462 619.336 

181 V -119.227 34.457 696.000 693.000 

202 V -118.922 34.426 987.029 201.266 

196 V -119.063 34.291 1193.161 618.077 

194 V -119.048 34.290 1222.135 622.853 

157 V -119.237 34.375 860.089 439.948 

10 R -117.008 33.773 297.770 547.015 

3 SD -116.643 33.091 189.458 267.038 

219 V -118.920 34.400 998.014 175.964 

191 V -118.962 34.245 1585.949 543.175 

153 SD -116.829 33.044 257.516 283.194 

185 V -119.217 34.463 696.000 698.000 

182 V -118.962 34.318 1202.884 588.729 

100 R -117.084 33.671 453.350 426.300 

167 V -119.118 34.326 1472.775 601.070 

186 V -118.935 34.258 1597.876 507.102 

161 V -118.936 34.414 1052.488 182.425 

205 V -118.895 34.327 1126.205 507.628 

203 V -118.926 34.305 1147.153 660.706 

62 R -116.073 33.578 241.079 487.907 

197 V -119.117 34.324 1477.080 615.407 

116 SD -116.990 32.804 934.323 486.185 

29 SD -117.045 33.084 1149.146 218.006 

124 SD -117.269 33.424 423.011 484.966 

127 SD -116.905 33.016 630.383 247.044 

109 R -117.023 33.990 221.554 509.226 

82 R -116.887 33.592 519.515 366.973 

15 R -117.195 33.600 409.149 464.708 

74 R -116.897 33.507 520.675 291.933 

117 SD -116.980 33.025 921.769 212.371 

209 SD -117.048 33.254 740.570 235.619 

159 V -118.855 34.398 911.844 274.095 

164 V -119.160 34.290 1546.463 474.845 

17 R -116.389 33.832 266.260 550.526 

28 R -117.077 33.854 225.618 572.459 

171 SD -117.310 33.290 1262.325 153.952 

208 SD -116.607 33.105 158.197 251.949 

195 V -118.928 34.375 1025.453 277.161 

168 V -119.072 34.240 1329.318 761.321 

103 R -116.897 33.507 520.675 291.933 

160 V -119.090 34.269 1277.925 724.331 
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ID County Longitude Latitude IDW_TDS WellDepth 

53 R -117.237 33.900 386.473 555.584 

187 SD -117.255 32.935 1223.183 269.586 

92 R -116.368 33.887 1004.727 528.694 

154 SD -116.948 33.088 789.676 135.078 

211 SD -116.734 33.342 276.518 325.744 

151 SD -117.013 33.117 951.476 203.663 

22 R -116.223 33.594 551.827 494.618 

214 SD -117.007 33.345 818.860 149.712 

212 SD -117.150 33.171 1205.571 194.604 

210 SD -117.077 33.366 636.485 148.498 

111 SD -116.963 33.047 871.150 196.985 
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ANNEX 3.7 ELECTRICITY PRICES 

Utility Company Cost per kWh (kilowatt hour) 

San Diego Gas & Electric 

$/kWh Summer - Tier 1 0.20837    Tier 2 

0.42970  Winter - Tier 1 0.19252           Tier 2: 

0.39701 

Riverside Public Utilities 

Summer - Tier 1(0-750 kWh): 0.1035 Tier 

2(751-1500 kWh): 0.1646 Tier 3(1500> kWh): 

0.1867                                      Winter -Tier 

1(0-350 kWh): 0.1035 Tier 2(351-750 kWh): 

0.1646 Tier 3(750> kWh): 0.1867                                    

Southern California Edison 

Tier 1: 16 cent per kWh, Tier 2: 25 cent per 

kWh 

Imperial Irrigation District 9.52 cent per kWh 

Los Angeles Department of Water and Power 13.03 cents per kWh 

Moreno Valley Utility 15.98 cents per kWh 
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ANNEX 3.8 AGRICULTURAL ZONING CODES 

County  Zoning 

Code 

Description 

San Diego County A70  Limited Agriculture, The A70 Use Regulations are intended to 

create and preserve  

areas intended primarily for agricultural crop production. 

Additionally, a limited number of small farm animals may be kept 

and agricultural products raised on the premises may be processed. 

Typically, the A70 Use Regulations would be applied to areas 

throughout the County to protect moderate to high quality 

agricultural land.  E.g. Horticulture (all types), Tree Crops, Row and 

Field Crops 

  A72 General Agriculture, The A72 Use Regulations are intended to 

create and preserve areas for the raising of crops and animals. 

Processing of products produced or raised on the premises would be 

permitted as would certain commercial activities associated with 

crop and animal raising. Typically, the A72 Use Regulations would 

be applied to areas distant from  large urban centers where the dust, 

odor, and noise of agricultural operations would not interfere  with 

urban uses, and where urban development would not encroach on 

agricultural uses. E.g. Horticulture (all types), Tree Crops, Row and 

Field Crops 

  S80 Open Space Use, The S80 Open Space Use Regulations are intended 

to provide for appropriate controls for land generally unsuitable for 

intensive development. Typically, the S80 Use Regulations would 

be applied in both urban and rural environments to hazard or 

resource  areas, public lands, recreation areas, or lands subject to 

open space easement or similar  restrictions. Uses permitted within 

the S80 Use Regulations include those having a minimal impact on 

the natural environment, or those compatible with the hazards, 

resources, or other restrictions on the property. Various applications 

of the S80 Use Regulations with appropriate development 

designators can create or protect areas of very large residential 

parcels, agricultural areas, recreation areas, or limited use areas 

having identified hazards or resources. 

San Diego (City) AG- The purpose of the AG zones is to accommodate all types of 

agricultural uses and some minor agricultural sales on a long-term 

basis. Nonagricultural uses are limited in the AG zones in order to 

strenghten the presence and retention of traditional agricultural uses.  

  AG-1-1 Requires minimum 10-acre lots 

  AG-1-2 Requires minimum 5-acre lots 
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  AR- The purpose of the AR zones is to accomodate a wide range of 

agricultural uses while also permitting the development of single 

dwelling unit homes at a very low density. The agriculutral uses are 

limited to those of low intensity to minimize the potential conflicts 

with residential uses. This zone is applied to lands that are in 

agricultural use or that are undevloped and not apprporaite for more 

intense zoning. Residiential development opportunities are permitted 

with a Planned Development Permit at various densities that will 

preserve land for open space or future devlopment at urban 

intensities when and where appropriate. 

  AR-1-1 Requires minimum 10-acre lots 

  AR-1-2 Requires minimum 1-acre lots 

Riverside A-1 Light Agriculture. One-family dwellings. Light agriculture, animal 

husbandry, farm animals (Max. 5 animals per acre).  Agricultural 

mobile homes for owner/farm worker with Plot Plan approval. 

Kennels/catteries pursuant to provisions of Sec. 18.45 (pg. XVIII -

119). Menagerie, feed store, farm labor camp, and mobile home park 

with an approved Conditional Use Permit. Minimum Lot: 20,000 sq. 

ft 

  A-2 Heavy Agriculture. One-family dwelling. Agriculture, animal 

husbandry, farm animals (Max. 5 animals per acre), agricultural 

mobile homes for owner/farm worker with Plot Plan approval. 

Kennels/catteries pursuant to provisions of Sec. 18.45 (pg. XVIII-

119). Lodge hall, feed store, private school, church, real estate 

office, with approved Plot Plan. Menagerie, farm labor camp, dairy 

farm, winery, composting facility with an approved Conditional Use 

Permit. Minimum Lot: 20,000 sq. ft 

  A-D Agriculture Dairy. Dairy farming, one-family dwellings in 

conjunction with a dairy operation, general agriculture, 

kennels/catteries pursuant to Sec. 18.45 (pg. XVIII -119), and farms 

for rabbits, fish , frogs, chinchilla, and other small animals. Grazing 

of farm animals (Max. 5 per acre). Agricultural mobile homes with 

approved Plot Plan. Abattoirs with approved Conditional Use 

Permit. Minimum Lot: 20 acres 

  A-P Light Agriculture with Poultry. One-family dwelling. Farms for 

commercial egg production and poultry. Fish, frogs, chinchilla, and 

other small animals. Nurseries, greenhouses, orchards, and field 

crops, packing and processing in connection with farm operations. 

Grazing of farm animals (Max. 5 animals per acre). Agricultural 

mobile home with approved Plot Plan. Minimum Lot: 5 acres 
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  R-A Residential Agriculture. One-family dwellings. Mobile home on 

permanent foundations on lots less then 2 ½ acres. Noncommercial 

keeping of horses, cattle, sheep, and goats on lots over 20,000 sf. 

and 100 ft. in width. Two such animals on each 20,000 sf. up to 1 

acre, and two such animals on each additional acre. Some 

agricultural uses, and limited noncommercial animal husbandry, 4-H 

projects. Agricultural mobile homes permitted for owner/farm 

worker for each 10 acres being farmed. Mobile home parks with 

approved conditional use permit. Churches with approved public use 

permit. Minimum Lot: 20,000 sq. feet 

  R-R Rural Residential. One-family dwelling, mobile homes, light 

agriculture, animal husbandry, farm animals, (Max. 5 animals per 

acre), kennels/catteries pursuant to provisions of Section 18.45 (pg. 

XVIII-119). Minimum Lot: 1/2 acre 

  S-P Specific Plan. Residential, commercial, manufacturing, open space, 

public facilities, health, and community facilities, agricultural uses 

pursuant to the permit requirements outlined in the adopted specific 

plan. If the specific plan does not specify a procedure, the use shall 

be subject to the most restrictive permit procedures contained in any 

zoning classification where the use is listed. 

Imperial A-1 Limited Agriculture. The purpose of the A-1 designation is to 

designate areas and allow uses that are suitable for larger residential 

living environments. The uses are generally limited to those typical 

of and compatible with quiet residential neighborhoods. The 

minimum lot size shall be one-half acre (net), unless required to be 

larger by other regulatory requirements, such as health and safety 

standards. The minimum lot size in the A-1 zone may be reduced if 

public infrastructure including sewer and potable water are available 

from either a district or a city. The A-1 designation is only allowed 

within urban designated areas as reflected on the land use diagram of 

the county general plan. Agricultural crops, private greenhouses and 

horticultural collections, flowers and vegetable gardens, fruit trees, 

nut trees, vines and nurseries for producing trees, vines and 

horticultural stock.  

  A-2 & 

A-2-R 

The purpose of the A-2 (general agriculture), (forty (40) acre 

minimum) zone is to designate areas that are suitable and intended 

primarily for agricultural uses (limited) and agricultural related 

compatible uses. All agricultural and grazing uses, including 

breeding and/or grazing of animals  
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  A-3 The purpose of the A-3 (heavy agriculture) (forty (40) acres or larger 

typical) zone is to designate areas that are suitable for agricultural 

land uses; to prevent the encroachment of incompatible uses onto 

and within agricultural lands; and to prohibit the premature 

conversion of such lands to nonagricultural uses. It is a land use that 

is to promote heaviest agricultural uses in the most suitable land 

areas of the county. Uses in the A-3 zoning designation are limited 

primarily to agricultural related uses and agricultural activities that 

are compatible with agricultural uses.  

  AM-1  The purpose of the AM-1 (agriculture related light industrial) zone 

is to: 

Provide a zone that is consistent with the intent of the general plan to 

protect agriculture and at the same time allow limited but compatible 

industrial uses within the agriculture land use categories; 

Provide areas that are suitable for agricultural related light industrial 

land uses, yet are still compatible with and create no adverse impacts 

on adjacent agricultural land uses; 

Provide an opportunity for existing industrial uses, or for existing 

M-1 and M-1-N zones to become consistent with the general plan 

without becoming pre-existing nonconforming uses.  

  AM-2  The purpose of the AM-2 (agricultural related industrial) zone is to: 

Provide a zone that is consistent with the intent of the general plan to 

protect agriculture and at the same time allow limited but compatible 

and consistent agricultural related industrial land uses within the 

agricultural land use categories as defined in the general plan; 

Provide uses that are suitable for agricultural related medium 

intensity industrial land uses, yet are still consistent with the general 

plan and compatible with the agricultural land uses in the vicinity, 

that are intended not to create adverse impacts on adjacent 

agricultural land or adjacent infrastructure; 

Provide an opportunity for existing Industrial uses or for existing M-

2 and M-2-N zones to become consistent with the General Plan 

without becoming pre-existing, nonconforming uses; 

Provide an opportunity for on-farm processing of agricultural related 

products and produce that while industrial in nature, can be safely, 

effectively done within the agricultural designated land uses without 

adversely affecting either the surrounding agricultural land uses and 

without becoming a detriment on planned industrial areas.  

Ventura AE Agriculturual Exclusive. The purpose of this zone is to preserve and 

protect commercial agricultural lands as a limited and irreplaceable 

resource, to preserve and maintain agriculture as a major industry in 

Ventura County and to protect these areas from the encroachment of 

nonrelated uses which, by their nature, would have detrimental 

effects upon the agriculture industry. 

  RA 
Rural Agricultural. The purpose of this zone is to provide for and 

maintain a rural setting where a wide range of agricultural uses are 

permitted while surrounding residential land uses are protected.  
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ANNEX 3.9 WATER DISTRICT SURVEY RESULTS 

District Name 

Price 

Structure 

If tiered, for 

how long? 

Times  increased 

ag wat price in 

past 10 years? 

Alta Mutual Water Company Flat NA 3 

Bard Water District Flat NA 0 

California Water Service Company Tier 2008 4 

Camrosa Water District Flat NA 7 

Casitas Municipal Water District Flat NA 4 

City of Oceanside Flat NA 11 

Coachella Valley Water District Flat NA 4 

Crestview Mutual Water Company Tier 1995 8 

Del Norte Mutual Water Company Flat NA 5 

Eastern Municipal Water District 

(reclaimed water) Tier 2009 9 

Fallbrook Public Utilities Flat NA 10 

Farmers Irrigation Flat NA 2 

Fillmore Irrigation Company Tier 2006 5 

Gage Canal Flat NA 2 

Imperial Irrigation District Flat NA 0 

La Loma Ranch Mutual Water Company Flat NA 2 

Lake Hemet Municipal Water District Flat NA 3 

Palo Verde Irrigation District Flat NA 1 

Rainbow Municipal Water District Tier 2009 13 

Ramona Municipal Water District Flat NA 10 

Rancho California Water District Tier 2007 10 

Riverside Public Utilities Flat NA 0 

United Water Conservation District (PTP) Flat NA 10 

Valley Center Municipal Water District Flat NA 10 

Ventura County District 19 Tier 2011 9 

Vista Irrigation District Flat NA 9 

Western Municipal Water District Flat NA 5 

San Diego Gas and Electric Flat NA 9 

Southern California Edison Flat NA 9 

 



148 
 

 

 

ANNEX 4.1 CORRELATION MATRIX OF CLIMATE VARIABLES 
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ANNEX 5.1 VARIABLE DESCRIPTIONS FOR CHAPTER 5 

  mean (sd) min max type description 

soilmon 
0.4 (0.49) 0 1 factor, 2 levels 

Does grower use at least 1 soil moisture 

practice? 

saltmon 
0.49 (0.5) 0 1 factor, 2 levels 

Does grower use at least 1 salinity 

practice? 

county 
      factor, 4 levels 

county fixed effects; Imperial is 

benchmark 

acre 
748.84 

(2266.63) 0.25 25000 continuous total planted acres as stated in the survey 

ftype 
3.35 (1.24) 1 5 factor, 5 levels 

G=field; R=vegetable; V=vineyard; 

T=orchard; M=mixed. G is benchmark 

exp 27.47 (15.7) 1 90 continuous years of growing experience 

own 
0.68 (0.47) 0 1 factor, 2 levels 

Does the grower own all of her property? 

1=yes 

aginc 

2.34 (1.36) 1 4 factor, 4 levels 

percentage of income from farming. 

1=[0,0.25); 2=[0.25, 0.5); 

3=[0.5,0.75);4=[0.75,1]. Level 1 is the 

benchmark. 

edu 
1.97 (0.74) 1 3 factor, 3 levels 

NB= No Bachelors; B=Bachelors; 

PB=Post Bachelors. B is benchmark 

aws0100 10.94 (4.27) 2 23.8 continuous soil available water supply in top 100cm 

deficit 
0.41 (0.49) 0 1 factor, 2 levels 

Did grower experiencing water shortage 

in 2014? 

wsource 
      factor, 3 levels 

G=groundwater; D=district water; 

C=ground+district. D is benchmark. 

seniorwater 
0.27 (0.44) 0 1 factor, 2 levels 

Does grower belong to a district with 

senior water rights? 

tds 
715.13 

(266.93) 189.46 1597.88 continuous 
total dissolved solids (ppm) in primary 

water supply 

watprice 
443.51 

(533.47) 5 2498.08 continuous water price per acre foot 

AVGannmin 
11.22 (2.52) 2.69 23.29 continuous 

12-month average minimum temperature 

normal (1981-2010) 

winterppt 
58.68 (34.32) 9.2 118.9 continuous 

3-month average maximum temperature 

normal (1981-2010) 

CVannmin 
0.44 (0.14) 0.23 1.16 continuous 

Standard deviation of each month divided 

by annual mean 

CVannppt 
0.97 (0.14) 0.66 1.63 continuous 

Standard deviation of each month divided 

by annual mean 

threat 
      factor, 5 levels 

P=population, D=drought, G=govt, 

E=enviro opposition, N=no threats. P is 

benchmark. 

info 
      factor, 6 levels 

I=industry, N=neighbor, G=govt, P=pop 

press, U=undisclosed, M=manager. N is 

benchmark. 

agzone 
0.75 (0.43) 0 1 factor, 2 levels 

Does 75% or more of the acreage classify 

as agricultural zone? 1=yes 

tdscuts 
2.41 (1.08) 1 4 factor, 4 levels 

Level1=(189, 560]; Level2=(560, 698]; 

Level3=(698,744]; Level4=(744, 1598] 
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