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Abstract

Diagnosing oxidation in the free troposphere and in cities over North America using
space-based observations

by

Qindan Zhu

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Ronald C. Cohen, Chair

The oxidative capacity of the troposphere – primarily characterized by the burden of the
most abundant and reactive of oxidants, the hydroxyl radical (OH) – determines the lifetime
of many trace gases of importance to climate and human health, including air pollutants
and the greenhouse gas methane. In the upper troposphere, there is large uncertainty in
the oxidative capacity associated with the lightning NOx production, for which reported
results range from 16-700 mol NO flash�1. I implemented a lightning parameterization
which significantly improves the representation of lightning in one chemical transport and
and showed that this parameterization should be more e↵ective in any model. I combined
the model simulations configured with this new lightning parameterization with the satellite
observations of NO2 column to yield a better estimate of lightning NOx production over the
continental US. In cities, urban OH controls the removal rate of primary pollutants and
triggers the production of ozone. Interannual trends of OH in urban areas are not well
documented or understood due to the short lifetime and high spatial heterogeneity of OH
and of OH precursors. Here I synthesized a machine learning technique, satellite observations
and simulations from a state-of-art chemical transport model to estimate OH trends between
2005 and 2014 in 49 North American cities. I described trends in the summertime OH with
wide variation among di↵erent cities. The variation of OH is explained by the shift in
chemical regime from one where additional NOx slows chemistry to one where additional
NOx speeds chemistry over the years. The identification of chemical regime, in turn, sheds
light on the e↵ective policy for controlling ozone.
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Chapter 1

Introduction

1.1 Oxidation capacity in the troposphere

The atmosphere is a recipient of various trace gases emitted by both natural sources and as a
result of anthropogenic activities. Although trace gases constitute only a tiny fraction of air,
they are responsible for driving the majority of the chemistry in the troposphere and trigger
substantial influences on global climate and air quality. For instance, methane (CH4) is only
about 2 parts per million of the molecules in air, yet it contributes to roughly one-fifth of the
increase in radiative forcing by human-linked greenhouse gases (Nisbet et al., 2014). Another
example are the volatile organic compounds (VOCs) and nitrogen oxides (NOx ⌘ NO+NO2)
that range from parts per trillion to 10s of parts per billion of air and are two dominant
groups of pollutants a↵ecting local air quality. These trace gases are directly emitted to
the atmosphere and are commonly referred to as primary. They undergo chemical reactions
to form secondary air pollutants such as ozone (O3) and aerosols. Both ozone and aerosols
lead to adverse impacts on human and ecosystem health, agricultural productivity, and
climate (e.g. Jerrett et al., 2009; Anenberg et al., 2010; Mauderly and Chow, 2008). Once
emitted, trace gases stay in the atmosphere until physically removed (e.g. by depositing
to the earth’s surface) or chemically transformed (e.g. converted to CO2 or HNO3). As a
result, the abundances of atmospheric trace gases are determined by both emission strengths
and lifetimes to removal from or chemical conversion within the atmosphere. The ability to
chemically remove these trace gases and prevent them from endless growing is referred as
oxidation capacity.

The most important oxidant is the hydroxyl radical (OH). OH reacts with almost all pollu-
tants thereby initializing their ultimate removal from the atmosphere. Other oxidants such
as Cl or NO3 are known, but their e↵ects on global and urban oxidation rates are small
compared to OH. Since reaction with OH is in many cases the rate-determining step in this
chemical sequence leading to oxidation to stable end products such as CO2 and since the
other oxidants have only a small fraction of the e↵ect of OH, the OH concentration is a mea-
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Figure 1.1: Simplified schematic of OH chemistry without OH cycling by NO.
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Figure 1.2: Simplified schematic of OH chemistry with the presence of NOx.

sure for the atmosphere’s oxidation capacity. Thus understanding the spatial and temporal
variation of OH is of fundamental importance to both atmospheric chemistry and climate
science.

1.2 The role of NOx in trospospheric OH chemistry

The abundance of OH in the troposphere changes rapidly on a wide variety of spatial and
temporal scales. Due to the high reactivity of OH (⌧ = 0.01–1.00s), the e↵ects of air mass
transport can be ignored and the OH concentration is dependant only on the solar irradiance
and in situ chemical environment(Logan et al., 1981). Depicted in Fig. 1.1 and Fig. 1.2,
NOx plays a dominant role among all trace gases associated with OH chemistry.

In environment where NOx abundance is negligible (Fig. 1.1), the primary OH production
occurs when water vapor reacts with the reactive singlet oxygen atom, O(1D), the product of
ozone photolysis by the ultraviolet radiation at wavelengths less than 310 nm. The photolysis
of formaldehyde (HCHO), which leads to production of HO2 and then converts to OH, is also
considered important in producing OH. There are other minor OH productions pathways
such as photolysis of nitrous acid (HONO) (Ren et al., 2006) and alkene ozonolysis reactions
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Figure 1.3: A schematic of OH as a function of NOx at the photochemical steady state. Two
scenarios represent a high VOC reactivity (VOCr = 5 s�1) condition and low VOC reactivity
condition (VOCr = 1 s�1), respectively.

(Donahue et al., 1998), which are important during winter or at night.

O3 + hv O(1D) + O2 (1.1)

O(1D) + H2O 2OH (1.2)

The OH loss paths attribute to the oxidation of CO and VOCs (also referred as hydrocarbons
(RHs)). OH rapidly reacts with CO to form CO2 an H atom that quickly combines with O2

to form hydroperoxy free radicals, HO2. OH also reacts with VOCs by adding to a double
bond or removing hydrogen to form organic free radical (R), which then adds to O2 resulting
in formation of organic peroxy radicals (RO2) (Jacob, 1999). The radical reaction chains are
terminated by radical–radical reactions that form hydroperoxides (ROOH and HOOH).

OH + CO CO2 + H (1.3)

H + O2 HO2 (1.4)

OH + RH R + H2O (1.5)

R + O2 RO2 (1.6)
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The presence of NOx alters this chemistry (Fig. 1.2). Besides the primary production path
by O(1D) reacting with H2O, secondary OH can form by HO2 reacting with NO. Typically,
in the atmosphere this secondary production path is a factor of five faster than the primary
(Ehhalt, 1999), accelerating OH production rates. In parallel, the byproduct of NO reacting
with HO2 is NO2, which undergoes photolysis by the solar radiation at the wavelengths
less than 430 nm resulting in a sequence that forms O3 and reforms NO (Reactions 1.7-1.9)
(Crutzen, 1979). As a consequence, NOx serves as catalyst in the OH cycle and fuels primary
OH production.

HO2 + NO OH + NO2 (1.7)

NO2 + hv NO + O(3P) (1.8)

O(3P) + O2 O3 (1.9)

NOx plays a dual role. It promotes OH productions. It also leads to removing OH from the
environment by OH reacting with NO2 to form HNO3.

OH + NO2 HNO3 (1.10)

The NOx contribution to both production and loss pathways of OH results in a nonlinear
relationship between OH and NOx (Fig. 1.3). At low NO (referred as a NOx limited regime),
VOCs are more competitive than NOx for reacting with OH so that HO2 and RO2 radi-
cal–radical reactions dominate HOx chemistry. The OH formation through radical cycling
overwhelms the OH loss due to HNO3 formation, leading an increase with concurrent increase
of NOx. In the high NOx condition (referred as a NOx suppressed regime), OH is more prone
to react with excess NO2 than VOCs, terminating radical cycle and forming HNO3. Since
OH loss by NOx dominants the chemical system, higher NOx leads to lower OH. The over-
turn point between NOx limited and NOx suppressed is determined by the VOC reactivity
(defined as the aggregate rate of all reactions of VOC with OH, the sum over the product
of the individual rate constants for OH reaction and the concentration of each VOC) in the
air mass. With more VOCs reacting with OH to initiate OH cycle, it allows for more NO to
convert HO2 to OH until OH cycle is hampered by OH reacting with NO2.

1.3 OH in the free troposphere

The boundary layer is a dividing line in the troposphere. Within the boundary layer, the
influence of anthropogenic emissions are concentrated and immediate. Most of the human
activities leading to emissions occur within the boundary layer (aircrafts are a prominent
exception). OH in the free troposphere, above the boundary layer, governs the global mean
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oxidative capacity (Jaeglé et al., 2001; Lelieveld et al., 2004) and determines the lifetime of
greenhouse gases such as CH4 and trospospheric O3.

Airborne measurements since late 1990s have included observations of OH in the free tropo-
sphere. Comparing observed OH to calculated values from a photochemical box model that
is constrained with simultaneous measurements of environmental conditions and chemical
constituents has advanced our understanding of OH chemistry. Early OH measurements
occurred in 1995 on the NSF C-130 aircraft over the Pacific Ocean (Mauldin III et al., 1998).
They showed a remarkably good agreement with box model calculations. In October 1995
and August 1996, OH measurements were made using NASA ER-2 aircraft in the upper tro-
posphere both near Hawaii and near California (Wennberg et al., 1998). The observed OH
was twice the modeled OH. The discrepancy was resolved by recognizing the importance of
acetone photolysis as a source of OH that was not included in the original model. However,
later studies showed that the photolysis frequency of acetone at upper tropospheric temper-
atures is too small to make an important contribution (Blitz et al., 2004). Another airborne
measurements in 1996 on NASA DC-8 flight found observed OH more than 4 times higher
than the model (Brune et al., 1998) and hypothesized the missing OH sources such as pho-
tolysis of HCHO and other oxygenated volatile organic compounds (OVOCs). Subsequent
airborne studies in the 21st century were equipped with measurements of additional chem-
ical constituents. These more complete descriptions of chemicals present resulted in better
agreement between OH observations and model calculations (e.g. Cantrell et al., 2003; Olson
et al., 2012; Ren et al., 2012; Brune et al., 2018; Brune et al., 2020).

These airborne studies highlighted that OH variability is driven by NOx variability in the free
troposphere. Natural NOx emissions result from an inhomogeneous set of sources including
microbial processing of nitrogen in soils and lightning. Lightning is the largest source of NOx

emissions to the free troposphere, contributing more than 80% of the total NOx emissions
there (Murray, 2016). Lightning can inject an enormous amount of NOx in a short time. Since
it lacks co-emission of VOCs that would counteract the influence from NOx, the near field is
converted to a NOx limited environment. As a result, OH sees an significant enhancement
along with the emitted NOx from lightning. Brune et al. (2021) described the distribution
of OH measured on the NASA DC-8 aircraft flying through anvils of deep convective clouds
during the Deep Convective Clouds and Chemistry (DC3) field study in the summer of 2012.
The observed OH in the outflow of deep convection was orders of magnitude greater than
any previous atmospheric observation.

The quantification of lightning induced OH remains highly uncertain. Murray et al. (2013)
illustrated that variability in global mean OH is most sensitive to lightning of any major
emission source. Mao et al. (2021) found that lightning-produced oxidants can increase global
mass weighted OH by 0.3%–10%, whereas Brune et al. (2021) estimated the contribution to
be 2 to 16% of global OH oxidation. The major source of uncertainty is the wide spread in
estimates of lightning NOx emission rate, ranging from 16 to 700 mol NO flash�1 (DeCaria
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et al., 2005; Hudman et al., 2007; Martin et al., 2007; Schumann and Huntrieser, 2007;
Huntrieser et al., 2009; Beirle et al., 2010; Bucsela et al., 2010; Jourdain et al., 2010; Ott
et al., 2010; Miyazaki et al., 2014; Liaskos et al., 2015; Pickering et al., 2016; Pollack et al.,
2016; Laughner and Cohen, 2017; Nault et al., 2017). Better constraining the lightning NOx

emission rate is crucial to accurately describe the OH enhancement associated with lightning
occurrence and the overall global tropospheric OH.

In Chapter 2, I present an estimate of lightning NOx production rates using satellite ob-
servations and model simulations. I first implement a lightning parameterization using the
product of convective available potential energy (CAPE) and convective precipitation rate
(PR) coupled with the Kain– Fritsch convective scheme (KF/CAPE-PR) within the Weather
Research and Forecasting-Chemistry (WRF-Chem) model. I show that this CAPE-PR pa-
rameterization improves the correlation of lightning flash density when comparing against
the Earth Networks Total Lightning Network. I then run a series of model simulations con-
figured with KF/CAPE-PR parameterization and a range of lightning NOx production rates
until the model matches to NO2 satellite observations, and conclude that the lightning NOx

production rate of 500 mol NO flash�1 yields the best agreement.

1.4 OH in cities

Cities are characterized by dense population and prevalent pollution. By 2050, two-thirds
of the Earth’s projected population of 9.3 billion is expected to reside within urban areas
(Seto et al., 2014). Feature growing population, cities endure severe direct impact on human
health due to pollution exposure. For instance, ambient fine particulate matter air pollution
is responsible for 85,000 to 200,000 excess deaths per year in the United States, the majority
of the excess deaths are in cities (Burnett et al., 2018). In other parts of the world, the
situation is worse, with higher particle exposure and higher death rates (Manisalidis et al.,
2020). Since OH is the key species in controlling local pollution, understanding OH chemistry
and constraining the OH abundance in cities is of particular importance to predicting the
e�cacy of policies aimed at improving the air quality and eliminating heavy pollution.

The extremely low concentration and the high reactivity of OH make routine measurements
of OH impossible with current technologies. As a result, there have been relatively few
field experiments to measure OH abundance and investigate OH chemistry in cities. As
summarized in Table 1.1, OH was measured in 12 cities over the past 30 years.

These ground measurements show a distinction in OH chemistry between summer and winter.
During the PUMA (Pollution of the Urban Midlands Atmosphere) field campaign in the city
of Birmingham, UK, the observed summertime OH at midday was two times that in winter
(Emmerson et al., 2005b; Emmerson et al., 2005a). A larger seasonal di↵erence in OH was
found in Tokyo, Japan. The observed OH was enhanced by a factor of four in summer
compared to winter in the same year during IMPACT (Integrated Measurement Program
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for Aerosol and oxidant Chemistry in Tokyo) field campaign (Kanaya et al., 2007). The same
conclusion was reached using observations in New York City, OH and HO2 measured during
winter in 2004 (Ren et al., 2006) were lower by a factor of 5 than in summer of 2001 (Ren
et al., 2003). The di↵erence is explained by a combination of e↵ects. There is reduction
in OH production from ozone photolysis and increased OH productions by reactions of
ozone with alkenes, carbonyl photolysis and HONO photolysis in winter. At the same time,
concentrations of NOx are higher and OH lifetimes are shorter.

Among the urban OH observations in summer, there exists a wide spread across cities. The
lowest summertime midday OH of 3⇥106 molecule cm�3 was observed in Birmingham, UK
during PUMA-1 field campaign (Emmerson et al., 2005a), while the highest midday OH was
up to 2.6⇥107 molecule cm�3 in the Pearl River Delta, China in 2006. There are only a few
cities where OH observations have been made more than once, allowing for an investigation
of annual variability of OH. The midday median OH observed in Houston decreased from
1.6⇥107 molecule cm�3 in 2000 to 1.2⇥107molecule cm�3 in 2006 (Mao et al., 2010), and was
further reduced to 8⇥106 molecule cm�3 in 2009 (Ren et al., 2013). A more drastic decrease
in OH was observed in Pearl River Delta; the observed OH in 2004 (Lu et al., 2012) was 2-4
times higher than it was in 2014 (Tan et al., 2019b). In contrast, Los Angeles and Beijing
showed the same range of observed OH even though the observations were 17 years apart
in Los Angeles (George et al., 1999; Gri�th et al., 2016) and 8 years apart in Beijing (Lu
et al., 2013; Tan et al., 2019a).

Meteorological conditions partially explain the OH di↵erence. Rohrer and Berresheim (2006)
presented a tight correlation between observed OH and ozone photolysis frequency, J(O1D),
which is determined by the solar irradiance. Even though this correlation was based on OH
measurements at a rural sites, similar correlations between OH and J(O1D) were reported
in urban measurements as well (e.g. Gri�th et al., 2016; Lu et al., 2012; Lu et al., 2013).
Citywise comparison also addressed the importance of solar irradiance. Mao et al. (2010)
compared the OH observations in four field studies: TEXAQS2000, NYC2001, MCMA2003
and TRAMP2006, and found that the lowest OH observations occurred in the New York
City and could be explained in part by the lower OH sources due to lower J(O1D).

Besides e↵ects of meteorological conditions, the large OH variation across cities is primarily
the result of a wide range of NOx and VOC conditions (Stone et al., 2012). NOx is mainly
generated by anthropogenic combustion of fuels from tra�c, industrial processes and house-
hold activities (Steinfeld, 1998). Anthropogenic VOC emissions from vehicles (Warneke et
al., 2012) as well consumer and industrial products (collectively “volatile chemical prod-
ucts,” VCPs) (McDonald et al., 2018; Coggon et al., 2021) are important in the chemistry
of cities and biogenic VOC may also play a role. Since NOx and VOC emissions introduce
intricate chemical conditions across cities, it is impossible to generalize OH chemistry from
the cities where measurements have been made to other urban regions except by reference
to the concentrations of NOx and VOC.
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In Chapter 2, I explore a machine learning (ML) approach to constrain the OH abundance in
a range of cities without direct OH observations. This approach accounts for the variations
in meteorological and chemical conditions. I train this ML model based on the parame-
ters simulated from the WRF-Chem model, and it suggests that six observable predictive
parameters are capable of explaining 76% of the OH variability. The parameters are the
tropospheric NO2 column, the tropospheric HCHO column, J(O1D), H2O, temperature, and
pressure. I then use observations of the tropospheric NO2 column and HCHO column from
satellite observations along with meteorological observations as input to the ML model to
enable measurement-based prediction of daily near surface OH at 1:30 pm local time. The
result is validated by comparing the OH predictions to measurements of isoprene, which has
a source that is uncorrelated with OH and is removed rapidly and almost exclusively by
OH in the daytime. I demonstrate that the predicted OH is, as expected, anticorrelated
with isoprene. I also show that this ML model is consistent with our understanding of OH
chemistry.

In Chapter 4, I utilize machine learning with observational inputs emphasizing satellite
remote sensing observations to predict surface OH in 49 North American cities from 2005 to
2014. I observe changes in the summertime OH over one decade, with wide variation among
di↵erent cities. In 2014, compared to the summertime OH in 2005, 3 cities show a significant
increase of OH, whereas, in 27 cities, OH decreases in 2014. The year to year variation of
OH is mapped to the decline of the NO2 column. I conclude that the cities in this analysis
are either in the NOx-limited regime or at the transition from a NOx suppressed regime to
a NOx-limited regime. The result emphasizes that, in the future, controlling NOx emissions
will be most e↵ective in regulating the ozone pollution in these cities.
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Campaign Date City Measured OH (106 mole cm�3) Reference
LAFRE Sep 1993 Los Angeles, CA, US 5.5 (midday) George et al. (1999)
SOS Jun-Jul 1999 Nashville, TN, US 16 (noon) Martinez et al. (2003)

PUMA-1 Jun 1999 Birmingham, UK 3 (midday) Emmerson et al. (2005b)
PUMA-2 Jan-Feb 2000 Birmingham, UK 1.5 (midday) Emmerson et al. (2005a)
TEXAQS Aug-Sep 2000 Houston, Texas, US 16 (midday median) Mao et al. (2010)
PMTACS-1 Jun-Aug 2001 New York City, NY, US 5-20 (daytime) Ren et al. (2003)
MCMA Apr 2003 Mexico City, Mexico 7 (midday median) Shirley et al. (2006)
TORCH Jul-Aug 2003 Essex, UK 1.2-7.5 (daytime) Emmerson et al. (2007)

IMPACT IV Jan-Feb 2004 Tokyo, Japan 1.5 (midday median) Kanaya et al. (2007)
IMPACT L Jul-Aug 2004 Tokyo, Japan 6 (midday median) Kanaya et al. (2007)
PMTACS-2 Jan-Feb 2004 New York City, NY, US 1.4 (daytime) Ren et al. (2006)
MILAGRO Mar 2006 Mexico City, Mexico 5-10 (midday) Dusanter et al. (2009)
PRIDE Jul 2006 Pearl River Delta, China 15-26 (daily maximum) Lu et al. (2012)
TRAMP Aug-Sep 2006 Houston, TX, US 12 (midday median) Mao et al. (2010)
CARE Aug-Sep 2006 Beijing, China 4-17 (daily maximum) Lu et al. (2013)
SHARP Apr-May 2009 Houston, TX, US 8 (midday median) Ren et al. (2013)

MEGAPOLI Jul 2009 Paris, France 5 (daytime maximum) Michoud et al. (2012)
CALNex-LA May-Jun 2010 Los Angeles, CA, US 4-8 (midday) Gri�th et al. (2016)
ClearfLo Jul-Aug 2012 London, UK 6-9 (midday) Whalley et al. (2018)
CARE-2 Jul 2014 Beijing, China 4-8 (midday) Tan et al. (2019a)

PRIDE-PRD2014 Oct-Nov 2014 Pearl River Delta, China 4.5 (midday maximum median) Tan et al. (2019b)

Table 1.1: OH measurements in polluted urban environments
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Chapter 2

Lightning NO2 simulation over the
Contiguous US and its e↵ects on
satellite NO2 retrievals

The chapter was adapted from: Q. Zhu, J. L. Laughner, and R. C. Cohen (2019c). “Light-
ning NO 2 simulation over the contiguous US and its e↵ects on satellite NO 2 retrievals”.
Atmospheric Chemistry and Physics 19.20, pp. 13067–13078

2.1 Introduction

Nitrogen oxides (NOx ⌘ NO + NO2) are key species in atmospheric chemistry, a↵ecting the
oxidative capacity in the troposphere by regulating the ozone and hydroxyl radical concentra-
tions (Crutzen, 1979). Anthropogenic sources (mainly fossil fuel combustion) are the largest
contributor to the NOx budget on a global scale. Natural sources of NOx are also nonnegli-
gible (Denman et al., 2007). While anthropogenic emissions of NOx are intensively studied,
natural sources are less understood (Delmas et al., 1997; Lamsal et al., 2011; Miyazaki et
al., 2012). Lightning contributes to ˜10% of NOx budget on a global scale and represents
over 80% of NOx in the upper troposphere (UT) (Schumann and Huntrieser, 2007; Nault
et al., 2017). Over the US, the anthropogenic NOx emissions have been decreasing rapidly
(Russell et al., 2012; Lu et al., 2015), making lightning an increasingly important source of
NOx and an increasingly large fraction of the source of column NO2. Ozone (O3) in UT has
long lifetime and leads to a more pronounced radiative e↵ect than ozone elsewhere in the
troposphere. Varying lightning NOx emission (LNOx) by a factor of four (123 to 492 mol
NO flash�1) yields up to 60 % enhancement of UT O3 and increases the mean net radiative
flux by a factor of three (Liaskos et al., 2015). This range in the lightning NOx production
rate is similar to the current uncertainty of estimated lightning emission rates. Further, in-
correct representation of LNOx in a priori profiles for satellite NO2 retrievals leads to biases
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in the retrieved NO2 columns. This is exacerbated by the greater sensitivity of UV/Vis NO2

retrievals to the UT (e.g. Laughner and Cohen, 2017; Travis et al., 2016).

When lightning occurs, NO is emitted as a result of high temperatures and NO2 forms
through rapid photochemistry. Studies report the estimated LNOx production rate ranges
widely from 16 to 700 mol NO flash�1 (DeCaria et al., 2005; Hudman et al., 2007; Martin
et al., 2007; Schumann and Huntrieser, 2007; Huntrieser et al., 2009; Beirle et al., 2010;
Bucsela et al., 2010; Jourdain et al., 2010; Ott et al., 2010; Miyazaki et al., 2014; Liaskos
et al., 2015; Pickering et al., 2016; Pollack et al., 2016; Laughner and Cohen, 2017; Nault
et al., 2017).

Two categories of methods, one emphasizing the near-field of lightning NOx and the other
the far-field, have previously been applied to estimate LNOx. In near-field approaches the
total NOx from direct observation close to the lightning flashes is divided by the number of
flashes from a lightning observation network to yield the NOx per flash (e.g. Schumann and
Huntrieser, 2007; Huntrieser et al., 2009; Pollack et al., 2016). Near-field estimates of LNOx

per flash have also been made through use of cloud-resolved models with LNOx constrained
by observed flashes and aircraft data from storm anvils (e.g. DeCaria et al., 2005; Ott et al.,
2010; Cummings et al., 2013). In contrast, the far-field approach uses downwind observations
to constrain a regional or global chemical transport model. The emission rate of lightning
NOx is varied in the model (either ad hoc or through formal assimilation methods) until the
modeled NOx agrees with the measurements of total NOx at the far field location (Hudman
et al., 2007; Martin et al., 2007; Jourdain et al., 2010; Miyazaki et al., 2014; Liaskos et al.,
2015; Laughner and Cohen, 2017; Nault et al., 2017). In general, far-field approaches yield
estimates of LNOx at the upper end of reported range, while estimates from the near-field
studies are typically at the lower end of the range. Nault et al. (2017) showed that a large
part of this discrepancy is because prior near-field studies assume a long NOx lifetime in
the UT, while active peroxy radical chemistry in the near field leads to a short NOx lifetime
(˜3 h). Without accounting for this chemical loss, the near-field and far-field estimates are
biased low compared to each other. However, this e↵ect cannot completely reconcile the
discrepancy between LNOx reported from near- and far- field studies.

In chemical transport models, LNOx production is modeled by assuming a fixed number of
moles of NO are produced per lightning flash, typically 250 or 500 mol NO flash�1 (Zhao
et al., 2009; Allen et al., 2010; Ott et al., 2010). This presents an additional challenge to the
far-field approaches to constrain LNOx, as errors in the simulation of lightning flashrate will
propagate into errors in the LNOx production per flash. However, explicitly simulating the
cloud scale processes that produce lightning is generally too computationally expensive to
be applied in a regional or global model as it requires spatial resolution at the scale of cloud
processes. Instead, the convection is parameterized using simplified convection schemes.
Lightning is then parameterized by a suite of convection parameters. The most prevalent
lightning parameterization relates lightning to the cloud top height (CTH) (Price and Rind,
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1992; Price et al., 1997). Price and Rind found a consistent proportionality between cloud-to-
ground (CG) lightning flashes and the fifth power of cloud top height. Other meteorological
variables, including upward cloud mass flux (UMF), convective precipitation rate (CPR),
convective available potential energy (CAPE), cloud ice flux (ICEFLUX) have been suggested
as alternative lightning proxies for CG flashes or in some cases total flashes (Allen and
Pickering, 2002; Choi et al., 2005; Wong et al., 2013; Romps et al., 2014; Finney et al.,
2014). When CG flashes are predicted, the total lightning rate, including CG and Intra-
Cloud (IC) flashes, is derived by defining a regional dependent CG:IC ratio (Boccippio et
al., 2002).

Several previous studies have evaluated the performance of these lightning parameterizations
in regional and global models. Tost et al. (2007) concluded none of them accurately repro-
duce the observed lightning observations even though some are inter-comparable. Wong et al.
(2013) showed that a model using the Grell-Devenyi ensemble convective parameterization
and the CTH lightning parameterization simulates erroneous flash count frequency distribu-
tion over time while the integrated lightning flash count is consistent with the observation.
Luo et al. (2017) tested the single-variable parameterizations (CTH, CAPE, UMF, CPR)
and the paired parameterizations based on power law relationship (CAPE-CTH, CAPE-
UMF, UMF-CTH), each of which was coupled with Kain Frisch convective scheme, and
demonstrated that the two-variable parameterization using CAPE-CTH improves upon the
previous single-variable parameterizations; it captures temporal change of flash rates but the
simulated spatial distribution is still not satisfactory.

In this study, we implemented the CAPE-PR lightning parameterization (Romps et al., 2014)
into WRF-Chem and assess the performance in reproducing lightning flash density. Our
motivation is to produce a better representation of a proxy-based lightning parameterization
in the regional chemistry transport model. We also evaluate the e↵ect of modeled lightning
NOx on both the a priori profiles used in satellite NO2 retrievals and the retrievals themselves.

2.2 Methods: models and observations

WRF-Chem

This study applies the Weather Research and Forecast Model coupled with Chemistry (WRF-
Chem) version 3.5.1 to the time periods May to June, 2012 and August to September,
2013. The model domain covers North America from 20 �N to 50 �N with 12 km⇥12
km horizontal resolution and 29 vertical layers. The North American Regional Reanalysis
(NARR) provides initial and boundary conditions. Temperature, wind direction, wind speed
and water vapor are nudged every 3 h towards to NARR product. Chemistry initial and
boundary conditions are provided by the Model for Ozone and Related Chemistry Trac-
ers (MOZART, https://www.acom.ucar.edu/wrf-chem/mozart.shtml). Anthropogenic
emissions are driven by the National Emissions Inventory 2011 (NEI 11), with a scaling

https://www.acom.ucar.edu/wrf-chem/mozart.shtml
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factor to match the total emissions to 2012 emission from the Environmental Protection
Agency (EPA, 2016). Biogenic emissions are driven by the Model of Emissions of Gases and
Aerosol from Nature (MEGAN; (Guenther et al., 2006)). We use a customized version of the
Regional Atmospheric Chemistry Mechanism version 2 (RACM2), the details are described
by Zare et al. (2018).

The default lightning parameterization used in WRF-Chem is based on cloud top height
(CTH). The parameterized lightning flash rates are proportional to a power of cloud top
height with linear scaling varied by region:

f =

⇢
3.44⇥ 10�5H4.9 Continental
6.20⇥ 10�4H1.73 Marine

(2.1)

where f is the CG flash rate in each grid and H is the colocated cloud top height in units
of kilometers.

We also implement an alternative lightning parameterization where lightning flash rates are
defined to be proportional to the product of the convective available potential energy (CAPE)
and precipitation rate (PR).

f =

⇢
0.9⇥ 10�4 ⇥ E ⇥ PR Southeastern CONUS
1.8⇥ 10�4 ⇥ E ⇥ PR Elsewhere CONUS

(2.2)

where f the CG flash rate in each grid cell, E the convective available potential energy and
PR the convective precipitation rate. Southeastern CONUS in the context is the region
between 94 �W to 76 �W and 25 �N to 37 �N. This parameterization was proposed by
Romps et al. (2014). Romps et al. (2014) used a year-round observation of lightning and
meteorological parameters and found a good correlation between observed lightning flash
densities and observed CAPE times PR over the CONUS. CAPE-PR was further examined
in Tippett and Koshak (2018) who computed the proxy in a numerical forecast model and
found a fairly good agreement between the spatial pattern of the daily CG flash rate and
the forecast proxy over 2003-2016. To our knowledge CAPE-PR parameterization has not
previously been coupled with chemistry. Note that we compute these two meteorological
variables every 72 seconds in our model setup and produce lightning flash rates in a much
shorter time step compared to Romps et al. (2014) and Tippett and Koshak (2018). We also
apply a regional scaling factor of 0.5 to the southeastern US (See Sec 2.3).

We analyze WRF-Chem outputs from three model runs. The first run, referred as
“G3/CTH”, is consistent with Laughner and Cohen (2017); it selects the Grell 3D ensemble
cumulus convective scheme (Grell, 1993; Grell and Dévényi, 2002) and the CTH lightning
parameterization. The Grell 3D convective scheme readily computes the neutral buoyancy
level which serves as the optimal proxy for cloud top height (Wong et al., 2013). The
“G3/CTH” is the only option for the coupled convective-lighting parameterization used
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in WRF-Chem at a non-cloud resolving resolution (12 km). In addition, we run WRF-
Chem with the CTH lightning parameterization coupled with the Kain-Fritsch cumulus
convective scheme (Kain and Fritsch, 1990; Kain, 2004) (“KF/CTH”) to test the e↵ect of
switching convective schemes. In the “KF/CTH” parameterization, the cloud top height
is the level where the updraft vertical velocity equals to zero. Another run, referred as
“KF/CAPE-PR”, selects the Kain-Fritsch cumulus convective scheme and the CAPE-PR
lightning parameterization described above. Compared to the Grell 3D convective scheme,
the Kain-Fritsch uses the depletion of at least 90% CAPE as the closure assumption and
calculates CAPE on the basis of entraining parcels instead of undiluted parcels, which also
improves the calculation of precipitation rate (Kain, 2004). The lightning NOx production
rate is defined to be 500 mol NO flash�1. The CG:IC ratio and the LNOx post-convection
vertical distribution are the same as used by Laughner and Cohen (2017).

ENTLN lightning observation network

To assess the performance of the lightning parameterizations we compare to light-
ning flashes from Earth Networks Total Lightning Network (ENTLN). ENTLN em-
ploys over 100 sensors across the United States and observes both CG and IC pulses
(https://www.earthnetworks.com/why-us/networks/lightning/). All lightning pulses
within 10 km and 700 ms of each other are grouped as a single flash. The IC and CG flashes
are summed over the grid spacing defined in WRF-Chem.

Compared to National Lightning Detection Network (NLDN), ENTLN is selected for high
detection e�ciencies of both CG and IC flashes. The average detection e�ciency for total
flashes observed by ENTLN was 88% over CONUS relative to the space-based Tropical
Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) (Lapierre et al.
(2020), private communication). Shown in Fig. A.2, we matched the ENTLN data to
LIS flashes both in time and space after the correction of LIS data based on its detection
e�ciency (Cecil et al., 2014) during May 13-June 23, 2012. It shows a median correlation
(R2 = 0.51) with the slope of 1.0, indicating the ENTLN data during the study time period
is in agreement with the LIS observation. We use the ENTLN for analysis as reported and
consider the detection e�ciency of ENTLN as a source of uncertainty when comparing the
modeled lightning flashes.

In Situ Aircraft Measurements

We compare our simulations to observations from aircraft campaigns that focus on deep con-
vection. The Deep Convective Clouds and Chemistry (DC3) campaign (Barth et al., 2015)
took place during May and June of 2012 over Colorado, Oklahoma, Texas and Alabama.
The Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by
Regional Surveys (SEAC4RS) (Toon et al., 2016) took place during August and September
of 2013; most of the flight tracks occurred over the southeastern US. Both aircraft campaigns

https://www.earthnetworks.com/why-us/networks/lightning/
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G3/CTH KF/CTH KF/CAPE-PR

Southeastern
Slope 2.08 0.94 0.96
R2 0.30 0.67 0.72

Elsewhere
Slope 0.98 0.54 1.19
R2 0.27 0.48 0.62

Table 2.1: Correlation statistics between observed and modeled (G3/CTH, KF/CTH,
KF/CAPE-PR) flash density per day averaged by regions

flew into and out of storms and sampled deep convection. The combination of these two
aircraft campaigns cover the regions with the most active lightning in the domain.

Satellite Measurements

The Ozone Monitoring Instrument (OMI) is an ultraviolet/visible (UV/Vis) nadir solar
backscatter spectrometer launched in July 2004 on board the Aura satellite. It detects
backscattered radiance in the range of 270-500 nm and the spectra are used to derive column
NO2 at a spatial resolution of 13 km⇥24 km at nadir (Levelt et al., 2006). The OMI overpass
time is ⇠13:30 local time.

We use the Berkeley High Resolution (BEHR) v3.0B OMI NO2 retrieval (Laughner et al.,
2018a). The air mass factor (AMF) is calculated based on the high spatial resolution a
priori input data including surface reflectance, surface elevation and NO2 vertical profiles.
In this study we apply an experimental branch of the BEHR product which di↵ers from
v3.0B in several ways. First, instead of calculation based on temperature profiles from
WRF-Chem, the tropopause pressure is switched to GEOS-5 monthly tropopause pressure
which is consistent with NASA Standard Product (SP2) (Mak et al., 2018). Analysis shows
the algorithm used in BEHR v3.0B to calculate the WRF-derived tropopause pressure is
very much dependent on the vertical spacing predefined in WRF-Chem setup, which causes
biases when the vertical layers are at a coarse resolution. Second, the NO2 vertical profiles
are outputs using the modified lightning parameterization described in Eq. 2.2.

2.3 Results

Comparison with observed lightning flash density

The lightning parameterizations are compared against observations from ENTLN in Fig
2.1. Each of the datasets is averaged from May 13 to June 23, 2012, covering DC3 field
campaign. The ENTLN data is summed to the 12 km⇥12 km WRF grid. The G3/CTH
parameterization fails to reproduce the spatial pattern of flashes observed by ENTLN over
the CONUS. Compared to the G3/CTH, the KF/CTH parameterization improves the spatial
correlation in the southeast region of US and yields a lower amount of lightning flashes. It
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Figure 2.1: Observed flash densities from the ENTLN dataset (a) and WRF-Chem using
three coupled convective-lightning parameterizations, the G3/CTH parameterization (b),
the KF/CTH parameterization (c) and the KF/CAPE-PR parameterization (d), respec-
tively. The correlation of total flash density per day between WRF-Chem outputs and
ENTLN for the southeastern US (denoted by the red box in a-d) is shown in panel (e) and
the correlation for elsewhere in CONUS is shown in (f). The model using G3/CTH is in
red, KF/CTH is in green, and KF/CAPE-PR is in blue. Dash lines are corresponding fits.
For slope and R2, see Table 2.1.
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indicates that KF convective scheme produces smaller cumulus cloud top heights than G3
scheme by including entrainment and detrainment processes during the convection. The
result is consistent with Zhao et al. (2009). The KF/CAPE-PR parameterization better
captures the spatial distribution of flash densities both in the southeast region and elsewhere
in CONUS. However the KF/CAPE-PR parameterization still fails to capture the gradients
in flash occurrence within smaller regions. For instance, ENTLN shows that more lightning
occurs along the east coast than west coast in Florida, however, WRF-Chem generates a
lightning flash density of the same magnitude over both areas. Nevertheless, the KF/CAPE-
PR substantially improves the model performance in reproducing lightning spatial patterns.

To evaluate the agreement quantitatively, we regress the WRF daily regional average flash
densities against those measured by ENTLN. The daily regional averaged flash density is
calculated by summing the total flash rates and dividing them by the corresponding regional
size. The regressions are shown in Fig 2.1 (e) and (f); the correlation statistics are shown in
Table 2.1. The regressions by forcing intercept equals to zero are also tested, and the results
are una↵ected.

Both models using the KF/CTH and KF/CAPE-PR parameterizations improve the cor-
relation between modeled and observed lightning flash densities over the US domain. In
the southeastern US, changing from G3 to KF convective scheme substantially increases
the R2 from 0.30 to 0.67 and reduces the slope from 2.08 to 0.94. Switching from CTH
to CAPE-PR lightning parameterization only contributes a slight increment on the correla-
tion. While the slopes close to unity both for KF/CTH and KF/CAPE-PR, we note that
the improved scaling of the slope in KF/CAPE-PR is mainly caused by the scaling factor
of 0.5 applied to the southeast region. In this simulation, a constant linear coe�cient for
CAPE-PR is not adequate to represent the observed lightning over CONUS, in contrast to
the finding of Romps et al. (2014). Elsewhere in CONUS, both the changes in convective
scheme and lightning parameterization yield a better representation of lightning flash densi-
ties compared to the observation. The R2 for KF/CAPE-PR improves significantly to 0.62
compared to both G3/CTH and KF/CTH. The slope for KF/CAPE-PR is 1.19, which is
within the uncertainty of the detection e�ciency of ENTLN. In general the KF/CAPE-PR
lightning parameterization captures the day-to-day variation in flash densities better than
the G3/CTH and KF/CTH parameterizations as shown by the improved R2 values.

Comparison with observed vertical profiles

We compare the WRF NO2 profile to the average vertical profile of NO2 measured during
DC3 and SEAC4RS in Fig 2.2. Data points are matched in time and space by finding the
WRF-Chem output nearest in time and closest in space to a given observation. We only
compare NO2 profiles fromWRF-Chem using KF/CAPE-PR against the one using G3/CTH.

The e↵ect of lightning NOx on the profiles is indistinguishable close to the surface. In
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Figure 2.2: Comparison of WRF-Chem and aircraft NO2 profiles from the (a,b) DC3, (c,d)
SEAC4RS campaigns. Vertical NO2 profiles are shown in (a,c), the solid line is the mean of
all profiles and the bars are 1 standard deviation for each binned level. The corresponding
absolute di↵erence compared to observations are shown in (b,d). Aircraft measurements are
shown in black, WRF-Chem using G3/CTH parameterization in red and WRF-Chem using
KF/CAPE-PR parameterization in blue.
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Figure 2.3: Relative change in BEHR NO2 VCD over the southeastern US switching
the source of a prior NO2 profiles from WRF-chem outputs using G3/CTH to one using
KF/CAPE-PR lightning parameterization. (a) shows the mean spatial distribution of the
changes from Aug 01 to Sep 23, 2013 and (b) shows the temporal variation over urban and
rural areas. Only observations with cloud fraction less than 20% are included. Medium
to large cities, including Atlanta, GA; Huntsville, AL; Birmingham, AL; Tallahassee, FL;
Orlando, FL; and Baton Rouge, LA, are marked by stars in panel (a).

AMF G3/CTH AMF KF/CAPE-PR %�AMF VCD G3/CTH VCD KF/CAPE-PR %�VCD

Sep 10
Urban 1.64 0.72 -56.0 2.19⇥1015 5.16⇥1015 134.9
Rural 1.96 1.33 -32.0 1.11⇥1015 1.63⇥1015 44.9

Aug 24
Urban 1.07 0.95 -11.3 2.56⇥1015 2.64⇥1015 3.1
Rural 1.23 1.25 1.60 1.91⇥1015 1.82⇥1015 -4.6

Table 2.2: Di↵erences for BEHR AMFs and tropospheric VCDs when using the a priori NO2

profiles from models with CTH vs CAPE-PR parameterizations in the AMF calculation. For
definitions of “urban” and “rural”, see the text.

the upper and middle troposphere, both model simulations yields similar NO2 vertical pro-
files compared to the measurements from DC3. WRF-Chem using KF/CAPE-PR performs
slightly better between 200 hPa to 400 hPa but the negative bias still exists. NOx from both
the observations and the models are very small in the middle troposphere between 400 hPa
to 700 hPa.

Laughner et al. (2019) previously identified a high bias of WRF-Chem UT NO2 versus
SEAC4RS in the southeast US when using the G3/CTH parameterization. The model using
the KF/CAPE-PR parameterization reduces this high bias of NO2 in the middle and upper
troposphere. The KF/CAPE-PR parameterization slightly overestimates NO2 in the middle
troposphere (400 - 530 hPa) and underestimates it in the upper troposphere (< 280 hPa),
which is consistent with the comparison to observations from DC3 campaign.
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Impact on BEHR NO2 retrievals

In space-based retrievals of NO2, the AMF is required to convert the slant column density
(SCD) obtained by fitting the observed radiances into a vertical column density (VCD). The
AMF depends on scattering weights (which describe the sensitivity of the measurement to
di↵erent levels of the atmosphere) and an NO2 profile which is either measured or simulated
by a chemical transport model, such as WRF-chem. Over a dark surface, the scattering
weights in the UT are up to 10x greater than near the surface, due to the greater probability
that a photon that reaches the lower troposphere will be absorbed by the surface. There-
fore, errors in the UT NO2 profile can have large e↵ects on the AMF (e.g. Laughner and
Cohen, 2017). Here, we investigate how the NO2 profiles simulated by the KF/CAPE-PR
parameterization a↵ect the BEHR NO2 retrievals.

Fig. 2.3(a) shows the relative change in tropospheric VCD averaged between Aug 01 to Sep
23, 2013 induced by changing the a priori profiles from the model using G3/CTH to the one
using the KF/CAPE-PR lightning parameterization. The relative enhancement of VCD is
19% on average over southeast US but it varies significantly.

We follow the same algorithm used in Laughner and Cohen (2017) to determine if the result
is significant. The overall uncertainty due to AMF calculation for BEHR v3.0B is smaller
than 30% during the study period (Sec 6 in supplementary from Laughner et al. (2019)).
Over 90% of the uncertainty attributes to the a prior NO2 profiles, the tropopause and cloud
pressures. As each grid in Fig. 2.3(a) is the average of 45±9 pixels, the reduced uncertainty is
less than 4.5%. The overall change in VCD is four times larger than the reduced uncertainty.
The switch of lightning parameterization leads to changes in VCD exceeding the averaged
uncertainty in ˜94% of pixels in the southeast region of US.

The spatial pattern in Fig. 2.3(a) suggests that the magnitude of the improved representation
of lightning is quite di↵erent in urban and rural areas. The cities indicated by stars and
their vicinity regions are associated with substantial increase in NO2 VCD. To quantify this,
we define urban and rural areas by di↵erence in column NO2 calculated from WRF-Chem
without LNOx. Urban ares are the top 5% of columns with the average VCD of 2.2 ⇥1015

mole cm�2. The selected rural areas have the same size as urban areas and the average VCD
is 0.72⇥1015 mole cm�2. Fig 2.3(b) shows the relative change in VCD over the urban and
rural areas as a function of time. The increase in VCD due to the change in profiles is more
pronounced over urban areas with averaged relative change of ˜38% compared to the average
change of ˜24% in rural areas. Changes in urban VCDs span -10% to 135%. In contrast,
using the NO2 profiles produced by the KF/CAPE-PR simulation leads to only maximum
58.3% increase in VCD over rural areas.

Table 2.2 presents the AMF and VCD obtained from using a priori profiles with G3/CTH
or KF/CAPE-PR lightning parameterizations as well as the relative changes on Sep 10 and
Aug 24, 2013. The corresponding a priori NO2 profiles and scattering weights over urban
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Figure 2.4: Di↵erence in NO2 VCD between BEHR retrievals and WRF-Chem (“WRF-
Chem” � “BEHR”). (a) excludes LNOx in model simulation, (b) adds LNOx emission with
production rate of 500 mol NO flash�1. (c) includes the same LNOx emission as (b) but
uses NO2 profiles scaled upward by 60% at pressure lower than 400 hPa. The average time
covers May 13 to June 23, 2012. Pixels with cloud fraction larger than 0.2 are filtered out
in the analysis.

and rural areas are shown in Fig. A.3. Sep 10 is an example of one day when the change in
NO2 profiles has a very large impact on the NO2 VCDs. The WRF-Chem using G3/CTH
parameterization places a large amount of NO2 between 200-600 hPa with the maximum
value comparable to the near surface NO2 over the urban areas. The calculated AMF is
predominantly determined by lightning NO2 due to the combination of higher scattering
weight and larger NO2 in the middle and upper troposphere. The change in AMF is -
56.0% over urban areas and -32.0% over rural areas; the corresponding VCD increases by
134.9% and 44.9%, respectively. In contrast, Aug 24 is an example where the lightning
parameterization has very little e↵ect. While the positive bias in NO2 aloft is also observed
by using G3/CTH parameterization, the amount of NO2 in the middle and upper troposphere
is smaller than Sep 10. It leads to lower sensitivity in AMF to the erroneous NO2 caused by
the lightning parameterization. With smaller relative change in AMF, the relative change
in VCD is 3.1% over urban areas and -4.6% over rural areas.

2.4 Discussion

Here, we apply the improved KF/CAPE-PR simulation to the problem of constraining LNOx

production over CONUS. To do so, we vary the lightning NOx production rate prescribed
in WRF-Chem to produce the simulated map of NO2 VCD, and compare against OMI NO2

retrievals using a priori profiles from model simulations with the same LNOx production rate.
In our model-satellite comparisons the averaging kernel is applied to remove the representa-
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tive errors introduced by a priori knowledges of NO2 vertical profiles (Boersma et al., 2016).
Figure 2.4 shows the di↵erence between satellite retrieved NO2 VCD and model simulated
NO2 VCD without lightning NOx (a) and with lightning NOx production rate of 500 mol
NO flash�1 (b) averaged between May 13 to June 23, 2012. Figure A.4 shows di↵erence
plots with varied lightning NOx production rates (400 and 665 mol NO flash�1). The corre-
sponding root-mean-square errors (RMSE) are included in Table A.1. LNOx production rate
of 500 mol NO flash�1 yields the lowest RMSE of 0.41⇥1015 mole cm�2 between modeled
and observed NO2 VCD over CONUS. This is at the high end of previous estimates of the
lightning NOx production rate (16-700 mol NO flash�1).

The RMSE for urban areas (top 5% of NO2 VCD simulated by WRF-Chem without LNOx)
remains at high value (˜0.9-1.3⇥1015 mole cm�2) when switching the LNOx production
rate. It indicates that the bias in the modeled VCD over urban areas is more likely due
to surface NO2. The RMSE for non-urban areas shows pronounced change with varied
LNOx production rate. Excluding urban areas lowers the RMSE to 0.37⇥1015 mole cm�2

for LNOx production rate of 500 mol NO flash�1. The RMSEs are significant considering
the uncertainty for retrievals. During the average time period, 32 ± 6 pixels contribute
to each value in the plots. While the global mean uncertainty for tropospheric NO2 VCD
retrievals is 1⇥1015 mole cm�2 (Bucsela et al., 2013), the reduced uncertainty in our analysis
is ˜0.2⇥1015 mole cm�2. The calculated RMSEs are twice of the uncertainty.

However, we note that this lightning NOx estimate is systematically biased high due to
the negative bias in [NO2]/[NOx] ratio in the middle and upper troposphere. The satellite
observed NO2 column serves as a proxy for total NOx emitted by lightning. The rapid
interconversion between NO and NO2 reaches the photochemical steady state in a short time
(˜120s). Consequently, if the model kinetics result in an incorrect NO-NO2 photochemical
steady state ratio, this error will propagate into the LNOx production estimate. Comparisons
against aircraft measurements show [NO2]/[NOx] ratio in the WRF-Chem simulations is
around 40% smaller than observations in upper troposphere (Fig. A.5). Given that the
simulated [NO2]/[NOx] is too small, the model will simulate smaller NO2 VCDs per unit of
LNOx emitted, requiring a greater LNOx production e�ciency to match satellite NO2 VCD
observations. Comparison of modeled NO2 columns recalculated with NO2 profiles scaled up
by 60% (the ratio of observed and modeled [NO2]/[NOx]) at pressure levels where p < 400
hPa and observations is shown in Fig. 2.4 (c). This suggests that the 500 mol NO flash�1

is greater than the actual LNOx production rate when the bias caused by [NO2]/[NOx] ratio
is accounted for.

Several recent studies also report an underestimate in modeled [NO2]/[NOx] ratios in SE
US(Travis et al., 2016; Silvern et al., 2018); both feature observations from SEAC4RS
field campaign to validate model simulations. Silvern et al. (2018) suggests the underes-
timate is either caused by an unknown labile NOx reservoir species or error in reaction rate
constant for the NO+O3 reaction and NO2 photolysis reaction. In contrast, Nault et al.
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(2017) utilizes measurements from DC3 field campaign and demonstrates a positive bias in
modeled [NO2]/[NOx] ratio compared against observations. Understanding the di↵erence
in [NO2]/[NOx] between model and observations requires additional study, but is crucial to
reducing the uncertainty in LNOx estimates.

2.5 Conclusions

We implement an alternative lightning parameterization based on convective available poten-
tial energy and precipitation rate into WRF-Chem and couple it with Kain Frisch convective
scheme. We first validate it by comparing against lightning observations and find that the
switch of convective scheme reproduces day-to-day variation of lightning flashes in the south-
eastern US and the switch of lightning parameterization contributes to the improvement on
lightning representation elsewhere in the US. We also compare the simulated NO2 profiles
against aircraft measurements and find that the simulated NO2 using KF/CAPE-PR is more
consistent with observations in the mid and upper troposphere.

The improved lightning NO2 simulation has significant impact on AMFs and VCD of NO2.
Over the southeastern US the AMF is reduced by 16% on average leading to a 19% increase
in the NO2 VCD. The e↵ects on AMF and on VCD are very locally dependent. The VCD
increase over urban areas is more pronounced and can be up to over 100%. This study
emphasizes the importance of including reliable lightning NO2 in a priori profiles for satellite
retrievals. The model-satellite NO2 column comparison suggests 500 mol NO flash�1 is the
upper bound for the estimate of lightning NOx production rate.

Code and data availability

The experimental branch of BEHR v3.0B product used in this study is hosted by UC
Dash (Zhu et al., 2019a; Zhu et al., 2019b) as well as on behr.cchem.berkeley.edu.
The BEHR algorithm is available at https://github.com/CohenBerkeleyLab/BEHR-core/
(Laughner and Zhu, 2018). The revised WRF-Chem code is available at https://github.
com/CohenBerkeleyLab/WRF-Chem-R2SMH/tree/lightning (Zhu and Laughner, 2019).

behr.cchem.berkeley.edu
https://github.com/CohenBerkeleyLab/BEHR-core/
https://github.com/CohenBerkeleyLab/WRF-Chem-R2SMH/tree/lightning
https://github.com/CohenBerkeleyLab/WRF-Chem-R2SMH/tree/lightning
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Chapter 3

Combining machine learning and
satellite observations to predict
spatial and temporal variation of near
surface OH in North American cities

The chapter was adapted from: Q. Zhu, J. L. Laughner, and R. C. Cohen (2022a). “Combin-
ing Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation
of near Surface OH in North American Cities”. Environmental Science & Technology

3.1 Introduction

The hydroxyl radical (OH) is the most influential oxidant in the daytime tropospheric chem-
istry (Levy, 1971). On a global scale it determines the lifetime of greenhouse gases such as
methane (CH4), therefore regulates their impacts on radiative forcing. Over urban areas,
it reacts with local pollutants such as CO, NOx and volatile organic compounds (VOCs),
leading to the formation of ozone (O3) and secondary organic aerosols (SOA). Ozone near the
surface triggers negative impacts on human health with exposure increasing the risk of res-
piratory diseases (Jerrett et al., 2009; Anenberg et al., 2010). SOA is a major component of
particulate matter (PM) and is associated with adverse respiratory and cardiovascular health
outcomes (Mauderly and Chow, 2008). PM and ozone are the most prominent known causes
of early deaths among pollutants and result in more than 90% of total air-pollution-related
mortalities (Dedoussi et al., 2020).

Given the vital role of OH in photochemistry, OH observations are notably sparse. The
short lifetime (<1s) and low concentration make direct observations challenging (Eisele et
al., 1997; Brune et al., 1998; Stone et al., 2012). The high spatial heterogeneity restricts our
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ability to generalize from in-situ OH measurements. A global or hemispheric average OH
can be inferred from the uniformly distributed species whose production is well constrained
and the dominant sink pathway is the reaction with OH. Atmospheric methyl chloroform
(CH3CCl3) has been used extensively to constrain the annual or decadal OH variability
(Lovelock, 1977; Singh, 1977; Montzka et al., 2000). zhang18 utilized an inverse modeling
system to constrain global mean OH using the CH4 satellite observations and its emissions
inventories. These studies contribute to an enriched global annual record of OH, however,
they provide little mechanistic insight into the controls over OH at urban scales. Wolfe et al.
(2019) showed that a linear relationship between formaldehyde (HCHO) and OH exists in
the remote atmosphere, and then mapped the OH column using the synthesis of airborne and
satellite HCHO observations. Wolfe et al. (2019) provides an estimate of the OH column
with global coverage and at much finer spatial scales than was previously available. By
incorporating daily HCHO column measurements it also enables OH predictions with daily
time resolution.

Compared to the remote atmosphere, in cities, wide variations in NOx and much more
complex VOC chemistry a↵ect OH, requiring a more varied set of parameters to describe
OH. The basic chemistry is as follows. Ozone photolysis to yield O(1D) which then reacts with
H2O is a typical initiator of OH formation. OH then oxidizes VOCs and CO to initiate the
HOx cycling. It is the wide range and high abundance of VOCs that make urban chemistry
distinctly di↵erent from the remote atmosphere where CH4 and CO chemistry dominates.
OH reacts with VOCs to form organic peroxy radicals (RO2) and reacts with CO to form the
hydroperoxy radical (HO2). In the presence of NOx, RO2 reacts with NO to yield HO2. HO2

will then react with NO, reforming OH. NOx serves as a catalyst to fuel the HOx cycle. The
HOx cycle is terminated by the formation of HNO3 from the reaction of OH with NO2, the
formation of alkyl nitrates (RONO2) from RO2 reacting with NO (Perring et al., 2013), as
well as the RO2 and HO2 reactions that form stable products such as hydroperoxides (ROOH
and HOOH).

Characterizing trends in OH on annual time scales will be especially important for under-
standing urban chemistry. Laughner and Cohen (Laughner and Cohen, 2019a) show that
trends in urban NOx chemistry can be inferred at the length scale of urban plumes. Their
research infers trends in the NOx lifetime from the trend in the shape of NO2 plumes as ob-
served from space. That method o↵ers the potential to estimate trends in the plume-average
OH concentrations, however, the direct mapping to OH is hampered by the unknown chem-
ical parameters such as the partitioning of loss NOx between alkyl nitrates and nitric acid
as well as competition of VOC for OH.

There also have been a number of e↵orts to generalize this chemistry and find simple rela-
tionships that describe urban OH variability over space and time. For example, Rohrer and
Berresheim (2006) presented four years of in-situ OH measurements from 1999 and 2003 at
a suburban site located in southern Germany. They found a surprisingly strong correlation
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between J(O1D) and OH. The authors attributed the presence of a simple linear correlation
in what is well known to be a highly non-linear system to be the result of compensating
e↵ects in the controls over OH. Similar correlations have been reported for OH measure-
ments at several other locations (Ren et al., 2003; Gri�th et al., 2016; Sanchez et al., 2018),
although for those sites the temporal extent of the observations is weeks rather than the
4 years described by Rohrer and Berresheim (2006). We note, however, that the slope of
the reported linear correlation of OH with J(O1D) shows a wide spread over urban areas as
summarized in Table B.1. J(O1D) alone is not enough to interpret the OH variability across
multiple urban environments.

3-D chemical transport models represent a comprehensive approach to describe the com-
bined e↵ects of emissions, transport and chemical reactions on OH. The models represent
e↵ects of variability and trends in emissions and climate and can therefore describe vari-
ability and trends in OH over time. The chemical mechanisms in current models, such as
RACM/RACM2, have been applied to investigate OH chemistry under polluted conditions
in atmospheric models featuring various dimensions, ranging from zero-dimensional chem-
ical box model to three-dimensional chemical transport models like WRF-Chem. These
numerous studies demonstrate that the largest source of biases in OH simulations in cities is
attributed to the representation of NOx and VOC concentrations (Ren et al., 2003; Shirley
et al., 2006; Kanaya et al., 2007; Dusanter et al., 2009; Mao et al., 2010; Stone et al., 2012;
Gri�th et al., 2016).

Given the limited success of purely observational approaches and the inconsistent representa-
tion of VOC and NOx concentrations in models, a method for evaluating OH variability and
trends that combines the advantages of both approaches is desirable. One method is data
assimilation. It optimizes the model simulations by propagating observational information
in time and space, from a limited number of observed species to a wide range of chemi-
cal components (Sun et al., 2020). A series of studies have demonstrated the capability of
data assimilation techniques for improving chemical weather forecasts (Eibern and Schmidt,
1999; Elbern and Schmidt, 2001; Vira and Sofiev, 2012; Miyazaki et al., 2017) including a
recent analysis showing how observations of chemicals can lead to improved predictions of
winds(Liu et al., 2021). However, data assimilation is computationally intensive and is most
e↵ective where there are large data volumes(Migliorini et al., 2008; Jiang et al., 2015; Mizzi
et al., 2016).

To develop an observationally constrained model of OH at lower computation expense, we
explore use of machine learning (ML). We use the ML first to simplify representation of
the chemical weather model and to replace parameters from the chemical weather model
with observations. We describe evolutional variability and trends analysis of modeled OH
chemistry in 49 North American cities as computed in a state-of-the-art chemical transport
model (CTM), and seek a set of parameters that are capable of explaining the OH variability
across all of the cities. Our methods are described in Sect.2. The ML model is shown to
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Figure 3.1: Schematic representation of our machine learning workflow.

capture the full range of urban OH variability in this CTM. We evaluate the accuracy of the
ML model first by comparing predictions of the ML OH to CTM calculations of OH that were
not part of the training data (Sect.3). We then utilize this ML model with observational
inputs emphasizing satellite remote sensing observations to predict near surface OH. We
evaluate the ML model predictions against independent observations that are sensitive to
OH, such as the observed concentration of isoprene (Sect.4). We finish by applying this
method to calculate trends in OH in 49 North American cities. We conclude with a discussion
of opportunities to improve this ML model using other data sets such as isoprene column
retrievals.

3.2 Methods: model and observations

A supervised learning ML system requires input data for various purposes. Training data
sets are those the ML model use to learn. Test data sets are commonly from the same
source as the training data sets but are entirely independent of the training data sets. Test
data sets are used to evaluate the statistical performance of the ML model. In our study,
both training and test data sets are collected from WRF-Chem simulation (Sect.2.1.1) and
are processed to prepare feature sets suitable for ML inputs (Sect.2.1.2). The workflow of
building our ML model is shown in Figure 3.1.

Once the ML model is built, it o↵ers considerable flexibility for incorporation of observations
to estimate near surface OH. To this end, we make use of the satellite observations described
in Sect.2.1.3.

In addition to the data being fed into the ML system for OH prediction, we also collect other
data sets used for validation, to be more specific, in-situ isoprene measurements discussed
in Sect.2.1.4.
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Input data

WRF-Chem simulations

WRF-Chem is used to simulate OH chemistry over North America. The simulations are
described in more detail in Laughner et al. (2018b). Briefly, the model years included are
2005, 2007-2009 and 2011-2014. The model is configured at the spatial resolution of 12 km
⇥ 12 km with 29 hybrid vertical pressure levels. The North American Regional Reanalysis
(NARR) defines the meteorological initial and boundary conditions, from which water vapor,
temperature and winds are nudged every three hours. The chemical initial and boundary
conditions use the Model for Ozone and Related Chemical Tracers (MOZART) (Emmons
et al., 2010).

A priori knowledge of emissions is collected from various sources. Biogenic emissions are
driven by the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1, Guen-
ther et al. (2006)), and anthropogenic emissions utilize the National Emissions Inventory
2011 (NEI 11). To account for the interannual variation in anthropogenic emissions, we
apply a scaling factor to the NEI emission so that the annual emissions are matched to those
reported by EPA at each model year (EPA, 2016). The lightning NOx emission is described
in Laughner and Cohen (2017). The lightning flash counts are parameterized using the cloud
top height (Price and Rind, 1992) and we assume a 500 mol NO generated per flash. The soil
NOx is simulated using the Yienger and Levy model(Yienger and Levy, 1995). The biomass
burning emission is inactive. We used RACM2 Berkeley (Zare et al., 2018) as the chemical
mechanism. This mechanism is based on RACM2 (Goli↵ et al., 2013) but incorporates a
more detailed organic nitrate chemistry. Zare et al. (2018) demonstrated this mechanism
agrees well with observations of RONO2 and their lifetime.

WRF-Chem data preparation for ML input

Preparing the WRF-Chem data for the ML requires two steps. First, we select which model
variables (“features” in ML parlance) to use as input parameters for the ML. Second, we
must pre-process the model output into an acceptable format for the ML package that also
mimics real observations.

We use multiple criteria to select ML features. First, even though the ML model is purely
data-driven, we select the features based on our understanding of urban OH chemistry and
ensure that the features show explicit linkage to near surface OH. Second, we choose features
for which there either exist long-term observations covering the study domain or can be
quickly calculated using an atmospheric model constrained with observations. This ensures
that we will be able to use the ML along with observations (instead of WRF-Chem output)
to describe OH. For instance, even though near surface NOx is expected to have a strong
association with the near surface OH concentration, we use the tropospheric NO2 column
as a proxy since the column can be observed from space and the space-based measurements
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o↵er a multi-decadal record with global coverage. Third and finally, we keep the feature
list as simple as possible while maintaining good model performance. Many features were
explored, we only retain features that meet the long-term availability criteria and that result
in notable improvement on model performance.

Six features fulfilled the criteria described above, including four near surface variables
(J(O1D), H2O, T, P) and two tropospheric column variables (NO2 column and HCHO
column). The near surface variables are calculated using the average of the bottom five
layers in WRF-Chem, which corresponds to ⇠350 m above ground level. J(O1D) represents
the photolysis of ozone with the product O1D. In combination with H2O it determines
the production of OH and initiation of the HOx cycle via the reaction of O1D with H2O.
Temperature and pressure define the geophysical condition and a↵ect the chemical kinetics.
The two column variables are calculated using model simulated vertical profiles weighted by
the averaging kernels from the corresponding satellite products summarized in Sect.2.1.3.
Weighting by the averaging kernel simulates the column that would be observed from a
satellite given the modeled vertical profile. The tropospheric NO2 column represents the
NO2 integrated from the surface to the tropopause with an nonuniform vertical sensitivity.
Previous studies have inferred the ground level NO2 from the NO2 column with a good level
of agreement (Kharol et al., 2015; Bechle et al., 2013; Lamsal et al., 2008), confirming that
the column NO2 has adequate surface sensitivity to assess the role of NO2 in near surface
OH. The second column variable is the tropospheric HCHO. HCHO is an indicator of VOC
oxidation as it is a product of many reactions of VOC with OH, moreover, it is an important
entry point into the HOx catalytic cycle as it has a short lifetime to photolysis and reaction
with OH. Specifically, HCHO is a key oxidation intermediate from OH reactions with
isoprene. Valin et al. (2016) describes the relationship between the HCHO column and
near surface OH and found that it o↵ers the potential to illustrate the variability of OH
production rate.

To explore near surface OH chemistry over urban areas, we select the grids from WRF-Chem
covering 49 North American cities and their surrounding areas to sample a variety of urban
environments. The list of 49 cities is in line with Russell et al. (2012) and Laughner and
Cohen (Laughner and Cohen, 2019a). We use the methodology in Laughner and Cohen
(Laughner and Cohen, 2019a) to define boundaries of cities and select radii between 0.5 and
1.0 deg to capture each city’s plume without encountering plumes from other sources (Table
B.3). In each simulation year, we pick the daily WRF-Chem outputs whose time is closest to
the satellite overpass time (⇠13:30 LT) during April to September. The choice of temporal
constraint facilitates the synthesis of satellite observations. We omit days with simulated
lightning(Zhu et al., 2019c) or cloud fraction larger than 20%. Lightning emits NOx in the
upper troposphere and leads to the enhancement in NO2 column, but it is not associated with
near surface OH chemical conditions. Cloudy days a↵ect the photochemical conditions via
photolysis frequency. A large uncertainty remains in simulating clouds within the chemical
transport model (Hong et al., 2004), thus we confine the study to clear sky conditions. We
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treat each 12km⇥12km grid from WRF-Chem as an independent observation, and this data
set is 5.5 million observations in total. Out of those observations, we randomly picked 75% of
the observations as the training data and put aside the rest of data separately for evaluation.

Satellite data

Satellite observations can be applied to our ML model to enable estimate of near surface
OH. The resulting OH predictions are then not emulating the WRF-Chem simulated OH
but reflect the ambient OH in the urban environments.

Among the six features, we take J(O1D), H2O, temperature and pressure from the model
outputs. J(O1D) in WRF-Chem is calculated using Fast-J photolysis scheme. Since the
WRF-Chem is constrained by the NARR meteorological fields with nudging every three
hours, we expect the latter three parameters are in a good agreement with the observations.
The two column features can be observed from the space, here we use OMI satellite obser-
vations to obtain both tropospheric NO2 column and HCHO column features. The result is
an ML prediction of OH that is largely based on observed parameters.

The Ozone Monitoring Instrument (OMI) is a nadir-viewing spectrometer aboard NASA
Aura spacecraft. Launched in 2004, OMI measures the back-scattered solar irradiance at
⇠13:30 local time at the spatial resolution of 13 ⇥ 24 km2 at nadir. Absorption signals in the
recorded spectra provide slant column density (SCD) of various trace gases including NO2

and HCHO. To produce tropospheric vertical column densities (VCD), the stratospheric
column is subtracted (Boersma et al., 2011; Bucsela et al., 2013) and an air mass factor
(AMF) is calculated to convert SCD to VCD(Palmer et al., 2001).

For the tropospheric NO2 column, we use Version 3.0B of the Berkeley High Resolution
(BEHR) OMI NO2 product (Laughner et al., 2018b). It builds upon the the NASA stan-
dard product v3.0; the major changes are the calculation of tropospheric AMFs using high-
resolution a priori input data for surface reflectance, surface elevation and NO2 vertical
profiles. The daily NO2 profiles are simulated from WRF-Chem whose configuration is the
same as the one described in Sect.2.1.1, and are used to capture the day to day variation.
Laughner et al. (2019) evaluated the BEHR NO2 products over North America and concluded
that the uncertainty during summertime is ⇠30%.

We use tropospheric HCHO column densities from the Quality Assurance For Essential Cli-
mate Variables (QA4ECV) project (Lorente et al., 2017) (www.qa4ecv.eu). HCHO profiles
from the TM5 model on a 1�x1� latitude-longitude grid are used as a priori in AMF calcu-
lation (Nightingale et al., 2018). Lorente et al. (2017) discussed the structural uncertainty
in the retrieval products from QA4ECV project and they concluded 31%-42% uncertainty
resulting from AMF calculation in their NO2 product. We assume that the uncertainty
of the HCHO product is similar. To be more conservative, we estimate the uncertainty
in HCHO column to be 60%, the upper limit reported in previous studies across di↵erent

www.qa4ecv.eu
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HCHO retrieval products (De Smedt et al., 2012; Barkley et al., 2012).

The satellite retrievals are matched in time and space to the WRF-Chem output. We collect
the column observations between 2005 and 2014. To reconcile the di↵erence in the spatial
resolution, both NO2 column and HCHO column are re-gridded to the WRF-Chem native
spatial resolution. We find that the ranges of HCHO column and NO2 column from WRF-
Chem simulations cover those from satellite observations (Fig. B.1), which demonstrates
that the NO2 and HCHO columns from WRF-Chem are su�ciently representative of real
atmospheric composition.

Isoprene data for validation

We also use ground measurements of isoprene from Photochemical Assessment Monitor-
ing Station (PAMS) sites for validation. The measurements are available from the EPA
Air Quality System (AQS) database (https://www.epa.gov/outdoor-air-quality-data). We
include sites where hourly isoprene and temperature measurements are available. The iso-
prene measurements are matched to our OH predictions both in time and space, therefore
the ground measurements are restricted to 1pm to 2pm local hour between 2005 and 2014.
Four sites featuring more than 100 observations are available and we denote them by the city
names the sites are closest to, including Fort Worth, Dallas, Washington DC and Baltimore,
respectively.

ML configuration

ML selection and design

Our choice of the ML technique is the gradient boosted tree implemented from XGBoost
(Chen and Guestrin, 2016). The choice is based on three factors. First, it outperforms
linear regression and its variants as it accounts for the non-linearity of urban OH chemistry.
Second, it is optimized to run on distributed computing environments and can handle a
large volume of input data. Third, compared to a neural network, the results of the gradient
boosted tree model are more interpretable, making it possible to connect the results to
identifiable chemical characteristics of the system. We note, also, that XGBoost library has
gained popularity in atmospheric science community; it has been applied, for instance, to
correct the bias between model and observations of ozone (Ivatt and Evans, 2020; Keller
et al., 2021). The design of the gradient-boosted tree model used in this study is shown in
Appendix B.1.

ML training and feature sets

We train a single ML model on all of the urban WRF-Chem data and denote it as “General”
system. We then use two distinct OH prediction sets, di↵erentiated by what input data is
given when asked to predict near surface OH. We focus attention on parameters that are
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observable so that the WRF output can be swapped with observations to yield a combined
model-observation synthesis for estimating OH. As mentioned earlier, we use space-based
observations for NO2 and HCHO because global, long-term records are available from satellite
instruments including GOME, GOME-2, OMI and TROPOMI. This makes our ML approach
more generally applicable than if it relied on surface observations, which are not available
for all cities, especially in developing countries. However, adopting other satellite retrieval
products requires retraining the ML with model columns weighted by the averaging kernels
consistent with the satellite products.

The “General-WRF” OH predictions are produced using the “General” ML model and the
input features from WRF-Chem, including NO2 and HCHO columns.

The “General-Satellite” OH predictions use the same ML model with the NO2 and HCHO
columns observations from OMI instead of modeled quantities.

In addition, we train a separate ML model for each of the 49 cities identified in Sect.2.1.2.
The discussion of OH predictions from these city-specialized ML models are in Appendix
B.4 and B.5.

3.3 Validation of OH prediction using WRF-based
features (“General-WRF”)

Our first step is to assess the ML performance in the General-WRF case. We check the
correlation of predicted OH against the true WRF-Chem OH, including a test of how each
of the six selected input features improve the prediction.

Two metrics are applied to assess the model performance. We use the correlation coe�cient
(R2) to measure how much of the OH variability is explained by the model prediction and
the root-mean squared error (RMSE) to measure the standard deviation of the residuals and
describe the bias/error in the prediction.

We first investigate the e↵ect of individual features on the model performance. The model
is benchmarked by adding the features iteratively. Starting with a single parameter, we
add a new feature in each iteration and calculate the overall improvement of the model
performance. Figure 3.2(a) is a demonstration of the e↵ectiveness of selected features. A
model trained on J(O1D) and water vapor only explains 13% of the OH variability. Two
column variables, the NO2 column and the HCHO column, provide the most important
constraints on the OH abundance. Introducing these two column variables increases the
R2 to 42% and 70%, respectively. The corresponding RMSE declines from 4⇥106 molec
cm�3 to 2.37⇥106 molec cm�3. The final model incorporates near surface temperature and
pressure, leading to an increase in R2 from 70% to 76%. We tested changing the order of
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a) b)

Figure 3.2: Evaluation of the ML model performance. a) shows the increases of R2 and the
corresponding decrease of RMSE with respect to incremental feature selection. b) shows
the comparison of OH predicted from ML against OH from WRF-Chem. Darker color
corresponds to higher data density. A linear regression is denoted by the dashed line.

the parameters and found no significant e↵ect on the performance of the model.

The performance of the model is shown in Figure 3.2(b). A linear regression comparing the
ML OH predictions versus WRF-Chem OH yields a slope of 0.98. We find a mean bias of
4⇥103 molec cm�3, which demonstrates that there is no systematic bias in the predictions.
The RMSE is 2.11⇥106 molec cm�3. While there is a considerable spread, 72% of the
predictions yield an agreement with the truth OH with the relative di↵erence of less than
20%. We also probe the model performance for each city separately. This general model
yields an R2 above 50% for 44 out of 49 cities. The remaining five cites are located in the
southeast US with high lightning frequency. We believe the small training data size is the
main cause of relatively poor ML model performance over these regions (Fig. B.2).

Note that the ML model is trained on the features acquired from WRF-Chem, it underlines
the premise that no uncertainty is introduced in feature sets. However, constructing fea-
tures from observations requires the consideration of non-negligible uncertainty embedded
in the observations. It is unknown how the uncertainties from features propagate through
the model configuration and a↵ect the OH prediction. We conduct a detailed uncertainty
analysis(Appendix B.3). Given that the uncertainty in BEHR NO2 columns is 30% and the
uncertainty in QA4ECV HCHO column is 60%, those uncertainties propagate through the
model configuration and result in a model performance quantified by the RMSE of 3.2⇥106
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molec cm�3.

3.4 Validation of OH predictions using satellite-based
features (“General-Satellite”)

In this section, OH is predicted using our ML model and the feature set which incorporates
the modeled parameters and satellite observations for two column parameters. While the
near surface OH measurements across the target urban regions are extremely limited, we
seek for implicit approaches to validate our predicted near surface OH.

The anticorrelation with isoprene

We compared ML OH predicted using satellite-based features to isoprene observations in four
urban sites, and confirm that ML-predicted OH is anticorrelated with isoprene. Isoprene is
assumed to be at steady state (Eqn.3.1) due to its short lifetime respect to OH (< 1 hr)
(Murphy et al., 2006). The source of isoprene (E) is assumed independent of OH and the
sink of isoprene is predominantly OH oxidation. Hence isoprene serves as a probe of local OH
abundance as higher OH results in a lower isoprene concentration. This inverse relationship
between OH and isoprene demonstrates that our ML OH prediction is consistent with our
understanding of OH chemistry.

[ISO] =
E

kiso+OH

1

[OH]
(3.1)

For each site, isoprene and OH concentrations are normalized to their mean to facilitate an
integrated analysis. We then segregate the samples into two groups; the first group contains
samples with OH levels lower than the average, and samples with higher than average OH
conditions are summarized into the second group. The number of samples are similar in
both groups, demonstrating that the distribution of OH levels are not heavily skewed and
the average OH levels are not driven by the outliers. This segregation method ensures a
significant di↵erence in OH levels between both groups. The statistics are summarized in
Table 3.1. The di↵erence in OH levels after segregation is consistent across the four sites.
The first groups present OH levels on average 70% of the mean condition, whereas OH levels
in the second group are ⇠25% higher than the average.

Figure 3.3 shows the normalized isoprene in both groups for individual sites. We also diag-
nose the distribution of isoprene using T-test analysis. Characteristic of low OH, the first
group exhibits a higher than average isoprene abundance, ranging from 13% to 29% above
average. An opposite pattern is found in the second group marked by high OH. The isoprene
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Figure 3.3: The opposite relationship between isoprene from ground measurements and
OH from model prediction using OMI satellite observations. Both isoprene and OH are
normalized to their average, and are segregated into two groups based on their OH levels.
The sites include Fort Worth, Dallas, Washington DC and Baltimore.

observations coincident with high OH show a consistent lower than average level, ranging
from 11% to 22% below average. Note that the ML OH is predicted without knowing the
isoprene concentration, and the PAMS measurements are independent of our ML model.
This observed negative correlation is a strong evidence that predicted OH is chemically
reasonable.

We also investigate the role of temperature. Temperature variations lead to a perturbation
of isoprene. The data segregation into high and low isoprene groupings is not correlated
with temperature, but rather emerges from OH variations. To confirm this independence of
temperature, we performed a two-sided T-test to diagnose the distribution of temperature.
Each site shows that there is no significant di↵erence in temperature between the low and
high OH groups.



CHAPTER 3. OH PREDICTION USING MACHINE LEARNING 36

City Norm. OH Norm. Isoprene p value (iso) Temperature
(K)

p value (temp)

Fort Worth
0.73 (0.19) 1.23 (0.91)

0.0002
305.4 (4.2)

0.10
1.26 (0.14) 0.78 (0.60) 304.4 (3.3)

Dallas
0.71 (0.22) 1.16 (0.76)

0.0019
304.2 (5.2)

0.58
1.25 (0.15) 0.86 (0.61) 303.8 (4.2)

Washington DC
0.67 (0.20) 1.29 (1.07)

0.0002
300.2 (4.0)

0.16
1.24 (0.13) 0.78 (0.55) 299.3 (3.2)

Baltimore
0.74 (0.18) 1.13 (0.76)

0.03
300.2 (4.0)

0.30
1.23 (0.16) 0.89 (0.52) 299.6 (2.8)

Table 3.1: The statistical analysis of temperature, normalized isoprene and normalize OH
across four PAMS sites located in Fort Worth, Dallas, Washington DC and Baltimore, re-
spectively. The values in the brackets represent the corresponding standard deviations.
Two-sided T tests are applied on temperature and normalized isoprene to determine if there
is a significant di↵erence between the means of two groups for each city. A P value smaller
than 0.05 is considered statistically significant.

Comparison of satellite constrained OH with WRF-Chem
simulated OH

We compare our ML OH prediction constrained by satellite observations against the WRF-
Chem simulation, and aim to validate our OH prediction by interpreting the OH di↵erence
between our OH prediction (“General-Satellite”) and the WRF-Chem simulations. We find
that the discrepancy is physically reasonable and attribute it to the di↵erence in the NO2

column between model and observations.

We compare the annual trends between ML OH prediction (“General-Satellite”) and the
WRF-Chem simulation, shown in Fig. 3.4(a). Annual average OH predicted using satellite
observed NO2 and HCHO columns as features is ⇠10% lower than WRF-Chem OH, which
we interpret as resulting from the di↵erence in the annual trends of NO2 column. Annual
average NO2 and HCHO columns are shown in Fig. 3.4 (b) and (c). Overall WRF-Chem
agrees well with OMI for HCHO column, both of which present a fairly constant HCHO
column over the course of ten years. However, WRF-Chem exhibits a large disagreement
with respect to the annual trends of NO2 column. In 2005, both WRF-Chem and OMI
NO2 columns are 4.3⇥1015 mole cm�2 on average over North American cities. However,
WRF-Chem consistently overestimates NO2 columns afterwards. The largest positive bias is
observed between 2009 and 2011 when WRF-Chem NO2 columns are up to 70% greater than
those observed by OMI. WRF-Chem shows a fairly linear decrease at the rate of 0.17⇥1015

mole cm�2 per year. Satellite observed NO2 columns show a sharper decrease before 2010
and the reduction slows afterwards. Coincidentally, the two records are close to matching
again in 2014.

In terms of the annual trend, both model simulation and satellite observations agree on a
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a) b) c)

Figure 3.4: The comparison of the trends in annual averages of a) OH directly from WRF-
Chem simulation and OH predicted from the ML model using observation-based features,
b) WRF-Chem + OMI HCHO column and c) WRF-Chem + OMI NO2 column.

decreasing pattern over the years. Both show a similar rate of decrease before 2010. After
2010, the observation-based OH predictions show no significant decrease while the modeled-
based OH predictions continue decreasing on the order of ⇠10% per year.

We also investigate the comparison of spatial gradient between city center and the sur-
rounding areas shown in Appendix B.6 and Fig. B.7. Overall, further away from the city
center there is better agreement between OH predictions and WRF-Chem simulations, and
it coincides with better agreement between modeled and observed NO2 columns.

3.5 Discussion: further improvement

We conclude in Sect.3.1 that our current ML model is capable of explaining 76% of the
simulated OH variability from WRF-Chem. This is the best performance achievable with
the current suite of globally available observations. Here we discuss the factors that would
further improve the model performance to shed light on how future observations might
benefit predictions and assessment of OH across urban regions.

To determine what factors would improve the ML predicted OH the most, we add each
variable under consideration as a seventh input feature to the ML, retrain the ML on the
new combined feature set, and compare the updated ML performance to the current model
trained on six features. The two features that lead to significant improvement in the ML
model performance are the isoprene column and surface NO.
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Isoprene column

The isoprene column improves the ML performances substantially more than all other candi-
dates. Introducing the isoprene column into the feature sets allows the ML model to capture
89% of the OH variability and decreases the RMSE from 2.11⇥106 molec cm�3 to 1.30⇥106

molec cm�3. This emphasizes that the role of isoprene on OH chemistry is larger than all
other VOC species that are present in urban environment.

We also note a redundancy of including both HCHO column and isoprene column. We
tested another model trained on six parameters where HCHO column is replaced by the
isoprene column. This model results in R2 of 88% and corresponding RMSE of 1.45⇥106

mole cm�3, which is very similar to the model whose features include both the isoprene and
HCHO columns. It is a well-established approach to constrain isoprene concentrations by
employing HCHO columns (Marais et al., 2014; Millet et al., 2008; Bauwens et al., 2016). Our
result shows that HCHO column cannot represent the full extent of the role isoprene plays in
OH chemistry and highlights the necessity of direct isoprene measurements. Recent studies
have demonstrated the potential for space-based measurements of isoprene. Fu et al. (2019)
diagnosed the isoprene spectral signatures detectable from space using the satellite-borne
Cross-track Infrared Sounder (CrIS) for the first time, and Wells et al. (2020) developed an
artificial neural network (ANN)-based algorithm for deriving global isoprene columns from
the CrIS measurements. Implementing these isoprene columns into the ML feature set would
achieve better constraints on urban OH in the future.

Surface NO

The second e↵ective feature is the surface NO. Adding surface NO into the feature sets and
retraining the ML model yields an improved R2 from 76% to 84% and an reduced RMSE
from 2.6⇥106 mole cm�3 to 1.6⇥106 mole cm�3. Surface NO compensates the existing
NO2 column as a control over OH. For instance, it constrains the OH loss pathway via the
production of alkyl nitrates which depends on NO rather than NO2.The combination of NO
and NO2 better captures the decline of NOx emission over the years as well.

Incorporating surface NO into the feature sets requires continuous NO observations. Com-
pared to the chemical components detectable from the space, surface NO relies on in-situ
observations. EPS AQS, for instance, provides hourly surface NO measurements at the
widest regional converge. It provides the potential to expand OH prediction from ML model
using the ground measurements.

3.6 Conclusion

We propose a generalized machine learning model that combines information about OH
from a CTM with satellite observations to describe surface OH levels across 49 cities over
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North America. A gradient boosted tree is trained on WRF-Chem simulations to produce
a simplified presentation of urban OH chemistry. Here we utilize six predictive parameters,
including surface J(O1D), water vapor, temperature, pressure and two column features, NO2

column and HCHO column. All of these parameters are observable.

We evaluate the model performance using the testing data sets that are independent of
those used for training. Our ML model explains 76% of the OH variability with a RMSE of
2.11⇥106 molec cm�3 across di↵erent urban environments. Accounting for the uncertainty of
the two column features where we use satellite observations increases the RMSE to 3.2⇥106

molec cm�3. The feature relative importance is proposed as an e↵ective indicator of the
physical processes that drive OH chemistry.

We then construct the feature set from the satellite observations, and feed them into our
ML model for prediction of daily OH levels across the study domain. We validate this ML
model by showing that it is consistent with our understanding of the e↵ect of OH chemistry
on isoprene. No information about isoprene is directly included in the training data set.
Comparing the OH prediction to measurements of isoprene, we found a consistent inverse
relationship between isoprene and OH as expected. We also compare the predicted OH
from the ML model using observation-based features against WRF-Chem simulations, and
conclude that the di↵erence is well explained by the di↵erence between modeled and observed
NO2 column.

We discuss the further improvement to the performance of this ML model, which could
be accomplished by adding the observed isoprene column or surface NO observation to the
feature sets. With additional satellite observations at higher spatial and temporal resolution
available, we foresee a better constraints on surface OH utilizing this ML model technique.
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Chapter 4

Estimate of OH Trends over One
Decade in North American Cities

The chapter was adapted from: Q. Zhu, J. L. Laughner, and R. C. Cohen (2022b). “Esti-
mate of OH trends over one decade in North American cities”. Proceedings of the National
Academy of Sciences 119.16, e2117399119

4.1 Introduction

The hydroxyl radical (OH) is the dominant oxidant in the atmosphere. Reactions with
OH initiate the chemistry of a variety of trace gases (Levy, 1971; Ehhalt, 1998; Lelieveld
et al., 2004), including greenhouse gases such as methane (CH4) and primary pollutants
including carbon monoxide (CO), nitrogen dioxides (NOx (⌘ NO+NO2)) and volatile organic
compounds (VOCs). As a result, OH a↵ects radiative forcing over a global scale and governs
local pollution events over cities. In cities, the lifetime of the freshly emitted species is anti-
correlated with the OH concentration(Valin et al., 2013). Laughner and Cohen (Laughner
and Cohen, 2019b) observe the NOx lifetime directly from the space and concludes significant
shifts in the NOx lifetime occurred between 2005 and 2014 among 30 North American cities,
which in turn suggests an underlying variation in OH in these cities.

Moreover, OH defines the production of ozone (O3) (Thornton et al., 2002; Stone et al.,
2012). Ground-level ozone is a major secondary pollutant that leads to negative impacts on
human health and triggers the risk of death from respiratory causes (Jerrett et al., 2009).
Ozone exceeds health based standards most often during summertime. Ozone results from
reactions involving two predominant ozone precursors: NOx and VOCs. In the presence of
sunlight, OH oxidizes VOCs to form organic peroxy radicals (RO2) and then RO2 can react
with NO to form NO2 which photolyzes to produce O3. The ozone production rate P(O3) is
a non-linear function of both NOx and VOCs, and its dependence on NOx is similar to the
dependence of OH on NOx. Two distinct regimes are observed. At high VOC reactivity and
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Figure 4.1: A schematic of OH and P(O3) as a function of NOx at the photochemical steady
state. We assume a NO2/NO ratio of 4, the alkyl nitrate branching ratio ↵ of 0.04, and a
HOx production rate of 0.3 ppt s�1. Two scenarios represent a high VOC reactivity (VOCr

= 10 s�1) condition and low VOC reactivity condition (VOCr = 1 s�1), respectively.

low NOx, both P(O3) and OH increase with enhancing NOx, and the corresponding regime is
identified by the limiting reagent as a NOx limited regime. In contrast, both P(O3) and OH
show the opposite relationship with NOx in the NOx saturated regime, which is characterized
by high NOx compared to the VOC reactivity. In terms of reducing ozone pollution, the
e↵ectiveness of the emissions control strategy depends on whether the photochemical regime
of ozone formation is a NOx saturated or NOx limited regime. Therefore, OH is the ideal
target molecule to examine the chemical regime; the relationship between OH and NOx

at interannual time scales serves as an explicit proxy to monitor the shift of the chemical
regimes.

Despite its pivotal role in oxidation chemistry, OH observations at urban or suburban areas
are remarkably sparse. The longest record is reported in (Rohrer and Berresheim, 2006)
where continuous OH measurements were conducted at a rural site in southern Germany
between 1999 and 2003. Other OH measurements, occurring either in situ or airborne,
are limited to a shorter time scale ranging from days to months (Emmerson et al., 2005b;
Emmerson et al., 2007; Ren et al., 2003; Kanaya et al., 2007; Gri�th et al., 2016; Sanchez
et al., 2018; Lu et al., 2012; Lu et al., 2013). The short lifetime (< 1s) of OH, owing to the
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high reactivity, means local in situ chemistry dominates the OH budget. As a result, the
high spatial heterogeneity makes it impossible to describe OH chemistry over a large spatial
scale solely from in-situ OH observations.

In a recent paper, we developed a machine learning (ML) model to represent the OH chem-
istry emphasizing urban areas (Zhu et al., 2022a). The model aims to represent the OH
chemistry simulated from a state-of-art chemical transport model relying on a small set of
observed constraints that are available with records over one decade. The ML model with
observational inputs from satellite remote sensing yields estimates of surface OH across 49
North American cities for the time period of 2005�2014.

4.2 Methods: models and observations

Observational and model records used

All observational inputs are publicly available. We use observations from the Ozone Mon-
itoring Instrument (OMI). The NO2 retrievals are from Version 3.0B of the Berkeley High
Resolution (BEHR) OMI NO2 product (https://behr.cchem.berkeley.edu/), and HCHO
retrievals are from the Quality Assurance For Essential Climate Variables (QA4ECV) project
(www.qa4ecv.eu). We conduct a start-of-art chemical transport model simulation using
WRF-Chem over North America. Hourly outputs are sampled at the spatial resolution of
12km⇥12km. The model configuration is described in detail in (Laughner et al., 2018b).

ML model

We utilize a gradient boosted tree model to represent the OH chemistry over urban areas
during summertime. It is a supervised machine learning model and is optimized for predicting
the surface OH by learning the training data.

We prepare training data solely from a chemical transport model WRF-Chem. We use
six parameters as predictors, including four surface variables (J(O1D), H2O, temperature,
pressure) and two column variables (NO2 column and HCHO column). The calculation of
two column variables incorporates the averaging kernel from the satellite products to emulate
the quantities observed from the space, referring to the Sect.7.4 from Laughner et al. (2018b).
We select the WRF-Chem grids covering 49 North American cities and each grid has a spatial
scale of 12km⇥12km. To represent each city, we select grid cells in a circular area with the
radius varying from 0.5 deg to 1.0 deg around the city center based on the city size and the
surrounding interference. The selection of 49 cities is consistent with Russell et al. (2012)
and Laughner and Cohen (2019b). We constrain the time to ⇠13:30 local hour from April
through September between 2005 and 2014 to present summertime conditions where the
ozone pollution due to active photochemistry is most of a concern. For each city, we only
filter out the days with lightning occurrence and with cloud fraction larger than 0.2.

https://behr.cchem.berkeley.edu/
www.qa4ecv.eu
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Zhu, Laughner, and Cohen (Zhu et al., 2022a) evaluate the accuracy of this ML model and
prove that the ML model using this six parameters is capable of capturing 76% of the OH
variability and yields a RMSE of 2.1 ⇥ 106 molec cm�3. Therefore, the ML model serves
as an e�cient alternative of OH simulation using the computationally expensive chemical
transport model.

OH predictions

We combine model simulations and satellite observations to construct the observation-based
inputs, and use the ML model to predict OH. Among the six features, we take J(O1D), H2O,
temperature and pressure from the WRF-Chem outputs. Since meteorological parameters
are constrained by the North American Regional Reanalysis (NARR) every three hours,
we expect these parameters are in good agreement with the observations. We use satellite
retrievals described above to obtain both NO2 column and HCHO column features. Based on
the availability of OMI satellite observations and BEHR retrieval products that are optimized
to remove bias on the spatial resolution of cities, we confine our study to 8 year between
2005 and 2014. OH Predictions for year 2006 and 2010 are absent due to lack of WRF-Chem
or BEHR retrievals.

Zhu, Laughner and Cohen (Zhu et al., 2022a) calculate the uncertainty of the OH predic-
tions. Besides of those inherent in the ML model, the uncertainties from observed input
parameters, especially the NO2 column and the HCHO column, propagate through the ML
model configuration and lead to non-negligible influence on model performance. Consider-
ing the uncertainties of the retrievals products for both NO2 column and HCHO column, we
estimate the RMSE of OH predictions as 3.2 ⇥ 106 molec cm�3.

Summertime average OH

We segregate the OH predictions by year and city, and then take the averages of grid cells
per city per year to be representative of the summertime OH (Eqn.B.1):

OHcity,summer =

P
dayi⇢summer

P
gridj⇢city OHdayi,gridjP

dayi⇢summer 1⇥
P

gridj⇢city 1
(4.1)

The number of OH predictions used for calculation varies as it depends on the number of
grids for each city region as well as the number of valid days. The number of individual
grid OH predictions ranges between 1000 and 16000. The minimum number corresponds to
summertime OH in 2014 over Orlando, Florida, which is consistent with a relatively small city
size and fewer valid days in the analysis after filtering the days with lightning occurrence.
We treat each OH prediction as an independent variable and use the lower bound of the
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number of observations, the RMSE of summertime average OH is 1.0 ⇥ 105 molec cm�3. It
is a conservative estimate to compensate the fact that the OH predictions are not perfectly
orthogonal.

We then, for each city, assess the relative di↵erence of summertime average OH between
2005 and 2014 (rel. OH hereinafter). The summertime average OH across all cities ranges
from 8.7⇥ 106 molec cm�3 to 1.33⇥ 107 molec cm�3 in 2005, and ranges from 8.2⇥ 106

molec cm�3 to 1.25⇥ 107 molec cm�3 in 2014. Considering the estimate of RMSE of 1.0 ⇥
105 molec cm�3, we calculate the upper bound of the standard deviation of rel. OH is 2%.
Therefore we take 4% as a threshold in the analysis; a rel. OH larger than 4% is considered
statistically significant with 95% confidence.

Relationship between OH and NO2 column

To reconcile the large city-wise variation in both OH and NO2 column, both OH and NO2

column are normalized to their 2005 averages for a given city. We apply linear regressions to
fit the normalized OH to the normalized NO2 column and collect the slopes from the linear
fitting. The shifts in slopes between OH and NO2 column are discussed in the results.

4.3 Variation of urban OH over one decade

The 49 selected cities exhibit a full range of variation in OH chemistry as characterized by
the HCHO columns and NO2 columns. Both HCHO columns and NO2 columns are acquired
from satellite-based observations and serve as indicators for VOCs (Palmer et al., 2003; Fu et
al., 2007; Fu et al., 2019) and NOx (Martin et al., 2004; Lamsal et al., 2008), respectively. We
use the ratio of the HCHO column and the NO2 column (satellite HCHO/NO2) to reflect the
relative availability of NOx and total organic reactivity to hydroxyl radicals sillman95. Fig.
4.2 shows the ratio of average HCHO and NO2 columns during April to September between
2005 and 2014 over selected cities. The satellite HCHO/NO2 varies by a factor of 3, reflecting
a range in NOx and VOC chemistry. High satellite HCHO/NO2 is indicative of an abundance
of VOC relative to NOx and presents in southeast US cities. It is consistent with VOC
emissions mostly from biogenic sources, for instance, isoprene from vegetation (Guenther
et al., 2006). In contrast, the cities along the west coast and the Northwest US exhibit
a relatively low satellite HCHO/NO2 ratio. Those cities feature large anthropogenic NOx

emissions whereas the VOC emissions are unreactive compared to the Southeast US(Kharol
et al., 2015).

It also worth emphasizing the variation of the NO2 and HCHO columns over one decade.
Anthropogenic NOx emissions exhibited a significant reduction over the US due to stringent
air pollution regulations during the 2005�2014 period. This is reflected in the decline in the
satellite-observed NO2 column. The selected cities include examples with the largest NO2

column as well as the most pronounced reduction (Fig. C.1). The observed NO2 column
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a)

b)

Figure 4.2: The satellite HCHO/NO2 over selected 49 cities. a) The map of satellite based
summertime average of HCHO/NO2 between 2005 and 2014 over 49 North American cities,
b) shows the frequency distribution of satellite HCHO/NO2.
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decreases by 33% on average over this time period. The largest decline of NO2 column by
up to 55% is observed in Los Angeles, followed by other populous cities including Chicago,
Boston and New York. Austin observes the smallest decrease, 11%. We also note the smaller
decrease of the NO2 column over urban regions in Central US, which is thought to be partially
due to the o↵set of increasing soil NOx emission (Vinken et al., 2014). Compared to the
NO2 column, HCHO columns show no consistent interannual variation (Fig. C.2). Among
the selected cities, the relative change of HCHO column between 2005 and 2014 ranges from
-15% to 10%. The causes of 10 years variation in the HCHO column are complex. While
the anthropogenic VOC emissions from vehicles and industry declined(EPA, 2016), volatile
chemical product emissions may be growing (McDonald et al., 2018). Also, the changes in
anthropogenic VOC emissions are masked by the large HCHO background driven by biogenic
sources(Zhu et al., 2017).

The interannual variation in both the NO2 column and the HCHO column leads to variation
in OH. Compared to summertime in 2005, the relative change of urban OH in 2014 ranges
from -17% to 11% over the 49 cities (Fig. 4.3). We find 30 cities show statistically significant
changes in surface OH between 2005 and 2014. In four cities, including Los Angeles, New
Orleans, New York and Toronto, the increase of summertime averaged OH is larger than 4%.
30 out of 49 cities witness a decline of annual OH in 2014 larger than -4%. Uncertainties
are described in the Method. The full OH trends between 2005 and 2014 for each city are
shown in Fig. C.3.

4.4 The relationship between OH and NO2 column

Mapping the predicted OH to the concurrent NO2 column depicts the relationship between
OH and NOx, and it reveals which chemical regime the urban environment falls in. For
each city we select the areas covering both city center and surrounding areas. If we assume
that VOC reactivity is similar in all grids for a given urban area for a given year, the
relationship between OH concentration and NO2 column provides information about the
dominant chemical regime. Assuming minimal variation in the VOC reactivity is supported
by the small annual variation in HCHO shown in Fig. S2 and similar weekend/weekday
VOC reactivity observed in Beirle et al. (e.g. 2003), Kaynak et al. (2009), and Russell et al.
(2010).

Recall from Fig. 4.1 that the dependence of OH on NOx is non-linear, and the slope of OH vs
NOx varies with its chemical regime. In the NOx saturated regime, OH is inversely correlated
with NOx yielding a negative slope. The turnover point between the NOx saturated regime
and NOx limited regime leads to a slope fluctuating around the zero point. Conversely, in
the NOx limited regime, the slope is positive. The further away from the turnover point, the
slope is larger.

Figure 4.4 shows how two cities, Los Angeles and Denver, illustrate di↵erent relationships
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a)

b)

Figure 4.3: The OH variation over selected 49 cities. a) The map of the relative di↵erence
of summertime OH between 2005 and 2014 over 49 North American cities, the frequency
distribution is shown in b).
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a)

b)

Slope:
-0.103± -0.004
0.002± 0.018

Slope:
0.304± -0.018
0.364± 0.044

Figure 4.4: The density plot between OH and NO2 column in 2005 and 2014 over LA (a) and
Denver (b), respectively. For each city, both OH and NO2 column are normalized to their
annual averages in 2005. The lines and corresponding slopes denote the linear regression
results between normalized OH and normalized NO2 column.
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between OH and NO2 column and how it has shifted over the years. In 2005, Los Angeles
was characterized by high NOx gottlieb06. The average NO2 column was 9.2⇥1015 molec
cm�2 and the largest NO2 column was 2.4⇥1016 molec cm�2. The OH from the ML model
also shows a wide spread within the city where OH concentration varies by a factor of 2.
We note a significant inverse relationship; a higher NO2 column corresponds to a lower
OH concentration, yielding a slope of -0.1 (Fig. 4.4a). The observed slope matches the
theoretical pattern of a NOx saturated regime as shown in Fig.4.1. In contrast, LA in 2014
presented a much lower NO2 columns. The average NO2 column is 60% lower than in 2005.
Compared to the remarkable decline in NO2 column, the OH concentration shows a slight
enhancement, on average 10% higher than those in 2005. As a consequence, the negative
correlation between OH and the NO2 column in 2005 vanishes. In 2014, OH presented a
strong non-linear dependence on NO2 column. Though a linear regression fails to describe
the full pattern between OH and the NO2 column, the slope from linear fitting shows a large
fluctuation near the zero point, indicative of the turnover point between the NOx saturated
regime and NOx limited regime. Expanding the relationship analysis of OH and NO2 column
to each year between 2005 and 2014 shows a continuous increase of the slope, indicating a
consistent transition from a NOx saturated regime (Fig. C.4).

In contrast, the OH-NO2 column relationship in Denver indicates that NOx-limited chemistry
dominated the Denver plume between 2005 and 2014 (Fig. C.5) and Fig. 4.4b shows the
OH-NO2 column relationship in 2005 and 2014. In 2005, the NO2 column was moderate
compared to LA; the average NO2 column was 2.8⇥1015 molec cm�2 and the largest NO2

column was 7.2⇥1015 molec cm�2. A positive correlation between OH and NO2 column is
observed, with a slope of 0.30. The slope of the correlation suggests Denver was already NOx

limited in 2005. In 2014, on average, there was a 16% decrease in the NO2 column. However,
the peak NO2 column decreased by 36%, reflecting the e↵ective emission control near the
city center. The positive correlation between OH and NO2 column continues in 2014 with
its fitted slope increasing from 0.30 to 0.36. The enhancement in slope is consistent with in
2014 moving further away from the turnover point along with the decline in the NO2 column.

We extend the investigation of the relationship between OH and NO2 column to 49 cities. In
both 2005 and 2014, we conduct the linear regression between normalized OH and normalized
NO2 column; these slopes are summarized in Fig. 4.5 and the slopes for all years between 2005
and 2014 are shown in Fig. C.6. 2005 sees a wide scatter of the slope between normalized
OH and normalized NO2 column. 5 cities, including New Orleans, Los Angeles, Tampa,
Boston, present a negative relationship between OH and NO2 column. 16 cities yield a slope
fluctuating around zero and a correlation coe�cient (r2) lower than 0.6. The rest of cites
observe strong positive correlations (r2 > 0.6) with the slope larger than 0.2.

In 2014, the slopes in 45 out of 49 cities are more positive than they were in 2005. Cities such
as LA, have a negative slope closer to zero, indicating a transition from the NOx saturated
regime to the turnover point of two regimes. Most cities whose slope is positive in 2005
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increase further, demonstrating a shift within the NOx limited regime.

4.5 Implication for controlling ozone pollution

In 2021, 50 areas and 196 counties are designated as ozone nonattainment areas where 8 hour
ozone levels fail to meet the National Ambient Air Quality Standards (NAAQS), a↵ecting
over 120 million peopleepa-ozone-nonattainment. E↵orts devoted to reducing high ozone
have focused on reduction of O3 precursors emitted by anthropogenic sources. NOx and
VOC emission reductions have occurred kharol15, russell12. However, the e↵ectiveness of
emission control on lowering ozone level encompasses a large variation and is associated
with the chemical regime the urban environment. In NOx saturated regime, NOx emission
reductions are detrimental to the mitigation of ozone pollution in a short term. In the NOx

limited regime, there are immediate benefits. Based on our conclusion of the chemical regime
shifts, most North American cities were NOx limited in 2014. If further controls on NOx

emission are prioritized for regulating ozone, the regulations will likely be e↵ective.

4.6 Conclusion

We leverage machine learning combined with satellite observations, to estimate surface OH
in 49 cities. We found changes in the summertime OH between 2005 and 2014, ranging from
a decrease of 17% to an enhancement of 11%. We observe a shift of chemical regimes with a
NOx limited regime now in e↵ect in most cities. Thus continued reduction of NOx emissions
will e↵ectively control ozone.

Code and data availability

The analysis code is available at doi.org/10.5281/zenodo.5296044 (Zhu, 2021) and interme-
diate data sets are available at doi.org/10.6078/D1FM75 (Zhu et al., 2021).
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Chapter 5

Concluding remarks

The hydroxyl radical, OH, initiates the removal of the majority of trace gases in the atmo-
sphere and is intimately involved in the oxidation chemistry of the atmosphere. As a result of
its high reactivity, the OH concentration is determined primarily by local physical and chem-
ical conditions and is only a↵ected by transport to the extent its precursors are transported.
OH measurements support the idea that we have a good understanding of OH chemistry
and that this chemistry is dominated by NOx, VOC and meterological parameters a↵ecting
photolysis rates and reaction kinetics. In this thesis, I aim to constrain OH and its chemistry
using observations of longer-lived species, among which NOx is of particular interest as it
plays a crucial role. I emphasize satellite observations of NO2 column density since recent
advances in measurements provide unprecedented spatial coverage and consistent temporal
records.

In Chapter 2, I investigate lightning NOx emissions, the largest source of uncertainty in OH
in the free troposphere. I use satellite observations to constrain a chemical transport model
with a new approach to describing lightning. Lightning NOx production rates are varied
in the model until good agreement with the satellite observations are obtained. The best
estimate of lightning NOx emissions is 500 mol NO flash�1, which is within the range of
current lightning NOx emission estimates but closer to the high limit. The result indicates
that the impact of lightning on OH in the free troposphere is higher than what is discussed
in the current literature.

Future work is proposed to quantify lightning induced OH based on the new CAPE-PR
lightning parameterization and lightning NOx production rate described in Chapter 2. Nev-
ertheless, the projection of lightning under climate change is controversial. Studies simulating
future lightning over the next century with the CTH approach have reported 5–16% increases
in lightning flashes per degree increase in global mean surface temperature (e.g. Schumann
and Huntrieser, 2007; Jiang and Liao, 2013; Clark et al., 2017). Banerjee et al. (2014) iden-
tified large climate-change-induced enhancements in OH concentration in the tropical upper
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troposphere primarily as a consequence of greater lightning NOx. However, Finney et al.
(2018) suggested a 15% decrease of lightning in 2100 under a strong global warming scenario
using IFLUX lightning parameterization. In the future, we should explore how lightning
responds to climate change using CAPE-PR parameterization, and study the simultaneous
future projection of OH in the free trosposphere.

In Chapter 3, I leverage machine learning approach to estimate OH concentrations in cities.
Since there are only 12 cities with OH measurements and each of these only for a short period,
the utilization of machine learning advances the capability of investigating OH abundance
substantially both in time and in space. I show that a machine learning model can be
trained based on computationally expensive chemical transport model simulations and is
able to predict OH using parameters that are either from weather model or from satellite
observations. Therefore, in Chapter 4, I predict near surface OH concentration variations
over 49 North American cities over the course of ten years using machine learning combined
with satellite observed NO2 column density and HCHO column density. This analysis shows
the OH trends in one decade in each city and also provides insights into the transition of
chemical regimes in each city.

This machine learning approach opens the door to integrated analysis of OH chemistry on a
variety of spatial and temporal scales. While Chapter 3 shows the past trends of OH in cities,
it can also used to investigate the future changes of OH. Shared Socio-Economic Pathways
(SSPs) are the new generation of scenarios primarily framed within the context of climate
change mitigation and have been used in CMIP6 (Riahi et al., 2017). These scenarios
reflect plausible future emissions in 21st century based on socioeconomic, environmental,
and technological trends. Each SSP narrative is mapped to three categories measuring the
pollution control strength (strong, median, weak), in which categories the trends of emissions
factors (i.e., emissions per unit of energy) for each pollutant are prescribed (O’Neill et al.,
2016). We can construct the inputs to the ML model using these emission trends and
projected climate records (e.g., temperature, humidity) from CMIP6 model under di↵erent
SSP scenarios, and then use the ML model to predict OH trends at the given conditions. Such
a prediction would be much less computationally demanding than running a fully coupled
chemistry-climate model at a resolution compatible with urban chemistry (⇠4-12km). The
variations among the predicted OH trends will reflect the impacts of oxidative capacity in
the future under di↵erent climate change mitigation strategies.
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Appendix A

Supplemental material for “Lightning
NO2 simulation over the Contiguous
US and its e↵ects on satellite NO2
retrievals”

The chapter was adapted from the supplement of: Q. Zhu, J. L. Laughner, and R. C. Cohen
(2019c). “Lightning NO 2 simulation over the contiguous US and its e↵ects on satellite NO
2 retrievals”. Atmospheric Chemistry and Physics 19.20, pp. 13067–13078

A.1 Comparison between ENTLN and NLDN

While both NLDN and ENTLN have high detection e�ciency (>90%) for CG flashes, we
recognize that ENTLN observes more CG flashes than NLDN. Shown in Fig. A.1, we average
the flashes density over CONUS both from ENTLN and NLDN between May 13 to June
23 2012. The daily averaged CG flash density from ENTLN is tightly correlated with those
from NLDN with slope of 1.5. It can be explained by discrepancy in the grouping criterions
applied to produce flash counts between NLDN and ENTLN. ENTLN groups all pulses
within 10 km and 700 ms of each other as a single flash, and NLDN uses 10 km and 1000
ms as the threshold. In consequence, for the same amount of CG pulses measured by both
lightning observation network, ENTLN produces more flashes than NLDN according to the
grouping algorithm.
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Figure A.1: Comparison between CG flash density per day observed by NLDN and ENTLN.
The data spans May 13 to June 23, 2012.
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a)

d)c)

b)

Figure A.2: Comparison between flash rates observed by ENTLN and Lightning Imaging
Sensor (LIS). ENTLN data is matched to corrected LIS flashes both in time and space during
May 13-June 23, 2012, and both datasets are summed onto 0.5°x 0.5°grid spacing. (a,b)
shows the spatial pattern of lightning flash rates measured by LIS (a) and ENTLN (b). The
plot region covers 20°N - 38°N and 130°W - 65°W. (c,d) are corresponding absolute di↵er-
ence and scatter plots between LIS and ENTLN. LIS data is corrected using the detection
e�ciency from citetcecil14.
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Figure A.3: The a priori NO2 vertical profiles (a, b) and scattering weights (c, d) on Sep
10 and Aug 24 2013 averaged over all urban (solid) or rural (dashed) grid cells in SE US.
The NO2 profiles from WRF-Chem using G3/CTH parameterization are in red, those from
KF/CAPE-PR parameterization are in blue.
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No lightning 400 mol NO flash�1 500 mol NO flash�1 665 mol NO flash�1

CONUS 0.92⇥1015 0.44⇥1015 0.41⇥1015 0.44⇥1015

Urban 1.30⇥1015 0.89⇥1015 0.91⇥1015 1.10⇥1015

Non-Urban 0.90⇥1015 0.41⇥1015 0.37⇥1015 0.39⇥1015

Table A.1: The root-mean-square errors (RMSE) in unit of mole cm�2 between observed and
modeled NO2 VCD using WRF-Chem with varied LNOx production rates (0, 400, 500, 665
mol NO flash�1). Urban areas are selected where NO2 columns are at top 5% calculated
from WRF-Chem without lightning. Non-urban areas are CONUS excluding urban areas.
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Figure A.4: Di↵erence in NO2 VCD between BEHR retrievals and WRF-Chem (a) without
LNOx and with LNOx production rate of (b) 400 mol NO flash�1, (c) 500 mol NO flash�1

and (d) 665 mol NO flash�1.
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Figure A.5: Comparison of WRF-Chem and aircraft [NO2/NOx] profiles from the (a) DC3,
(b) SEAC4RS campaigns.The solid line is the median of all profiles and the shaded areas are
between 10th and 90th percentiles for each binned level. Aircraft measurements are shown
in black, WRF-Chem using CTH lightning parameterization in red and WRF-Chem using
CAPE-PR lightning parameterization in blue.
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Appendix B

Supplemental material for
“Combining machine learning and
satellite observations to predict
spatial and temporal variation of near
surface OH in North American cities”

The chapter was adapted from the supplement of: Q. Zhu, J. L. Laughner, and R. C. Cohen
(2022a). “Combining Machine Learning and Satellite Observations to Predict Spatial and
Temporal Variation of near Surface OH in North American Cities”. Environmental Science
& Technology

B.1 Design of the gradient boosted tree model

The gradient-boosted tree model is a supervised machine learning model and is trained to
optimize the predictions when the ground truths are known. The model consists of three
elements. An objective function is defined as the goal of optimization; the decision tree
is used as the weak learner to make the prediction; an additive algorithm is applied to to
construct a sequence of weak learners in order to minimize the objective function.

The objective function composes a loss function (L) and a regularization term (⌦).

Obj(✓) = L(✓) + ⌦(✓) =
X

i

(yi � ŷi)
2 +

X
(✓j)

2 (B.1)

y = f(x1, x2, ...xn) (B.2)
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Where xj(j = 1, 2, ..n) represents the set of features selected in Sect.2.1.2, y denotes the
predicted near surface OH from this ML configuration, and ŷ corresponds the near surface
OH from WRF-Chem marked as ground truths. The loss function is the sum of squared
error. An L2 regularization term, ⌦(✓), is added to constrain the complexity of the model
and avoid overfitting.

A weak learner is defined as a simplified framework whose performance is better than random
chance and can handle the prediction for partial observations. We use the regression decision
tree to serve as a weak learner in the model infrastructure. The root node contains the full
training data sets, and then we grow the tree by splitting the nodes and assign them the
score on the corresponding child nodes. The splitting criteria is determined to achieve the
largest reduction on the objective function.

The outcome of the gradient boosted tree model is an assemblage of decision trees. We use
the additive model algorithm to augment the number of decision trees. At each boosting
iteration, the gradient descent is calculated in the function space, which orients construction
of a new tree to reduce the objective function. The new tree is then added to the existing
sequence of trees in an e↵ort to improve the final output of the model. The construction is
repeated until it hits the stopping criteria.

The choice of hyperparameters are the determinants of model performance. Hyperparame-
ters are configuration variables that are external to the model and whose value cannot be
estimated from data. Our model configurations involves hyperparameters such as the num-
ber of trees, the depth, number of leaves. To tune the hyperparameters, we define a range
of candidates for each hyperparameter, and enumerate all possible combinations. Those
combinations are tested using the five-fold cross validation technique to determine the best
candidate. The details are described in Supp.S2.

B.2 Cross Validation

The ML model performance is a↵ected by the hyperparameters, which are prescribed ex-
ternally. In our gradient boosted model, we define 50 boosted trees in total and each tree
shares the same configuration which is determined by several key hyperparamters. For in-
stance, max depth defines the maximum depth and it controls the complexity of the tree,
min child weight corresponds to the minimum sum of instance weight, and similarly gamma
is the minimum loss reduction, both of which decide whether or not to make a further par-
tition on this child node. eta is the learning rate. Shown in Table B.3, we define a physical
reasonable range for each hyperparamter, and list out all possible combinations of these
hyperparameters.

We implement a five-fold cross validation to decide the best combination of hyperparameters.
The general procedure is as follows. First, we randomly split the training data sets into five
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groups of approximately equal size. Within each group, we hold out this group as a validation
data set and take the remaining groups as a training data set. We then retrain the model on
the selected training set and evaluate this model performance on the validation data set. The
step is repeated five times, and we take the average evaluation score and assign this score to
selected hyperparameters. The best combination of the hyperparameters are determined by
the highest evaluation score, and we present the finalized values in Table B.3.

B.3 Uncertainty analysis

Here we define the uncertainty (u) as the normalized standard deviations. We also assume
the errors are independent and uncorrelated across observations and are drawn from a zero-
centered normal distribution.

~� = u⇥ ~xtrue (B.3)

~✏ ⇠ N ( ~xtrue, �
2) (B.4)

~xnoise = ~xtrue + ✏ (B.5)

Specifically, for each feature (xtrue), we prescribe an uncertainty (u) ranging from 0% to
100%, draw an error (✏) from a normal distribution determined by the uncertainty level, and
add the error to the original feature sets from WRF-Chem. The ML model is again trained
on noisy features (xnoise) and its performance is compared against the model trained on noise
free feature sets.

Shown in Figure B.3(a), the uncertainty in features sets inevitably degrade the model perfor-
mance reflected by the increasing RMSE. However, there is a considerable variation in terms
of the model sensitivity to error propogation from di↵erent features. Uncertainty from the
NO2 column leads to the largest increase in RMSE, a 50% increase from ⇠2 to ⇠3⇥106 OH
molec cm�3. The uncertainty reaches a limit when the uncertainty in NO2 column exceeds
50%. The second largest e↵ect results from HCHO column. The RMSE increases by about
30% from 2.1⇥106 molec cm�3 to 2.7⇥106 molec cm�3 for uncertainty level ranging from
0% to 40%. The remaining features lead to a slight increase in RMSE individually, each less
than 10%.

Given that the ML model performance is sensitive to the uncertainties from both NO2 and
HCHO columns, we take a step further to account for uncertainties from both features
simultaneously shown in Figure B.3(b). Note that the uncertainty in BEHR NO2 columns is
30% and the uncertainty in QA4ECV HCHO column is 60%, those uncertainties propagate
through the model configuration and result in a model performance quantified by the RMSE
of 3.2⇥106 molec cm�3.
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B.4 ML training and feature sets

Besides a “General” system where a single ML model is trained on all of the urban WRF-
Chem data, we train a separate ML model for each of the 49 cities and call it “City” system.
The “City-WRF” OH predictions are made from the series of ML models from “City” system
and the input features exclusively from WRF-Chem. Table B.4 summarizes the di↵erences
between the OH prediction sets.

B.5 Validation of OH predictions using ML
characteristics (“City-WRF”)

One advantage of the gradient-boosted tree model is that we can check which input features
have the most influence on the output OH concentrations. We can use this as a qualitative
check on model performance by verifying that the relative importance of the input features
reflects the current understanding of which physical processes should govern the OH in
di↵erent urban environments.

This feature importance is calculated explicitly for each feature, allowing features to be
ranked and compared to each other. The importance is calculated by the amount that
each feature split point improves the performance measure, weighted by the number of
observations the node is responsible for. The series of features importance are normalized
to unity to yield the feature relative importance. The more a feature is used to make key
decisions in the construction of the boosted trees, the higher its relative importance. While
the model infrastructure remains unchanged, the feature relative importance reflects the
di↵erence in the training data sets sampled from various urban environments. Therefore, it
is an explicit measure of how important this feature is to capture the OH variability at the
target urban environment.

We start with the General-WRF system. Since it samples a variety of OH chemical con-
ditions, the relative feature importance represents the general OH drivers over US cities.
Shown in Fig. B.4, the largest contribution, 42% of the loss reduction is assigned to the NO2

column. It combines with the HCHO column to gain 70% of the reduction on the objective
function.

Compared to the generalized model, the City-WRF systems show physically plausible dif-
ferences in the relative feature importance between di↵erent cities. Figure B.5 shows the
normalized feature importance extracted from two ML models trained on data sampled over
Chicago and Atlanta, respectively. Both yield a good representation of the simulated OH;
each of them is capable of explaining > 70% of the OH variability. The Chicago ML model
weights heavily on J(O1D) and NO2 column, and it implies that the OH variability is pre-
dominantly driven by the ozone photolysis and NOx chemistry. In contrast, Atlanta imposes
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a much larger importance on the HCHO column feature. The HCHO column has 7% relative
importance in the Chicago model whereas in Atlanta, the contribution is 27%, reflecting the
variation in the role of VOC on OH chemistry in the two cities.

The distinction in OH drivers reflected from feature relative importance is also verified by
the distributions of features from both cities shown in Fig. B.6. Among six features, both
cities show similar distribution in NO2 column, water vapor and temperature. Pressure
over Chicago is consistently higher than Atlanta due to lower elevation. J(O1D) presents
an opposite relationship and the average J(O1D) is higher over Atlanta due to lower lat-
itude, however, the variance of J(O1D) is similar for both cities. The largest discrepancy
attributes to HCHO column, a proxy for abundant VOC oxidation in the HOx cycle. Atlanta
exhibits higher HCHO column as well as a wider variability of HCHO, indicating that a large
variability of VOC chemistry exists on a day to day basis in Atlanta.

B.6 Comparison of satellite constrained OH with
WRF-Chem simulated OH

Figure B.7(a) shows the predicted OH from ML (“General-Satellite”) and WRF-Chem sim-
ulations, respectively, both of which are segregated into the same distance bins determined
by the distance between the grid and the city center. We found surface OH predicted using
OMI observations are consistently lower than those from WRF-Chem. Near the city center,
WRF-Chem overestimates the surface OH, which we attribute to the overestimate in NO2

column. Figure B.7(b) and (c) show the corresponding spatial pattern of HCHO column and
NO2 column averaged over 49 cities from both WRF-Chem and OMI observations ranging
from 2005 to 2014. We note that WRF-Chem yields a good agreement of HCHO column on
average regardless of the distance from the city center. There is no gradient of HCHO column
between urban center and the surrounding areas. As a contrast, the discrepancy observed
in NO2 columns between model simulation and satellite observation is distinct; WRF-Chem
consistently overestimates the NO2 columns by up to 50% near the city centers. The negative
gradient of NO2 column between city and the surrounding areas reflects the NOx emission
patterns since the largest contributors are anthropogenic emissions clustered near the city
center. Therefore, the overestimate in WRF-chem NO2 column is associated with the overes-
timate of anthropogenic NEI NOx emissions prescibed in the model simulation. This finding
is consistent with the results reported in Kota et al. (2014).

The di↵erence in OH and NO2 column also reflect the non-linearity of OH chemistry. The OH
response to overestimate in NO2 is clearly bu↵ered: WRF-Chem shows on average 10% larger
surface OH while the concurrent NO2 column is 50% larger than the satellite observations.
Further away from the city center there is better agreement between OH predictions and
WRF-Chem simulations, and coinciding better agreement in NO2 columns.
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Campaign City R2 Slope
CALNEX LA 0.74 1.55
MEGAPOLI Paris 0.62 1.94
BERLIOZ Berlin 0.81 2.0
PRIDE-PRD2006 PRD⇤ 0.81 4.0
CAREBeijing2006 Beijing 0.73 4.0
*Pearl River Delta

Table B.1: Summary of linear regression results between OH and J(O1D) from the in-situ
measurements.
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ShortName Latitude Longitude Raidus
Albuquerque 35.2 -106.55 0.5
Atlanta 33.8 -84.35 1
Austin 30.26 -97.74 1
Bakersfield 35.3 -119 0.5
Baltimore 39.3 -76.2 1
Boston 42.45 -71 1
Charlotte 35.25 -80.85 1
Cheyenne 41.1 -104.8 1
Chicago 41.8 -87.7 1
Cincinnati 39.1 -84.55 1
Cleveland 41.45 -81.67 1
Columbus 40 -83.1 0.5
Dallas 32.85 -96.95 1
Denver 39.75 -105 1
Detroit 42.35 -83.1 1
Fresno 36.7 -119.75 0.5
Houston 29.8 -95.25 1
Indianapolis 39.8 -86.15 0.75
Jacksonville 30.45 -81.6 0.5
Kansas City 39.15 -94.55 1
Knoxville 35.95 -84 0.75
Las Vegas 36.2 -115.2 1
Los Angeles 34 -117.9 1
Memphis 35.1 -90.1 0.5
Miami 26.05 -80.3 1
Minneapolis 44.95 -93.25 1
Montreal 45.6 -73.7 1
Nashville 36.2 -86.6 0.5
New Orleans 30.05 -90.3 1
New York 40.85 -73.7 1
Omaha 41.3 -96.05 0.5
Orlando 28.5 -81.3 0.5
Philadelphia 40 -75.2 0.5
Phoenix 33.6 -112 1
Pittsburgh 40.4 -79.95 1
Portland 45.45 -122.55 1
Reno 39.55 -119.7 0.5
Richmond 37.4 -77.3 0.5
Sacramento 38.65 -121.4 0.75
Salt Lake City 40.7 -111.95 0.5
San Antonio 29.55 -98.45 0.5
San Diego 32.8 -117 1
San Francisco 37.6 -122 1
Seattle 47.35 -122.25 1
St Louis 38.65 -90.35 1
Tampa 27.9 -82.4 0.75
Toronto 43.7 -79.5 1
Tucson 32.25 -110.85 0.5
Washington DC 38.9 -77 0.75

Table B.2: Summary of cities and radius.
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Hyperparameter Range Selected value
max depth [6, 10] 9
min child weight [1, 5] 2
eta [0.1, 0.4] 0.3
gamma [0, 1] 0

Table B.3: Summary of hyperparameters and their ranges used in the cross validation and
the selected hyperparameters in the ML configuration.



APPENDIX B. SUPPLEMENT TO CHAPTER 3 82

OH prediction sets # of models Trained on Column data source
General-WRF 1 for all cities All urban WRF-

Chem data
WRF-Chem

General-Satellite 1 for all cities All urban WRF-
chem data

OMI

City-WRF 49, one per city WRF-Chem
data for each
respective city

WRF-Chem

Table B.4: Summary of the di↵erent OH prediction sets used in this work.
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Figure B.1: The kernel density estimate (KDE) plots of HCHO column (a) and NO2 column
(b) from both WRF-Chem and satellite observations.
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Figure B.2: The map of training data size for each city in the city-specific ML training
system.



APPENDIX B. SUPPLEMENT TO CHAPTER 3 85

a) b)

Figure B.3: The evaluation of uncertainty propagated through the uncertainty introduced in
the feature sets. a) The RMSE as a function of uncertainty level prescribed to each feature
denoted by di↵erent colors and b) the augmentation of RMSE with respect to uncertainties
both in NO2 column and HCHO columns. The star symbol marks the uncertainty level for
the satellite retrieval products used in this study; 30% for NO2 column and 60% for HCHO
column, respectively.
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Figure B.4: The relative importance of features of from the generalized model.
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Figure B.5: The relative importance of features from two models representing urban OH
chemistry over Chicago and Atlanta.
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a) b) c)

d) e) f)

Figure B.6: The comparison of probability distributions for features across Chicago and
Atlanta, including a) HCHO VCD, b) NO2 column, c) J(O1D), d) H2O, e) temperature and
f) pressure.
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b) c)a)

Figure B.7: The comparison of average spatial pattern for a) OH directly from WRF-Chem
simulation and OH predicted from the ML model using observation-based features, b) WRF-
Chem + OMI HCHO column and c) WRF-Chem + OMI NO2 column.
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Appendix C

Supplemental material for “Estimate
of OH Trends over One Decade in
North American Cities”

The chapter was adapted from the supplement of: Q. Zhu, J. L. Laughner, and R. C. Cohen
(2022b). “Estimate of OH trends over one decade in North American cities”. Proceedings of
the National Academy of Sciences 119.16, e2117399119
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b)a)

Figure C.1: The decadal average as well as decadal variation of NO2 column observed from
the space. a) The map of decadal average summertime NO2 column between 2005 and
2014 over North America. The selected 49 cities are denoted by circles. b) the frequency
distribution of the relative di↵erence of NO2 column between 2005 and 2014 over selected
cities.
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a) b)

Figure C.2: The decadal average as well as decadal variation of HCHO column observed
from the space. a) The map of decadal average summertime HCHO column between 2005
and 2014 over North America. The selected 49 cities are denoted by circles. b) the frequency
distribution of the relative di↵erence of HCHO column between 2005 and 2014 over selected
cities.
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Figure C.3: The OH trends between 2005 and 2014 predicted by the ML model in 49 cities.
The cities are categorized into 3 groups based on the relative di↵erence between OH in 2005
and OH in 2014. 4 cities shown in orange present a statistically significant increase of OH,
30 cities shown in blue correspond to a statistically significant decrease of OH, whereas the
remaining cities are shown in grey.
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Figure C.4: The relationship of OH versus NO2 column between 2005 and 2014 in Los
Angeles, CA. Both OH and NO2 columns are normalized to their annual average in 2005.
a) shows the the density plot of normalized OH and normalized NO2 column and the linear
fits. b) shows the slopes from the linear regression results in a) over 8 years between 2005
and 2014. The error bar denotes the standard deviation of the fitted slope. 2006 and 2010
are excluded due to missing data.
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Figure C.5: The relationship of OH versus NO2 column between 2005 and 2014 in Denver,
CO, same as Fig. C.4.
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Figure C.6: The slope calculated from linear fitting between normalized OH and normalized
NO2 column among 49 cities over 8 years between 2005 and 2014, same as Fig. C.4 b) and
Fig. C.5 b).
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