
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Polygonal Iteration Space Partitioning using the Polyhedral Model

Permalink
https://escholarship.org/uc/item/6fr1t6km

Author
Shivam, Aniket

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6fr1t6km
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Polygonal Iteration Space Partitioning using the Polyhedral Model

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Aniket Shivam

Dissertation Committee:
Professor Alexander V. Veidenbaum, Chair

Professor Alex Nicolau
Professor Ardalan Amiri Sani

2016

c� 2016 Aniket Shivam

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF ALGORITHMS v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE DISSERTATION vii

1 Introduction 1

2 Background 5
2.1 Polyhedron . 5

2.1.1 Representation of the polyhedron . 6
2.1.2 Dependence and Reuse Relation . 8

2.2 Dependence Analysis in the Polyhedral Model 9
2.3 Transformations . 11

2.3.1 Scheduling and Partitioning based parallelization techniques 13
2.4 Code generation for the Polyhedral Model 13

3 Related Work 14
3.1 Tiling . 14
3.2 Multi-Level Tiling . 15
3.3 Optimal Tile Size and Parametrized Tiling 18
3.4 Modern Tiling Geometries . 18

4 Polygonal Tiling 19
4.1 Determining Reuse using the Polyhedral Model 19
4.2 Partitioning Technique . 21
4.3 Orchestrating Formation of the Partitions 25

4.3.1 Premature Halting . 25
4.3.2 Multi-Level Tiling . 26

4.4 Multi-Reference Statements . 26
4.4.1 Reuse between Multiple Statements 27

4.5 Locality on Parallel Execution of the Partitions 27
4.6 Code Generation paradigm . 27

ii

4.7 Limitations . 28
4.8 Overall Algorithm . 29

5 Case Studies and Experiments 30
5.1 Experimental Setup . 30
5.2 Case Study 1: Two Dimensional Non-Uniform Reuse Pattern 31
5.3 Case Study 2: One Dimensional Non-Uniform Reuse Pattern 35
5.4 Case Study 3 (Seidel-2D) and Case Study 4 (Jacobi-2D): Stencil Computations

with Uniform Reuse Pattern and Multiple References 39
5.5 Speedup and Reduction in Energy Consumption 40

5.5.1 Serial Execution . 40
5.5.2 Parallel Execution . 41

6 Conclusion 43

Bibliography 44

iii

LIST OF FIGURES

Page

1.1 Reuse patterns in loop-nests . 3

2.1 Representation of a valid SCoP . 7
2.2 Representation of a Z-Polyhedron for computing accessed memory 8
2.3 Dependence Polyhedron for a loop-nest . 10
2.4 Dependence Polyhedron for a loop-nest . 12

3.1 Tiling for locality and parallelism . 16
3.2 Rectangular Tiling and Multi-Level Tiling 17

4.1 Classification of iterations - formation of the sets DC1, C1, DC2, C2. 23

5.1 Case 1: Loop-Nest with Two Dimensional Non-Uniform Reuse 31
5.3 Index calculation for DC4 using reuse relation(T). 32
5.2 Partitions of the iteration space in Case Study 1. 33
5.4 Case Study 1 - % of Improvement in L1 and L2 hits, LLC misses and Instruc-

tions Retired . 34
5.5 Loop-Nest with One Dimensional Non-Uniform Reuse 35
5.6 Partitions of the iteration space in Case Study 2. 36
5.7 Case Study 2: Optimal Number of Partitions and Improvement in Hardware

Counters . 38
5.8 Loop-Nest with Uniform Reuse Pattern and Multiple References 39
5.9 Partitions of the iteration space for Seidel and Jacobi stencils. 40
5.10 Performance and Energy consumption improvement. 41
5.11 Speedup (Parallel Execution): Case Study 1 and 2 41

iv

List of Algorithms

Page
1 Polygonal Tile Generation . 29

v

ACKNOWLEDGMENTS

I would like to thank Professor Alex Veidenbaum and Professor Alex Nicolau for their guid-

ance and support during the course of this thesis. Special thanks to Dr. Ro Cammarota for

his technical advice, enthusiasm and teaching abilities that ignited my interest in compiler

research and also lead to the completion of this thesis.

I would also like to acknowledge Professor Ardalan Amiri Sani for serving as committee

member and for teaching an interesting and research oriented course on operating systems.

Also, I would like to thank to Juan Besa Vial for proof reading the entire thesis and giving

pointers on making it easier to comprehend.

Last but not least, I would like to thank my parents for always supporting and understanding

my academic endeavors.

vi

ABSTRACT OF THE DISSERTATION

Polygonal Iteration Space Partitioning using the Polyhedral Model

By

Aniket Shivam

Master of Science in Computer Science

University of California, Irvine, 2016

Professor Alexander V. Veidenbaum, Chair

Loop-nests in most scientific applications perform repetitive operations on array(s) and

account for most of the program execution time. Traditional loop transformations, such

as tiling, leverage data locality and maximize program performance on modern micro-

architectures. These transformations, however, e↵ectively maximize performance of pro-

grams when loop-nests exhibit uniform reuse patterns.

In this thesis, a new loop transformation is presented to target loop-nests with non-uniform

reuse patterns. The proposed loop transformation uses the norms of the Polyhedral Model

to represent the loop-nests and then leverages such a representation to partition the iteration

space into polygonally shaped partitions. These partitions optimize locality resulting in an

improvement in performance for both serial and parallel execution. Improving locality in

parallel execution requires selective mapping of partitions on threads based on the type of

reuse these partitions exhibit.

The experiments on certain loop-nests show that a significant portion of the achievable

performance is missed when applying the traditional loop transformations. Compared to

state-of-the-art Polyhedral Model frameworks, the transformation shows a consistent per-

formance speedup in serial (up to 1.2x over Polly) and parallel (up to 3.17x over PLuTo)

executions for certain loop-nests with non-uniform reuse patterns.

vii

Chapter 1

Introduction

Loop-nests in most scientific applications perform repetitive operations on array(s) and ac-

counts for the majority of the total execution time of the program. Popular benchmarks like

SPEC CPU are evident of the impact of loop-nest on overall performance. Their performance

depend heavily on the locality of the data accessed by the iterations and also on the amount

of parallelism that can be exposed. Data locality depends heavily on the memory hierarchy

of the underlying architecture, especially cache levels, size of the caches and their bandwidth.

Whereas parallelism depends on the set of iterations that can run concurrently on separate

cores.

There are variety of loop transformations for improving the performance of the loop-nests

like tiling, loop-interchange, strip-mining, loop fusion, loop skewing and other optimizations

that have been proposed in the past[36, 5]. These techniques target e�cient utilization of

the cache hierarchy. Tiling or iteration space partitioning has been explored as a major

optimization for improving data locality. Better locality schemes not only reduce the la-

tency in fetching data from lower level caches but also reduce the energy dissipated by the

on-chip/o↵-chip components in fetching data.

In last three decades, various tiling techniques[25, 1, 3] have been proposed. Tiling par-

titions the iteration space into smaller blocks of iterations, known as tiles, such that the

data accessed by the enclosed iterations e↵ectively utilize either a single level of cache or

multiple levels. This loop restructuring transformation also extract tiles so as to maximize

reuse across loop iterations and among statements. Thereafter, an schedule is generated for

these tiles such that they cover the complete iteration space at runtime. The shape and size

1

of the tiles is determined at compile time based on several factors like dependency vectors,

cache sizes, synchronization overhead, etc.

The introduction of Polyhedral Model for powering such optimizations may provide more

insight about the structure and the dependences in the loops. This has an advantage in

scheduling iterations and generating better parallel execution model for the loop-nest[11].

These optimizations are included in the modern compilers, such as LLVM[28], and in combi-

nation with other program transformations speedup the program execution.

Although tiling can successfully speedup the execution of loop-nests which exhibit uniform

reuse pattern, tiling for loop nests with non-uniform reuse patterns has rarely been explored.

The loop-nest in Fig. 1.1a exhibit a uniform reuse pattern since same data is used among

consecutive iterations (I
i,j

and I

i+1,j+1). Whereas, the loop-nest in Fig. 1.1b reuse pattern

changes for every iteration of the outer-most loop, hence the term non-uniform reuse pattern.

These non-uniform reuse pattern arise due to the presence of two or more iteration variables

in the references to an array. For the statement in Fig. 1.1b, the presence of iteration vari-

ables i and j in the reference a[i + 1][j + i] leads to the constant variation in reuse pattern

as the iteration space expands along i.

Tiling loop-nests with non-uniform reuse pattern is challenging because partitioning the

entire iteration space into tiles of regular shape and size is not an optimal strategy. The

distance between iterations that have reuse outgrows these tiles for a large part of the it-

eration space. Symmetric tiles spread over the iteration space forms a recurring pattern

which facilitates easier code generation and less control statement overhead. A tile is an

a�ne hyperplane which can precisely be defined using set of linear inequalities. These linear

inequalities are transformed to control statements during code-generation. The complexity

and irregularity in the tile shape directly escalates the additional instructions (Max, Min,

Ceil and Floor) required in the control statement to define the bounds for the tile in the

control statements. The technique proposed by Meister et. al.[35] for partitioning the itera-

tion space is not constrained to either shape or size of the tiles. Their technique uses a set

of mathematical computations to produce sets of iterations that reuse the same data. The

price of this technique, however, is that for certain reuse patterns the number of partitions

generated may be too high. The instruction overhead in managing these irregular tiles might

overshadow the speedup achieved from the improvement in locality.

2

f o r (i = 0 ; i < N; i++) {
f o r (j = 0 ; j < N; j++) {

b [i] [j]=a [i] [j]+a [i +1][j+1] ;
}

}

(a) Uniform reuse pattern

f o r (i = 0 ; i < N; i++) {
f o r (j = 0 ; j < N; j++) {

b [i] [j]=a [i] [j]+a [i +1][j+i] ;
}

}

(b) Non-Uniform reuse pattern

(c) Reuse pattern for loop in (a) (d) Reuse pattern for loop in (b)

Figure 1.1: Reuse patterns in loop-nests

3

State-of-the-art Polyhedral Model based code optimizers like PLuTo[12, 37] and Polly[22, 38]

can e�ciently tile loop-nests with uniform reuse pattern. But, they ignore RAR (Read-After-

Read) dependence while finding the optimal tile shape. RAR dependence does not present

any challenge in rescheduling the iterations unlike loop-carried dependencies, but impact the

locality of data accesses. This work tries to exploit the presence of RAR dependencies to

create partitions that increase data reuse in caches and hence reducing latency introduced

by fetching from lower level of caches and memory.

In this work, a set of loop restructuring transformations are proposed to improve local-

ity for the loop-nests with non-uniform reuse pattern. This work is an extension to the

technique proposed by Meister et. al.[35]. The contributions from this work are as follows:

1. Variable shaped and sized Polygonal tiling is proposed for the perfectly nested loop-

nests with non-uniform reuse. These tiles are divided into sets based on the reuse

among iterations. Hence, each set of tiles improves locality on multiple levels of cache.

2. Determining the optimal halt condition for the algorithm. This condition assures

that the benefit of such reuse-based partitioning is not outweighed by the instruction

overhead necessary to execute the partitions at run-time.

3. Extending the algorithm to work for programs with multiple references after careful

selection of the references having maximum reuse using a reuse calculation formula.

4. Strategic parallelism generations in such loops by mapping set of partitions, which

possess reuse among themselves, on same core.

5. Extending application of the technique to some well-known scientific stencil bench-

marks that exhibit uniform reuse pattern.

A comparison of the performance between the proposed technique and the state-of-the-art

tiling techniques implemented in Polyhedral Model based code optimizers like Polly and

Pluto is presented. Also, the shortcomings and mathematical limitations of the proposed

technique are mentioned.

4

Chapter 2

Background

This chapter provides the mathematical background1 required to understand the application

of the polyhedral model to transform loop-nests into a set of integer points. Also, a detailed

background is provided on various concepts and techniques used for optimizing loop-nests

using the Polyhedral Model.

2.1 Polyhedron

Definition 1. A�ne Hyperplane The set of all vectors ~v 2 Zn such that ~h.~v = k, where
~

h is a horizontal vector and n 2 Z, defines an a�ne hyperplane.

Conceptually, a hyperplane is an n�1 dimensional a�ne (sub)space in n dimensional space.

For a three dimensional space, a hyperplane can be visualized as a two dimensional slice.

The value of k is di↵erent for a set of parallel hyperplanes, having h as their normal. Vectors

lying on the same hyperplane will produce the same value of k i.e. ~h.~v1 = ~

h.~v2. Hence, the

characterizing feature for representing a set of hyperplanes facing a certain direction is the

normal to these hyperplanes. Each hyperplane partitions the space into two parts: a positive

half-space and a negitive half-space. The function to denote a half-space is represented as:

�(~v) = ~

h.~v + c (constant) (2.1)

1General representation: Z - set of integers, Q - set of rational numbers and R - set of real number.

5

Definition 2. Convex Polyhedron The set of all vectors ~v 2 Rn such that A~v +~

b � 0,

where A is an integer matrix, represents an convex polyhedron.

A bounded polyhedron, also known as polytope, is a space confined by a set of a�ne in-

equalities, where each inequality represents a half-space. Therefore, a convex polyhedron

is a space bounded by a set of hyperplanes. In geometric terms, a convex polyhedron is a

space in which a line segment joining any two points lying inside the polyhedron does not

intersect any face (hyperplane), edge or corner of the polyhedron. For a polyhedron in an

n-dimensional space with m inequalities, A will be a matrix of m x n dimensions, vectors ~v

and ~b will be represented by n dimensional and m dimensional vectors respectively. Since, in

the polyhedral model we are concerned with integer loop bounds and loop iterators, it can

be represented as:

{~v 2 Zn|A~v +~

b � 0} (2.2)

2.1.1 Representation of the polyhedron

The domain of the polyhedron is represented by the set of inequalities derived from the

bounds of each loop present in the loop-nest. A set of inequalities must be written for each

loop to define the bounds for that particular loop iterator. In modern Polyhedral Model

implementations like PLuTo[12, 37], Polly[22, 38] and PolyLib [39], each statement, S, en-

closed in the loop-nest (perfectly nested2 or imperfectly nested3) is represented using the

iteration vector (~i
S

). Each iteration vector is represented as a matrix where each row define

the lower and upper bounds for the nested loops in terms of inequalities, starting from the

outermost to the innermost loop enclosing the statement. Hence, each statement is deter-

mined by a polytope representing its domain (D
S

).

Polyhedral optimizations work on the Static Control Parts (SCoPs) of the program. SCoPs

are parts of the programs for which the control flow and memory access pattern can be

defined at compile time. These parts consist of for-loops and if-conditions. The expressions

defining the loop bounds must be known at time of compilation to generate the correct

polytope. Therefore, SCoP eligible loop bounds are generally the combination of outer loop

iterators and/or a known constant. The same conditions apply to the subscripts of the arrays

2All statements are nested inside the innermost loop.
3Statements are not necessarily nested inside the innermost loop.

6

f o r (i = 0 ; i < N; i++)
f o r (j = 0 ; j < N; j++)

f o r (k = 1 ; k <= i ; k++)
S(i , j , k) ;

(a) Valid SCoP

D

S

=

i j k N 1
0

BBBBBBBBB@

1

CCCCCCCCCA

1 0 0 0 0 i � 0

�1 0 0 1 �1 i  N � 1

0 1 0 0 0 j � 0

0 �1 0 1 �1 j  N � 1

0 0 1 0 �1 k � 1

1 0 �1 0 0 k  i

0 0 0 1 0
0 0 0 0 1

(b) Domain for the statement in the SCoP

Figure 2.1: Representation of a valid SCoP

that are accessed in the loop-nest. The optimizations are performed on all statements that

are present in the SCoP. An example of a valid SCoP and the polyhedral representation of

its domain is shown in Fig. 2.1.

An important aspect of the polyhedral model are constituted by Lattice and Z-polyhedron.

Definition 3. Lattice A subset of Qn generated as a combination of integral number of

vectors ~v
i

, where ~v

i

2 Qn, represents a Lattice (L).

A lattice is an integral lattice if each vector representing it has integral coordinates.

Definition 4. Z-polyhedron An intersection of a polyhedron P and a a�ne full dimen-

sional integral lattice L i.e. Z = P \ L.

The Z-polyhedron is used for representing the accessed data points in a data space D
S

of a

variable generally an array. The bounds for the data space polyhedron D

S

can be generated

using the variable’s subscripts and bounds of the loop variables.

Definition 5. Image The image of a polyhedron P 2 Zn by an a�ne function f : Zn ! Zm

is a Z-polyhedron i.e. Z = {f(~x) 2 Zm|~x 2 P}

An a�ne function mapping each iteration to a data point in the accessed data space, defines

an Image. This a�ne function can be considered as a function based on a Lattice for mapping

a integer point in the polyhedron (iteration) to the data point (memory unit) it accesses.

This is shown in Fig. 2.2.

7

f o r (i = 0 ; i <= N; i++)
f o r (j = 0 ; j <= N; j++)

S : A[3 i] [j +2] = i + j ;

(a) A sample code

P ={i, j|0  i  N, 0  j  N}
L ={3i, j + 2|i, j 2 Z}
Z =P \ L

={3i, j + 2|0  3i  N,�2  j  N � 2}

(b) Derivation of a Z-polyhedron

Figure 2.2: Representation of a Z-Polyhedron for computing accessed memory

Definition 6. Pre-Image The pre-image of a polyhedron P 2 Zn by an a�ne function f :

Zn ! Zm is a Z-polyhedron i.e. Z = {f(~x) 2 Zn|f(~x) 2 P}

Therefore, Image(f�1
, P) = Pre-Image(f, P) i↵ f is invertible.

The Z-polyhedron is an extension to the polyhedra model. It provides precise analysis of pe-

riodic domains i.e. domains containing “holes”. Such cases arise in loop-nests with non-unit

strides and non-unimodular transformations, where the application of general polyhedral

model becomes a challenge. The application and importance of Z-polyhedron for the opti-

mization and parallelization of loop-nests can be found in [43, 34, 33, 23].

2.1.2 Dependence and Reuse Relation

Dependency relation between iterations of a loop-nest can be characterized based on the order

and type (read or write) of usage of the same memory location. Lets assume a sequential

execution of a loop-nest with a single statement S and any two iterations i and j from the

iteration space I. First, if a memory location is read by I

i

after it is written by I

j

during

the execution, then I

i

is flow dependent (or Read-After-Write or RAW) on I

j

. Second, if

a memory location is read by I

i

before it is written by I

j

, then I

i

is anti-dependent (or

Write-After-Read or WAR) on I

j

. Third, if I
i

writes a memory location after it is written

by I

j

, then I

i

is output dependent (or Write-After-Write or WAW) on I

j

. Fourth, similarly

if I
i

reads a memory location after it is read by I

j

, then I

i

is input dependent (or Read-

After-Read or RAR) on I

j

. Input dependence is better characterized as Reuse of a memory

location rather than a dependency. Also, dependencies can also be characterized based on

the existence of dependency for a particular loop. For a nested loops like the following:

f o r (i = 0 ; i < N; i++)

f o r (j = 1 ; j <= N; j++)

8

S : A[i] [j] = A[i] [j �1] + A[i] [j] + A[i] [j +1] ;

There exists an loop-carried dependence in the innermost loop, since there are flow depen-

dence and anti-dependence between successive iterations. But, the outermost loop inhabits

the loop-independent part, since the same flow dependence will exist with or without this

loop. Presence of loop-carried dependence restricts the possibility of parallelization across

the loops, but parallelization may still be exploited for other outer or inner loops that carry

no such dependence.

Definition 7. Dependence Graph The Dependence Graph is a directed multigraph G =

(V,E), where each vertex represents a statement i.e. V = S and every directed edge e (e 2 E)

represents a dependence from the source statement to the target statement.

Another important property of the dependence relation is its transitivity as mentioned in

[8]. The transitivity closure of the dependence relation establishes that a dynamic instance

of S, say S

i

is indirect dependent on another instance, S
j

if there exists a directed path from

S

i

to S

j

in the dependence graph. This property is important for the application of the

optimization technique mentioned in Chapter 4.

An important factor for defining the nature of dependency is the distance of the depen-

dence. This distance represents the instances of S that must be executed between the

execution of the source and the target statement. Based on the distance of dependence, the

dependence relation can be classified into three kinds. First, uniform dependence where the

distance between two dependent statements is constant throughout the iteration space. Sec-

ond, non-uniform dependence where the distance between the source and target statements

varies throughout the iteration space. This can also be looked as varying dependence pattern

across the iteration space. We mainly try to address the issues in optimizing such programs

and propose a solution in the coming chapters. Third, parametric dependence where the

distance is guided by an external parameter which may or may not remain constant.

2.2 Dependence Analysis in the Polyhedral Model

The main step in performing dependence analysis on a polyhedral representation starts with

the definition of the dependence polyhedron (P). This analysis is based on techniques first

presented in [25, 17, 41]. The dependence polyhedron helps in accurately applying the

9

f o r (i = 0 ; i < N ; i++) {
f o r (j = 0 ; j < N ; j++) {
A[i] [j] += A[i] [j+1]+A[i +1] [j] ;

}
}

(a) Loop-nest exhibiting two WAR dependency

(b) Dependences in the iteration space

i j i’ j’ N 1
0

BBBBBBB@

1

CCCCCCCA

0 -1 0 1 0 -1 -j+j’-1 = 0

-1 0 1 0 0 0 -i+i’ = 0

1 0 0 0 0 0 i � 0

�1 0 0 0 1 �1 i  N � 1

0 0 0 0 1 �2 N � 2 � 0

0 1 0 0 0 0 j � 0

0 �1 0 0 1 �3 j  N � 3

(c) Dependence Polyhedron for WAR dependency
(A[i][j] ! A[i][j+1])

i j i’ j’ N 1
0

BBBBBBB@

1

CCCCCCCA

0 -1 0 1 0 0 -j+j’ = 0

-1 0 1 0 0 -1 -i+i’-1= 0

1 0 0 0 0 0 i � 0

�1 0 0 0 1 �2 i  N � 2

0 0 0 0 1 �2 N � 2 � 0

0 1 0 0 0 0 j � 0

0 �1 0 0 1 �2 j  N � 2

(d) Dependence Polyhedron for WAR dependency
(A[i][j] ! A[i+1][j])

Figure 2.3: Dependence Polyhedron for a loop-nest

mathematical models like Farkas lemma that is used for finding the legal schedules for the

hyperplanes. The dependence polyhedron is a collections of linear equalities and inequal-

ities that define the scope of accessed data. This assumes an a�ne relation between the

iterations of the loop-nest and the data accessed within these iterations. The inequalities in

dependence polyhedron are based on the number of loop iterators and parameters involved

in a particular dependency and factors like intra-statement or inter-statement dependency.

Whereas, the equalities represent the relation between the dependent iterations. A explana-

tory example is shown in Fig. 2.3, where first two rows in the dependence polyhedron shows

the dependence relation. State-of-the-art mathematical library isl[49] is used by several

polyhedral optimizers to compute dependences from the polyhedral representation of the

loop-nests.

10

2.3 Transformations

Polyhedral transformations are a combination of several one-dimensional a�ne transforma-

tions. An a�ne transformation can be explained as a transformation of a convex polyhedron

into another convex polyhedron. These transformations maintain the polyhedral representa-

tion, allow further transformation and most importantly fit the requirement of widely used

code generation tools like CLooG[10][16]. Transformations can be divided into two main

categories: unimodular [7, 50] and non-unimodular[29, 44, 45, 51]. Unimodular transforma-

tions generate regular integer polyhedron i.e. loop with unit stride, whereas non-unimodular

transformations may generate sparse integer polyhedron which present di�culties in code

generation since it contain loops with non-unit stride.

A multi-dimensional transformation for a loop-nest is a combination of one-dimensional

transformations, corresponding to each level of the loop-nest, for each of the enclosed state-

ments. For a loop-nest of depth d, the a�ne hyperplane corresponding to a transformation

can be represented as �

k

Si
, where k � d and S

i

represent one of the statements inside the

loop-nest. The reason for k being greater or equal to d is that extra rows are added to the

transformation matrix to accommodate the scalar dimensions as mentioned in [13]. Scalar

dimensions are a constant function with no hyperplane specification. They specify the level

at which the following hyperplanes/transformation for di↵erent statements can be fused

together. The generic mathematical representation of a transformed loop-nest with hyper-

planes (T) and scalar dimensions (~s) is shown in Fig. 2.4c. Scalar dimensions allow e�cient

nesting of loop-nest during code generation. The example in Fig. 3.1 shows the transforma-

tion matrices for a transformation on a code involving matrix multiplication.

Each transformation a↵ecting a statement is supposed to satisfy the dependences involving

the statement mentioned in the dependence polyhedron P . This is accomplished by using

heavy machinery like Farkas Lemma which is a non-negative linearized combination of

boundary-hyperplanes of the dependence polyhedron. This ensures the legality of transfor-

mation too, since each transformation must satisfy the Farkas Lemma representation. A

detailed application and methodology for finding a�ne transformation using Farkas Lemma

can be seen in [13]. The same condition applies for finding parallelism in the loop-nest.

If all the dependences that were not satisfied until level k � 1 are satisfied at level k of

the loop-nest, then the loop at level k is said to be communication-free and hence can be

parallelized. An automatic model for maximizing locality and exploiting parallelism using

Polyhedral Model is described in [12, 11].

11

f o r (i = 0 ; i < M; i++) {
f o r (j = 0 ; j < N; j++) {

f o r (k = 0 ; k < K; k++) {
S1 :C[i] [j]+=A[i] [k]⇤B[k] [j] ;

}
}

}
f o r (i = 0 ; i < M; i++) {

f o r (j = 0 ; j < N; j++) {
f o r (k = 0 ; k < K; k++) {

S2 : D[j] [k]+=C[i] [j] ;
}

}
}

(a) Original Code

f o r (j = 0 ; j < N; j++) {
f o r (i = 0 ; i < M; i++) {

f o r (k = 0 ; k < K; k++) {
S1 : C[i] [j]+=A[i] [k]⇤B[k] [j] ;

}
f o r (k = 0 ; k < K; k++) {

S2 : D[j] [k]+=C[i] [j] ;
}

}
}

(b) Optimized Code

T
Si =

0

BBBBBBB@

1

CCCCCCCA

�

1
Si

�

2
Si

�

3
Si

.

.

.

�

k

Si

= T
k⇥d

.

~

i

S

+ ~s , where ~s =

0

BBBBBBB@

1

CCCCCCCA

s1

s2

s3

.

.

.

s

k

(c) Generic transformation matrix for a statement S
i

T
S1(~iS1) =

i j k
0

B@

1

CA

0 1 0
1 0 0
0 0 0
0 0 1

0

@

1

A
i

j

k

+

0

B@

1

CA

0
0
0
0

(d) Transformation matrix for S1

T
S2(~iS2) =

i j k
0

B@

1

CA

0 1 0
1 0 0
0 0 0
0 0 1

0

@

1

A
i

j

k

+

0

B@

1

CA

0
0
1
0

(e) Transformation matrix for S2

Figure 2.4: Dependence Polyhedron for a loop-nest

12

2.3.1 Scheduling and Partitioning based parallelization techniques

Parallelization techniques using the Polyhedral Model can be categorized into two major cat-

egories: Partitioning-based and Scheduling-based. Partitioning-based approaches [31, 30, 32]

scan the iteration space to identify a�ne partitions that optimize for parallelism and mini-

mize communication, whereas Scheduling-based approaches[18, 19] schedule iteration so as

to maximize number of parallel sections of the iteration space with minimum synchroniza-

tion. The technique presented in Chapter 4 fits as the partition-based technique, since we

determine a�ne partitions that can be executed in parallel.

2.4 Code generation for the Polyhedral Model

The code generation for Polyhedral Model was first presented in [4] based on the Fourier-

Motzkin Elimination [48]. However, this method was restricted to a single polyhedron code

generation and unimodular transformation. The major challenge in code generation for the

Polyhedral Model is the size and redundancy of the generated code. This problem gets

worse when there are multiple polyhedron to generate code for. This problem was addressed

in [20] by merging the loop-nest of di↵erent polyhedron but it generates redundant control

statements. This work also proposed a method to generate code for non-unimodular trans-

formations. The work from [42] improved on the problem of redundant control statements

by computing the union of all the polyhedrons and thereafter, generating code for subsets of

disjoint polyhedrons. This work was later improved by [9] in terms of performance by reduc-

ing redundant polyhedral computations by applying pattern matching between polyhedrons.

This is implemented in the widely used polyhedral code generation tool, CLooG [16].

13

Chapter 3

Related Work

Multi-level caches and shared o↵-chip memory between processors requires a smart use of

memory to reduce communication overhead and thus achieving better performance. It is

critical to: (1) maximize the number of cache hits and (2) minimize the number of cache

access from lower levels of memory. An e↵ective approach from the compiler’s point-of-view

is to reorder instructions so that instructions accessing the same data (or data on same cache

line) are executed in proximity. In terms of loop-nests, this implies to grouping iterations

so as to exploit data locality. Doing so reduces the time and energy spent in transferring

data from o↵-chip memory or the Last Level of Cache (LLC) to L1 and/or L2 caches or even

registers. A loop transformation for generating such groups of iterations is called Tiling.

3.1 Tiling

Tiling divides an iteration space into uniformly shaped partitions with their size being either

pre-determined based on the underlying architecture or dynamically varied (using parame-

terized loop bounds) during execution. In addition to improving locality, tiling also controls

the granularity for parallelism to reduce the communication overhead across tile boundaries.

Tiling can be a recursive transformation for exploiting locality on di↵erent levels of memory

hierarchy. Tiling as mentioned in [50] may sometimes be referred as blocking [26], strip-mine

and interchange and iteration space partitioning. The legality conditions for tiling are pre-

sented in [25, 51] make sure that the tiling hyperplane does obey all the dependences in the

loop-nest.

14

Generation of tiles generally doubles the number of loops in a loop-nest. The inner half

of the loop-nest executes the iterations within a tile and the outer half of the loop-nest de-

termines the execution order of the tiles. This increases the control overhead of the program

compared to the original program. This overhead is a drawback of using Tiling. An example

loop-nest shown in Fig. 3.1a has loop-carried dependencies. The code is then tiled with

the code-optimizer Pluto[37] for locality and parallelism. Since, it carries dependences along

direction (0,1) and (2,1), tile execution (either serial or parallel) must not violate any of

these dependences across the tile boundaries when executed in parallel.

3.2 Multi-Level Tiling

Tiling was extended to skewed tiling by [25] for perfectly nested loops to improve locality

for two-levels of cache. The work in [1, 2] provided a theoretical framework for deriving par-

allelepiped tiling for minimal communication among multi-processors with shared memory.

They also present a mathematical methodology for computing the memory/data footprint

for an iteration space and for estimating the communication required among processors. An-

other such method for computing the integer points (data points) accessed in a loop using

the Polyhedral Model is shown in [15] by computing the Ehrhart polynomials. Tiling for

imperfectly nested loops was first proposed in [3] by applying concept of forming a product

space i.e. the cartesian product of each statement’s iteration space to apply transformations.

Modern optimizers like Pluto[12] can handle and optimize imperfectly nested loops. Multi-

level tiling for a Matrix-Multiplication kernel is shown in Fig. 3.2. The matrix multiplication

kernel is optimized for two level tiling using Pluto is shown in Fig. 3.2c, where outer-most

three loops (t1, t2 and t3) execute tiles which can be seen as sets of sub-tiles. These sub-

tiles that are parsed by the subsequent three loops (t4, t5 and t6). Hence, accomplishing

multi-level tiling for two levels in the memory hierarchy.

Tiling presents a challenge for multi-level cache since finding the optimal tile size should be

based on parameters such as the capacity of each level of cache and the memory bandwidth.

This issue has been addressed by [46, 14] for determining the optimal tile size at compile

time.

15

f o r (i = 0 ; i < N; i++) {
f o r (j = 0 ; j < N; j++) {

a [i] [j] = a [i +1] [j]+a [i +1] [j +1] ;
}

}

(a) Original Code

#de f i n e c e i l d (n , d) c e i l (((double) (n)) / ((double) (d)))
#de f i n e f l o o r d (n , d) f l o o r (((double) (n)) / ((double) (d)))

/⇤ Inte r�t i l e l oops t1 and t2 ⇤/
f o r (t1 = 0 ; t1 < N; t1++) {
#pragma omp p a r a l l e l f o r p r i va t e (t3 , t4)

f o r (t2 = max(0 , c e i l d (2⇤ t1�N+1 ,2)) ; t2 < min(f l o o r d (N�1 ,2) , t1) ; t2++) {
/⇤ Intra�t i l e l oops t3 and t4 ⇤/

f o r (t3 = 2⇤ t1�2⇤t2 ; t3 <= min(N�1 ,2⇤ t1�2⇤t2 +1); t3++) {
f o r (t4 = 2⇤ t2 ; t4 <= min(N�1 ,2⇤ t2 +1); t4++) {

a [t3] [t4] = a [t3] [t4+1] + a [t3 +1] [t4 +1] ;
}

}
}

}

(b) Pluto optimized code: Tiling (Tile size = 2 ⇥ 2) with OpenMP directives for parallelism

(c) Tiling pattern (Tile size = 2 ⇥ 2, N = 8): Tiles are executed as
numbered (T1, T2, T3,... and so on). Parallelism is achieved by exe-
cuting same numbered tiles in parallel. Arrows represent dependence.

Figure 3.1: Tiling for locality and parallelism
16

f o r (i = 0 ; i < M; i++)
f o r (j = 0 ; j < N; j++)

f o r (k = 0 ; k < K; k++)
C[i] [j] = beta⇤C[i] [j] + alpha⇤A[i] [k] ⇤ B[k] [j] ;

(a) Original Code

/⇤ Inter�t i l e l oops t1 , t2 and t3 ⇤/
f o r (t1=0; t1<=f l o o r d (M�1 ,8) ; t1++)

f o r (t2=0; t2<=f l o o r d (N�1 ,128) ; t2++)
f o r (t3=0; t3<=f l o o r d (K�1 ,8) ; t3++)

/⇤ Intra�t i l e l oops t4 , t5 and t6 ⇤/
f o r (t4=8⇤t1 ; t4<=min(M�1 ,8⇤ t1 +7); t4++)

f o r (t5=8⇤t3 ; t5<=min(K�1 ,8⇤ t3 +7); t5++)
f o r (t6=128⇤ t2 ; t6<=min(N�1 ,128⇤ t2 +127); t6++)
C[t4] [t6] = beta⇤C[t4] [t6] + alpha⇤A[t4] [t5] ⇤ B[t5] [t6] ;

(b) Single Level of Tiling for L1 cache (Tile size = 8 ⇥ 128 ⇥ 8)

/⇤ Level 1 T i l i n g : Inte r�t i l e l oops t1 , t2 and t3 ⇤/
f o r (t1=0; t1<=f l o o r d (M�1 ,128); t1++)

f o r (t2=0; t2<=f l o o r d (N�1 ,256); t2++)
f o r (t3=0; t3<=f l o o r d (K�1 ,128); t3++)

/⇤ Level 2 T i l i n g : Inte r�t i l e l oops t4 , t5 and t6 ⇤/
f o r (t4=16⇤ t1 ; t4<=min(f l o o r d (M�1 ,8) ,16⇤ t1 +15); t4++)

f o r (t5=2⇤t2 ; t5<=min(f l o o r d (N�1 ,128) ,2⇤ t2 +1); t5++)
f o r (t6=16⇤ t3 ; t6<=min(f l o o r d (K�1 ,8) ,16⇤ t3 +15); t6++)

/⇤ Intra�t i l e l oops t7 , t8 and t9 ⇤/
f o r (t7=8⇤t4 ; t7<=min(M�1 ,8⇤ t4 +7); t7++)

f o r (t8=8⇤t6 ; t8<=min(K�1 ,8⇤ t6 +7); t8++)
f o r (t9=128⇤ t5 ; t9<=min(N�1 ,128⇤ t5 +127); t9++)
C[t7] [t9]=beta⇤C[t7] [t9]+alpha⇤A[t7] [t8]⇤B[t8] [t9] ;

(c) Multi-Level of Tiling for L1 cache (8 ⇥ 128 ⇥ 8) and L2 cache (128 ⇥ 256 ⇥ 128)

Figure 3.2: Rectangular Tiling and Multi-Level Tiling

17

3.3 Optimal Tile Size and Parametrized Tiling

Determining the tile size at compile-time usually produce suboptimal solution since the

cache sizes for the target architecture are not known in many situations. Therefore, using

symbolic parameters - left to be determined at runtime - as loop parameters presents an

opportunity for dynamic optimization. Parameterized tiling techniques[47, 27] based

on the Polyhedral Model has shown that it is possible to get comparable, if not better,

performance and parallelism[24] from the parameterized tiled loop-nests as compared to

statically compile-time generated tiled loop-nests. Parametric tiling presents challenges in

scheduling tiles for both single core or multi-core processing in the presence of dependencies

because tile shapes and size may vary during runtime optimization of the code. An attempt

to handle this problem was made in [24] by adding code to the program at compile time

which at runtime generate sets of tiles that can be executed in parallel and also generate the

schedule for these sets. The technique presented in Chapter 4 is independent of the tile size

constraint. The size of the tiles is solely determined by the reuse pattern of the loop-nest.

3.4 Modern Tiling Geometries

In addition to the variable sized tiles, some recent work on the exploration of newer tiling

geometries have shown some promise, especially for stencil computations. The work in [6]

shows that diamond-shaped tiles - when executed in parallel - can achieve concurrent start

for the tiles which might not have been possible with regular rectangular/parallelogram tiles.

Tiling in the shape of variable-sized Hexagons[21] provides better locality and concurrent

execution of tiles for parallel architectures like GPUs. But, varying tile shapes for better

locality has not received similar attention. The Polygonal tiling technique presented in the

next chapter is not bound to a specific tile shape. Instead, tile shapes are determined based

on the iteration space’s reuse pattern.

18

Chapter 4

Polygonal Tiling

In this chapter, the technique for generating the polygonal partitions of a loop-nest is pre-

sented. This loop transformation exposes locality in the loop-nests exhibiting non-uniform

reuse pattern and therefore improving the performance. This transformation is an improve-

ment over the partitioning technique described in [35] in the following ways:

• A halt condition is proposed for the original technique such that the overhead due

to control statements for managing partitions does not overshadow the performance

gained from the improvement in locality.

• Improvised code generation for e�cient execution of polygonal partitions.

• A technique for the mapping and scheduling partitions on threads during parallel

execution of loops with no data dependence is suggested.

• An application to multi-reference statements and references across statements is also

described.

4.1 Determining Reuse using the Polyhedral Model

Based on the mathematical representation of loop-nests in the Polyhedral Model as described

in Chapter 2, mathematical equations can be derived for identifying the data accessed by the

references in a statement. Each instance of a statement, S, enclosed in a loop-nest may also

be defined by an iteration vector I for the multi-dimensional iteration space. For instance, in

19

an iteration S accesses the data from an array A, then using Equation 4.1 the exact location

of the data can be calculated. In the equation, A(I) represents a data point accessed in A.

The reference matrix, R, is based on the coe�cient of the iteration variables in the subscript

representing the data access in A. Whereas, the o↵set vector, r, represents the constant

from the subscript. For a D-dimensional array A, with N being the depth of the loop-nest,

R will be a D⇥N matrix and r will be a D-dimensional vector identifying an o↵set in each

dimension.

A(I) = R⇥ I + r,where I represents an iteration. (4.1)

To provide a explanatory example, consider the following loop-nest:

f o r (i = �N; i <= N; i++) {
f o r (j = �N; j <= N; j++) {

X[i , j] = Y[i , i+j +3] ⇤ Y[i+j , j] ;

}
}

The reference Y[i,i+j+3] in the above example references a two dimensional array Y enclosed

in a two dimensional loop-nest. Therefore, R will be a 2 ⇥ 2 matrix,

1 0

1 1

!
. Each row

represent the projection of the reference along each dimension of the array i.e. value of

subscript in each dimension (i and i+j+3). Whereas, the column represents the coe�cient

associated with each iteration variable (i and j) of the loop-nest. The o↵set vector r is a

column vector,

0

3

!
, representing the o↵set for reference along every dimension i.e. the

constants in the subscript. An iteration can be substituted using a column vector I,

i

j

!
.

Each reference to the array is an unique combination of (R, r). The pair is represented

as � to locate the accessed data point by an iteration. � is a function which computes the

image of the polyhedron. In the above loop-nest, the two references to the array Y are

written as follows:

�
i,i+j+3 =

1 0

1 1

!
I+

0

3

!
and �

i+j,j

=

1 1

0 1

!
I+

0

0

!

Let’s say there is reuse of a data by two di↵erent references �
↵

and �
�

in iterations I
↵

and I

�

respectively. The dependence between two iterations can be formally described by Equation

20

4.2.

�
↵

= �
�

, R

↵

I

↵

+ r

↵

= R

�

I

�

+ r

�

(4.2)

Therefore, as suggested in [35], the temporal reuse relation or dependence relation T between

I

↵

and I

�

can be formally represented by Equation 4.3, deriving from Equation 4.2.

R

�1
�

R

↵

I

↵

+R

�1
�

(r
↵

� r

�

) = I

�

, T

↵�

I

↵

+ t

↵�

= I

�

, i↵ R is invertible. (4.3)

The reuse relation T is a combination of (T
↵�

, t

↵�

), where T
↵�

= R

�1
�

R

↵

and t

↵�

= R

�1
�

(r
↵

�
r

�

). Substituting a particular iteration in place of I
↵

yields another iteration (I
�

) that reuses

the same data.

An important condition to be noted here is: if and only if R is invertible. It is a neces-

sary condition for the invertibility of T and computing the reuse relation T . Therefore, the

reference matrix R needs to be an square matrix. This implies that it is critical for the

application of this technique that the dimensions of the involved array is same as the depth

of the loop-nest. This in turn makes possible to determine that the data accessed by I

�

using

�
�

is also accessed by I

↵

using �
↵

, I
↵

= T

�1
↵�

I

�

- T�1
↵�

t

↵�

.

Therefore, the temporal reuse relation T = (T, t) for the loop-nest in the example is:

T =

0 �1

1 1

!
and t =

�3

3

!
using Equation.(4.3)

In the example, to check if the data accessed by an iteration, say i = 3 and j = 2, using

reference �
i,i+j+3, is also accessed by another iteration using the reference �

i+j,j

. Substituting

the iteration vector by (3,2) in Equation 4.3,

0 �1

1 1

!
3

2

!
+

�3

3

!
, yields vector

(-5,8). Therefore, it can be concluded that iterations (3,2) and (-5,8) have reuse.

4.2 Partitioning Technique

The partitioning technique proposed in this work requires the representation of the loop in

the polyhedral framework. The goal of the partitioning technique is to identify and execute

non-adjacent portions or partitions of the iteration space in an order which ensures that

21

the data is reused cache before being flushed out. Whereas, in an unoptimized version of

the program, this data would have been flushed out of the cache before its reuse. These

partitions are thereafter grouped based on the locality of the data their iterations access.

Hence, all the partitions accessing the same set of data are agglomerated.

For the mathematical formulation of the technique, assume there are two references �
↵

and

�
�

to an array in a single statement in the loop nest. The primary step is to partition the

iteration space (D) in three sets denoted by L, P1 and P2.

• P1 contain iterations that reference the data using �
↵

that another iteration in D
accesses by �

�

i.e. these iterations have an image in D using relation T .

• Iterations referencing the data using �
�

that is also referenced by another iteration in

D using �
↵

form set P2. These iterations are the images of the iterations in P1. In

other words, they have a Pre-Image in D (Image(T �1,D)).

• The rest of the iterations in D i.e. the iterations that reference the data which is not

referenced by another iteration are denoted by L. These iterations neither project nor
they are projected in D using T . Hence, D = P1+P2+L.

The sets P1 and P2 can be further categorized into three subsets C, D1 and D2, in addition

to L.

• C: These iterations belong to both P1 and P2, i.e., C=P1 \P2. Data accessed by these

iterations using both the references (�
↵

and �
�

) is also accessed by other iterations.

• D1: These iterations belong to P1 only, i.e., D1=P1-C or D1=P1-P2. The data accessed

by �
↵

of these iterations is accessed by other iterations. Data accessed by �
�

is not

reused.

• D2: These iterations belong to P2 only, i.e., D2=P2-C or D2=P2-P1. Similarly, the data

accessed by these iterations using �
�

is reused, whereas data accessed by �
↵

remains

unused.

After categorizing the iterations based on the reuse of their accessed data, a further sub-

categorization is performed such that each subset when executed in an order maximize

the temporal locality. That is, iterations having reuse among them and forming smaller

partitions(DC
k

and C
k

) are linked together. Fig. 4.1 shows an graphical illustration of

categorizing iterations.

22

(a) DC1 (b) C1

(c) DC2 (d) C2

(e) Set Representation

Figure 4.1: Classification of iterations - formation of the sets DC1, C1, DC2, C2.

23

• DC1: D1 iterations that link to D2 iterations by T , i.e., DC1 = D1 \ T �1(D2).

• C1: C iterations that are linked to themselves by T , i.e., T (C1) = T �1(C1).

• DC2: D1 iterations that link to C iterations that link to D2 iteration, i.e., D1 iterations

that link to D2 iterations by T 2, DC2 = D1 \ T �1(C) \ T �2(D2).

• C2: The remaining C iterations that form cyclic-link with one other iteration in C i.e., C
iterations that are linked to themselves by T 2, C2 = C\T �1(C)\{I 2 C|T 2

I+Tt+ t =

I}� C1.

After k repetitions of the previous steps:

• DC
k

: D1 iterations that link to chain of k � 1 C iterations and at the end link to a D2

iteration by T k, i.e., DC
k

= {I 2 D1|Tt + t 2 C, T 2
I + Tt + t 2 C,, T k

I + T

k�1
t +

...+ Tt+ t 2 DC2}.

• C
k

: The remaining C iterations that are linked to themselves by T k forming a cyclic-

link of k C iterations, i.e., C
k

= {I 2 C|Tt+ t 2 C, T 2
I + Tt+ t 2 C,, T k

I + T

k�1
t+

...+ Tt+ t = C}� {C1 ++ C
k�1}.

These repetitive steps generate partitions based on the length of consecutive iterations shar-

ing data reuse. This partitioning technique requires a halting condition such that the number

of steps of the algorithms, k, can be determined and so does determines the number of par-

titions that it creates. As mentioned in [35], the value of k can be chosen as follows:

(a) if after the k

th repetition, the entire iteration space (D) is completely partitioned. This

value of k can be pre-computed. When T is represented in the form:

T =

T t

0...0 1

!

D is completely partitioned after k repetitions, if T k is an identity matrix.

(b) if value of k is preset, the algorithm stops after the k repetitions and put the rest

of the iterations in C
k+1.

The partitions categorized as either DC
i

or C
i

, where 1  i  k, are disjoint partitions

spread across the iteration space. Therefore, the partitions labelled as DC
i

can be numbered

24

based on the position of their containing iterations in the chain. In the DC
i

partitions, the

first partition containing only D1 iterations are labelled as DC0
i

. The next i � 1 partitions

containing C iterations are labelled as DC1
i

, DC2
i

,...,DCi�2
i

and DCi�1
i

. The last partition in

the chain containing D2 iterations is labelled as DCi

i

. The same naming paradigm is followed

for C
i

partitions. These i partitions are labelled as C0
i

, C1
i

,...,Ci�2
i

and Ci�1
i

. The number of it-

erations in the partitions of similar type is always equal, since the iterations in the successive

partitions are the images of the iterations in the previous partition.

4.3 Orchestrating Formation of the Partitions

4.3.1 Premature Halting

An indiscriminate application of the algorithm introduce overhead at run-time due to large

number of small sized partitions, which is not considered in the halting conditions defined

above. In fact, such halting conditions do not take into the account the fact that the increase

in the number of partitions increases the control statement overhead in the restructured

loop-nest. This leads to partitions with very few iteration, whose gain in performance from

better locality is overshadowed by the control overhead needed to manage such partitions.

Also, the technique confines to loop nests with non-uniform reuse, but does not explore its

applicability on uniform reuse loop nests like stencils, which are explored in the next chapter.

In this work, a termination method for this technique is proposed so that the control state-

ment overhead does not overshadow the speedup gained through maximizing locality, by

predicting minimum tile size, so that speedup remains intact. Specially in loop-nests where

the longest chain of linked iteration is very long, i.e., T k generates an identity matrix for a

very high value of k, say k

max

, it is critical to find an optimal value of k < k

max

to protect

gained speedup from increasing control overhead. This is applicable to most loop nests with

one dimensional non-uniform reuse pattern. Therefore, the algorithm is halted after parti-

tioning for T k and the remaining iterations form partition C
k+1. From the experiments, it

is determined that the algorithm must be halted if the number of iterations in generated

partitions is below 25⇥ 25.

25

4.3.2 Multi-Level Tiling

The partitions generated on each repetition of this technique are labelled as DC
i

and C
i

,

where 1  i  k. Partitions labelled as DC
i

or C
i

are set of separate and distantly located

partitions of the iteration space. The execution order of these partitions influences the

improvement in locality or improved cache hit-miss ratio at a certain cache level. A single

partition targets the improvement in locality in the smallest cache with the least expensive

data transfer cost, ideally L1 cache. The set of partitions in DC
i

or C
i

targets a larger cache

that can be either L2 or L3 cache. This technique guarantees that for loops with non-uniform

reuse pattern, the cost in terms of time spent in fetching data for reuse is reduced by making

it available in closest possible cache level.

4.4 Multi-Reference Statements

In this work the technique is also extended to statements having multiple references to the

array as seen in CPU benchmarks and also to stencil computations that exhibit fixed pattern

reuse in multiple directions. Every pair of temporal reuse relations lead to di↵erent parti-

tions which on combining would generate a single partition. Reuse along multiple directions

create a complex network of iterations linked by T , therefore it is important to eliminate

reuse relations such that iterations do not link to themselves by either T or T 2. For exam-

ple, the reuse vector ~v
i,j�1 and ~v

i,j+1 link themselves by T 2. Therefore, one of them must be

eliminated. Also, ~v
i,j

must be eliminated since it links to itself by T . One drawback of the

original algorithm is that some pairs of reuse vectors produce partitions which consume the

entire iteration space like ~v

i,j+1 and ~v

i+1,j. These pairs are eliminated. The aim is to find

the ‘pair ’ (best set of two references) from all the references that generate the best possible

partitions for maximizing locality.

Another heuristics to choose the pair is to select it based on the amount of reuse in the

partitions that it creates. A reuse count function as shown in Equation 4.4 is used to

predict the amount of reuse in the partitions can be appended in the original technique. This

step involves choosing the best pair out of every set of two references - from those left after

eliminating the redundant references - based on the amount of reuse that can be calculated

from size of DCs and Cs sets. When the algorithm is prematurely halted to reduce control

statement overhead as described in the previous section, the residual iterations that form

26

C
k+1 are not counted towards the reuse.

Reuse(�
↵

, �
�

) =
kX

i=1

i⇥ |DC0
i

|+
kX

i=1

i⇥ |C0
i

| (4.4)

4.4.1 Reuse between Multiple Statements

This technique can also be extended to multiple statements enclosed in a loop-nest. Since,

reuse of data from an array might occur between references spanning across multiple state-

ments. These multiple references can be reduced to the best pair of references exploiting the

maximum locality.

4.5 Locality on Parallel Execution of the Partitions

The iteration in the loop-nests without any loop-carried dependences (RAW, WAR and

WAW) can be executed in parallel without any constraints. But tiling such loops can improve

the performance by improving locality so that the cost of data transfer is reduced. During

parallel execution more fetches from private memory and lesser fetches from the shared

memory improves the performance. Scheduling each kind of partitions (DC
i

and C
i

, 1 
i  k) on di↵erent threads achieves the improvement in locality, since each thread finds the

required data in private memory.

4.6 Code Generation paradigm

The code generation for these partitions begins by analyzing the polyhedron representation

for each partition. This polyhedron representation contains the constraints (boundary hy-

perplanes) that define the a�ne boundaries for the partitions. These constraints are then

scanned using the Fourier-Motzkin algorithm implemented in Polylib [39] and also using

tools like CLooG[10][16]. Cloog generates code by scanning the polyhedrons and performs

the union of distinct polyhedron to produce code with the least control statement overhead.

The work in [35] suggests a methodology to scan just the initial partition from each category

i.e. DC0
i

for the DC
i

type partitions and C0
i

for C
i

type partitions. The next steps is to

derive the subscripts for the next iterations in the link using the reuse relation T . Let, I, a

27

column vector, represent the iterations in the DC0
i

. The subscript for the iterations in the

following partitions DC1
i

, DC2
i

,..., DCi

i

are derived from T (I), T 2(I),..., T i(I) respectively.

The locality is exposed in the successive statements since there is reuse between I and T (I)

iteration, then in T (I) and T 2(I) iteration, etc.

This methodology is e�cient unless the value of k is high in which case it enormously

expands the code size. The loop-nest for DC
i

and C
i

partitions encloses i + 1 and i state-

ments respectively. For some value of k, the code will have a minimum of k loop-nests for

either DC or C type partitions and maximum of k ⇥ 2 (k DC plus k C) loop-nests. Each of

them containing statements between 0 and k. For a higher value of k, a better solution is to

find the union of the polyhedron representing a type of partitions (DC
i

or C
i

) to generate code.

Also, since each partition in DC
i

or C
i

type partitions contain equal iterations, they tend to

form similar geometries. These geometries are recurring patterns and hence code generation

for them requires slight modification in the boundary conditions of the control statements.

These modification can be captured to form a basis for iterating through each partition of a

particular type. Hence, reducing the total count of loop-nests in the code.

An important part of the speedup comes from the optimal computational paradigm of these

partitions which include re-partitioning the generated partitions to reduce boundary check

overheads. This is performed by computing these partial partitions and scanning them so

as compute multiple partitions in a single loop.

For generating parallel code, the use of OpenMP R� Sections is proposed. It allows the

selective mapping of a certain type of partitions onto a single thread. This improves the

locality of each thread which in turn reduces the fetching of same data from shared memory

on multiple threads.

4.7 Limitations

The limitations of this technique are:

• Inapplicability to loops with references that do not generate an invertible reference

matrix R and hence an invertible T . The current state of Z-Polyhedral model could

not eliminate this limitation of the technique.

28

• Inability to generate a schedule of the partitions for a loop-nest with data dependence

without destroying locality. If the execution of partitions as per the technique violates

any data dependence, then modifying the execution order without violating dependence

disrupts locality.

4.8 Overall Algorithm

Algorithm 1 Polygonal Tile Generation

1: Input: A loop-nest with potential reuse on a dataset (array).
2: Eliminate set of references that link iterations to themselves by either T or T 2. (Section

4.4)
3: for each set of two references (�

↵

, �
�

) to the array do
4: Define the Reuse Relation T using the two references �

↵

and �
�

.
5: Generate coarse partitions of the iteration space (D):
6: P1 (Image(T ,D)), P2 (Image(T �1,D)) and L (No reuse).
7: Categorize P1 and P2 into:
8: C=P1 \ P2, D1=P1 � P2 and D2=P2 � P1.
9: while D is not completely partitioned do
10: Create partitions (DC

i

and C
i

) that have iterations linked by relation T i.
11: if Iterations in the generated partitions is below 25⇥ 25 then
12: k = i (Since the algorithm is halted, k is set to i.)
13: Put rest of the iterations in C

k+1.
14: break
15: end if
16: Increment i.
17: end while
18: end for
19: Remove the set of references that produce a single partition which consume the entire

iteration space. (Section 4.4)
20: On the remaining set of references, apply the Reuse Count Formula (Equation 4.4)

to estimate the amount of reuse.
21: Choose the pair having the maximum reuse in their polygonal partitions for code gen-

eration.
22: Scan the polygonal partitions using the Fourier-Motzkin algorithm to generate the

boundaries for the partitions.
23: Use the code generation tools like CLooG with modifications so as to generate array

subscripts using the function T i(I).
24: Output: Polygonally tiled iteration space that maximizes locality.

29

Chapter 5

Case Studies and Experiments

In this chapter, four case studies on loop-nests with non-uniform reuse pattern are presented.

These studies are supported with experiments and comparisons with state-of-the-art loop

transformation techniques.

5.1 Experimental Setup

In the following sections, four case studies are presented. The loop-nests shown in these

studies exhibit di↵erent styles of reference. These styles are:

• Two Dimensional Non-Uniform Reuse: The reuse pattern in the loop-nest varies

along both dimensions of a two dimensional iteration space. This occurs when both of

the references to the array has more than one iteration variables that govern the access

pattern, it leads to a non-uniform reuse along both the dimensions.

• One Dimensional Non-Uniform Reuse: The reuse pattern varies along a single

dimension. This occurs when only one of the references has two or more iteration

variables to govern the access pattern.

• Uniform Reuse: Symmetrical reuse is present in various scientific computations like

stencil computations. The reuse of data in these computation is generally among neigh-

boring iterations along a certain direction(s) that lead to the uniform reuse pattern.

30

• Multiple References: Many benchmarks like PolyBench[40] exhibit loop-nests with

multiple references to an array in a single statement. These references lead to reuse

along various directions. Therefore, it requires analysis of all the references before

partitioning such iteration space for locality.

For each study, the performance of the Polygonal Iteration Space Partitioning technique is

compared against code optimized using the state-of-the-art Polyhedral Model based code

optimizers Polly (LLVM Plugin)[38] for serial execution and PLuTo[12, 37] for parallel exe-

cution. Polly is chosen for parallel execution because it generates better schedules for regular

tiles on parallel execution and supports Diamond tiling. The compiled codes are analyzed

for performance on Intel’s Sandy-Bridge Core i7-2600 CPU @ 3.40GHz. The processor has

4 cores (8 threads) with 256 KB L1 I/D cache, 1024 KB L2 cache and 8 MB LLC. Hardware

performance counters were analyzed for measuring performance metrics.

5.2 Case Study 1: Two Dimensional Non-Uniform Reuse

Pattern

f o r (i = �N; i <= N; i++) {
f o r (j = �N; j<= N; j++) {

X[i , j]= Y[i , i+j +3] ⇤ Y[i+j , j] ;

}
}

Figure 5.1: Case 1: Loop-Nest with Two Dimensional Non-Uniform Reuse

In the loop-nest shown in Fig. 5.1, the references to the array Y can be represented as:

�
i, i+j+3 =

1 0

1 1

!
I+

0

3

!
, �

i+j, j

=

1 1

0 1

!
I+

0

0

!

Therefore, the temporal reuse relation T = (T, t) can be calculated using Equation 4.3 as:

T =

1 0

1 1

!
, t =

�3

3

!

31

For this case k comes out to be 6, since T 6 is an identity matrix. Therefore, the partitioning

process would terminate after six repetitions of the core algorithm. The remaining iterations

in C are placed in partition C6 as described in the technique. The graphical representation

of the partitioned iteration space is shown in Figure 5.2a [35]. The partitioning algorithm

generates a fixed number of partitions, which is independent of the matrix size. Hence,

the partitions generated from this technique are scalable with the dataset size. Since, the

maximum value of k is 6, it generates a small number of partitions which suggests that the

control statement overhead will have negligible e↵ect on performance. Therefore, there is

no need to apply the halting condition described in Section 4.3 in this case. Hence, the

maximum value must be chosen to obtain the finest partitions with the maximum reuse.

f o r (i = �N; i <= �4; i++) {
f o r (j = MAX(�N+3,� i�N�3); j <= �i�N�1; j++) {

X[i] [j] = Y[i] [i+j +3] ⇤ Y[i+j] [j] ;

X[� j �3] [i+j +3] = Y[� j �3] [i +3] ⇤ Y[i] [i+j +3] ;

X[� i�j �6] [i +3] = Y[� i�j �6][� j] ⇤ Y[� j �3] [i +3] ;

X[� i �6][� j] = Y[� i �6][� i�j �3] ⇤ Y[� i�j �6][� j] ;

X[j �3][� i�j �3] = Y[j �3][� i �3] ⇤ Y[� i �6][� i�j �3] ;

}
}

Figure 5.3: Index calculation for DC4 using reuse relation(T).

Since the partitions of a particular type (say DC1) has multiple disjoint but equivalent

partitions (DC0
1, DC1

1, etc.) - in terms of shape and number of iterations - the function T i(I),

where 0  i  6, can be used to determine the iterations in the other partitions which exhibit

reuse as described in Section 4.6. The code shown in Fig. 5.3 presents the application of

the function to compute array subscripts for DC4 partitions. This optimization reduces the

control statement overhead, as well as increases the temporal locality due to consecutive

data accesses in subsequent iterations. Also, because of this there are less memory accesses

and therefore there is a constant 35% decrease in instruction count even when the input size

scales up. The overall increase in the cache hits is shown in Fig. 5.4.

32

I

J

(a) Polygonal partitions of the iteration space for Case 1 - T 6 = I (identity).

(b) RAR dependence in the loop-nest

Figure 5.2: Partitions of the iteration space in Case Study 1.

33

Dataset Size
1024 2048 4096

Im
p

ro
ve

m
e

n
t(

%
)

-50

0

50

100

150

200

250

300

350

400

450
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

Figure 5.4: Case Study 1 - % of Improvement in L1 and L2 hits, LLC misses and Instructions
Retired

The serial code optimized using the technique shows up to 1.19x speedup (Fig. 5.10a). For

parallel execution, each type of partition is executed on a di↵erent thread using OpenMPR�

Sections so as to maximize locality on a core. On parallel execution across 8 threads, the

speedup is even higher (up to 3.17x) due to the selective mapping of the partitions as shown

in Fig. 5.11. This optimized code is compared against the tiled code from Polly and Pluto.

The two tools generate rectangular tiles for the given program, since both of them do not

use the information from RAR dependence to optimize code for locality, unlike the proposed

technique. Experimental results show scalability of performance with the input size because

even though the number of partitions remains constant, the size of the partitions scales with

the input size.

34

5.3 Case Study 2: One Dimensional Non-Uniform Reuse

Pattern

f o r (i = �N; i <= N; i++) {
f o r (j = �N; j<= N; j++) {

X[i , j]= Y[i , j] + Y[i , i+j+N] ;

}
}

Figure 5.5: Loop-Nest with One Dimensional Non-Uniform Reuse

The references to array Y for this case, shown in Fig. 5.5, are as follows:

�
i, j

=

1 0

0 1

!
I+

0

0

!
, �

i, i+j+N

=

1 0

1 1

!
I+

0

N

!

Therefore, the temporal reuse relation T = (T, t), assumes the following form, according to

Equation 4.3:

T =

1 0

�1 1

!
, t =

0

�N

!

For this case, the maximum value of k is too high. It is dependent on the variable N which

is a representation of the dataset size.

T

k =

1 0

�k 1

!
, t =

0

�kN

!

Due to the fact that there is reuse only in the dimension J , refer to Figure 5.6a, the max-

imum value that k can reach is 2N � 1. As the algorithm moves towards �I direction, it

forms smaller partitions. This leads to the drawback of the original algorithm. As described

in the Section 4.3, an optimal value for k must be chosen such that program performance is

maximized due to a better locality exploitation and the achievable speedup is not diminished

by the control statement overhead.

Therefore, it is proposed that the partitioning algorithm must halt as soon as tile size

reduces below 25 ⇥ 25 iterations. This is deduced from the experimental data as shown in

35

I

J

(a) Reducing partition size

(b) Computational Wave-front

Figure 5.6: Partitions of the iteration space in Case Study 2.

36

Figure 5.7a. The optimal value of k was found to be around 30 in a small dataset (N=1024),

40 in a medium dataset (N=2048), and 60 in a large dataset (N=4096). As shown in Figure

5.7a, the speedup is significantly related to the selection of k. If a value of k is chosen to be

lower than the optimal value, the loop execution experiences a performance degradation due

to low locality exploitation. On the other hand, if a value of k is chosen to be larger than

the optimal value, the loop execution experiences a performance degradation due to control

statement overhead.

Another important contribution to the achieved speedup comes from a code generation

optimization which is discussed in Section 4.6. If partitions are executed similarly as in

Case Study 1, the control statement overhead will inhibit achieve the maximum speedup

achievable. By further splitting and executing them in a variable step wave-front (Fig. 5.6b)

the control overhead is reduced - because the loop boundary conditions are simplified. This

method does not conform to the originally proposed method of computing partitions of sim-

ilar reuse pattern together inside single loop nest. This wave-front method execute di↵erent

partition types together inside outer-most loop. It also improves spatial locality due to reuse

on same cache-line for multiple partition-types. The increase in cache hits as shown in Fig.

5.7b is evident of improvement in locality.

Both of the Polyhedral Model based optimizers generate rectangular tiles in this case too

because they ignore RAR dependence for improving locality. On serial execution, the maxi-

mum speedup of 1.13x is achieved for the medium dataset (Fig. 5.10a). Whereas, on parallel

execution the speedup improves with the size of the dataset reaching maximum of 2.27x (Fig.

5.11).

37

K (Number of Partitions)
20 30 40 60 100 200 400

S
p
e
e
d
u
p

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Small Dataset
Medium Dataset
Large Dataset
Baseline(Unpartitioned)

(a) Speedup vs Number of Partitions.

Dataset Size
1024 2048 4096

Im
p
ro

ve
m

e
n
t(

%
)

-400

-200

0

200

400

600

800
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

(b) % of Improvement in L1 and L2 hits, LLC misses and Instructions
Retired

Figure 5.7: Case Study 2: Optimal Number of Partitions and Improvement in Hardware
Counters

38

5.4 Case Study 3 (Seidel-2D) and Case Study 4 (Jacobi-

2D): Stencil Computations with Uniform Reuse

Pattern and Multiple References

Pa r t i a l loop�nest expos ing reuse :

f o r (i = 1 ; i < N; i++) {
f o r (j = 1 ; j< N; j++) {
A[i] [j]=(A[i �1] [j�1]+A[i �1] [j]+

A[i �1] [j+1]+A[i] [j�1]+

A[i] [j]+A[i] [j+1]+

A[i +1] [j�1]+A[i +1] [j]+

A[i +1] [j +1]) /9 . 0 ;

}
}

(a) Seidel-2D

Pa r t i a l loop�nest expos ing reuse :

f o r (i = 1 ; i < N; i++) {
f o r (j = 1 ; j< N; j++) {
B[i] [j]=(A[i] [j]+A[i] [j�1]+

A[i] [1+ j]+A[1+ i] [j]+

A[i �1] [j]) ⇤ 0 . 2 ;

}
}

(b) Jacobi-2D

Figure 5.8: Loop-Nest with Uniform Reuse Pattern and Multiple References

Case Study 3 and 4 are stencil benchmarks taken from the PolyBench[40]. Case Study 3

(Seidel stencil) from Fig. 5.8a has multiple references in 8 directions. Therefore, the heuris-

tics mentioned in Section 4.4 must be applied to choose the best two references for creating

partitions. The reuse vectors ~v
i,j�1 and ~v

i,j+1 link themselves by T 2. Therefore, one of the

reuse relations must be eliminated. The same applies to (~v
i�1,j�1, ~vi+1,j+1),(~vi�1,j, ~vi+1,j)

and (~v
i+1,j�1, ~vi�1,j+1). Reference ~v

i,j

must also be removed since its combination with any

other ~v generates multiple equivalent partitions along ~v. Therefore, references ~v
i,j+1, ~vi+1,j+1,

~v

i+1,j, ~vi+1,j�1 and ~v

i,j

must be eliminated.

One drawback of the original algorithm is that some pairs of reuse vectors produces partitions

which consume the entire iteration space, i.e. the two references (~v
i�1,j�1, ~vi,j�1) link every

iteration in the domain. Therefore, this pair of references must be eliminated in addition to

the pairs (~v
i�1,j, ~vi�1,j�1), (~vi�1,j, ~vi�1,j+1) and (~v

i�1,j�1, ~vi�1,j+1). Finally, ~v
i,j�1 and ~v

i�1,j

are left and they create the partitioning as shown in Figure 5.9.

The two stencils show di↵erent performance results due to di↵erent amount of reuse among

39

J

I

Figure 5.9: Partitions of the iteration space for Seidel and Jacobi stencils.

iterations in the partitions. In the case of Seidel-2D, there is more reuse between consecutive

iterations inside a single sub-partition than Jacobi-2D, due to additional reuse on ~v

i+1,j�1

and ~v

i�1,j+1 in Seidel-2D.

5.5 Speedup and Reduction in Energy Consumption

5.5.1 Serial Execution

The performance of the polygonally tiled code, compiled with LLVM (option: -O3 -fno-inline-

functions), is compared against Polly - an optimizer for LLVM - optimized code (option: -O3

-polly -polly-vectorizer=stripmine -fno-inline-functions, tile size = 32 ⇥ 32). A significant

amount of energy reduction (Fig. 5.10b) is noticed using counters from Likwid tool, which

can be partially explained by the significant increase in L1 and L2 cache hits. This could

provide advantage on battery powered devices, since this technique consumes less energy,

with or without an improvement in performance.

40

Small Dataset Medium Dataset Large Dataset

S
p
e
e
d
u
p

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Case 3(Seidel-2D)
Case 4(Jacobi-2D)
Baseline(Unpartitioned)

(a) Speedup (Serial Execution)

Small Dataset Medium Dataset Large Dataset

E
n
e
rg

y
C

o
n
su

m
p
tio

n

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Case 3(Seidel-2D)
Case 4(Jacobi-2D)
Baseline(Unpartitioned)

(b) Energy Consumption Ratio

Figure 5.10: Performance and Energy consumption improvement.

5.5.2 Parallel Execution

The polygonally tiled code is compared for performance against the code optimized using

Pluto-0.11.4 (options: –tile –parallel, tile size = 32 ⇥ 32) that generate OpenMP R� code.

Both codes are compiled with Intel’s ICC-15.0.4 compiler (options: -O3 -xHost -ansi-alias

-ipo -fp-model precise -fno-inline-functions) and are executed across 8 threads.

Small Dataset Medium Dataset Large Dataset
0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Baseline(Unpartitioned)

Figure 5.11: Speedup (Parallel Execution): Case Study 1 and 2

41

Stencils computations show poor result on parallelization using the proposed technique. This

is due to the fact that Pluto generates rectangular and diamond shaped tiles (option: –part-

diamond-tile) which provides better locality than the proposed technique. These tiles are

better suited for stencil computations since the reuse patterns resembles the tile shapes which

allows more reuse inside the tiles and less communication across the tiles. Also, diamond

tiling[6] gives an extra advantage over rectangular tiling because of the concurrent start to

more than one tiles.

42

Chapter 6

Conclusion

In this work, a polygonal tiling technique is presented, which in contrary to the current

techniques, is not constrained to either the shape or the size of tiles that needs to be pre-

determined. Instead, the shapes and sizes are governed by the reuse pattern of the loop-nests.

The goal of this technique is to speedup the execution of loop-nests with non-uniform reuse

patterns. The proposed technique partitions the iteration space and schedules the partitions

to ensure maximum reuse of data without being flushed out of the caches. The optimal

number of partitions is determined as to speedup the performance. As the loops that are

currently captured by the Polyhedral Model are compute intensive loops, such a speedup

corresponds to a prominent reduction in the associated energy consumption.

Experiments on a set of loops exhibiting either non-uniform or uniform reuse patterns show

that a significant portion of the achievable speedup is missed when applying traditional loop

tiling to such loops. Speedup is significant for loops with non-uniform reuse pattern on se-

rial execution as shown in the case studies. Benefits of the presented polygonal tiles is even

greater for multi-threaded execution for such loops. High speedup (up to 3.17x) is achieved

and it consistently improves on increasing the input size.

43

Bibliography

[1] A. Agarwal, D. Kranz, and V. Natarajan. Automatic Partitioning of Parallel Loops
for Cache-Coherent Multiprocessors. In Parallel Processing, 1993. ICPP 1993. Inter-
national Conference on, volume 1, pages 2–11, Aug 1993.

[2] A. Agarwal, D. A. Kranz, and V. Natarajan. Automatic partitioning of parallel loops
and data arrays for distributed shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 6(9):943–962, Sep 1995.

[3] N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfectly-nested Loop Nests. In
Supercomputing, ACM/IEEE 2000 Conference, pages 31–31, Nov 2000.

[4] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the
Third ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), Williamsburg, Virginia, USA, April 21-24, 1991, pages 39–50, 1991.

[5] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transformations for High-
Performance Computing. ACM Comput. Surv., 26(4):345–420, 1994.

[6] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling Stencil Computations to Max-
imize Parallelism. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 40:1–40:11, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.

[7] U. K. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[8] U. K. Banerjee. Dependence Analysis. Kluwer Academic Publishers, Norwell, MA, USA,
1996.

[9] C. Bastoul. E�cient Code Generation for Automatic Parallelization and Optimization.
In Proceedings of the Second International Conference on Parallel and Distributed Com-
puting, ISPDC’03, pages 23–30, Washington, DC, USA, 2003. IEEE Computer Society.

[10] C. Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think.
In PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, France, September 2004.

44

[11] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and
P. Sadayappan. Automatic Transformations for Communication-Minimized Paralleliza-
tion and Locality Optimization in the Polyhedral Model. In International Conference
on Compiler Construction (ETAPS CC), Apr. 2008.

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Practical Auto-
matic Polyhedral Program Optimization System. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2008.

[13] U. K. R. Bondhugula. E↵ective automatic parallelization and locality optimization using
the polyhedral model. PhD thesis, The Ohio State University, 2008.

[14] L. Carter, J. Ferrante, and S. F. Hummel. Hierarchical tiling for improved superscalar
performance. In Parallel Processing Symposium, 1995. Proceedings., 9th International,
pages 239–245, Apr 1995.

[15] P. Clauss. Handling memory cache policy with integer points countings. In Euro-Par’97
Parallel Processing: Third International Euro-Par Conference Passau, Germany, Au-
gust 26–29, 1997 Proceedings, pages 285–293, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[16] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[17] P. Feautrier. Dataflow Analysis of Array and Scalar References. International Journal
of Parallel Programming, 20, 1991.

[18] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem. I. One-
dimensional time. International Journal of Parallel Programming, 21(5):313–347, 1992.

[19] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem. Part II. Multidi-
mensional time. International Journal of Parallel Programming, 21(6):389–420, 1992.

[20] M. Griebl, C. Lengauer, and S. Wetzel. Code Generation in the Polytope Model. In
Proceedings of the 1998 International Conference on Parallel Architectures and Compi-
lation Techniques, PACT ’98, pages 106–, Washington, DC, USA, 1998. IEEE Computer
Society.

[21] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege. Hybrid
Hexagonal/Classical Tiling for GPUs. In Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’14, pages 66:66–66:75,
New York, NY, USA, 2014. ACM.

[22] T. Grosser, A. Groesslinger, and C. Lengauer. Polly - Performing Polyhedral Optimiza-
tions on a Low-level Intermediate Representation. Parallel Processing Letters, 22(04),
2012.

[23] G. Gupta and S. Rajopadhye. The Z-polyhedral Model. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’07,
pages 237–248, New York, NY, USA, 2007. ACM.

45

[24] A. Hartono, M. M. Baskaran, J. Ramanujam, and P. Sadayappan. DynTile: Para-
metric tiled loop generation for parallel execution on multicore processors. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–12,
April 2010.

[25] F. Irigoin and R. Triolet. Supernode Partitioning. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 319–329, New York, NY, USA, 1988. ACM.

[26] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[27] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. M. Strout. Multi-level
tiling: M for the price of one. In Supercomputing, 2007. SC ’07. Proceedings of the 2007
ACM/IEEE Conference on, pages 1–12, Nov 2007.

[28] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In 2nd IEEE / ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA,
pages 75–88, 2004.

[29] W. Li and K. Pingali. A Singular Loop Transformation Framework Based on Non-
singular Matrices. Int. J. Parallel Program., 22(2):183–205, Apr. 1994.

[30] A. W. Lim, G. I. Cheong, and M. S. Lam. An A�ne Partitioning Algorithm to Maximize
Parallelism and Minimize Communication. In Proceedings of the 13th International
Conference on Supercomputing, ICS ’99, pages 228–237, New York, NY, USA, 1999.
ACM.

[31] A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchronization
with A�ne Partitions. Parallel Comput., 24(3-4):445–475, May 1998.

[32] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and Array Contraction Across Ar-
bitrarily Nested Loops Using A�ne Partitioning. In Proceedings of the Eighth ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, PPoPP
’01, pages 103–112, New York, NY, USA, 2001. ACM.

[33] B. Meister. Periodic Polyhedra. In Compiler Construction, 13th International Confer-
ence CC 2004, Part of ETAPS 2004, pages 134–149. Springer, 2004.

[34] B. Meister. Projecting Periodic Polyhedra for Loop Nest Analysis. In CPC, pages 13–24,
2004.

[35] B. Meister, V. Loechner, and P. Clauss. The Polytope Model for Optimizing Cache
Locality. Technical report, Technical Report RR 00-03, ICPS-LSIIT, 2000.

[36] D. A. Padua and M. Wolfe. Advanced Compiler Optimizations for Supercomputers.
Commun. ACM, 29(12):1184–1201, 1986.

46

[37] PLUTO: An automatic parallelizer and locality optimizer for a�ne loop nests. http:

//pluto-compiler.sourceforge.net.

[38] Polly: LLVM Framework for High-Level Loop and Data-Locality Optimizations. http:
//polly.llvm.org.

[39] PolyLib: A library for manipulating parameterized polyhedra. http://

pluto-compiler.sourceforge.net.

[40] L.-N. Pouchet. PolyBench/C 4.1. http://web.cse.ohio-state.edu/

~

pouchet/

software/polybench/.

[41] W. Pugh and D. Wonnacott. Eliminating False Data Dependences Using the Omega
Test. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation, PLDI ’92, pages 140–151, New York, NY, USA, 1992. ACM.

[42] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of E�cient Nested Loops from
Polyhedra. Int. J. Parallel Program., 28(5):469–498, Oct. 2000.

[43] P. Quinton, S. Rajopadhye, and T. Risset. On Manipulating Z-Polyhedra Using a
Canonical Representation. Parallel Processing Letters, 07(02):181–194, 1997.

[44] J. Ramanujam. Non-unimodular Transformations of Nested Loops. In Proceedings of the
1992 ACM/IEEE Conference on Supercomputing, Supercomputing ’92, pages 214–223,
Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[45] J. Ramanujam. Beyond Unimodular Transformations. J. Supercomput., 9(4):365–389,
Dec. 1995.

[46] L. Renganarayana and S. Rajopadhye. A Geometric Programming Framework for Op-
timal Multi-Level Tiling. In Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference, pages 18–18, Nov 2004.

[47] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M. Strout. Parameterized Tiled
Loops for Free. In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 405–414, New York, NY, USA,
2007. ACM.

[48] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Chich-
ester, 1986.

[49] S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model, pages 299–302.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[50] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[51] J. Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

47

