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Building conditions, outdoor climate, and human behavior influence residential con-
centrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability 
in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 
residences across the United States totaling >10,000 monitor- years of time- resolved data 
(10- min resolution) from the PurpleAir network. Time- series analysis and statistical 
modeling apportioned residential PM2.5 concentrations to outdoor sources (median 
residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor 
emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, 
CV = 112%). Residences in the temperate marine climate zone experienced higher 
infiltration factors, consistent with expectations for more time with open windows 
in milder climates. Likewise, for all climate zones, infiltration factors were highest in 
summer and lowest in winter, decreasing by approximately half in most climate zones. 
Large outdoor–indoor temperature differences were associated with lower infiltration 
factors, suggesting particle losses from active filtration occurred during heating and 
cooling. Absolute contributions from both outdoor and indoor sources increased during 
wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, 
such as during wildfires, reducing potential exposures from outdoor- origin particles but 
increasing potential exposures to indoor- origin particles. Time- of- day analysis reveals 
that episodic emission events are most frequent during mealtimes as well as on holidays 
(Thanksgiving and Christmas), indicating that cooking- related activities are a strong 
episodic emission source of indoor PM2.5 in monitored residences.

indoor air | PM2.5 | infiltration | source apportionment | exposure

Exposure to fine particulate matter (PM2.5; particles smaller than 2.5 μm in aerodynamic 
diameter) is one of the leading risk factors for mortality, globally and in the United States 
(1, 2). The primary location of human PM2.5 exposure is indoors, where Western popu
lations spend ~90% of their time (3–5). Indoor PM2.5 originates from both indoor and 
outdoor sources. Outdoor PM2.5 penetrates and persists indoors with partial and variable 
loss, owing to features such as building design and construction (envelope tightness), 
building operation (window use, filtration, and mechanical ventilation), and environmen
tal conditions (outdoor wind speed and outdoor–indoor temperature difference) (6). 
These features vary among buildings and are also subject to substantial diurnal, seasonal, 
and geographic variability. The influence of such variability on indoor air pollution con
centrations and pollution exposure is poorly understood. Despite their prominent influ
ence on air pollution exposure, indoor environmental conditions are often excluded from 
public health studies and risk assessment models (7).

Indoor PM2.5 emission events can be short and produce sharp transient increases in 
indoor concentrations (8). The largest indoor emission events originate from cooking and 
(historically common) tobacco smoking, during which indoor PM2.5 concentrations may 
attain hundreds of μg m−3 (9, 10). Indoor sources also include particle resuspension  
(9, 11) and shedding (12); candle and incense use (13, 14); airborne chemistry (15–17); 
and condensation of indoor semivolatile gases onto outdoor particles (18, 19). The con
tributions of various sources across residences are not understood, in part due to the 
historical sparseness of extended residential PM2.5 datasets.

Considering that infiltration factors vary substantially by particle size, time of day, 
and time of year (6, 20), apportioning indoor PM2.5 concentrations between indoor 
and outdoor sources often requires simplifying assumptions (21). Time- integrated 
models, such as random component superposition (RCS) (22), are a computationally 
simple means to estimate infiltration factors, but these models often inaccurately treat 
the infiltration factor as a constant value. Use of dynamic models or infiltration 
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surrogates can yield improved results, but these methods are 
challenging to apply at scale (21). Applying source- attribution 
methods to Western residences has yielded estimates that 
approximately 50 to 80% of residential indoor PM2.5 originates 
from outdoor PM2.5 that penetrates indoors and remains 
 suspended (20, 23–29).

The recent expansion in the use of low- cost particle sensors via 
the PurpleAir sensor network has enabled investigations of indoor 
PM2.5 in hundreds to thousands of buildings (29–34), a scale 
much larger than previously possible. The Plantower particle sen
sors used by PurpleAir monitors agree well with regulatory mon
itoring stations, especially after applying correction factors to 
reduce negative sensor biases at low concentrations and positive 
sensor biases at high concentrations (35–38). Nevertheless, mod
erate biases and limitations still exist, related to heterogeneity in 
atmospheric conditions, particle size, and particle composition 
(33, 35, 36, 38). Attempts to apportion indoor PM2.5 into specific 
source categories have yet to differentiate between episodic and 
nonepisodic source categories and, more generally, to identify how 
source strengths vary across the building stock.

Here, using data from the PurpleAir network, we report an 
analysis of 562 million measurements of PM2.5 (at 10- min time 
resolution) inside and outside of ~4,000 residences across the 
United States, cumulatively representing >10,000 monitor- years 
of data. This multiyear analysis differentiates between episodic 
and persistent indoor sources, links PurpleAir monitors to specific 
residential buildings and uses building information in analysis. 
We report outdoor and indoor concentrations ( Co and Ci , respec
tively), indoor concentrations of outdoor and indoor origin ( Cio 
and Cii , respectively), and indoor concentrations from indoor 
episodic sources and indoor persistent sources ( Ciie and Ciip , 
respectively) at residences, and examine how these parameters 
change by time of day, time of year, and geographic location. We 
use these findings to interpret how key factors, such as building 
characteristics and human behavior, may be influencing PM2.5 
concentrations in US residences.

Results and Discussion

Overview. Using 3,977 paired indoor ( Ci   ) and outdoor ( Cio   ) 
concentration time series from US residences, we deconstructed the 
indoor concentrations into three additive terms reflecting different 
source characteristics: outdoor origin ( Ciie   ), episodic indoor origin 
( Ciie   ), and persistent (nonepisodic) indoor origin ( Ciip)   . For each 
monitored residence, we also calculated first- order particle loss- 
rate coefficients ( �tot   ) associated with episodic emission events 
and infiltration factors ( Finf)   that quantify the indoor/outdoor 
concentration relationship. Data were obtained and analyzed for 
residences in 39 states in the contiguous US with the largest number 
of residences monitored in the West Coast states of California 
(n = 2,924), Washington (n = 259), and Oregon (n = 162). Most 
residences were in the Marine (n = 2,360), Cold (n = 625), or 
Hot- Dry (n = 787) climate zones (as defined by the Department 
of Energy Residential Buildings Program), with the remainder 
distributed among four other climate zones (“Other,” n = 205). 
Geographic locations of monitors can be found in Fig.  1 and 
SI Appendix, Table S1. Key summary statistics for the totality of the 
dataset are reported in Table 1 and Fig. 2 with stratifications across 
climate zone and season provided in SI Appendix, Tables S2–S5. 
Observed indoor and outdoor PM2.5 concentrations were 3.31 ± 
2.96 μg m−3 and 5.99 ± 2.10 μg m−3, respectively (mean ± SD 
of residences). Time- averaged indoor concentrations were lower 
than outdoor concentrations in 92% of residences; the mean and 
median indoor–outdoor ratios by residence were 0.61 and 0.50, 
respectively. Infiltration factors, that is, the fraction of outdoor PM2.5 
that penetrates indoors and remains suspended, were lower than 
reported in many prior studies, with the mean and median residence 
having values of 0.28 and 0.25, respectively. Indoor concentrations 
had roughly equal contributions from indoor (median = 50%) and 
outdoor (median = 50%) sources. Indoor sources were separated into 
indoor episodic sources (median = 55% of indoor contributions), 
probably dominated by cooking- related events, and indoor persistent 
sources (median = 45% of indoor contributions).

Fig. 1. A map of climate zone designations used by the Department of Energy’s Building America program and selected residential monitors (black points) that 
passed quality assurance checks for the contiguous United States.

http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
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Source Apportionment and Spatial Variation. Source appor
tionment was conducted via a combination of time- series analysis 
and statistical modeling. Time- series analysis entailed identifying 
and integrating episodic concentration peaks that are indicative 
of indoor activities such as cooking and cleaning (SI Appendix, 
Fig. S1). The time- averaged concentration of episodically generated 
PM2.5 across residences ranged from 0.15 μg m−3 to 2.31 μg m−3  
(10th–90th percentiles) with a median Ciie value of 0.62 μg m−3.  
These contributions were highest in the Cold climate zone 
(median Ciie value of 0.87 μg m−3) where the median episodically 
generated fraction of indoor PM2.5 across residences was 0.39, 
as opposed to 0.22 in the Hot- Dry climate zone, 0.21 in the 
Marine climate zone, and 0.26 in other climate zones (Table 1). 
The mean indoor- generated fraction contributed by episodic 
sources was 0.28. This finding can be compared to a recent 
report attributing 22% of daily PM2.5 exposures in homes to 
cooking events (39).

After generating an indoor time series from which all episodic 
peaks were removed, a modified form of random component 
superposition analysis was applied, yielding the apparent indoor 
concentration from persistent sources as the intercept of the regres
sion line. These concentrations may be interpreted as originating 
from indoor sources that are continuously contributing to indoor 
PM2.5 (e.g., via oxidative chemistry forming secondary organic 
aerosols indoors or condensation of indoor semivolatile gases onto 
particles of outdoor origin) or from indoor sources that are either 
so frequent or small that they do not generate a sharp episodic 
peak (e.g., from resuspension or shedding from low- intensity 
occupant movement). Past studies have assumed that most indoor 
sources are episodic and that all indoor source influence can be 
removed by censoring episodic events in a time series (24, 27, 28). 
In contrast, indoor PM2.5 concentrations attributed to persistent 
indoor sources were found to be similar to episodically generated 
indoor PM2.5 concentrations, with mean concentrations across 

Table  1. Key summary statistics and major measurement results for monitors in residences linked to average  
values from all outdoor monitors within 5 km*

Time- series analysis Modified RCS analysis
Traditional RCS 

analysis
Indoor generated  

fractions

�
tot

C
i

C
iie

C
o

C
io

C
iip

F
inf

C
ii

F
inf

C
iie

C
i

C
iip

C
i

C
iip

+C
iie

C
i

Units h−1 μg m−3 μg m−3 μg m−3 μg m−3 μg m−3 None μg m−3 None None None None

Total 10th quantile 0.71 1.29 0.15 4.25 0.46 −0.08 0.08 0.27 0.08 0.09 −0.03 0.17

n = 3,977 Median 1.36 2.79 0.62 5.59 1.39 0.52 0.25 1.19 0.26 0.24 0.20 0.50
90th quantile 2.54 5.34 2.31 8.38 2.92 1.15 0.52 3.18 0.53 0.55 0.44 0.76

Mean 1.54 3.31 1.19 5.99 1.60 0.52 0.28 1.70 0.29 0.28 0.20 0.48

SD 0.84 2.96 2.50 2.10 1.11 0.58 0.18 2.44 0.23 0.18 0.20 0.24

Marine 10th quantile 0.74 1.37 0.14 4.50 0.54 −0.05 0.09 0.28 0.10 0.08 −0.02 0.17

n = 2,360 Median 1.37 2.78 0.55 5.41 1.46 0.54 0.27 1.14 0.27 0.21 0.20 0.48
90th quantile 2.58 4.83 2.03 6.93 2.77 1.1 0.51 2.87 0.52 0.48 0.44 0.72

Mean 1.56 3.12 0.98 5.78 1.61 0.52 0.29 1.52 0.29 0.25 0.20 0.46

SD 0.85 2.18 1.70 1.86 1.00 0.53 0.17 1.82 0.18 0.16 0.19 0.22

Hot- Dry 10th quantile 0.69 1.37 0.18 5.11 0.46 0.01 0.07 0.37 0.07 0.09 0 0.21

n = 787 Median 1.35 3.02 0.64 6.76 1.47 0.67 0.22 1.34 0.23 0.22 0.23 0.51
90th quantile 2.50 5.67 2.24 9.25 3.16 1.42 0.49 3.36 0.49 0.50 0.46 0.75

Mean 1.51 3.56 1.15 7.00 1.72 0.68 0.26 1.89 0.26 0.26 0.23 0.50

SD 0.83 2.66 2.04 2.12 1.20 0.62 0.17 2.57 0.20 0.17 0.19 0.22

Cold 10th quantile 0.70 1.10 0.18 2.67 0.30 −0.33 0.06 0.12 0.05 0.13 −0.10 0.15

n = 625 Median 1.36 2.53 0.87 4.93 1.00 0.34 0.22 1.23 0.21 0.39 0.14 0.60
90th quantile 2.59 6.89 3.37 8.41 2.94 1.00 0.56 4.38 0.58 0.69 0.39 0.85

Mean 1.54 3.43 1.69 5.43 1.41 0.33 0.27 2.07 0.27 0.40 0.13 0.53

SD 0.78 3.39 2.84 2.52 1.28 0.63 0.21 3.27 0.27 0.21 0.21 0.29

Other 10th quantile 0.60 0.97 0.15 3.49 0.42 −0.22 0.06 0.02 0.07 0.10 −0.11 0.09

n = 205 Median 1.27 2.93 0.64 6.27 1.27 0.41 0.24 1.07 0.24 0.26 0.15 0.50
90th quantile 2.42 6.89 3.69 8.49 3.19 1.33 0.55 4.13 0.63 0.61 0.46 0.83

Mean 1.45 4.24 2.10 6.17 1.63 0.47 0.28 2.01 0.33 0.32 0.17 0.47

SD 0.90 7.20 6.76 2.03 1.28 0.66 0.21 4.43 0.54 0.20 0.23 0.28

*Concentration values ( C
i
 , C

iie
 , C

o
 , C

io
 , C

iip
 , and C

ii
  ) are reported in units of μg m−3. The infiltration factor, F

inf
 , and the fractions of indoor PM2.5 of indoor episodic origin, indoor persistent 

origin, and total indoor origin, that is C
iie

 /C
i
 , C

iip
/C
i
 , and (C

iie
+ C

iip
)/C

i
 , are unitless. The mean of well- behaved particle loss- rate coefficients at a residence ( �

tot
 ) is reported in units of h−1. 

Bold formatted rows are used to guide the eye across the data table.

http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
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residences ranging from −0.08 μg m−3 to 1.15 μg m−3 (10th–90th 
percentiles) and a median Ciip value of 0.52 μg m−3. (Negative 
concentrations yielded by modified RCS analysis are nonphysical 
artifacts from the statistical and regression models and may be 
interpreted as effectively zero.) Contributions from persistent 
indoor sources were highest in the Hot- Dry climate zone (median 
Ciip = 0.66 μg m−3) where the median fraction of indoor PM2.5 
attributed to persistent indoor emissions was 0.23 and lowest in 
the Cold climate zone (median Ciip = 0.34 μg m−3) where the 
median fraction was 0.14.

Adding the contributions to indoor concentrations from per
sistent and episodic indoor emission yields the total indoor con
centration of indoor origin ( Cii)   . We observed in all climate zones 
that indoor and outdoor source contributions to indoor concen
trations were roughly equal, albeit with substantial variation 
among residences. The indoor- generated fraction varied from 0.17 
to 0.76 (10th–90th percentiles) with a median of 0.50. Median 
indoor contributions were slightly larger in the Hot- Dry climate 
zone owing to their greater episodic contributions. These findings 
are consistent with prior studies that did not separate contribu
tions between episodic and persistent sources (20, 25, 27, 29). 
The indoor concentration of outdoor origin can be estimated by 
mass balance or by applying the infiltration factor obtained from 
modified RCS analysis. Infiltration factors varied from 0.08 to 
0.52 (10th–90th percentiles) with median Finf  of 0.25. Accor
dingly, indoor concentrations of outdoor origin varied from  
0.46 μg m−3 to 2.92 μg m−3 (10th–90th percentiles) with median 
Cio of 1.39 μg m−3.

While distinct trends across climate zones were clearly identi
fiable (Fig. 3) and variability among outdoor concentrations was 
low across the full residential dataset, remarkable heterogeneity 
was observed in key indoor parameters. The coefficient of variation 
in infiltrated ambient PM2.5 (69%) was nearly twice as high as 
that of ambient PM2.5 (CV of Co = 35%). Variability in 
indoor- generated PM2.5 was 3–6 times as high as that of ambient 
PM2.5, with coefficients of variation of C iip and C iie equal to 111% 
and 211%, respectively. Even after stratifying the dataset by cli
mate zone, most parameters displayed comparably large coeffi
cients of variation (±30%). Differences within climate zones were 
often greater than differences between climate zones. Apart from 
differences between the Marine and Hot- Dry climate zones in 
median Co , the interquartile range within a climate zone was 
greater than the difference in median values between climate zones 
for every reported parameter in all climate zones. The climate zone 
grouping used here does not differentiate between the dry western 
United States (MT to NM and westward) and the higher humidity 

regions to the east. To explore whether observed variability may 
be attributed to differences in geography or humidity, we present 
key results for more detailed climate zone stratifications in 
SI Appendix, Table S6. Substantial heterogeneity remains within 
each of the more detailed climate zone stratifications. Under
standing the key drivers of this variability may present opportu
nities for better characterizing residential exposures and for 
mitigating high exposures.

While outdoor and indoor PM2.5 concentrations generally 
increased with increasing population density, as expected, the 
highest values were observed in the least densely populated and 
most densely populated regions (SI Appendix, Table S7). We spec
ulate that higher PM2.5 concentrations in regions with low pop
ulation density may be attributed to the higher prevalence of 
residential wood- energy consumption in rural areas (40). Mean 
indoor PM2.5 concentrations in the least densely populated regions 
(<100 persons/km2) were 3.5 μg m−3, decreasing to 3.1 μg m−3 in 
the next least densely populated region (100–500 persons/km2). 
Mean indoor concentrations then increased with increasing pop
ulation density, reaching 4.0 μg m−3 in the most densely populated 
region (>4,000 persons/km2). While no apparent trends were 
observed between mean infiltration factors and population density, 
mean particle loss rates were 7% higher in regions with population 
density greater than 1,000 persons/km2 than regions with popu
lation density lower than 1,000 persons/km2.

The indoor concentration attributed to persistent indoor 
sources, as inferred from the modified RCS model, requires qual
ifications during interpretation due to potential biases arising from 
concentration- dependent phase- change phenomena. We discuss 
these potential biases in SI Appendix.

Temporal Trends and Infiltration Factors. Substantial seasonal 
variability in PM2.5 origin and concentration was observed across 
climate zones (Fig. 3 and SI Appendix, Fig. S2). A striking feature 
is the influence of outdoor wildfires in 2021. These wildfire events 
produced high outdoor PM2.5 concentrations that penetrated 
indoors as observed in the Hot- Dry, Cold, and Marine climate 
zones across the western states. During a period of major wildfires 
in August 2021, monthly median outdoor PM2.5 concentrations 
increased to more than 20 μg m−3. Indoor concentrations 
increased by about 4 μg m−3 as outdoor PM2.5 penetrated indoors. 
As reported previously (33, 34) and as also inferred in this work, 
occupant actions attenuate PM2.5 infiltration. During periods of 
high outdoor air pollution, we observed decreased infiltration 
factors; these findings are consistent with protective actions 
advised by public health agencies of closing windows to reduce 
infiltration and using active air filtration, as available. While the 

A B C D E

Fig. 2. Distributions of indoor PM2.5 concentrations, indoor–outdoor ratios, PM2.5 fractions of indoor origin, particle loss- rate coefficients, and infiltration factors 
are displayed as cumulative probability plots in panels A–E), respectively, for 3,977 residential indoor–outdoor data pairs. The x- axis is linearly scaled in panel 
(C) and log- scaled in the remaining panels. With the given probability scale, normal (panel C) and log- normal (remaining panels) distributions would lie along a 
straight line. The arithmetic mean (AM), SD, geometric mean (GM), and geometric SD (GSD) are also reported, where relevant.

http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308832120#supplementary-materials
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lower infiltration factors resulted in lower indoor concentrations 
of outdoor- origin PM2.5 during the large wildfire events in 2021, 
indoor PM2.5 concentrations attributable to both indoor episodic 
and indoor persistent sources increased.

Separate from wildfire events, seasonal trends were observed in 
infiltration factors and particle loss- rate coefficients, with infiltra
tion factors being highest in the summer and lowest in the winter 
across all climate zones (Fig. 3F). In the Marine and Hot- Dry 
climate zones, this decline approached 50%. Similarly, particle 
loss- rate coefficients were generally highest in summer and lowest 
in winter (Fig. 3G), plausibly due to enhanced ventilation rates 
during temperate summertime periods when windows are expected 
to be more frequently open. Two observations support this infer
ence. First, infiltration factors were higher in more temperate 
climate zones, especially in spring and summer. Median infiltra
tion factors in the Marine climate zone were sometimes up to 
double the corresponding values in the Cold climate zone. 
Infiltration factors for the Hot- Dry climate zone, where use of air 
conditioning is common, especially during afternoon summer 
heat, were between those of the Cold and Marine climate zones. 
This observation suggests that infiltration factors are coupled to 
building operation as influenced by outdoor temperature. Second, 
loss- rate coefficients in the Cold climate zone were markedly 
greater than those of any other climate zone during the winter 

season (Fig. 3G and SI Appendix, Table S5). We suspect that this 
enhancement is caused by active filtration in central forced- air 
heating systems. Noting that typical system runtimes are ~20% 
and assuming a MERV 11 filter efficiency of 50% and recircula
tion rates of ~4 h−1, a first- order estimate suggests that heating-  
associated filtration may increase particle loss- rate coefficients by 
0.4 h−1 on a time- average basis (41, 42). During wintertime peri
ods, we observe that particle loss- rate coefficients in the Cold 
climate zone are ~0.2 h−1 larger than loss- rate coefficients in other 
climate zones. With previously stated filtration efficiencies and 
recirculation rates, the Cold climate zone would require 10% more 
runtime than other climate zones on an absolute basis. While 
residences with central warm- air heating systems have the highest 
prevalence in the Cold climate zone (71%) as compared to 
Mixed/Hot- Dry (62%), Mixed- Humid (57%), Marine (54%), 
and Hot- Humid (46%) climate zones, differences in system runt
imes among climate zones are not well characterized (41, 43). 
Enhanced evaporative losses associated with central heating may 
also contribute.

To explore the influence of weather on infiltration factors more 
directly, we compare monthly averages of outdoor–indoor temper
atures against the monthly infiltration factor (Fig. 4 and SI Appendix, 
Fig. S3). When outdoor and indoor temperatures are comparable 
(outdoor minus indoor temperature in the range −10 to 0 °C), 

A

B

C

D

E

F

G

Fig. 3. Time series of (A) outdoor PM2.5 ( C
o
 , μg m−3), (B) indoor PM2.5 ( C

i
 , μg m−3), (C) indoor PM2.5 of outdoor origin ( C

io
 , μg m−3), (D) indoor PM2.5 originating 

from indoor episodic emissions ( C
iie

 , μg m−3), (E) indoor PM2.5 originating from indoor persistent sources ( C
iip

 , μg m−3), (F) infiltration factor ( F
inf

 , unitless), and 
(G) mean particle loss- rate coefficient ( �

tot
 , h−1). The data presented for each time series are the median values across all indoor–outdoor measurement pairs 

over a rolling 30- d window as grouped by climate zone. The vertical hatched line on 1 August 2021 marks a period of wildfires in the western United States.
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infiltration factors varied across the full range (0 to 1) with the 
highest density near Finf = 0.2. However, when the outdoor–indoor 
temperature difference was less than −10 °C (indicating a need for 
space heating) or higher than 0 °C (suggesting more likely use of 
air conditioning), the PM2.5 infiltration factors approximately 
halved in central tendency. These trends were observed across all 
climate zones, apart from cooling- associated losses being absent in 
the temperate Marine climate zone. This evidence indicates that 
active filtration associated with central air handling systems and/or 
behavioral changes in response to outdoor temperatures cause sub
stantial changes in infiltration factors. One concern is that monthly 
outdoor–indoor temperature difference is an imperfect proxy variable 
for building operations that can affect the infiltration factor; the diel 
and seasonal temperature variations (SI Appendix, Figs. S4–S6)  
influencing window use, heating, and cooling are not fully captured 
using monthly average temperature data.

Building- specific year of construction data is not available in 
the National Structure Inventory. We used the median age of 
buildings within the same census tract as a proxy variable for 
house age with observations spanning decadal intervals: 1935–
1945 (n = 675), 1945–1955 (n = 483), 1955–1965 (n = 757), 
1965–1975 (n = 672), 1975–1985 (n = 639), 1985–1995  
(n = 411), 1995–2005 (n = 251), and 2005–2015 (n = 22). We 
observed that residences located in census tracts with older homes 
were leakier than residences located in census tracts with newer 
homes (SI Appendix, Fig. S7). It has been reported that building 
envelope leakiness is related to building age (44). Infiltration factors 
decrease by 37% when comparing census tracts with median con
struction years of 1970 against census tracts with median construc
tion years of 2010. Similarly, particle loss- rate coefficients decrease 
by 9% when comparing census tracts with median construction 
years of 1970 against census tracts with median construction years 
of 2010. Efforts to reduce the leakiness of building envelopes were 
initiated in the 1970s to improve energy efficiency and have con
tinued both for new construction and in retrofits. The magnitude 
of these observed trends is much smaller than the substantial var
iation within each building age subgroup. The larger within- group 
variability may reflect uncertainty from the choice of building- age 
proxy variable or substantial variation within each building- age 
subgroup. Differences among building types were comparable 
between wood (n = 2,292, mean Finf = 0.26) and masonry  
(n = 1,547, Finf = 0.27) structured homes.

Episodic Emission Analysis. We identified 1.3 million episodic 
indoor emission events where peak prominence surpassed 5 μg 
m−3 and peak width was less than 6 h. Accordingly, the mean 
and median sampled residences displayed 0.84 and 0.50 emission 
events per day, respectively, with 10th and 90th percentiles of  

0.03 and 2.00 emission events per day, respectively. Indoor emission 
events were most frequent during common mealtimes (breakfast, 
lunch, and, most prominently, dinner) and least frequent during 
nights when residents are more likely to be sleeping (Fig. 5A). 
Moreover, the largest baseline departures in the number of indoor 
emission events were observed on holidays such as Thanksgiving 
(1.13 and 1.09 emission events per monitor- day in 2021 and 2022, 
respectively) and Christmas (1.00 emission events per monitor- 
day in 2021), especially for large emission events (>30 μg m−3) 
(SI Appendix, Fig. S8). Together, this evidence substantiates, on a 
larger scale, previous reports that human- related activities, especially 
cooking, are dominant sources of indoor episodic PM2.5 emissions 
(45). Indoor emission events were most frequent in winter and 
the least frequent in summer (Fig. 5B). This feature is explained, 
in part, by Western populations spending more time at home 
during the winter season (4) with more frequent cooking (46), as 
well as the occurrence of wintertime holiday gatherings such as 
Thanksgiving and Christmas. We also observed that more emission 
events occurred on weekends than weekdays (SI Appendix, Fig. S9). 
Accordingly, Ciie and Ci concentrations were 8% and 6% higher 
on weekends, respectively. Finally, more indoor emission events 
were observed during the 2021 wildfire period than expected based 
on the 2021 and 2022 seasonal trends (Fig. 5B and SI Appendix, 
Fig. S8), suggesting either a) occupants performed more activities 
at home during periods of high outdoor air pollution or b) wildfire 
plumes penetrated indoors with sufficient variability to register as 
an episodic peak. Misidentification of infiltrated wildfire plumes 
could bias our results.

We integrated the time- series concentration of each emission 
event (units of μg m−3 h) and multiplied the result by the particle 
loss- rate coefficient (median 1.2 h−1, mean 1.8 h−1 over full  dataset). 
The result corresponds to the expected concentration increase if 
the entire episodic emissions event occurred instantaneously into 
a well- mixed interior volume. Distributions of instantaneous con
centration enhancements so obtained can be found in SI Appendix, 
Fig. S9 with mean (21.2 μg m−3) and median (19.8 μg m−3) 
observed values. Instantaneous concentration enhancement dis
tributions were greatest in the Cold climate zone and were indis
tinguishable among Marine, Hot- Dry, and Other zones.

After restricting the dataset to single- family residences with area 
less than 560 m2 (3,423 of 3,977 total residences), we estimated 
residential volumes from these areas and an assumed room height 
of 2.4 m. Using residential volumes, we estimated episodic emis
sions in units of mass emitted for each event. The resulting arith
metic mean and median were 22.6 and 8.3 mg, respectively 
(SI Appendix, Fig. S10). These emission analyses are limited in 
that they assume a single instantaneously well- mixed zone and do 
not consider spatial heterogeneity, mixing times, or decoupled 

A B C D

Fig. 4. The PM2.5 infiltration factor is compared against the mean outdoor–indoor temperature difference at monthly time resolution. Monthly data points 
are binned into hexagons, with bin color corresponding to the total number of measurements. Panels correspond to data subsets specific to climate zones: 
(A) Marine, (B) Hot- Dry, (C) Cold, and (D) Other.
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zones. Event- driven concentration enhancements were inversely 
related to home floor area (SI Appendix, Fig. S11A), as expected 
given the larger dilution volume. The calculated total emission 
mass increased with home area (SI Appendix, Fig. S11B). Chan 
et al. (47) conducted similar time- series analysis on concentration 
data from 18 California residences. The mean and median peak 
emissions (30 and 12 mg, respectively) and decay rates (1.3 and 
2.0 h−1, respectively) in Chan et al. (47) and a related study by 
Sun and Wallace (39) are harmonious with our findings from the 
much larger dataset, with about 3 orders of magnitude more 
residence- days of monitoring.

Health Guideline Comparisons. The World Health Organization 
(WHO) annual air- quality guideline recommends that PM2.5 be 
maintained at annual mean concentrations no higher than 5.0 μg 
m−3 and the WHO daily air- quality guideline recommends that 
the 99th percentile of daily mean concentrations be no higher 
than 15.0 μg m−3. These guidelines were developed from outdoor 
epidemiological studies and are intended to apply to both outdoor 
and indoor settings. Although these guidelines are not legally binding 
and indoor measurements may be influenced by sensor calibration 
reliability, a comparison of the indoor measurements with the 
guidelines is informative about potential health risks associated with 
indoor PM exposure. Among the almost 4,000 residences monitored, 
exceedances of the annual PM2.5 guidelines were observed for 484 
residences (12% of total). Exceedances of the daily PM2.5 guidelines 
were observed at 1,480 residences (37% of total).

We note that the PurpleAir sensor network does not reflect a 
representative sample of the US building stock. Previous research 
has demonstrated that PurpleAir monitors are more likely to be 
found in homes with higher valuations than those of neighbors. 
Environmental justice communities with greater health and pol
lutant burdens are likely to be underrepresented within the dataset 
(33, 48, 49). Care is needed in generalizing these findings to the 
US population.

Implications. This study found that approximately half of 
residential PM2.5 concentrations originate from indoor sources, 
consistent with historical studies conducted on far smaller datasets. 
By studying thousands of residences in detail, this study observed 

substantial heterogeneity in source contribution with indoor- 
generated fractions of residential PM2.5 varying between roughly 
one- sixth and three- fourths of total PM2.5 (10th–90th percentiles) 
among residences. Identified features influencing this heterogeneity 
include occupant actions in building operation, cooking intensity, 
and building age and structure. These factors cumulatively indicate 
that both occupants and the building industry have substantial 
opportunities to reduce residential PM2.5 exposures. For example, 
infiltration factors decreased by half during periods of high 
outdoor air pollution and during wintertime, likely in association 
with enhanced filtration and a tighter building envelope as doors 
and windows remain closed. Even as concentrations of both 
persistent and episodic indoor- generated PM2.5 were observed to 
increase in response to the tighter building envelope, occupant 
actions reduced potential exposures to both outdoor PM2.5 and 
total PM2.5 with likely net benefit.

We also identified the frequency, magnitude, and timing of 
indoor emission events by season. Emission events were more 
frequent during mealtimes, food- centered holidays, weekends, and 
wintertime, cumulatively substantiating that cooking is a domi
nant source of episodic PM2.5. Enhanced source control measures 
such as the use of range hoods, filtration, or ventilation during 
cooking yield opportunities to reduce occupant exposures from 
the episodic emission events that contribute slightly more than 
half of indoor- generated PM2.5. While indoor sources are com
monly assumed to be dominated by episodic events like cooking, 
this study also identified that persistent indoor sources are a major 
source, contributing nearly half of indoor- generated PM2.5. 
Persistent indoor sources may include contributions from chem
ical reactions or phase- change phenomena or continuous particle 
resuspension events that do not form discrete peaks or enhance
ments. For example, higher indoor concentrations of gaseous 
SVOC relative to the outdoors can lead to condensation of indoor 
SVOC on outdoor particles after outdoor- to- indoor particle trans
port (50).

Finally, we note that detection efficiencies for optical particle 
counters, including the Plantower particle sensor used by 
PurpleAir monitors, rapidly decline for particles smaller than 
about 300 nm. Cooking emission events can release large amounts 
of ultrafine particle mass (10), and low- cost sensors can miss 

A B

Fig. 5. Summary of the temporal distribution of episodic indoor emission events. In panel (A), mean values for the number of indoor emission events occurring 
per monitor per year at a given hour of day are displayed. In panel (B), mean values for the number of indoor emission events occurring per monitor per day 
are displayed at weekly time resolution. The vertical hatched line on 1 August 2021 marks a period of wildfires in the western United States. In both panels, 
traces correspond to the mean value of each climate zone data subset. The integrated area of each panel is normalized and displayed in the legend alongside 
the number of residences in each climate zone.
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ultrafine emission events entirely (51, 52). Even as we highlight 
the importance of indoor sources, indoor episodic concentrations, 
and therefore the total importance of indoor sources, may be 
underestimated in this work.

Materials and Methods

Data Selection. PurpleAir monitor metadata and PM2.5 concentration time 
series were obtained from the PurpleAir sensor network. Monitor metadata 
were  supplemented with building information from the National Structure 
Inventory (US Army Corps of Engineers, www.hec.usace.army.mil/confluence/
nsi) and  climate zone delineations used by the Building America program 
(US Department of Energy, https://www.energy.gov/eere/buildings/climate- 
zones). PurpleAir  monitors provide optical measurements of PM2.5, tempera-
ture, and humidity, as well as GPS location coordinates and indoor–outdoor 
placement type. The final dataset consisted of 281 million paired indoor–out-
door PM2.5 measurements at 3,977 residences spanning 10,688 monitor- 
years of data with 10- min time resolution. These data span 39 US states, with 
most monitors located in west coast US states (3,345 of 3,977 residential 
monitors in CA, WA, or OR). Sampled locations include representation of all 
7 Building America climate zones with most monitors located in the Marine, 
Hot- Dry, or Cold climate zones (3,772 of 3,977 residential monitors). The 
final dataset was constructed by 1) selecting all US indoor PurpleAir monitors 
from 2021 and 2022, 2) linking indoor monitors to the closest structure 
in the National Structure Inventory and restricting the dataset specifically 
to residences, 3) linking indoor residential monitors to the average of all 
outdoor monitors within 5 km, 4) removing monitors and/or data points 
that do not pass quality assurance and quality control tests, and 5) applying 
the “ALT” calibration model to all PM2.5 data. SI Appendix provides a detailed 
description for each of these steps.

Time- series Analysis. We estimated indoor episodic PM2.5 concentrations 
using a semiquantitative algorithm designed to identify episodic emission 
events related to indoor activities such as cooking, cleaning, or resuspension 
(SI Appendix, Fig. S1). More details are available in SI Appendix. We also calcu-
lated a first- order particle loss- rate coefficient for all particle emission events with 
well- behaved decay curves (SI Appendix, Fig. S12). The loss- rate coefficient ( �tot ) 
combines contributions from the air- change rate ( a ), the particle deposition rate 
( kdep ), and, if present, active particle filtration ( kfilt ). More details are available in 
SI Appendix.

Random Component Superposition Analysis. The random component superpo-
sition (RCS) method regresses time- averaged indoor PM2.5 concentrations against 
time- averaged outdoor PM2.5 concentrations. Resulting fitted parameters are inter-
preted as the infiltration factor (slope = Finf) and indoor concentrations attributable 
to indoor sources (intercept = Cii ). We applied the RCS model using daily averaged 
concentration data over the full dataset, yielding singular values for each building, as 
well as over subsets by month, yielding results at monthly time resolution for each 
building. We also introduce a modified form of RCS analysis to differentiate indoor 
concentrations attributable to episodic emissions from indoor persistent sources 
( Ciip) and to correct potential biases associated with ordinary least squares regres-
sion. In modified RCS, we generated excised indoor concentration data where peaks 
are removed using a peak- finding algorithm. We then regress the excised indoor 
concentration data against outdoor concentration data using orthogonal distance 
regression, yielding fitted parameters interpreted as the infiltration factor (slope) 
and indoor concentrations attributable to indoor persistent sources (intercept = Ciip )  
(SI Appendix, Figs. S13–S15). Unless otherwise specified, all RCS results are reported 
using the modified RCS model which was applied over the full dataset as well as 
subsets by month. More details are available in SI Appendix.

Data, Materials, and Software Availability. Study data can be acquired from 
publicly available sources at PurpleAir (https://api.purpleair.com) (53) and the 
National Structure Inventory (https://www.hec.usace.army.mil/confluence/nsi) 
(54). PurpleAir was founded on an open science model with data made publicly 
available; PurpleAir data may be shared with third parties subject to permission 
from PurpleAir.
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