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Abstract

This paper examines the role of case-based reason-
ing in a problem-solving assistani system, which
differs from an autonomous problem solver in that
it shares the problem-solving task with a human
partner. The paper focuses on the criteria driv-
ing the system designer’s (or the system’s) choice
of cases, of representation vocabulary, and of in-
dexing terms, and upon how the assumption of
a human in the problem-solving loop influences
these criteria. It presents these theoretical con-
siderations in the context of work in progress on
IOPS, a case-based intelligent assistant for airline
irregular operations scheduling.

Introduction

While most work on Al problem-solving has been di-
rected towards the goal of building autonomous sys-
tems, capable of reasoning independently from an ini-
tial problem description to a successful solution, a
growing body of work has begun focusing on the practi-
cal and scientific role of intelligent assistants: systems
that do not solve problems autonomously, that instead
enter into a problem-solving partnership with a human
user.

This paper examines the role of episodic memory and
case-based reasoning in the context of an intelligent as-
sistant system. It focuses on a kind of knowledge that
either an autonomous problem solver or an intelligent
assistant system might embody: knowledge linking the
commonly-occurring threats, opportunities, and fail-
ures of the problem-solving domain with appropriate
responses to those situations. It explains how the as-
sumption of a cooperative, as opposed to autonomous,
problem solver changes the functional constraints on
which stereotypical situations to represent, how to rep-
resent them, and which predictive features to associate
with the stereotypes. It demonstrates how the assump-
tion of a human in the problem-solving loop relaxes cer-
tain representational requirements and enables a new
kind of feature acquisition, but also how it places ad-
ditional requirements upon the choice and representa-
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tion of cases or stereotypes. These theoretical consid-
erations are described against the background of our
work in progress on IOPS (Irregular Operations Plan-
ning System), an intelligent assistant for the task of
airline irregular operations scheduling.

Intelligent assistant systems

The goal of an intelligent assistant systems is to assist
the human user in detecting, diagnosing, and analyzing
problems and in generating, selecting, and implement-
ing solutions. An assistant might help by performing
any or all of the following functions:

e The assistant might perform some specific compu-
tation, calculation, or inference at the behest of the
human problem solver. A trivial example here is an
electronic calculator; a less trivial example is a sim-
ulator that lets the user predict the results of some
action. Note that the user chooses what calculation
to perform and when to perform it; the system re-
sponds to specific user requests.

e The assistant might store information that the user
would otherwise need to memorize, and provide it to
the user at the appropriate time. A trivial example
is an on-line reference manual, a more complex ex-
ample is the “ask-" series of systems [Schank, 1991].
Here, the system provides information in response
to the user’s request; it is up to the human to inter-
pret the relevance of the information to the current
situation.

The assistant might spontaneously advise the human
user. If the system has access to a description of the
current situation, the system may detect the appli-
cability of one or more of its stored problem-solving
strategies, and suggest it or them to the user.

e The assistant might request additional information
from the user, prompted by a need to discriminate
among competing strategies to apply to the current
situation, or by a need to discriminate among com-
peting hypotheses to explain the origin of the current
problem. The behavior of medical diagnostic rea-
soning systems (e.g. [Shortliffe, 1976]) in suggesting



appropriate laboratory tests is typical of this activ-
ity.

The assistant might perform some of the bookkeep-
ing necessary to help the user carry out a plan. If the
user selects a particular abstract, high-level prob-
lem solving strategy (e.g. repair a schedule failure
by substituting one resource for an unavailable one),
the system can fill in some of the details (selecting
an appropriate resource to substitute, tracking the
state of the old and new resource, etc.)

In a more sophisticated system, combinations of
these behaviors are possible. The system might,
for example, detect the applicability of several of its
problem-solving strategies, request additional informa-
tion to determine which few are most applicable, par-
tially predict the results of implementing each of the
strategies, and present the set of choices to the user.
Once the user selects one of the strategies, the system
can implement it and update its model of the state of
the world.

Underlying each and all of these behaviors is the
gystem’s critical need to learn new problem classes,
repair strategies, and descriptive features as it inter-
acts with the user and acquires more knowledge about
the problem-solving domain. Recent work at Chicago
[Hammond, 1992] has described a life cycle of “appren-
tice” to “assistant” to “advisor” as the system acquires
knowledge about the domain, and spends less time ask-
ing the human partner questions and more time offer-
ing advice and suggestions.

Case-based planning

One mechanism for solving problems is by noticing and
exploiting the similarities between the current situa-
tion and a case — either a specific prior experience
or a commonly recurring stereotype — selected from
memory. (See, e.g. [Alterman, 1986; Bareiss, 1989;
Barletta and Mark, 1988; Hammond, 1989; Kolodner
and Simpson, 1989; Schank, 1982] for descriptions of
typical case-based problem solvers). For the purposes
of this paper, the task of an autonomous case-based
planner can be described as:

e Describe the current problem in terms of the sys-
tem’s indexing vocabulary,

¢ Retrieve from memory a case whose stored problem
description matches the description of the current
problem,

¢ Analyze the differences between the current situa-
tion and the retrieved situation, and

¢ Modify the solution stored with the old problem
description to fit the current situation.

¢ Store the new solution with a description of the
current problem, placing particular representational
focus on the features that differentiate the current
situation from the old case retrieved from memory.
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A commonly-articulated argument for the case-
based approach is that it is particularly appropriate
in situations where a system cannot reasonably pro-
ceed by chaining through the problem-solving opera-
tors that one would expect to find in a complete de-
scriptive theory of the domain — either because a com-
plete domain theory is unavailable, or because access
to it is expensive, where not enough is known about the
current situation to precisely determine the applicabil-
ity of the theory’s operators, or where the operator
space of the domain theory is so large that the compu-
tational costs of searching it are prohibitive. Several
of these features characterize the airline irregular op-
erations domain, described below.

When dealing specifically with intelligent assistant
systems as opposed to autonomous systems, several
more arguments come into play:

e Case-based advice: Suggesting relevant cases is an
effective mechanism for the system to offer advice to
the user. Even if the system lacks sufficient inference
capabilities to autonomously derive an appropriate
sequence of actions by transforming the case to fit
the current situation, it can still assist by presenting
the case to the user, and exploiting the user’s ability

to apply the case.

Case-based knowledge acquisition: The task of
case retrieval forms a natural mechanism to control
the system’s requests for information from the user.
The system in effect plays a kind of “20 questions”
game with the user, asking for additional descriptive
information about the current situation only when
that information would play a clear role in discrim-
inating among multiple cases, each of which poten-
tially applies.

Case-based feature learning: The systems re-
trieval failures (i.e. inability to discriminate between
different cases) provides an opportunity to acquire
new elements of a descriptive vocabulary from the
user. The system can ask, in effect, “How do these
two cases differ” and the user can provide, and name,
a new descriptive feature.

Case-based knowledge acquisition and case-based
feature learning are described further below, in the
context of our ongoing work on IOPS, which solves
problems in the domain of dynamic schedule repair.

IOPS
Airline irregular operations

The problem solving domain of this research is air-
line irregular operations scheduling. An airline wants
to meet anticipated passenger demand over the routes
it flies with an efficient allocation of its capital and
human resources. To this end, it develops an opera-
tions schedule: an assignment of aircraft to scheduled
flight operations and scheduled maintenance stops, and
of crew to flight legs and rest periods. The sched-
ule is carefully optimized to achieve efficient utilization



and distribution of aircraft and crew over the airline’s
routes.

Unfortunately, schedule disruptions due to weather,
traffic congestion, unscheduled equipment mainte-
nance, crew illness, or unanticipated requests for char-
ters or other additional flight operations are inevitable
but unpredictable. Because of the massive internal in-
terdependencies inherent in an airline schedule, even
a small single-point failure, such as an aircraft tem-
porarily delayed for replacement of a burned-out light
bulb, could potentially result in a snowballing sequence
of downstream delays, disruptions, and missed connec-
tions if actions were not taken to mitigate the conse-
quences of the failure.

To deal with these unexpected events, airlines em-
ploy operations controllers: experienced individuals
whose job it is to monitor the airline’s flight opera-
tions and to take steps to minimize passenger delay
and inconvenience and cost to the airline. The con-
trollers have access to information about the airline’s
current and planned operations, and knowledge of cur-
rent and forecast conditions. Based on the information
they receive, they order changes to the airline’s oper-
ating schedule in an attempt to mitigate the effects of
unexpected disruptions.

A content theory

An essential set of decisions in the design of an case-
based planner revolves around a content theory of
the domain: determining what cases ought to be put in
memory, what descriptive features ought to be part of
the system’s representational vocabulary, and how the
system ought to extract descriptions of new situations
so that those descriptions will be useful in determining
the applicability of old cases to new situations. Typical
criteria for selecting cases and indices are discussed in

[Owens, 1991), [Owens, 1990], and [Birnbaum et al.,

1989).

Our initial content theory of failure and repair in the
irregular operations domain derives from our observa-
tion of several experienced operations controllers over
multiple sessions as they detect, diagnose, and solve
problems. The result of this analysis has been:

e to categorize, to the extent possible, the different
classes of problems that the controllers are asked
to solve. Examples of such categories include:

— Unscheduled maintenance delay at a hub airport

during peak travel time.

— Weather-induced bottleneck at a non-hub airport.

— Traffic congestion restricting outbound flights

from a non-hub airport.

¢ to identify the primitive operators the controllers
have at their disposal. Examples of primitive oper-
ators include:
— Cancel a flight segment

— Advance or delay the departure time of a flight
segment
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— Add an unscheduled stop to a flight, or skip a
scheduled stop.

~ Substitute one aircraft for another
— Divert a flight to a different destination

— Ferry an empty aircraft from one airport to an-
other.

o to identify the higher-level strategies that the con-
trollers use to solve problems. Higher-level strategies
are built from sequences of primitive operators, and
they appear to address goals such as:

— Localize a problem: prevent a disruption at one
airport from propagating to the rest of the sys-
tem, e.g. by rerouting flights around the affected
airport,.

Distribute the impact of a problem, e.g. create
small delays across the system to avoid a major
bottleneck at one airport.

Delay the effects of a problem to increase the
chance that an opportunistic solution will present
itself, e.g. “borrow” an aircraft from a later flight
to cover a shortfall on a current one; cover the
later flight by borrowing yet a later aircraft, etc.

The importance of this content theory is that it
defines the functional criteria for selecting a problem
solver’s case library, representation vocabulary, and in-
dexing terms. The cases stored in the system should
cover the classes of problems that experienced con-
trollers appear to solve. The representation vocabu-
lary should represent the features necessary to detect
the applicability of those cases, and the primitive op-
erators involved in the solutions. The indexing terms
should be sufficient to discriminate between the ex-
isting cases in determining their applicability to new
situations.

While this type of content theory is appropriate to
the design of an autonomous problem solver, an addi-
tional set of criteria come to bear in the design of an
intelligent assistant system.

Some representational problems are easier in a sys-
tem that can count on a human user to help it diagnose
and learn. Difficult tasks of detection and situation
assessment, for which no good theory exists, can be
deferred to the user. On the other hand, the presence
of a human in the problem-solving loop also additional
demands upon the system and upon its knowledge rep-
resentation. Not only must the system’s case library
and descriptive vocabulary cover the range of expected
problems and solutions, but it must do so in such a
way as to facilitate communication of partial results
and explanations to user, and to enable requests for
additional information to be made and understood.

The IOPS system

The knowledge gathered from our observation of sched-
ule controllers is being represented as the case library
of IOPS, a case-based intelligent assistant for irregu-
lar operations scheduling currently under development.



In addition to the case library, IOPS has access to op-
erating data regarding the current and planned state
of an actual airline schedule, including the assignment
of aircraft to flight legs, information about passenger
loads, connections, and destinations, and the current
and planned locations and movement of aircraft.

The function of IOPSis to provide the following
kinds of assistance to the human problem solver:

¢ Given a description of a problem, like “Aircraft 2854
will be out of service for 1 hour for unscheduled
maintenance”, or “Bad weather is expected to close
Denver for 4 hours this evening”, use the descrip-
tion, plus all the current operating data, to select
potentially applicable repair strategies.

o Given a set of potentially applicable repair strate-
gies, ask the user for information that would dis-
criminate among them. This is not only an oppor-
tunity to narrow the current search space, it is also
an opportunity, as described below, to acquire new
descriptive features about the domain.

Given a repair strategy, selected either by the search
process above or by the user, perform the computa-
tion necessary to implement it. If, for example, the
strategy is “Delay a flight and use its aircraft to fill in
for the temporarily unavailable one”, then generate
a list of potentially acceptable flights to delay.

Memory and learning for an intelligent
assistant

A key role for a case memory in an intelligent assistant
system is to direct the interaction between the user
and the system. This can effect shori-term knowledge
acquisition, in which the system, over the course of a
single problem-solving session, asks the user for help in
detecting the presence or absence of abstract properties
that it itself cannot detect, and in long-term knowledge
acquisition, in which the system, through structured
interaction with the user acquires new descriptive fea-
tures for subsequent use in representing and indexing
cases. In both short-term and long-term knowledge
acquisition, A library of prior cases presents a base-
line against which new descriptive information can be
acquired from the user.

Short-term knowledge acquisition

Presenting potentially applicable cases to the user
along with a request for clarification is a powerful
mechanism for managing the interaction between the
user and the system. Since, in a cooperative problem-
solving context the system cedes some of the feature
detection responsibility to its human partner, a mech-
anism is necessary for the system to request the infor-
mation it needs. The system cannot simply ask the
user “Tell me something about the current situation”
— the question is too open-ended.

On the other hand, if the system has a partial de-
scription of the current situation, it can use its case li-

1029

brary to request additional information. It can accom-
plish this by retrieving cases that match the current
situation, comparing them with each other to iden-
tify descriptive features that, if their presence or ab-
sence could be determined in the current situation,
would discriminate among the potentially-matching
cases. The system can then ask the user about the
missing features.

For an example from the airline irregular operations
scheduling domain, consider a system trying to repair
a schedule whose partial description indicates that 5
off-peak flights inbound to a hub airport are reported
delayed by over 30 minutes each. The system, search-
ing its library of cases matching these descriptors, finds
multiple possible matches. One feature that discrim-
inates between the matches is that some of the prior
cases cover situations in which the weather was dete-
riorating and others covered situations in which the
weather was not deteriorating. Although the system
lacks sufficient data and inference capability to deter-
mine whether or not the weather is deteriorating at the
affected airport, it can ask the user and, based upon
the user’s response, further narrow the search space of
relevant cases.

Long-term knowledge acquisition

In contrast to using its case base to acquire knowl-
edge about the current situation as described above, an
intelligent assistant system can also use its case base
as a mechanism for acquiring new descriptive features
about the domain by asking the user. Again, this in-
formation can be requested in the context of a failure
to find a prior case that satisfactorily matches the cur-
rent situation. This failure can manifest itself either
as:

e The system’s inability to find any case that matches
the current situation on the basis of the existing de-

scription, or

The system’s “best match” case being rejected by
the user as inappropriate to the current situation,
or

The system retrieving two or more cases that match
the current situation, and the system being unable to
identify any features which, if known about the cur-
rent situation, would discriminate among the cases.

The first manifestation represents a fundamental
lack of cases in the system’s library; the solution here is
not in principle different from the solution adopted by
autonomous case-based reasoners: Solve the problem
from first principles and store the solution as a case.
(The difference being, for an autonomous agent, solv-
ing from first principles can include letting the human
partner solve the problem.)

The second two manifestations of retrieval failure
can be dealt with by requesting the user to identify
a new descriptive feature not previously known to the
system. The system asks, “As nearly as I can tell, this



case exactly matches the current situation, but you
don’t seem to agree. Please identify a feature that is
present in the current situation and absent in the case,
or vice versa.”

An example of this feature acquisition strategy is
taken from our observations of the airline controllers,
in which the observer played the role of the intelligent
assistant system. The problem being solved is a short-
age of baggage cannisters in Toronto:

Controller: I'm gotng to order Vancouver to
put some eztra emply baggage cannisters onio the
nert flight to Toronto.

Observer: The strategy I know about for solv-
ing this problem is to fly in some baggage cannis-
ters from the closest airport having frequent flights
to the affected airport and having ezcess baggage
cannisters available. In this case, that might be
Detroit or Chicago. Why isn’t that appropriate
here?

Controller: Detroit to Toronto involves cross-
ing a national boundary. Shifting assels across
national boundaries involves an additional delay
and paperwork ezpense associated with Customs.
In this case, the added time to ship them from
Vancouver is notl significant relative 1o these ad-
ministrative delays and costs.

At this point, an actual system could have used the
interaction to acquire a specific new descriptive feature
that was not previously part of the domain theory, that
feature being whether or not two stations were in the
same country. In future problem-solving sessions, the
system could use the new feature to characterize situ-
ations and decide among potentially applicable cases.

Naming and detection

Simply because the system has learned about a new
feature from the user (like whether or not two cities
are in the same country, as above) does not, of course,
mean that the system has developed an inference mech-
anism for detecting whether or not that feature applies
in any given situation. While this would likely be an
insurmountable problem for an autonomous problem-
solver, it is less of a problem for an intelligent assistant
because it retains the option of asking the user whether
or not the feature describes the current situation.

But this easing of the detection task imposes an ad-
ditional functional constraint on descriptive features:
that they be nameable or describable so as to make
communication possible with the user. When the sys-
tem acquires a new descriptive feature, it must also
acquire a name for that feature or a mechanism for de-
scribing it so that it can, in the future, ask that user
(and other users) whether or not the feature charac-
terizes situations.

Similarly, the system and the user must be able to
communicate about the system’s cases. It is unreason-
able for the system to ask “Do you think CASE-T0073
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is relevant here?”, but it is probably also unreason-
able to require the system to describe every detail of a
case in order to refer to it. This naming and reference
problem remains an open one.

Evaluation

Evaluating hybrid systems involving a human-
computer partnership is difficult. While there are good
objective measures for success in the airline irregular
operations domain (typically some function taking into
account passenger delay and inconvenience and cost to
the airline), IOPS’s goal is not to solve problems au-
tonomously. Consequently, the evaluation question is
not “Which classes of problems does the system solve?”
or “How well (quickly, effectively, cheaply) does it solve
these problems?” For the scientific issues discussed in
this paper, the evaluation questions are:

Are the stereotypical situations represented here an
appropriate set?

e Are they well represented?

e Are the features used for detection and diagnosis
appropriate?

There are several bases on which to evaluate
the goodness of the case library and representa-
tion/indexing vocabulary:

Are the failure types and repair stralegies meaning-
ful? Do experienced controllers recognize them? Can
controllers readily answer the question “Is this failure
characterization appropriate to the current situation?”

Are the failure types and repair siralegies useful 1o an
individual? Can a controller, using the IOPS, develop
better solutions than without the system? Or can the
controller consider more solutions in a given time, or
develop solutions more quickly?

Are the failure types and repair siralegies useful
across individuals? Can one controller use failure di-
agnoses and repair strategies developed by observing
the behavior of another? Can the failure categories
and repair strategies be named or otherwise presented
to make this process easier?

Are the failure types and repair strategies an effective
mechanism for transferring knowledge? Can novices
use the system to obtain results that approximate the
results obtained by experts? Can novices learning any-
thing useful about the domain by interacting with the
system?

Conclusions

A crucial set of issues in the design of a case-based rea-
soner revolves around the question of what kind of rep-
resentation vocabulary should be used to describe the
system’s cases, and what descriptive features should
form the basis for judging the applicability of cases
to new situations. The basis for resolving these ques-
tions remains one of function: A case-based reasoner
whose job it is to repair schedule failures, for example,



should describe, categorize and index cases based upon
the failures it is able to detect and upon the repairs it
is able to perform.

The assumption of a human partner in the problem-
solving loop alters these functional criteria in specific
ways. While the system may be partially relieved of
the burden of detecting every failure itself, it takes on
the burden of extracting from the human user an op-
erational description of those failures that the human
has detected. While the system may be partially re-
lieved of the burden of ultimately deriving a solution
from a retrieved case, it takes on the burden of commu-
nicating a partial solution or describing a potentially
relevant case. And, if the system is to acquire domain
knowledge from the user in the form of new descrip-
tive features, it needs a mechanism for communicating
with the user about the success or failure of matches,
and for using the failures to prompt the user for new
descriptive features.

Another characterization of the functional require-
ments that derive from a case-based system’s interac-
tion with a human partner is to add more tasks to
the existing retrieve, debug, modify and apply that lie
at the core of case-based problem-solving. These new
tasks involve asking the user about the presence or
absence of a feature in the current situation, asking
about the applicability or non-applicability of a case,
and asking for a name and sketchy description for a
new descriptive feature previously unknown to the sys-
tem.
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