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Abstract. Soils of temperate forests store significant
amounts of organic matter and are considered to be net sinks
of atmospheric CO2. Soil organic carbon (SOC) turnover has
been studied using the114C values of bulk SOC or different
SOC fractions as observational constraints in SOC models.
Further, the114C values of CO2 that evolved during the in-
cubation of soil and roots have been widely used together
with 114C of total soil respiration to partition soil respira-
tion into heterotrophic respiration (HR) and rhizosphere res-
piration. However, these data have not been used as joint
observational constraints to determine SOC turnover times.
Thus, we focus on (1) how different combinations of ob-
servational constraints help to narrow estimates of turnover
times and other parameters of a simple two-pool model, the
Introductory Carbon Balance Model (ICBM); (2) whether re-
laxing the steady-state assumption in a multiple constraints
approach allows the source/sink strength of the soil to be de-
termined while estimating turnover times at the same time.
To this end ICBM was adapted to model SOC and SO14C
in parallel with litterfall and the114C of litterfall as driv-
ing variables. The114C of the atmosphere with its promi-
nent bomb peak was used as a proxy for the114C of lit-
terfall. Data from three spruce-dominated temperate forests
in Germany and the USA (Coulissenhieb II, Solling D0 and
Howland Tower site) were used to estimate the parameters
of ICBM via Bayesian calibration. Key findings are as fol-
lows: (1) the joint use of all four observational constraints
(SOC stock and its114C, HR flux and its114C) helped to
considerably narrow turnover times of the young pool (pri-
marily by114C of HR) and the old pool (primarily by114C

of SOC). Furthermore, the joint use of all observational con-
straints made it possible to constrain the humification factor
in ICBM, which describes the fraction of the annual outflux
from the young pool that enters the old pool. The Bayesian
parameter estimation yielded the following turnover times
(mean± standard deviation) for SOC in the young pool:
Coulissenhieb II 1.1± 0.5 years, Solling D0 5.7± 0.8 years
and Howland Tower 0.8± 0.4 years. Turnover times for the
old pool were 377± 61 years (Coulissenhieb II), 313± 66
years (Solling D0) and 184± 42 years (Howland Tower), re-
spectively. (2) At all three sites the multiple constraints ap-
proach was not able to determine if the soil has been los-
ing or storing carbon. Nevertheless, the relaxed steady-state
assumption hardly introduced any additional uncertainty for
the other parameter estimates. Overall the results suggest that
using 114C data from more than one carbon pool or flux
helps to better constrain SOC models.

1 Introduction

Soils store around 3000 Pg C of soil organic carbon (SOC)
(Jobbágy and Jackson, 2000; Tarnocai et al., 2009). This
means that soils contain roughly 4 times more carbon than
the atmosphere, and 6 times more carbon than the vegetation
(Prentice et al., 2001). About 100 Pg C each year are emit-
ted to the atmosphere from soils (Bond-Lamberty and Thom-
son, 2010). A considerable part of this soil CO2 efflux is the
product of soil organic matter decomposition via soil organ-
isms. Apart from the importance of soil organic carbon in the

Published by Copernicus Publications on behalf of the European Geosciences Union.



2148 B. Ahrens et al.: Bayesian calibration of a SOC model using114C measurements of SOC and HR

global terrestrial carbon cycle as the largest terrestrial carbon
pool and as the source of one of the largest terrestrial carbon
fluxes, soil organic matter turnover is a key factor for soil fer-
tility and nutrient resupply.Jenny et al.(1949) were the first
to study soil organic matter (SOM) turnover with a process-
based model. In this seminal paper SOC was modeled as one
homogenous pool which decomposes according to first-order
kinetics, analogous to nuclear decay. Since then a multitude
of different SOM models have been devised which vary in
their degree of complexity (Manzoni and Porporato, 2009).
In general, with the spread of personal computers and the
rapid increase in computing capacity more and more multi-
pool models have been developed.

For years, fractionation techniques were developed in the
hope that organic matter could be physically and chemically
separated into pools that could be related to conceptual mod-
els of carbon cycling. This strategy is often referred to as
“measuring the modelable” (Elliott et al., 1996). Though this
approach seems to be successful for specific models and frac-
tionation procedures (e.g.,Zimmermann et al., 2007), the
premise that measured fractions should represent “unique
and non-composite pools” (Smith et al., 2002) is still difficult
to fulfill. On the other hand the notion of “modeling the mea-
surable” (Elliott et al., 1996) has been put forward and may,
for example, lead to the inclusion of microbial dynamics in
SOC models (Scharnagl et al., 2010). Microbial biomass data
from chloroform fumigation methods could then serve as an
additional observational constraint. In fact, these two related
strategies can lead to a useful coevolution and refinement of
both experimental and modeling approaches, given techni-
cal and conceptual advances. However, an abundance of soil
observations already exist that have to date not been ade-
quately used to test carbon cycle models. The strategy we
suggest here could be described as “considering the mea-
sured”, meaning that one should check which variables have
been measured at a certain site and compare it with mod-
eled output variables. Using the model outputs together with
inverse modeling, soil processes and model parameters can
be studied. We propose to use SOC stocks and heterotrophic
respiration fluxes in order to link observations of soil C pools
and fluxes (Kuzyakov, 2011) with their respective114C val-
ues in order to constrain the parameters of a simple serial
two-pool SOC turnover model – the Introductory Carbon
Balance Model (ICBM;Andrén and Kätterer, 1997).

The 14C content of bulk SOC or different SOC fractions
has been successfully used as an observational constraint
in SOC models to calculate turnover times of SOC (Trum-
bore, 1993; Gaudinski et al., 2000; Schulze et al., 2009).
Although these authors demonstrated the potential of this
approach, they were looking for one single best parameter
set, rather than treating the effect of measurement uncer-
tainty on parameter uncertainty in a formal way. Further, the
14C value of CO2 that evolved during the incubation of soil
and roots has been widely used together with the14C con-
tent in total soil respiration to partition soil respiration (SR)

into heterotrophic respiration (HR) and rhizosphere respira-
tion (RR) (e.g.,Gaudinski et al., 2000; Trumbore, 2006– for
an overview;Muhr and Borken, 2009; Muhr et al., 2010). To
our knowledge, these two approaches of using radiocarbon in
soil science research have not been used as joint constraints
for the estimation of decomposition rates and other param-
eters of SOC models. However,Schmidt et al.(2011) pro-
posed that the14C content of respired CO2 and leached dis-
solved organic carbon could be used as additional constraints
in model–data comparisons.

Wutzler and Reichstein(2007) have shown that the com-
monly used equilibrium or steady-state assumption of many
SOC models may lead to biased estimates of SOC turnover
times. For a soil with SOC stocks below equilibrium, a cal-
ibration of turnover times assuming SOC stocks at equilib-
rium would yield too-fast turnover time estimates. In their
modeling studyWutzler and Reichstein(2007) proposed a
transient correction for decay rates to account for possi-
ble disturbances in the past. In the model–data comparison
framework we propose, we tackled this issue from a different
perspective by introducing and calibrating parameters relax-
ing the steady-state assumption. A similar approach has been
by taken byCarvalhais et al.(2010) who introduced steady-
state relaxing parameters to allow for vegetation and soil
carbon pools out of equilibrium into the ecosystem model
CASA. Hence, we try to constrain the source/sink function
of the soil by subjecting these additional parameters to the
previously described observational constraints.

To properly quantify the effect of uncertainties in mea-
surements on the uncertainty of parameter estimates, we per-
formed a Bayesian calibration with a Monte Carlo Markov
Chain (MCMC) algorithm and data from three spruce-
dominated sites in the US and Germany. More specifically
we wanted to address the following questions:

(i) How do combinations of different observational con-
straints – ranging from measurements of SOC stock,
14C of SOC, and heterotrophic respiration to measure-
ments of14C of heterotrophic respiration – influence
the parameter and prediction uncertainties of ICBM?

(ii) How well can the net carbon balance be constrained
with a multiple constraints approach by relaxing the
steady-state assumption?

2 Material and methods

2.1 The Introductory Carbon Balance Model (ICBM)

The Introductory Carbon Balance Model is a published two-
pool serial model with first-order reaction kinetics (Hénin
and Dupuis, 1945; Andrén and Kätterer, 1997). We adapted
this model to the requirements prescribed by the use of14C
data and a relaxed steady-state assumption. We refer to this
modified version of ICBM as I14CBM. While the original
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model had only one type of litterfall as input (Andrén and
Kätterer, 1997), in I14CBM carbon enters the first SOC pool
– the young poolY – as aboveground and belowground litter
input (iL andiR, upper half of Fig.1). Carbon in theY pool
is decomposed according to first-order kinetics with the de-
composition ratekY . A part h of the outflow fromY is not
directly mineralized to CO2, but transferred via humification
(h) into the old poolO (Fig. 1). Mineralization of carbon in
the old poolO also follows first-order kinetics with the de-
composition ratekO :

dY

dt
= iL + iR− r · kY · Y, (1)

dO

dt
= r · h · kY · Y − r · kO · O. (2)

Andrén and Kätterer(1997) devised a parameterr (external
response factor) was intended to comprise the influence of
abiotic conditions on decomposition, like soil moisture and
temperature, and equally affect the decomposition rates ofY

andO. Since we are running the model at an annual time
step, we assumed that we do not need to explicitly account
for the influence of external factors like climatic and edaphic
conditions on SOC decomposition. Hence,r is set to 1; this
means that external effects are lumped into the other param-
eters, and should be reflected in the variation of the decom-
position rateskY andkO and the humification coefficienth
across the different sites.

Additionally, we introduce the parametersbiasiL and
biasiR to the modeling setup (Fig.1), which should account
for a potential bias in litterfall measurements by assuming
that the actual litterfall is a multiple of the observed litterfall
(cf. Sect.2.3.1). Potential bias may arise if only leaf litterfall
is sampled or the location of litterfall traps is unrepresenta-
tive. Hence,biasiL andbiasiR are two dimensionless param-
eters that express the ratio between the “real” and observed
litterfall (Fig. 1). This technique of accounting for under- or
overestimated carbon input fluxes has been successfully used
in studies modeling the decay of organic matter in marine
sediments. Here, sediment traps were suspected to underesti-
mate the carbon flux to the sediment (Soetaert and Herman,
2009).

In order to adapt ICBM for radiocarbon data, we essen-
tially replicated Eqs. (1) and (2) as an additional14C-module
of ICBM. Only radioactive decay of14C had to be added as
an additional process, withλ, the radioactive decay constant
for 14C, equaling 1

8267yr−1 (Stuiver and Polach, 1977):

d14Y

dt
=

14iL +
14iR− r · kY ·

14Y − λ ·
14Y , (3)

d14O

dt
= r · h · kY ·

14Y − r · kO ·
14O − λ ·

14O. (4)

We used the atmospheric114C record as a proxy for the14C
input via root and leaf litter input. In Fig.1 a small inset
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Fig. 1.Conceptual overview of the modification of the Introductory
Carbon Balance Model as used in this paper. We call this model
setup I14CBM. All parameters except forλ are calibrated. The
dashed lines indicate which pools are affected by the steady-state
relaxing parametersfY andfO .

graph shows a part of this record from 1900 to 2011 covering
the prominent “bomb peak” resulting from aboveground nu-
clear weapons testing during the late 1950s and early 1960s
(Hua and Barbetti, 2004). Throughout this paper we use the
definition of114C (Stuiver and Polach, 1977) as

114C =


(

14C
C

)
SN

AABS
− 1

 · 1000, (5)

where
(

14C
C

)
SN

denotes the
14C
C -ratio of the sample, nor-

malized for isotope fractionation, andAABS the
14C
C -ratio of

the standard. According toKarlen et al.(1968) andStuiver
(1980), AABS = 1.176· 10−12. This corresponds to the 95 %
specific activity of NBS Oxalic Acid I (SRM 4990B), nor-
malized to aδ13CVPDB of −19 ‰ and decay corrected to
1950. Based on the atmospheric114C record and the114C
notation (Eq.5), the14C input via iL and iR was calculated
as:

14iL(t) = AABS ·

(
1+

114COATM
2 (t − tlagL)

1000

)
· iL(t), (6)

14iR(t) = AABS ·

(
1+

114COATM
2 (t − tlagR)

1000

)
· iR(t), (7)

where114COATM
2 (t) is the atmospheric114C signal in year

t , andtlagL andtlagR describe the time lag between photo-
synthetic fixation of14C, its allocation to leaves, fruits, twigs
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(L) and fine roots (R) and its addition to SOC as aboveground
and belowground litter input.tlagL andtlagR are introduced
as additional model parameters influencing the14C-module
of ICBM (Fig. 1); priors for these parameters were defined
based on measurements at the different sites (Sects.2.2.4,
2.3.1).

Throughout this work we tried to challenge the assumption
that total SOC and different SOC pools are in steady state.
Dropping the steady-state assumption leads to the problem
of initializing the different conceptual SOC pools (Yeluripati
et al., 2009). The most common way to deal with initializa-
tion problems of conceptual and nonmeasurable SOC pools
is to perform spin-up runs of the model in an undisturbed
environment. Then estimates about initial SOC pools are re-
trieved based on a reconstructed disturbance history (Falloon
and Smith, 2000; Wutzler and Reichstein, 2007; Yeluripati
et al., 2009). Due to its simplicity the steady-state equations
for the ICBM can still be derived relatively easily:

YSS=
iRini + iL ini

r · kY

, (8)

OSS=
h · kY · YSS

kO

=
h · (iRini + iL ini)

r · kO

, (9)

whereYSSandOSSdescribe steady state and initial pool sizes
of Y andO. iL ini andiRini denote the amount of aboveground
and belowground litter input at the beginning of the simula-
tion period. This amount of litter input is assumed to be rep-
resentative of the period before the simulation begins. Simi-
larly, we can derive steady-state pool sizes for14Y and14O:

14YSS=

14iRini +
14iL ini

r · kY + λ
, (10)

14OSS=
h · kY ·

14YSS

kO + λ
, (11)

where 14iL ini and 14iRini is the initial 14C input via lit-
ter input according to Eqs. (6) and (7). Here, the assump-
tion is that 114COATM

2 (t) was more or less constant be-
fore 1950. Actually114COATM

2 (t) did vary prior to 1950
due to natural causes and the Suess effect; nevertheless
114COATM

2 (start− tlag(L,R)) was taken as the initial114C
signature of litter input, wherestart denotes the starting year
of simulations. We took the latest year we give in Table1 un-
der “Stand history” as the starting year for the simulations at
the different sites.

Contrary to the approach taken byYeluripati et al.(2009),
preliminary modeling exercises showed that it is not feasi-
ble to simultaneously treat the initial model poolsYini , 14Yini ,
Oini and 14Oini as unknown parameters, because of the in-
herent link betweenYini and14Yini , andOini and14Oini via
114C. There is no reason to assume a discrepancy in the be-
havior of C and14C prior to 1950; hence, we have to assume
that deviations from steady state have the same direction for

C and14C. Consequently, two additional parametersfY and
fO (Fig. 1) were introduced for the nonsteady-state version
of I14CBM that allow for a relative deviation of initial values
from the steady state of the respective pools:

Yini = fY · YSS;
14Yini = fY ·

14YSS, (12)

Oini = fO · OSS;
14Oini = fO ·

14OSS. (13)

2.2 Site descriptions and data

2.2.1 Atmospheric114C record

We constructed a time series of tropospheric114CO2
measurements from Vermunt (1959–1976) and Schauins-
land (1976–2011) (personal communication, Ingeborg Levin
2011), which are representative of sites influenced by fos-
sil fuel emissions (Levin and Kromer, 2004). From the indi-
vidual samples we calculated time-weighted averages for the
summer months May to August which are commonly used
for a good representation of the114C values in vegetation
(Levin and Kromer, 2004). For the years 1955–1958 these
time-weighted averages were appended with data from the
Northern Hemisphere Zone 1 compilation byHua and Bar-
betti (2004). This compilation is representative for the North-
ern Hemisphere north of 40◦ N and consists of tree ring data
from Kiel (Germany), Hungary and Bear Mountain (New
York, USA). Prior to 1955 the UW 14C atmospheric single
year data set from 1510 to 1954 was used (Stuiver and Braz-
iunas, 1993; Stuiver et al., 1998).

2.2.2 Study sites

We used data from three spruce-dominated forest ecosys-
tems in Germany and the USA (Table1) to calibrate the
parameters of I14CBM. The Howland Forest research site
is a spruce–fir forest in east-central Maine, USA. The stand
was selectively logged around 1900, but has remained undis-
turbed since then (Hollinger et al., 1999). Richardson et al.
(2010) report a mean stand age of around 110 years with a
maximum of about 215 years. The soil can be classified as a
Typic Podzol (IUSS Working Group WRB, 2007) or Typic
Haplorthod according to the soil taxonomy of the United
States Department of Agriculture (1999) (Fernandez et al.,
1993; Gaudinski et al., 2001). Due to the hummocky to-
pography, the organic layer varies considerably in thickness
(Gaudinski, 2001). Oi, Oe and Oa horizons of varying thick-
ness have been separated and could possibly be designated
as a mor-like humus.

The Coulissenhieb II site is a mature Norway spruce
(Picea abiesL.) stand in the Fichtelgebirge mountains in
northeastern Bavaria, Germany.Schulze et al.(2009) report
that according to the forest administration the area has been
clear cut during the 16th and 18th century as timber sup-
ply for the local mining industry. In 1867 the stand was
afforested with Norway spruce, so that the average stand
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Table 1. Location, elevation, dominant tree species, soil type according toIUSS Working Group WRB, humus form, soil texture, soil
pH(CaCl2), mean annual precipitation (MAP), mean annual air temperature (MAT), stand age, and site history of the 3 study sites.

Howland Forest Coulissenhieb II Solling D0

Location 45◦10′ N, 68◦40′ W 50◦08′ N, 11◦52′ E 51◦31′ N, 9◦34′ E

Elevation (m) 60 770 500

Tree species Picea rubens Picea abies Picea abies
Pinus strobus
Tsuga canadensis

Soil type Typic Podzol Haplic Podzol Dystric Cambisol
(IUSS Working Group WRB, 2007) (IUSS Working Group WRB, 2007) (IUSS Working Group WRB, 2007)

Humus form mor mor moder

Soil texture formed in coarse-loamy sandy loam loam-silt
granitic basal till

Soil pH 2.8 (organic layer) 3.3 (Oa) 3 upper soil
4.3 (B horizon) 3.7 (Bs) 4 deeper mineral soil

MAP (mm) 1000 1160 1090

MAT (◦C) 5.5 5.3 6.4

Stand age (years) 110 (mean), 215 (maximum) in 2010 140 in 2008 71 in 2004

Stand history selective logging around 1900, clear cut during the 16th and 18th 1880 extensive pasture, 1888
undisturbed since then century, 1867 afforestation with afforestation with Norway spruce,

Norway spruce 1933 second generation

age was around 140 years in 2008. The winter storm Kyrill
severely damaged the stand in 2007, causing a considerable
thinning (Muhr et al., 2009). The soil is classified as a Haplic
Podzol according to the IUSS Working Group (2007) with
sandy loam texture and a mor-like forest floor consisting of
Oi, Oe and Oa horizons (Schulze et al., 2009). High base sat-
uration in the Oa horizon (54 %) and lower base saturation of
12–16 % in the subsoil indicates past superficial forest liming
(Hentschel et al., 2009).

The Solling roof project is a 71-year-old (2004) Norway
spruce (Picea abiesL.) plantation at the Solling plateau in
Lower Saxony, Germany. The Solling roof project consists of
four different plots, of which three are covered by transpar-
ent roofs underneath the canopy. In this work only114CSOC
and 114CHR data from the ambient control plot without a
roof was used. This plot is mostly referred to as Solling D0
(Bredemeier et al., 1998).

Table1 gives an overview of the most important character-
istics of all three sites, such as soil type, humus form, mean
annual temperature and precipitation.

2.2.3 General methods

Measurements of soil organic carbon stocks

The soil organic carbon stock on an area basis (kg C m−2)
was calculated as

SOCstock=

Horizons∑
i=1

SOCcontent,i ·BDi ·depthi ·(1−CFi), (14)

where i denotes the individual horizons/layers and
SOCcontent,i is a SOC content or mass fraction
(kg C (kg dry soil)−1), BDi is a soil bulk density
(kg dry soil m−3), depthi is the thickness of the sampled
horizon/layeri, and CFi is the volume fraction of coarse frag-
ments, namely stones and roots CF =stone volume+root volume

soil volume .
The correction for coarse fragments is necessary, as stones
contain no organic carbon and (live) roots are generally not
summarized under SOM (dead soil organic matter according
to Rodeghiero et al., 2009).

Soil respiration measurements

Two types of soil respiration chambers of the class of closed
chambers were used: closed dynamic chambers were used
at Howland and Coulissenhieb II, whereas at Solling closed
static chambers were used. Generally, in closed chambers the
CO2 flux is estimated by measuring the increase of CO2 in
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the chamber’s head space during a known period of time
(Pumpanen et al., 2004, 2009). The soil CO2-C efflux can
then be determined from the increase in the CO2 concen-
tration 1c

1t
. In closed static chambers the CO2 concentra-

tion increase1c
1t

is determined from air sampled with sy-
ringes, which are then analyzed for CO2 with a CO2 analyzer
(Borken et al., 1999; Pumpanen et al., 2009). In closed dy-
namic systems,1c

1t
is determined with portable infrared gas

analyzers with the air circulating between the chamber and
the analyzer (Pumpanen et al., 2009).

Soil incubations

The 114C signature of HR was determined by incubating
root-free soil samples at a constant temperature for several
days. CO2 that evolved during the incubations is sampled and
analyzed for114C. Two different sampling methods were
applied. At Howland Forest, samples from each horizon were
taken, transferred to 100 mL jars and incubated for 12 days.
The amount of CO2 evolved during the incubation was mea-
sured, and the collected CO2 was analyzed for114C. 114C
for bulk heterotrophic respiration can then be calculated as
described in Eq. (16) (Gaudinski, 2001). At Coulissenhieb
II and Solling a different sampling approach was taken. In-
stead of incubating disturbed soil samples from individual
horizons, complete soil cores were taken. Roots were either
manually removed from the soil cores at the Coulissenhieb II
site (Muhr et al., 2008, 2009) or left in the soil cores under
the assumption that root fragments die after 10 days and are
not able to respire anymore (Lemke, 2007). Hence, the114C
signature of CO2 that evolved during the incubation of soil
cores represents the bulk114C of HR.

Measuring radiocarbon signatures

114C values were determined with accelerator mass spec-
trometry (AMS). The radiocarbon signatures are reported
in relation to an oxalic acid standard (0.95 times the spe-
cific activity of NBS Oxalic Acid I (SRM 4990B) normal-
ized to aδ13CVPDB of −19 ‰) (Stuiver and Polach, 1977).
Theδ13CVPDB value of the samples was used to account for
isotopic fractionation that occurred during sample formation
(Stuiver and Polach, 1977). The preparation of AMS graphite
targets followed procedures described inXu et al. (2007).

The final determination of the
14C
12C

-ratio of AMS graphite tar-
gets from all three sites was performed at the Keck-CCAMS
facility of University of California, Irvine, USA.

Calculation of 114C signatures for bulk SOC stock

In order to calculate a bulk114C value for the whole soil
profile, we used a SOC-stock-based weighting approach:

114CSOC,bulk =

∑Horizons
i=1 114CSOC,i · SOCstock,i

SOCstock
, (15)

where 114CSOC,i is the 114C value of the horizoni,
SOCstock is the total SOC stock of the whole profile as de-
fined in Eq. (14), and SOCstock,i is the SOC stock of one
horizon.

Calculation of 114C signatures of bulk heterotrophic
respiration

Similar toGaudinski(2001) a flux-weighted average was cal-
culated as a bulk114C value of heterotrophic respiration
from individual incubation samples, when incubations were
conducted per horizon (Howland) and not on soil cores in-
cluding several horizons (Coulissenhieb and Solling):

114CHR =

∑Jars
i=1F(CO2)i · BDi · depthi · 114Cincubation,i∑Jars

i=1F(CO2)i · BDi · depthi
, (16)

whereF(CO2)i is the CO2 produced in jari, BDi is the bulk
density of the soil horizon in jari, depthi is the thickness of
the soil horizon in jari, and114Cincubation,i is the114C of
CO2 evolved during incubation.

Partitioning of soil respiration

Soil respiration SR can be partitioned into heterotrophic res-
piration (HR) and rhizosphere respiration (RR) using a va-
riety of approaches. They range from root-exclusion exper-
iments, like trenching and tree girdling experiments, to iso-
topic approaches, like continuous or pulse labeling of plants
in 14CO2 or 13CO2 atmosphere or using the bomb-14C sig-
nal as a pulse label (Kuzyakov, 2006). At all three sites in
this study, an isotopic approach using the bomb-14C signal
was applied. The measurement of the114C signature of total
soil respiration (114CSR) and its components (114CHR and
114CRR) allows SR to be partitioned into HR and RR using
a linear two-source, single isotope mixing model (Phillips
and Gregg, 2001). On short timescales the radioactive decay
of 14C can be neglected and the atmospheric114C signal can
be used as a label that allows us to distinguish between plant-
derived CO2 (RR) and SOM-derived CO2. Plant-derived
CO2 normally closely follows the114C signature of the at-
mosphere, whereas SOM-derived CO2 greatly differs from
the atmospheric114C signal due to longer residence times of
C in SOM pools. The114C signature of plant-derived CO2
can, however, differ from the current atmospheric signal if
carbon from storage pools and not only recently assimilated
carbon is metabolized (Czimczik et al., 2006; Muhr et al.,
2009). 114CSR is then a mixture of114CHR and114CRR
that can be described by the following mass balance equa-
tions:

SR= HR+ RR, (17)

114CSR · SR= 114CHR · HR+ 114CRR·RR. (18)
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Based on this equation we can calculate the proportion of
heterotrophic respiration in total soil respiration (fHR):

fHR =
HR

SR
=

114CSR− 114CRR

114CHR − 114CRR
. (19)

Data uncertainties

Uncertainties for SOC, HR and114CHR were taken directly
from the original publications we refer to in Sect.2.2.4or
were calculated from uncertainties reported therein using
the basic rules for error propagation for sums and prod-
ucts (Taylor, 1997). Because the propagation of uncertainties
for fHR and 114CSOC,bulk could not be broken down into
steps that use the basic rules for error propagation for sums
and products, the general formula for propagation of errors
had to be applied (Taylor, 1997; Phillips and Gregg, 2001)
(Eq.A1). A detailed description of how the uncertainties for
fHR (Eq.A5) and114CSOC,bulk (Eqs.A2–A4) have been cal-
culated can be found in AppendixA1.

2.2.4 Measurements and data processing

Howland Forest

The total soil organic carbon stock at the Howland Tower
site was calculated with Eq. (14) based on carbon content
measurements in 1997 from the soil pit (n = 1) reported in
Gaudinski(2001) and on data of spatial heterogeneity, coarse
fraction volume (CF) and bulk density (BD) fromn = 24
quantitative soil pits reported byFernandez et al.(1993).
Here, we excluded the measurements from the BC horizon,
because for the second sampling of114CSOC in 2007 mea-
surements were only performed up to the Bs horizon. Be-
cause the SOC stock (10± 2 kg C m−2; mean± SE) we cal-
culated is only based on one soil pit, its standard error is
considerable larger than standard errors of the SOC stock
in other studies for the same site (Richardson et al., 2010)
that are based on several soil pits reported inFernandez
et al. (1993). Bulk values of114CSOC up to the Bs hori-
zon (bottom depth 40 cm) were calculated with Eq. (15) us-
ing the horizon specific SOC stocks from 1997 and114C
values from 1997 and 2007. The 2007114C values were
weighted with the horizon specific SOC stocks from 1997.
114CSOC values stem from onlyn = 1 soil pit. The horizon
specific standard errors for SOC stocks are based on esti-
mates fromFernandez et al.(1993) and the standard errors
for the 114C values were used to calculate a standard er-
ror for the stock-weighted average with Eqs (A2)–(A4). Bulk
114CHR values (Eq.16) were calculated from incubations of
horizon specific soil samples that were performed in 1999
and 2010 (personal communication, Carlos Sierra). AnfHR
of 0.55± 0.13 (mean± SE) was calculated only with data
from 1997 (Eqs.19 and A5), as 114CSR values were not
available for 2010. The atmospheric114C signal in 1997 was
used as a proxy for114CRR measurements. ThisfHR value

was used to calculate HR from an annual time series (1997–
2009) of soil respiration measurements at the tower site from
n = 8 collars (personal communication, Kathleen Savage).
Standard errors for HR were calculated via error propagation
using the standard errors of SR andfHR. Average annual leaf
litter input at Howland Forest is about 0.155 kg C m−2 (per-
sonal communication, Kathleen Savage). As no data on be-
lowground litter input for Howland were available, we sim-
ply assumed that belowground litter input would be in the
same range as aboveground litter input (cf. aboveground and
belowground litter input at Coulissenhieb II and Solling, and
McClaugherty et al., 1984andPersson, 1978). Based on lag
times for different types of aboveground litter (Gaudinski,
2001, p. 121) we calculated a lag time of 5 years between
the photosynthetic fixation of14C and its addition to SOC
as aboveground litterfall at Howland Forest. A root lag time
of 10.5 years (Eq.7) was calculated from the114C of roots
< 0.5 mm and 0.5–1 mm (Gaudinski, 2001, p. 151).

Coulissenhieb II

The total soil organic carbon stock at the Coulissenhieb II
site (15.1± 0.9 kg C m−2, mean± SE) is based on measure-
ments ofn = 9 soil pits (0.7 m× 0.7 m) including the organic
horizons (Oi, Oe and Oa) and the mineral horizons (Ea, Bsh,
Bs and Bv; bottom depth 52 cm) (Schulze et al., 2009). A
bulk value of114C of SOC was calculated with Eq. (15) us-
ing horizon specific SOC stocks and114C values reported
by Schulze et al.(2009). 114C values of SOC were deter-
mined forn = 3 of the nine soil pits. The horizon specific
standard errors for SOC stocks and114C values were used
to calculate a standard error for the stock-weighted average
with Eqs. (A2)–(A4). A 114CHR signature for the year 2007
was calculated as the arithmetic mean of114CHR values ob-
tained from six different incubations (Table 2 inMuhr and
Borken, 2009, and Table 2 inMuhr et al., 2009). The incu-
bations were performed with soil cores from a control plot
from six different sampling dates in the period from 3 Au-
gust 2006 to 16 October 2007 (Muhr and Borken, 2009;
Muhr et al., 2009). The114CHR of each sampling date was
based onn = 3 replicates. The standard error relating to the
114CHR,2007value was calculated via error propagation from
the standard errors of the individual sampling dates. The cal-
culated114CHR was assigned to the measurement year 2007.
114CSR, 114CHR and114CRR values of the individual sam-
pling dates were used to calculatefHR and the related stan-
dard errors (Eq.19). The arithmetic mean of the individual
fHR values is 0.82± 0.06 (mean± SE). This value was used
to calculate HR for the years 2006–2008 with HR =fHR ·SR.
Standard errors for HR were calculated via error propaga-
tion using the standard errors of SR andfHR. Aboveground
litter input (iL) data was only available from the adjacent
Coulissenhieb I site with an average needle litter input of
0.103± 0.017 kg C m−2 yr−1 (mean± SD) (Berg and Gerst-
berger, 2004). A crude annual estimate for belowground litter
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input from fine roots (iR) of 0.206 kg C m−2 yr−1 was ob-
tained by summing up monthly estimates of fine-root mor-
tality based on the sequential coring method that were re-
ported in studies on the effect of drought and soil frost on the
fine-root system (Gaul et al., 2008a, b). Schulze et al.(2009)
reported an aboveground litter lag time of six years based on
114C measurements of fresh spruce litter. We calculated a
root-biomass-weighted lag time of eight years from fine-root
biomass data (Gaul et al., 2008a) and114C measurements of
live roots in different depths (Gaul et al., 2009).

Solling D0

The total soil organic carbon stock at Solling D0 was cal-
culated as a combination of SOC stock measurements for the
organic layer from an adjacent spruce forest in 1993 and SOC
stock measurements for the mineral soil in 1997. In order to
be able to combine these measurements, we assume that SOC
stocks did not change drastically within four years. The indi-
vidual SOC stock measurements are based onn = 61 repli-
cates for the Oi + Oe,n = 40 replicates for the Oa, andn = 5
replicates for mineral soil horizons. The combined Oi + Oe
horizon was split into Oi and Oe based on data inLemke
(2007). Standard errors of the individual horizons were used
to calculate the standard error of SOC stock up to 30 cm. A
bulk value of114CSOC(3± 13 ‰; mean± SE; bottom depth
30 cm) was calculated with Eq. (15) using horizon-specific
SOC stocks and114C values for the Solling D0 site that were
collected during a Ph.D. thesis (Lemke, 2007). 114C values
of SOC were determined withn = 3 replicates. The hori-
zon specific standard errors for SOC stocks and114C values
were used to calculate a standard error for the stock-weighted
average with Eqs. (A2)–(A4). In July 2004 an incubation
experiment yielded a114CHR signature of 119.4± 1.2 ‰
(mean± SE). Together with114CSR and114CRR signatures
from Solling D0, the114CHR signature was used to calculate
fHR (0.69± 0.03; mean± SE) using Eqs. (18) and (A5). This
value was used to calculate HR for 2004 with HR =fHR ·SR.
Standard errors for HR were calculated via error propaga-
tion using the standard errors of SR andfHR. As an annual
estimate of aboveground litter input the annual average of
foliage litter input (0.109 kg C m−2 yr−1) on the roof control
plot (D2) was used. Fine-root biomass and necromass mea-
surements in different depths from the roof control plot (D2)
(Murach et al., 1993) were used to calculate fine-root mor-
tality with the compartmental flow method (Murach et al.,
2009). These data from 1992 give an estimate of fine-root
mortality of 0.094 kg C m−2 yr−1. For the Solling D0 site we
used the sametlagL andtlagR as for Coulissenhieb II.

2.3 Bayesian calibration

Process-based models in geosciences tend to be overparam-
eterized with regard to data availability (van Oijen et al.,
2005). Hence, it does not make sense to apply parameter fine-

tuning, i.e., looking for one best parameter set, but rather to
show how well we can constrain the uncertainty about model
parameters with the data at hand. The Bayesian approach is
suited to deal with overparameterized models because we are
able to include prior knowledge about model parametersθ by
updating the prior distribution of parametersp(θ) with the
data likelihoodp(y | θ) to the posterior distribution of pa-
rametersp(θ | y) (Reichert and Omlin, 1997; Gelman et al.,
2004):

p(θ | y) ∝ p(y | θ) · p(θ). (20)

The posterior densityp(θ | y) describes the probability of
parameters given the model and the observationsy. It is a
combination of the prior probability of a parameter setθ and
the likelihood that we observe the observationsy given this
parameter setθ (Gelman et al., 2004). Numerical algorithms
like the class of MCMC algorithms are commonly used to
generate a sample from the posteriorp(θ | y) (van Oijen
et al., 2005). The essential property of all MCMC algorithms
is that at each iteration the approximate distributions are im-
proved, so that they eventually converge to the target distri-
bution, the posteriorp(θ | y). After ensuring convergence of
the MCMC algorithm all drawn samples can be used to make
inferences aboutθ by simple summary statistics (e.g., mean,
standard deviation and percentiles) or histograms and kernel
density estimates which provide insight into the distribution
of p(θ | y).

2.3.1 Prior parameter distributions

Based on concluding remarks byAndrén and Kätterer(1997)
a broad prior for the humification coefficienth was derived
from the mass fraction remaining after a 5–10-year litterbag
experiment.Berg(2000) reported a remaining mass fraction
of 0.26 for Norway spruce litter in litterbag experiments.
We used this value as the mode for a logit-normal distribu-
tion with the 99th percentile at 0.9 (Fig.2a). Since the de-
composition rateskY andkO are theoretically bound at 0, a
log-normal distribution was chosen for these two parameters,
with modes at 1 yr−1 and 0.006 yr−1 (the latter is the default
recommendation byAndrén and Kätterer, 1997). The 99th
percentile forkY was set to 7 yr−1, and to 1

15 yr−1 for kO

(Figs.2b and c).
The lag time parameters,tlagL and tlagR, are also the-

oretically limited to positive values. We use the measured
lag times, reported in Sect.2.2.4for the individual sites, as
modes for log-normal priors, with their 99th percentile at the
measured lag time +2 years (Figs.2d and e).

Berg and Gerstberger(2004) reported that the ratio of fo-
liar litter input to total aboveground litter input is dependent
on stand age: in a Scots pine chronosequence the relative size
of the foliar litter fraction was 83 % in an 18–25-year-old
stand, 68 % in a 55–61-year-old stand, and 58 % in a 120–
126-year-old stand. This corresponds to a possiblebiasiL fac-
tor between 1.2 and 1.7 when only foliar litter input was
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Fig. 2. Prior distributions used for the model parametersθ . Distributions:(a) h logit-normal distribution,(b) kY and(c) kO log-normal,(d)
tlagL and(e) tlagR log-normal (priors for Coulissenhieb II and Solling are shown),(f) biasiL and(g) biasiR log-normal distributions,(h) fO

and(i) fY truncated normal distributions.

measured. Hence, we set the mode of a log-normal prior
for biasiL to 1 and the 99th percentile to 2. (Fig.2f). The
same prior was used forbiasiR but with its 99th percentile
at 3 because the amount of root litter input is probably less
constrained (Fig.2g). Truncated normal distributions with
mode = 1 and the 99th percentile = 1.5 (truncation at 0) were
used for the deviation of steady-state parameters,fY andfO ,
so that a priori the highest probability was assigned toY and
O pools in steady state (Figs.2h and i).

2.3.2 Joint constraints calibration experiment

Under the assumption that the measurement errors were nor-
mally distributed, we formulated the data-likelihood function
for the individual observational constraintsi as:

p(y | θ)i (21)

=

∏
t ∈ myrs

1
√

2πσi(t)
exp

(
−

1

2
·

(
ICBMi(t)−Obsi(t)

σi(t)

)2
)

,

where i is one of the different data streams (SOC, HR,
114CSOC, 114CHR), t ∈ myrs denotes the years in which
measurements were made,σi(t) the uncertainty associated
with the measurement Obsi(t), and ICBMi(t) the model pre-
dicted value.σi(t) was kept fixed at the SEs of the respective
measurement under the assumption that these dominate over
modeling uncertainty (Reinds et al., 2008; van Oijen et al.,
2013). In order to study how combinations of different obser-
vational constraints influence the posterior parameter uncer-
tainty, we devised a set of multiple constraints calibration ex-
periments with four runs containing different combinations

Table 2.Order of multiple constraints calibration experiments.

Code Observational constraints included
in data-likelihood function

Run(SOC) SOC
Run(+114CSOC) SOC +114CSOC
Run(+114CHR) SOC +114CSOC+114CHR
Run(+HR) SOC +114CSOC+114CHR + HR

of observational constraintsi (Table2). The multi-objective
data likelihood is then simply defined as the product of the
the individualp(y | θ)i in Run(XY):

p(y | θ)Run(XY) =

∏
i ∈ Run(XY)

p(y | θ)i . (22)

We then used a variant of the standard Metropolis–
Hastings algorithm, the delayed rejection and adaptive
Metropolis (DRAM) algorithm (Haario et al., 2006), to sam-
ple from the posterior distributionp(θ | y). In the adaptive
Metropolis part of this algorithm the generation of new pro-
posal parameter setsθ is made more efficient by learning
from the accepted parameter sets thus far (Haario et al.,
2001). The delayed rejection part of DRAM improves the
efficiency by scaling the proposal covariance matrix with a
predefined factor if the proposed parameter set is rejected
(Haario et al., 2006). We used the DRAM implementa-
tion of Soetaert and Petzoldt(2010) to perform the cali-
bration within the statistical software R-2.15.1 (R Develop-
ment Core Team, 2012). The MCMCs were started from
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five overdispersed starting parameter setsθ using the data-
likelihood function as defined in Eq. (22) and the priorsθ
as defined in Sect.2.3.1. These overdispersed starting points
were retrieved by Latin hypercube sampling from the en-
tire range of the prior distributions. In short, Latin hypercube
sampling means that the prior parameter space is subdivided
into equally sized segments and a set of starting parameters
is constructed by randomly drawing one value for each pa-
rameter out of the segments. All parametersθ that appear in
the conceptual overview (Fig.1) except forλ, the radioactive
decay constant, are calibrated.

We can be sure that the five chains have converged if, af-
ter thousands of iterations, the chains have forgotten about
their initial values. We monitored convergence using the po-
tential scale reduction factor̂R as defined inGelman et al.
(2004). For each site (Table1) and each calibration setup (Ta-
ble 2) we ran five chains in parallel, with 100 000 iterations
each. We discarded the first 50000 iterations of each chain
and checked if the within- and between-chain point scale re-
duction factorR̂ < 1.025. Additionally, we visually checked
for convergence with trace plots for the five chains and each
parameter. Furthermore, we checked density plots for each
parameter and chain to ensure that inferences from different
chains would give the same results. The second halves of the
chains were merged, thinned to a total sample size of 16 666
(every 15th sampled value was kept) and treated as a sample
from p(θ | y).

2.3.3 Information content of different constraints

We used two measures to quantify the information gain in
moving from the priorp(θ) to the posteriorp(θ | y). We
computed the relative reduction of the interquartile range be-
tween the prior of a certain parameterθ and its posterior:

1IQR = 1−
IQR(p(θ |y))

IQR(p(θ))
, (23)

where IQR denotes the interquartile range.1IQR was used
to quantify the reduction in uncertainty for individual param-
eters.

When we want to take a multidimensional look at combi-
nations of parameters,1IQR becomes an undefined quan-
tity. In this case we used the Kullback–Leibler diver-
gence,DKL , to quantify the information content of the
different data streams.DKL is a dimensionless measure
for the dissimilarity between two probability density func-
tions (PDFs), e.g., the Kullback–Leibler divergence between
the posteriorp(θ | y) and the priorp(θ) is denoted as
DKL (p(θ | y)‖p(θ)). Since an accurate estimation ofDKL
based on PDF estimates ofp(θ | y) andp(θ) is not possi-
ble in higher dimensions (the number of elements inθ ), we
used aDKL estimator based on ak-nearest neighbor (k-NN)
search (Boltz et al., 2009). This k-NN-basedDKL estimate
does not explicitly estimate the PDFs, but allows a direct esti-

mate ofDKL from samples ofp(θ) andp(θ | y), as retrieved
by Bayesian calibration (Boltz et al., 2009).

3 Results and discussion

The results of all three sites will be presented and discussed
in a comparative fashion to highlight similarities and differ-
ences between the sites. The results of the calibration at How-
land Forest will be used to highlight common characteristics
in a more detailed fashion, while differences for the two other
sites are pointed out.

3.1 Information content of different observational
constraints

The degree to which the posterior parameter distributions are
constrained compared to the prior parameter distribution de-
pends on three factors: the observational constraints included
in the calibration, the respective measurement uncertainties,
and the parameter in question (Fig.3).

Using only SOC as observational constraint (Run(SOC))
already narrows the posterior distribution ofkO by 14, 43
and 54 % at Howland Tower, Coulissenhieb II and Solling
D0 (Fig. 3). Also, the1IQR of the humification coefficient
is somewhat better constrained in Run(SOC) compared to the
prior (Fig. 3), but the violin plots ofh still cover the whole
range of possible values (e.g., Fig.4a at Howland Forest and
Figs.A1a,A2a).

SOC together with114CSOC (Run(+114CSOC)) consid-
erably narrows the estimates for the humification factorh

and the decomposition rate of the old poolkO . Compared
to the prior the interquartile ranges ofh andkO are reduced
in Run(+114CSOC) by 74–84 % and 88–95 %, respectively
(Fig. 3). The other parameters were not considerably con-
strained by the observational constraints SOC +114CSOC.

The inclusion of 114CHR into the observational con-
straints (Run(+114CHR)) markedly reduced the uncertainty
of the decomposition rate of the young poolkY compared
to Run(+114CSOC) (Fig. 3). The change of the interquartile
range,1IQR, is between 20 % for Howland Forest and 96 %
for Solling D0. These percentages reflect large differences
in observational uncertainties among the studied sites. While
the reported uncertainty of114CHR at Solling D0 was only
1.2 ‰, at Howland Forest the uncertainty in different years
was 2 and 5 ‰.

When HR was included in the calibration,biasiL and
biasiR were shifted towards higher values for Howland Forest
and Coulissenhieb II (e.g., Figs.4h and i for Howland For-
est). Also, the IQR was markedly decreased by the inclusion
of HR in the calibration (Fig.3), especially forbiasiR.

Including114CHR in the calibration lead to a slight shift
to higher posteriortlagL and tlagR values compared to the
prior (panels f and g in Figs.4, A1 andA2). This means that
increasing the lag times is a simple possibility of achieving a
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Fig. 3. Change of interquartile ranges,1IQR, between prior and posterior marginal distributions of the different model parameters at all
three sites for the four multiple constraints calibration experiments.

correct114CHR signature by increasing the14C contents in
litter inputs. This already points to a trade-off between esti-
matingkY and lag times. The slight shift to higher posterior
tlagL andtlagR values was accompanied by a broader poste-
rior compared to the prior in Run(+114CHR) (Fig. 3).

The parametersfY andfO , which were introduced to al-
low for a deviation from steady state, are hardly constrained
compared to the prior in all runs. In general, only the param-
etersh, kY andkO could be constrained well with the used
observational constraints.

3.2 Correlations between parameters

As shown in Fig.5 for the Howland Tower site, there are
many strong correlations between the different combinations
of posterior parameter distributions. Prominent correlations
between parameters can be explained by comparing the di-
rection of the correlation coefficient to the model structure.
The highest positive correlation coefficients were observed
betweenh and kO meaning that a higher value ofh can
be compensated by a faster decomposition rate ofkO . This
strong correlation emerges already in Run(SOC), but is per-

sistent as more data streams are included (Figs.5a–d). This
is consistent with what we have to expect from the model
structure: if more carbon from the young pool is transferred
to the old pool, the turnover time must be lowered to get the
same amount of carbon in the old pool.

When 114CSOC is included in the calibration, another
interesting correlation emerges: thefO parameter is posi-
tively correlated with the decomposition rate of the old pool
(Fig. 5b). This is in line with considerations byWutzler and
Reichstein(2007) who found that for soils that have not
reached (and are below) their equilibrium stock, model cali-
bration to the current carbon stock overestimates the decom-
position rate of the slowest pool. They propose a transient
correction which prescribes a lower decomposition rate for
the old pool. The correlation betweenfO andkO in runs with
114CSOC confirms these considerations: iffO was actually
below the steady state, but was set to 1,kO would be shifted
to faster decomposition rates.

In Run(+114CHR) h andkY become negatively correlated
(Fig. 5c). This correlation betweenh andkY means that the
same114CHR value can be achieved by either increasing the
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Fig. 4. Howland Tower. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th and
75th percentile, the thin black lines indicate the upper and lower adjacent values.

fraction of the decomposition flux (kY · Y ) that is directly
respired (i.e., a lowerh) or by increasing the decomposi-
tion flux itself (i.e., a fasterkY ). Another prominent posi-
tive correlation emerges in Run(+114CHR) for kY andtlagR

(Fig. 5c) and can be interpreted as follows: the young pool
can keep its high114C signatures by either increasing the
decomposition ratekY or with longer lag times oftlagR, re-
sulting in higher114C signatures of the litter input. This cor-
relation pattern trickles down from the decomposition ratekY

of the young pool towards the decomposition ratekO of the
old pool via the humification fluxh (Fig. 5c).

In Run(+HR)biasiL andbiasiR become strongly negatively
correlated; this means that in I14CBM the total amount of lit-
ter inputs have to be at a certain level in order to explain the
observed heterotrophic respiration. Hence, we can change
either aboveground litter inputs or root litter inputs to get
the same amount of total litter inputs. Due to the fact that

I14CBM models bulk SOC stocks and does not model a depth
distribution of root litter inputs, it is not very relevant which
kind of C inputs drive the model. Still, it was important to
distinguish between aboveground and belowground litter in-
put in order to allow different lag times to the atmospheric
record for root litter input and leaf litter input.

Nevertheless, the overall strong correlations suggest that
the parameter distributions are more strongly constrained
than suggested by the marginal distributions (Fig.5). This
is exemplified by the strong correlations betweenh andkO :
the kernel density estimates of the posterior parameter dis-
tributions ofh andkO (e.g., in the diagonal of Fig.5d) do
not give any information on how likely it is that low val-
ues ofh are observed together with very high decomposi-
tion rateskO . If we look at the bivariate probability density
plot in the lower triangle of Fig.5d, we get the answer: it
is very unlikely. Hence, it is fruitful not only to consider
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Fig. 5.Correlation matrices of the posterior parameter distributions
for the four different calibration experiments (a–d). In the lower tri-
angle of each panel, samples of the posterior parameter distribution
of two parameters are plotted against each other (tick marks and la-
bels were left out for clarity). The diagonal shows a kernel density
estimate of the marginal posterior distribution. In the upper diagonal
correlation coefficients between the parameters are shown. A gradi-
ent from white to red indicates increasingly strong positive correla-
tions, whereas a gradient from white to blue indicates increasingly
strong negative correlations.

the univariate posterior parameter distribution, but also to
consider correlations between parameters in two- or higher-
dimensional space, which provide a further constraint for the
possible model behavior.

Braakhekke et al.(2013) conclude that the fact they ob-
served strong correlations between parameters is an indica-
tion that the model is overparameterized with respect to the
available data. Certainly, I14CBM is also overparameterized
with regard to the available data at Coulissenhieb II, Solling
D0 and Howland Tower. Strong correlations between model
parameters are, however, not necessarily only a measure for
the degree of overparameterization of a model: a comparison
between Run(SOC) (Fig.5a) and Run(+HR) (Fig.5d) at the
Howland Tower site shows that for Run(SOC) there are far
fewer correlations between the posterior parameter samples
than in Run(+HR). We can expect that strong correlations be-
tween parameters will always exist in modeling studies based
on 14C and C data, because modeling14C and C in parallel
introduces parameters that govern several similar equations
(e.g.,kY in Eqs.1 and3). Hence, strong correlations between
parameters should not only be seen as an indication for over-

parameterization, but also as a reflection of the model struc-
ture: if, for example, the young and the old pool were not
linked via the humification flux, but received litter input in-
dependently of each other, the correlation betweenkY and
kO would be considerably reduced. In addition, in multiple-
constraints calibration settings, correlations between param-
eters are also an indicator for the strength of trade-offs be-
tween different objectives/data streams (Figs.5a–d).

The features described above for Howland Forest gener-
ally also hold true for the calibration runs at the two other
sites, Coulissenhieb II and Solling D0 (not shown). The
strength of correlations is obviously slightly different, while
the direction and magnitude of correlations is the same for
most of the parameter combinations.

For a similar purpose as for correlation matrices (Fig.5)
and the1IQR, we can use the Kullback–Leibler divergence
between the joint posterior distribution of several parame-
ters and their prior to quantify how well the different data
streams constrain SOC turnover overall. We present two set-
tings here: the joint posterior of the parameterskY , h andkO

is compared with the joint prior of these parameters (Fig.6)
in which no correlations were present. The parameterskY , h

andkO govern the overall SOC turnover if we do not account
for possible biases in the assumptions or measurements with
parameters such asbiasiL , fO or, for 14C lag times,tlagL

andtlagR. Further, we compared the joint posterior of all pa-
rameters with the respective joint prior to evaluate the over-
all constraint of different data streams on the presented SOC
model.

The overall information gain for SOC turnover (joint pos-
terior of kY , h andkO ) was highest when including114C of
SOC and HR in the calibration (Fig.6). Including114CHR
at Solling D0 led to a disproportionate information gain due
to the reported low uncertainty of that data stream at this site
(Fig.6). The information gain for the joint posterior of all pa-
rameters was always highest when all data streams were in-
cluded (Fig.6). For Run(+HR), the Kullback–Leibler diver-
gence did not indicate much information gain for constrain-
ing kY , h and kO (Fig. 6) compared to Run(+114C); the
information gain for all model parameters (Fig.6) when in-
cluding HR in the calibration is, however, considerable. This
underlines the fact that the HR data are more important for
constraining thebiasiL andbiasiR parameters than for con-
straining the essential SOC turnover parameters,kY , h and
kO .

3.3 Relaxed steady-state assumption

Graphical inspection of the overall agreement between the
model and the data showed that I14CBM was in general able
to reproduce the data used for calibration (Fig.7). This is
valid for all sites and for the all constraints run, Run(+HR)
(not shown for Coulissenhieb and Solling). This result can
possibly be expected for most inverse modeling studies at
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Fig. 6. Kullback–Leibler divergence,DKL , at all three sites between the joint posterior distributionsp(θ |y) of then calibration experiments
and the joint prior distributionsp(θ) of the parameterskY , h andkO , and of all calibrated parameters.

other sites, as practically all SOM models are overparame-
terized considering the inherent scarcity of114C data.

Some features, however, are notable: even with all obser-
vational constraints included, the joint use of SOC stock,
HR, 114CSOC and 114CHR data did not make it possible
to determine if any of the sites has been gaining or losing
SOC (Fig.7), because the marginal distributions of the pa-
rametersfY and fO generally followed their prior distri-
butions (Figs.4, A1, A2). Nevertheless, at least some con-
straint for thefO parameter was gained through the corre-
lation betweenfO and kO (Fig. 5b) which emerged when
including 114CSOC into the calibration. This shows that
only the use of a multiple constraints approach (here mainly
SOC +114CSOC) made it possible to put this admittedly
weak constraint on the source/sink strength of the investi-
gated soils. Nevertheless, this correlation makes it difficult to
simultaneously estimate decomposition rates (e.g.,kO ) and
the source/sink strength of a soil (e.g.,fO ), especially for
soils with only small deviations from a steady-state SOC
stock. We could potentially resolve this trade-off by prescrib-
ing stronger priors forfO if we have strong indications for a
major carbon loss in the past. Better yet, we could estimate
a kO for a soil for which we can be reasonably sure that the
SOC stocks are in equilibrium. ThiskO could then serve as a
strong prior for a soil with fairly similar conditions, for which
we want to estimatefO .

At the Howland Tower site, SOC stocks modeled in
Run(+HR) do not differ much between the nonsteady state
and the steady state case (Fig.7). Not surprisingly, the ef-
fects of the parameters that allow for a deviation from steady
state are seen more clearly in the time series of modeled
HR (Fig. 7d). At all three sites, modeled HR of Run(+HR;

nonsteady state) rapidly approaches the modeled HR of
Run(+HR; steady state) (e.g., Fig.7c). This is due to the fact
that HR is dominated by CO2 evolved from the young pool
(Fig. 7f). As the young pool only has mean turnover times
TY of 0.8 (Howland Tower), 1.1 (Coulissenhieb II) and 5.7
years (Solling D0) in Run(+HR), steady state will be reached
rather rapidly. Conversely, the young pool only accounts for
less than 10 % of the total SOC stock at all sites (e.g., How-
land Tower in Fig.7f); thus, the steady state of modeled
SOC stock could not be reached within the simulation pe-
riod, as mean turnover times of the dominant old pool are
377 (Coulissenhieb), 313 (Solling) and 184 years (Howland
Tower).

The modeled uncertainty of114CHR varies considerably
throughout the time series: the uncertainty is low before
the bomb peak and increases towards the bomb peak, drops
again and is considerably reduced after the observation point
(Figs.7g and h). The curve of the modeled114CHR values
is beginning to level out, so that differences in114C of het-
erotrophic respiration between subsequent years will become
increasingly difficult to detect. This is even more pronounced
for the modeled bulk soil114CSOC signature, because bulk
114CSOC has nearly reached a plateau phase, where values
hardly change from year to year. One has to keep in mind,
however, that this does not tell us anything about how the
bomb peak propagates through the soil profile. Nevertheless,
when looking at the114C signatures of the young and the old
pool (Figs.7i and j), it becomes obvious that the first peak of
114CSOC stems from the peak of114C in the young pool.
The beginning of a plateau phase for114CSOC can then be
attributed to a mixture of the decreasing114C signature of
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the young pool and a still increasing114C signature of the
old pool.

One may hypothesize that parameters will be less well
constrained in the nonsteady-state case whenfY and fO

do not show a significant deviation from steady state, be-
causefY and fO introduce additional degrees of freedom
that might not actually be needed. The marginal density
plots in Fig. 8 have the advantage over the violin plots
(e.g., Fig.4) that the posterior probability density is not

scaled to 1, so we can also use the maximum density as
a measure for how well a parameter is constrained. The
marginal density plots in Fig.8 compare how well the model
parameters are constrained in the nonsteady-state case and
steady-state case. The maximum posterior density ofkO

is reduced at all sites. At Solling D0kY is also slightly
less well constrained in Run(+HR; nonsteady state) than in
Run(+HR;steadystate). Overall, the marginal density plots
in Fig.8suggest that parameterskY , kO andh are constrained
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Fig. 8. Comparison of posterior parameter distributions of the all-observational-constraints run, Run(+HR), under steady-state assumption
(solid black line) and under a relaxed steady-state assumption (dashed green line). The additional parametersfY andfO for the nonsteady-
state run are not plotted.

well in the nonsteady-state as well as in steady-state version
of Run(+HR) compared to the prior.

3.4 Discussion of fitted turnover parameters

Giardina et al.(2004) report that only around 10 % of soil res-
piration is derived from the decomposition of old soil organic
carbon. Taking the proportion of heterotrophic respiration in
total soil respiration,fHR, (Eq.19) and the contribution of the
old poolO to HR at our three sites into account, we have sim-
ilar mean contributions of 7.3 % (Howland), 5.4 % (Coulis-
senhieb II) and 13 % (Solling D0) of old soil organic carbon
to soil respiration. Because we used a bulk soil organic matter
turnover model, the turnover times and the humification coef-
ficient give a diagnostic rather than a mechanistic insight into
how much carbon is cycling on the different timescales. The
mean turnover timesTY of the young pool of 0.8 (Howland
Tower), 1.1 (Coulissenhieb II) and 5.7 years (Solling D0) to-
gether with the humification coefficienth of 0.14 (Howland
Tower), 0.07 (Coulissenhieb II) and 0.21 (Solling D0) indi-
cate that most of the organic carbon in these soils is turned
over within a relatively short period.

For the estimation ofkY , one has to keep in mind that it
vitally depends on the114CHR value (Fig.4), and thus, by
way of 14iL(t) and14iR(t), also on the lag timestlagL and
tlagR that we used. Although we do not look at actual root

turnover estimates with the parametertlagR, but merely at
a realistic114C value of root litter input to the soil organic
carbon pool, ourtlagR values might be overestimated due to
a bias towards larger roots when handpicking roots. Hence,
fast-cycling roots with a smaller difference to114COATM

2
might be underrepresented (Gaudinski et al., 2001). In turn,
this bias for larger roots and a lowertlagR would result in
longerTY estimates.

The mean turnover timesTO of the old pool (184 years at
Howland, 377 years at Coulissenhieb II, 313 years at Solling
D0) point to the presence of a relatively persistent carbon
pool that makes up more than 90 % of the soil organic car-
bon stock. This high contribution of slowly cycling organic
carbon can be mainly attributed to the inclusion of114CSOC
data in the calibration. Again, this shows the merits of includ-
ing SOC stocks and heterotrophic respiration fluxes plus their
respective14C isotopologues. Nevertheless, one has to con-
sider that with a bulk SOC model we have to sum and weight
SOC stocks and SO14C up to certain depth, so that, e.g., the
Coulissenhieb site with a considered bottom depth of 52 cm
has a much longer turnover time for the old pool than Solling
D0, where we used a bottom depth of 30 cm. Here, vertically
explicit SOC turnover and transport models (e.g.,Kaneyuki
and Kichiro, 1978; O’Brien and Stout, 1978; Elzein and
Balesdent, 1995; Baisden et al., 2002; Braakhekke et al.,
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2011) might be helpful in order to resolve different bottom
depths for sampling SOC and SO14C. Given the structure of
these models, their turnover times, however, still give more
diagnostic than mechanistic insight because they do not con-
sider important processes such as sorptive stabilization, en-
ergy limitation or the recycling of SOM through microorgan-
isms which are expected to contribute to radiocarbon ages of
SOC of more than 1000 years in the deep soil (Conant et al.,
2011; Schmidt et al., 2011).

3.5 Interpretation of litter input bias parameters

If the sites are in steady state, the bias parameters can be
interpreted as a systematic deviation of HR and litter input
because HR =iL + iR under steady state (Sanderman et al.,
2003). Already by comparing the relation of HR,iL and iR
to the calibratedbiasiL and biasiR, we see that for Coulis-
senhieb II and Howland Tower these two parameters have to
be higher than 1. The reasons for a bias at these two sites
can be manifold: the belowground litter input at these sites
might have been underestimated (sequential coring at Coulis-
senhieb II and the assumption at Howland that belowground
litter input is in the same range as aboveground litter input),
or there may be a significant contribution of subsoil SOC
turnover to overall heterotrophic respiration. Further, our par-
titioning of soil respiration using the bomb-14C signal might
have overestimated the proportion of heterotrophic respira-
tion in total soil respiration,fHR, because the incubations
used to measure114CHR might not have been conducted un-
der conditions that are representative of what is observed in
the field over the course of a year.

Furthermore, one could also speculate about recent devi-
ations from steady state for faster-cycling soil components
(organic layer). The applied deviation from the steady-state
parameter,fY , only matters in the first years of the simu-
lation period, but due to its fast decomposition rate, theY

pool approaches steady state rather rapidly. Hence, one could
also interpret a bias parameter above 1 as disturbance of the
Y pool leading to a loss of SOC in the young pool. Given
the information we have about these two sites, this seems,
however, quite unlikely. Nevertheless, at sites where mea-
surements of aboveground litter input and heterotrophic res-
piration are available, one could use the steady-state relation
iR = HR−iL as an additional criterion for assessing the relia-
bility of different methods quantifying root turnover (Lukac,
2012).

4 Conclusions

1. The Bayesian parameter estimation was very instruc-
tive: violin plots of posterior parameter distributions
were useful to quickly study the effect of different mul-
tiple constraint experiments. The correlation structure
between different posterior parameter estimates pro-
vided useful insights on model behavior and additional
constraints for the parameters.

2. The joint use of four observational constraints did not
make it possible to determine whether any of the sites
has been storing or losing carbon. Nevertheless, the
joint calibration to SOC stocks and the114C of SOC
stocks showed that there is a trade-off between es-
timating the source/sink strength of the investigated
soils and the decomposition rate of the old pool. Since
the introduction of the relaxed steady-state assumption
did not cause a considerable amount of extra uncer-
tainty, we can recommend the use of a relaxed steady-
state assumption in order to identify possible devia-
tions from steady state.

3. The relation of heterotrophic respiration to the sum of
above- and belowground litter input is useful for eval-
uating the reliability of root turnover estimates.

4. The joint use of all four observational constraints –
SOC stock,114C of SOC stock, heterotrophic respi-
ration and114C of heterotrophic respiration – gives
the tightest uncertainties ranges for the most essential
model parameters of I14CBM: kY , kO andh. kY can be
primarily constrained by114C of heterotrophic respi-
ration, whilekO can be constrained well with114C of
SOC. The transfer coefficient between the young and
the old pool,h, was best constrained by the joint use
of all data streams.

5. The calibration of the I14CBM with the four observa-
tional constraints provided a good diagnostic for how
much carbon is cycling on the different timescales. The
fitted parameters show that in the three investigated
soils more than 90 % of the soil organic stock resides
in a relatively persistent carbon pool, while the fast-
cycling young pool contributes more than 80 % to the
overall heterotrophic respiration.

6. Using different data streams of model output variables
to constrain the parameters of conceptual model pools
is a valuable strategy for parameter calibration besides
“measuring the modelable”, i.e., finding fractions that
are relatable to conceptual model pools, or “modeling
the measurable”, i.e., introducing model pools that can
be measured directly.
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Supporting material

Detailed data sets from all three sites, the statistical analy-
sis and model code (xlsx files and R scripts) are available
upon request by email to Bernhard Ahrens (bahrens@bgc-
jena.mpg.de).
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Appendix A
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Fig. A1. Coulissenhieb II. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th and
75th percentile, the thin black lines indicate the upper and lower adjacent values.

A1 Data uncertainties

According toTaylor (1997), for independent random errors
the uncertaintyδq (here, standard error) of any functionq,
with the variablesx, . . . ,z with their corresponding uncer-
tainties (here, standard errors)δx, . . . ,δz, can be calculated
as:

δq =

√(
∂q

∂x
· δx

)2

+ . . . +

(
∂q

∂z
· δz

)2

. (A1)

(1) The standard error of the SOC-stock-weighted114C
value (Eq.15) was therefore calculated as:

δq(114CSOC,bulk) = (A2)√√√√Horizons∑
i=1

(
∂q

∂1CSOC,i

δ1CSOC,i

)2

+

Horizons∑
i=1

(
∂q

∂SOCstock,i
δSOCstock,i

)2

.

The partial derivative in the first term under the square root
is

∂q

∂114CSOC,i

=
SOCstock,i∑Horizons

j SOCstock,j
. (A3)

www.biogeosciences.net/11/2147/2014/ Biogeosciences, 11, 2147–2168, 2014



2168 B. Ahrens et al.: Bayesian calibration of a SOC model using114C measurements of SOC and HR

Prior
SOC
SOC + ∆14CSOC
SOC + ∆14CSOC + ∆14CHR
SOC + ∆14CSOC + ∆14CHR + HR

Observational constraints included in calibration

0.0
0.2
0.4
0.6
0.8
1.0

Prior SOC + ∆14CSOC + ∆14CHR + HR

●

●

●

●
●

(a) h (−)

0

2

4

6

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ● ●

● ●

(b) kY (yr−1)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Prior SOC + ∆14CSOC + ∆14CHR + HR

●
●

● ● ●

(c) kO (yr−1)

0.4
0.6
0.8
1.0
1.2
1.4
1.6

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ● ● ● ●

(d) fY (−)

0.4
0.6
0.8
1.0
1.2
1.4
1.6

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ●
●

●
●

(e) fO (−)

5
6
7
8

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ● ●
● ●

(f) t lagL (yr)

7
8
9

10

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ● ●

● ●

(g) t lagR (yr)

0.5

1.0

1.5

2.0

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ●
●

●

●

(h) biasiL (−)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Prior SOC + ∆14CSOC + ∆14CHR + HR

● ●
●

●

●

(i) biasiR (−)

Fig. A2. Solling D0. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th and
75th percentile, the thin black lines indicate the upper and lower adjacent values.

The partial derivative in the second term under the square
root is

∂q

∂SOCstock,i
=

∑Horizons
j SOCstock,j

(
114CSOC,i−114CSOC,j

)(∑Horizons
j SOCstock,j

)2
. (A4)

In Eq. (A2) we operate under the assumption of indepen-
dence between horizons and different types of measure-
ments. This is already a conservative estimation of uncertain-
ties because including the covariance between variables into
the error propagation normally reduces the uncertainties due
to negative correlations, i.e., between bulk density and SOC
content (Panda et al., 2008; Goidts et al., 2009; Schrumpf et
al., 2011). Because we do not have information about the ac-
tual covariance between measurements at the individual sites,

we were not able to use these directly in the error propaga-
tion.

(2) The uncertainty (here, standard error) of the pro-
portion fHR of heterotrophic respiration at soil respiration
(Eq.19) can be calculated as (Phillips and Gregg, 2001; Tay-
lor, 1997):

δq(fHR) =
1(

114CHR − 114CRR
)2 (δ2

114CSR
(A5)

+f 2
HRδ2

114CHR
+ (1− fHR)2δ2

114CHR

)
.

We here follow the statement byPhillips and Gregg(2001)
that it is reasonable to assume independence between the
standard errors –δ114CSR

, δ114CHR
andδ114CRR

.
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