
UC Irvine
ICS Technical Reports

Title
CHASSIS : a combined hardware selection and scheduling technique for performance driven
synthesis

Permalink
https://escholarship.org/uc/item/6fn7d310

Authors
Ramachandran, Loganath
Gajski, Daniel D.

Publication Date
1991-02-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6fn7d310
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

CHASSI8-__: A Cornbined Hardware

Selection and Scheduling technique

for Performance Driven Synthesis

Loganath B-amachandra~
- -

Daniel D.Gajski

Technical Report #91-20

February 10, 1991

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

(714) 856- 7063

ramachan@ics.uci.edu

Abstract

This report describes a new technique that combines the Hardware Scheduling and Compo­

nent Selection phases for High Level Synthesis. Our technique simultaneously selects compo­

nents from a given library while it schedules the operations into different control steps. The

algoríthm improves previous work in scheduling because component costs and performance are

considered during the scheduling process, enlarging the design search space and resulting in

better optimized desígns.

Contents

1 Introduction 4

2 Previous Work 7

2.1 Scheduling Related Work 7

2.1.1 Scheduling with Resource Constraints .. 7

2.1.2 Scheduling with Performance Constraint . g

2.2 Component Selection Related Work 10

3 CHASSIS - the Approach 11

4 CHASSIS - The design Model 12

4.1 CHASSIS - The Algorithm 14

4.2 CHASSIS Details . 15

4.2.l Fine Grain ASAP and ALAP . 15

4.2.2 SPAN . 16

4.2.3 Valid Schedule and Selection Combinations . 17

4.2.4 Probability Table 18

4.2.5 Cost Function Evaluation . 19

4.2.6 Finalisation of Schedule and Selection . 20

5 An Example 21

1

6 Experiments and Results 27

6.0.7 VHDL Description . 29

7 Conclusions 35

8 Acknowledgements 35

9 References 36

2

List of Figures

1 Current and Proposed Approaches 6

2 CHASSIS Design Model .. 12

3 Example Probability Table 19

4 An example to demonstrate Selection-Scheduler 22

5 ASAP - ALAP - SPAN calculations 23

6 Probability Table for Example 25

7 Prob. Table when A is assigned 25

8 Area Estimation for node A • i.." •••••••••••••••••• ' ••• 26

9 Area Estimation for node B 26

10 Area Estimation for node C 27

11 Implementation of the final design 28

12 Component Library 31

13 CHASSIS Results - Elliptic Filter Example 33

14 AT Curve - Elliptic Filter . 34

3

It would be ideal to perform ali the synthesis subtasks including hardware selection, scheduling,

binding and allocation simultaneously, but the complexity of these problems has made it computa­

tionally infeasible to combine thern together. Hence most synthesis systems resort to performing

them in sorne predetermined order. As a result of this ordering inefficiencies are introduced into

the synthesis process. In particular, we believe that independent solutions to component selection

and hardware scheduling cannot produce efficient designs. This is because sorne of the tradeoffs

made during the component selection phase may make it impossible to share components across

the various states leading to inefficient schedules. Similarly tradeoffs related to scheduling without

taking into account the entire library of components, may result in faster components unnecessarily

being used. This leads to increased layout area.

In order to solve the above problems we propase a new technique calied CHASSIS. Sorne of

the important features of CHASSIS include:

• It combines component selectíon and operator schedulíng and hence provides for combined

selection and scheduling tradeoffs leading to better designs.

• It provides true component selection capability where similar operators could have several

physical implementations.

• Since CHAS SIS is a performance driven synthesis algorithm it takes into account register and

interconnect (multiplexers) delays.

• It also takes into account layout related parameters like area and actual cell delays. This

results in realistic evaluation of decisions at the higher level.

• The design model can very easily accommodate wiring delays by extracting wiring delay

information from a fl.oor plan or an estimation program.

The following figure (Fig. 1) demonstrates why our technique leads to better designs. The

upper half of the figure shows the general methodology currently being used in almost ali scheduling

systems, where it is assumed that ali add operations take a fixed amount of time to complete. Thus

the results indicate two adders whose delay is one dock period are being used to implement the

5

design. In our new technique, the scheduler works with the library of available components and the

scheduling results show that the final design is implemented using one adder with one dock period

delay and another slow adder with a two dock period delay. Although the number of components

are the same in both cases, the CHASSIS results are obviously better since the slow adder is less

expensive compared to the fast adder.

Constraints

ADD 1 cycle
MUL 2 cycles

GCHEDULEijr--~)

Library

Aree Delay

Add1 1500 65

Add2 300 160

Mu 11 17000 80

Mul2 6000 260

Figure 1: Current and Proposed Approaches

Current Methodo/ogy

Allocation

2 Add units

Proposed Methodology

Allocation

1 Add1 unit

1 Add2 unit

The rest of this report is organized as follows. In Section 2 we discuss sorne of the scheduling and

component selection work that has been discussed in the literature and examine their strengths and

weaknesses. Section 3 presents CHASSIS in detail. In Section 4 we provide a very simple example

and step through the various important stages of CHASSIS. In Section 5 we present results on a

6

couple of standard benchmarks. In the concluding section we also discuss how our work could be

extended.

2 Previous Work

We categorize the previous work mentioned in the literature into two classes based on its relevance

to scheduling or its relevance to component selection.

2.1 Scheduling Related Work

We wíll further subdivide the work related to scheduling into two categories.

• Scheduling algorithms that work with Resource Constraints

• Scheduling algorithms that work with Performance Constraints.

2.1.1 Scheduling with Resource Constraints

In this class of algorithms the scheduler is provided with a set of components to be used during the

scheduling process. For example, the scheduler could be constrained to use three adders and two

multipliers to schedule a given CDFG. The algorithms attempt to maximize the utilisation of the

given resources in each of the control steps.

One of the elementary scheduling algorithms that has been used widely is the ASAP scheduling

approach. In this approach the operations are scheduled whenever their input datum are available

(i.e as soon as ali the input nades of an operation are scheduled).

The synthesis systems that have used this algorithm include the Emerald/Facet system from

CMU [2). Another equivalent scheduling algorithm is the ALAP scheduling algorithm where ali

operations are scheduled as late as possible.

List scheduling algorithms are more complicated than the ASAP scheduling approach. In this

technique, a list of operations that are ready to be scheduled is constructed. If possible, ali the

operations in the ready list are scheduled with the allocated hardware. If there are resource confiicts

due to insu:fficient hardware then sorne of the operations are postponed based on a priority value

assigned to each of the operations in the ready list.

A number of scheduling systems have used list scheduling approaches. But the systems vary

m the way they assign priority to each of the operations. In SLICER [9], the operations are

postponed based on a functional value called mobility, where mobility is defined as the difference

between the ALAP and ASAP schedules. The mobility value is actually an indication of the number

of scheduling options that are available. If the mobility of a node is 2, it implies that there are two

control steps to which the node can be assigned. Essentially, if the mobility is higher the number

of scheduling choices are more. Hence,when a resource crunch occurs at a particular control step,

an operation with a higher mobility has greater chances of getting postponed to the next control

step.

In [6] the operations are postponed based on violation of timing constraints. When scheduling

operations in a particular control step, ali operations that violate the mínimum timing constraint

are postponed. On the other hand, certain operations cannot be postponed because they would

violate the maximum timing constraint, if they were scheduled in the next control step.

Force Directed List Scheduling (FDLS), as the name implies is a list scheduling algorithm [11].

The main difference is the evaluation of the priority function to determine which operations should

be postponed during a resource crunch. In FDLS, a global function called force (which actually

is an approximate measure of the concurrency in the schedule) is calculated. If the force for a

particular assignment is minimal then the concurrency is maximal. Thus at any given instance

the assignment that produces the lowest force is given the highest priority. FDLS looks at a more

global picture than the other list scheduling approaches because all unscheduled operations are also

considered during the force calculaton.

8

2.1.2 Scheduling with Performance Constraint

In this type of scheduling algorithms, the component allocation is not specifi.ed. Instead a global

performance constraint or a timing constraint is provided to the scheduling algorithm. This con­

straint could either be in terms of the maximum delay ar could be in terms of the maximum number

of dock cydes within which all operations have to complete executing. The primary consideration

of these algorithms is to minimize the number of functional units that they require to complete the

schedulirig within the timing constraint.

One of the general approaches involves determining the critica! path and dividing the path into

n equal time steps, where nis the number of dock cydes specified in the performance constraint.

Then, su:fficient functional units are allocated to ensure that all the critica! path operations can be

executed. The remaining operations that are not on the critica! path are then scheduled.

This approach was used in MAHA [3] where the nades on the critica! path were scheduled

first and the remaining nades were allocated based on a degree of freedom measure. The degree of

freedom is very similar to mobility that was mentioned far list scheduling approaches.

In Force Directed Scheduling [10] an entity called force is calculated befare each nade is scheduled

in a control step. The force calculation as we discussed earlier in FDLS is a more global entity

which takes into account all the nades scheduled ar unscheduled. The nade that produced the

minimal force is scheduled fi.rst. This ensures that the final schedule has as much concurrency as

possible.

In SAM [1] the tasks of scheduling, allocation and mapping were combined into a single al­

gorithm. They used a variation of the Force Directed Scheduling Algorithm to simultaneously

schedule and map the operations onto the hardware adding new hardware when required.

All the above scheduling algorithms have one majar disadvantage. It is assumed that all opera­

tors of the same type would be bound to similar functional units. Far example, if there were many

add operations that were being performed in the CDFG, these algorithms assumed that all the add

operations would be implemented with a single type of adder (eg ripple-carry adder). They could

9

not work with a library of adders and decide on the most optimal allocation and utilisation of the

range of adders available in the library. This made them impractical far real-life applications where

typically a bigger library of pre-characterised macrocells are used to build designs. Ideally the

synthesised designs should use slower components in paths where speed is not the most important

criteria and use faster components especially far the critical path.

To salve this problem there are research efforts in the area of component selection. We discuss

below sorne of the important work related to optimally selecting components from a given library.

2.2 Component Selection Related Work

One of the first solutions to the component selection problem far non-pipelined designs was proposed

by Leive [7]. Here, component selection was based on a goodness measure. The goodness measure

consisted of evaluating a function dependent on area, delay and power. Foo and Kobayashi [14]

use a rule based approach to salve the component selection problem. However in these approaches

local optimization of individual modules are perfarmed rather than a global optimization effort.

Hafer and Parker [4] presented an unified approach to scheduling, allocation, component selec­

tion and module binding. They proposed a mixed integer linear programming approach far the

combined solution of the above problems far non pipelined circuits. However, the computer time

required far evaluating the solution was excessive and thus the scheme was impractical in terms of

computational complexity.

In [12] a limited solution to the Module Selection problem was proposed by Jain et. al. Given a

design and a module set their technique predicts the area-time tradeoff curve. They <lid not allow

far multi-cycle operations. This restriction was however removed in a later result in MOSP [5].

But the component selection problem was not entirely solved even in MOSP. MOSP could at best

be classified as a partial selection algorithm since it chose a single module far implementing ali

similar operations in the :flowgraph and did not select individual modules far each operation in the

:flowgraph.

10

Ali these approaches had one majar drawback. The scheduling and selection worked indepen­

dently (except for [4] which provided an integrated solution). There wás no attempt to evaluate

how decisions made during one of the phases would affect performance in the other phases of syn­

thesis. Although each of the above research efforts have achieved good results in the individual

phase of synthesis we believe that independent solutions to the scheduling and selection problem

cannot lead to an overali efficient design.

We now present CHASSIS, .a technique that performs scheduling and selection in an interlinked

fashion to ensure better quálity of design.

3 CHASSIS - the Approach

This section discusses the details of CHASSIS which is a combined solution to the selection and

scheduling problem. We first present the design model that is used by CHASSIS. Then we provide

. an overview of the algorithm and then elaborate the important steps.

The CHASSIS technique is based on a probabilistic cost function which is related to the

functional area in a given design. The heart of the technique consists of simultaneously evaluating

the different scheduling and selection options for each nade in the dataflow graph by associating an

estimated cost for each option. The cost is actualiy an estim~te of the layout area of the functional

units for a particular scheduling/selection choice. From the list of possible options, we choose one,

that we expect, would lead to a minimal area.

When a nade is being considered for scheduling and selection it would be impossible to determine

the exact cost of the design since ali the nades in the flowgraph would not have been selected and

scheduled. Hence a probabilistic estímate of the area is used for nades that have not been scheduled

while an exact area figure is available for ali nades selected and scheduled.

Befare we can discuss the actual cost function and the selection and scheduling processes let us

examine the design model that is envisaged for CHASSIS.

11

4 CHASSIS - The design Model

Tristate
Drivers

Buses

Registers

Tristate
Drivers

Buses

Operators

Figure 2: CHASSIS Design Model

The design model used by CHASSIS is shown in Fig. 2. A two level bus structure is assumed

for the interconnection across the registers and functional units. This model allows for easy analysis

of performance issues since the delay of the tristate driver can be considered to be constant with

respect to the number of the tristate drivers driving a bus.

To calculate the actual delays associated with our model we consider two distinct types of

register transfers.

• Single Operation Register Transfers. These are register transfers in which operands are

read from the register, a single operation is performed on the operands and the results are

finally stored in another register. The delays associated with this type of Register Transfers

are the following.

- Delay of the operation.

12

- Delay associated with two levels of tristate drivers.

- Register setup time and propogation delays.

The total delay can be expressed as :

Delay = Delay of functional unit + 2 * (delay of tristate drivers) +
Register setup time + Register propagation delay.

• Multiple Operations Register Transfers. The main difference in this mode of register

transfers is that multiple operations are perfarmed befare storing the result finally in a register.

As shown in the figure there is one tristate buffer between two operations.

- Dela y of 'n' operations that are chained.

- Delay of the tristate driver between each chained operator.

- Delay of the tristate driver befare the register.

- Register setup time and propogation delays.

The total delay in this case can be expressed as :

Dela y = l:i=1 dopi + (n + 1) * (dela y of tristate drivers) +
Register setup time + Register propagation delay.

With this notion of delays let us now examine the details of the algorithm. The brief sketch

of the algorithm is shown next.

13

4.1 CHASSIS - The Algorithm

main__algorithm

begin

end

performJine_grain_asap(alLnodes);

performJine_grain_alap(alLnodes);

cakulate..span(alLnodes);

for ali nades in the graph

begin

valid_choicesJist = evaluate_ valid_assignments();

for all choices in the valid_choicesJist

be gin

make_assignment ();

cakulate..span (affected_nodes);

update_pro bability _table();

area_estimate = estimate_probabilistic_area();

end

assign_best_time..step();

selecLbesLcomponent();

end

performJterativeJmprovement();

14

4.2 CHASSIS Details

4.2.1 Fine Grain ASAP and ALAP

After the input description is compiled into a CDFG, an ASAP and ALAP scheduling is

performed on the flowgraph. The ASAP schedule of an operation indicates the earliest possible

time that the operation could be scheduled. The ALAP schedule indicates the latest possible

time that the operation could be scheduled.

Although ASAP and ALAP scheduling methods have been extensively used in the past, we

have used a fine grain scheduling technique. it is important to distinguish between fine grain

and coarse grain scheduling techniques. Although the implementation mechanisms for

fine grain and coarse grain schedulers are very similar, they differ in the granularity of the

schedule information.

In coarse grain scheduling it is sufficient for the scheduler to indicate the state in which an

operation is scheduled. It is not required to pin-point the exact time at which the operation is

scheduled. So an operation beginning at 14 ns and an operation scheduled at 94 ns could be

indicated to be in control step 1 for a dock period of 100 ns. For CHASSIS this information

will not suffice, since the exact time values are required in order to be able to select components

from the library during the scheduling process. Thus CHASSIS uses fine-grain scheduling

methods where exact timing values are available for each scheduled operation.

There are a couple of other important differences in CHASSIS elated to chaining of operators

or multi-cycle operations. Chaining refers to a schedule in which two or more data-dependent

operators could share a same control step. The first operation could begin at the state

boundary, while the second operation could begin in the center of the state period. Multicycle

operators are exactly the opposite of chained operators. They require two or more cydes to

complete operation and they would cut across state boundaries.

CHASSIS does not treat chaining and multiclock operations as anything special, since an

operator which is multidock for one dock period would become a single dock element for

another dock period. In other words, every operator is a multicyde operator for sorne dock

period. The main concept used in CHASSIS is multicyle paths where 'n' operations can

15

be perfonned over 'm' dock cydes without intermediate register storage provided this would

minimize area of the design.

Thus a multicyde path can be characterised by the following equation:

(Dapl + Dap2 + .. + Dapn) + Dregisterstorage S: m * Tc1ock

The above equation implies that 'n' operations are performed sequentially over 'm' dock

cydes with a single storage operation at the mth dock cyde. Dopi is the actual delay of

operation i plus the delay of the multiplexer which is required for chaining(Fig. 2. Thus

D opi = dopi + dmux

and

Dregisterstorage = dregistersetup + dregisterpropagation + dmux

After calculating the fine-grain ASAP and ALAP schedule, a quantity called SPAN is calcu­

lated for each of the nodes.

4.2.2 SPAN

The SPAN of an operation is defined as the total time range within which an operation

has to begin and complete execution. Although the significance of SPAN may not be very

apparent at this point, it actually reflects the flexibility that is available for both scheduling

and component selection.

A higher 'SPAN' value indicates that the node has more freedom from the scheduling view­

point. For example if the span of a node is 200 ns and the dock period Tc1ock is 100 ns the

node could be scheduled into two possible states. The exact relation between the scheduling

options and span value for a nade i (i.e span;) can be expressed as follows. Let C; be a set

of ali scheduling options for node i. Then

C; = {xlx ~ L(ASAP;/Tc1ock)J /\X::::; rCALAP;/Tc1ock)l}

The total number of scheduling options is given by IC;I where

IC;I = f(SPAN;/Tc1ock)l

16

The SPAN value also helps us selecting the subset of components for node i. Let L the set of

all components in the library.

Let Sapi C L such that Sapi consists of all components capable of performing operation opi.

To derive S¡ which is a set of all valid selection options for node i we have:

S; = {xlx E Sapi /\ dx :S spani}

where dx is the the delay of functional unit x. In essence, ali components for the operator

type whose delay is greater than the span time is not considered as a valid component for

selection.

Thus given the SPAN value for a node, one can very easily determine the set of valid schedule

and selection combinations for the node.

4.2.3 Valid Schedule and Selection Combinations

We have seen how to calculate the set of possible control step assignments C; and a set of

possible selections S; for a node i given its SPAN value and ASAP schedules. It must be

noted that both C; and S; were calculated independently. The next step consists of deriving

the set V¡ which is a set of ali valid combinations.

Each element in set V¡ is actually an ordered pair (x,y) such that x E S; /\ y E C;. It is

important to note that ali possible combinations of elements in the two sets would not be

valid combinations. Let us demonstrate this by an example. Assume that an adder node

i has the foliowing characteristics. ASAP; = 100, ALAP; = 260 and SPAN; = 200. The

library is shown in fig 12 and the dock period is 100 ns; let us now evaluate the set of valid

combinations.

C; = {2, 3} since the node could be scheduled in control steps 2 or 3. Since the SPAN value is

200, only two of the three components shown in figure 12 are possible selection choices. Thus

the set S; = {ADDlOl, ADDl02}. We could now be tempted to believe that the set V¡ has 4

elements sin ce there are 4 possible combinations of elements from S; and C;. However, this is

not true since a combination like (ADD102, 3) is not valid. This implies that if we schedule

the node to control step 3 then ADD102 is not a valid component selection since its delay is

170 ns and it would not be able to complete the operation within the SPAN value.

17

Thus the set V¡ contains the fallowing elements.

V¡= {(ADDlOl, 2), (ADD102, 2), (ADDlOl, 3)}

The cardinality of the set V¡ is the number of valid choices of combinations that we would

consider far the nade i. At this stage we assume that any of the 3 choices indicated in V¡ is

equally probable. In the above example the probability of using ADD101 in control step 2 is

0.33. Similarly the remaining probabilities can be calculated. Ali infarmation related to the

probability that a particular component will be used at a particular control step is stored in

the probability table described in the next subsection.

4.2.4 Probability Table

The probability table maintains the probability that a particular component in the library

will be used in a control step. If the library consists of 'L' components and the number of

control steps is 'T' then the dimension of the probability table is 'L * T'. The probability

table provides infarmation about the number and type of components required in a given

control step. Similarly, we could also retrieve infarmation about the control steps in which a

given component could be used.

If a nade 'p' has been scheduled and a component 'x' has already been selected to implement

that nade operation, then the set VP = {(x, y)} where 'x' is the selected component and 'y'

is the scheduled control step. The corresponding entry in the probability table is 'l '. If the

nade p had not been finalized and there are 'c' valid choices then the probability far each of

the e entries would be 1/c. Thus the entries in the probability table indicate the probability

of a component being used in a given control step.

Mathematically, an entry in the probability table is defined as the sum of the probability

contributions from ali nades 'N' in the CDFG.

N

P(x, y)= LPi(x, y)
i::l

where Pi(x, y) is the probability that nade i in CDFG would use component x in control step

y and could be defined as

18

Pi(x, y)= l/IVil /\ (x, y) E Vi

Let us illustrate the above concepts with a simple example. Given the sets of valid choices

for three nodes nl, n2 and n3:

Vn1={(ADDlOl,1)}

Vn2 = {(ADDlOl, 1), (ADD102, 1), (ADDlOl, 2)(ADD102, 2)}

Vn3 = {(ADDlOl, 2), (ADD102, 2), (ADD103, 3), (ADDlOl,3)(ADDl02, 3)}

If the above nodes are being scheduled into 3 control steps the probability table is shown in

figure 3.

ADD101 ADD102 ADD103 COMPL

cs-1 1 +0.25 0.25

cs-2 0.25+ 0.2 0.25+0.2

cs-3 0.2 0.2 0.2

Figure 3: Example Probability Table

The table entry for (ADDlOl,1) is 1.25 since the probability that node ni would be imple­

mented with ADDlOl in control step 1 is l. and there is a probability of 0.25 that node n2

would also be implemented similarly. The other entries in the table are calculated similarly.

After calculating all the entries in the probability table we can evaluate the cost function

which re:fl.ects the layout area of the functional components in the circuit.

4.2.5 Cost Function Evaluation

Given the probability table, it is quite simple to estimate the functional area of the resultant

circuit. A single column in the probability table gives the probability that a particular

19

component would be used in each of the control steps. If a particular entry in a column is

'p' then we know that the component represented by that column would be required to be

allocated with a probability p. If ali other entries in the column are less than p we do not

need to allocate any extra hardware since the hardware allocated for the entry p would be

available to be used in other dock cycles.

Thus the probability that a component would be used in the design is the biggest entry in

the column which represents that particular component. If the probability is greater than

'l' then the design would require more than one component of that particular type. This

probability value multiplied by the area of the component (data available in the library) gives

the total area of this component in the whole design.

The total area of the design can be similarly estimated from the probability table. The area

of the design can be expressed as

L

Estimated_Area = 2::>max(i) * Area(i)
i=l

where Pmax(i) is the maximum entry in column i of the probability table and A rea(i) is the

area of the component in column i.

In the probability table of figure 3 the probability that ADD101 would be used in the design

is 1.25. The probabilistic area estimate for ADD101 is thus 1.25 * 100. Similarly the area

estimate for ADD103 is 0.2 * 40.

We have just seen how we could estimate the total area of the design for a particular config­

uration represented in the probability table. The next step would indicate how we accept the

best selection and schedule for a nade.

4.2.6 Finalisation of Schedule and Selection

Given the list of ali valid choices Vi for a nade, an area estimate as shown in the previous

section, is obtained for each of the possible choices. The choice that results in the lowest area

estimate is accepted to be the final schedule and selection for the nade.

When a node's selection and schedule is finalised, the AS} .. P and SPAN values of sorne of the

20

nodes in the CDFG would be affected. The delta-scheduling step in the algorithm adjusts

the ASAP values to refiect the current configuration of the design.

This process of evaluating the various choices for a node and accepting the best possible

choice is continued till ali the nodes in the fiowgraph are scheduled and selected.

We will now demonstrate CHASSIS with a small example.

5 An Example

To illustrate CHASSIS we will step through a simple example consisting of 3 add operations.

A sample library containing different types of adders with different delay and area is chosen

for the example. To make this example simple we will ignore the register and multiplexer

delays. The high level description of the design, the library and the overall design constraints

are shown in figure 4.

Since the time constraint is 200 ns and the dock period is lOOns it is obvious that we have

to schedule ali the operations in two dock cycles, choosing the components in a manner that

reduces the overall area of the design.

We start the design process by assuming that the fastest components from the library shown in

figure 4 (i.e ADDlül) will be used for each operation. We then perform an ASAP and ALAP

scheduling of the fiowgraph and evaluate the SPAN values. The results of these scheduling

operations and the span values for each of the nodes are shown in figure 5.

From the ASAP and SPAN values, we can now derive the possible scheduling and selectian

choices for each nade. Let us laak at nade A. Its span value is 160. This implies that ADD103

cannat be used to implement the addition aperation nade A. Hence there are anly twa possible

selectians for nade A. Thus the set SA cantains two elements.

SA = {ADDlOl, ADD102}

Similarly there are two possible selectians for nade B. However nade C's span value is greater

than 180 which is the delay af the companent ADD103. Hence C can be implemented with

21

HIGH LEVEL DESCRIPTION

X<= A+ 8;
F <= C +X;
G <=O+ E;

FLOWGRAPH

DESIGN
CONSTRAINT

DELAY: A-> F 200 ns
DELAY: O-> G 200 ns
CLOCK : 100 ns

LIBRARY

NAME AREA DELA Y

ADD101 100 40

ADD102 70 80

ADD103 40 100

Figure 4: An example to demonstrate Selection-Scheduler

22

ASAP SCHEDULE ALAP SCHEDULE

100
100

.. 1 +

NODE ASAP ALAP SPAN

A o 120 160

B 40 160 160

e o 160 200

Figure 5: ASAP - ALAP - SPAN calculations

23

any of the 3 adders in the library.

SB = {ADD101, ADD102}

Se = {ADDlOl, ADD102, ADD103}

By considering the ASAP and SPAN values far the nades we can obtain the possible choices

far scheduling the nades. For nade A the ASAP value is O and the SPAN is 160. There are

two choices far scheduling nade A (control steps 1 and 2). Similarly, we obtain the choices

for nades B and C.

CA= {1,2}

CB = {1,2}

Ce= {1,2}

From the sets S and C for each nade we derive the set of valid options far the nades. We

have a total of 4 possibilities far nade A when we combine its scheduling and the selection

opt.ions. The set of valid choices V far each operation can be expressed as

VA= {(ADDlOl, 1), (ADDlOl, 2), (ADD102, 1), (ADD102, 2)}

VB = {(ADDlOl, 1), (ADDlül,2), (ADD102, 1), (ADD102, 2)}

Ve= {(ADDlOl, 1), (ADDlOl, 2), (ADD102, 1), (ADD102, 2), (ADD103, 1)}

From the sets VA, VB and Ve we can derive the probability that a particular operation would

be implemented by a particrilar component. There is a 0.25 probability that nade A would

be implemented with ADD101 and scheduled in control step l. The equivalent probabilities
.,

far nades B a.nd C a.re 0.25 a.nd 0.2. Thus the total probability that component ADDlül

would be used in control step 1 is 0.25 + 0.25 + 0.2 which is 0.7. Thus the probability table

contains the value 0.7 far the location (ADD101, 1)

Using the probability table a.nd the set VA we estímate the a.rea of the final design far each

of the 4 choices of nade A. If Wé ternpora.rily fi.nalise the selection of nade A to be ADD101

and the schedule to be control step 1, then the probability table would change to the table

shown in figure 7.

24

ADD101 ADD102 ADD103

es 1 0.7 0.7 0.2

es2 0.7 0.7 o.o

Figure 6: Probability Table for Example

The probability value of the entry (cs-1, ADD101) has changed to 1 + 0.2 + 0.25 = 1.45.

The other entries have changed correspondingly to denote that node A does not contribute

to any other probability entry.

The area can be estimated using the estimation procedure in the previous section. The first

row in figure 8 shows the probabilistic area of the design if we choose to implement node A

with ADDlOl in control step l. The area estimates for the remaining three choices for node

A are also shown in the figure.

ADD101 ADD102 ADD103

es 1 1.45 0.45 0.2

es2 0.45 0.45 o.o

Figure 7: Prob. Table when A is assigned

It is important to note that the algorithm estimates an area value of infinity for the combi­

nation (ADD102, cs-2) for node A. The reason for this is very sí:i:nple. If nade A were to be

scheduled in cs-2 with ADD102 then there is no way we can implement the design since node

B cannot be scheduled within the overall performance constraint. The SPAN value for node

25

B would become 20 and no components with delay less than 20 ns are available.

From figure 8 we can conclude that the best way to implement node A is by using ADD102

and scheduling it in control step l. Our results exactly match what we would have intuitively

expected since it is clear that using ADD102 (a component with a lower area) would be

better than using ADDlül if there are stringent time constraints as in this case.

Control Library Estimated
Step Component Are a

1 ADD101 216
2 ADD101 256
1 ADD102 182
2 ADD102 INFINITY

Figure 8: Area Estimation for node A

We now evaluate the various choices available to B. The ASAP values of B would have changed

since A has been assigned to a fixed component from the library. The ASAP value for B is

100. The span value for node Bis 100. The choices for node B are reduced to 2. We estímate

the probabilistic area for the two choices of B as shown below.

Control Library Estimated
Step Component Are a

2 ADD101 212
2 ADD102 146

Figure 9: Area Estimation for node B

Let us examine the results for node B. It is clear that implementing node B in control step

26

2 with ADD102 produces the minimal area. This corresponds to our intuition; if we had

already used component ADD102 in the previous time step to implement node A, we would

automatically try to use the same component in control step 2, since it would not require any

additional allocation.

Finally, we evaluate the probabilistic area for node C and the best choice for this node is

ADD103 since this adds the minimal area to our design. The area estimates for the various

choices for node C is shown in figure 10. The estimates indicate that the best selection for

node C is ADD103 since that would lead to the minimal area. Intuitively this appears to be

the best choice, since C has so much freedom in terms of time, it would be wise to choose the

component with minimal area.

Control Library Estimated
Step Component Are a

1 ADD101 170
2 ADD101 170
1 ADD102 140
2 ADD102 140
1 ADD103 11 o

Figure 10: Area Estimation for node C

The final design consists of one adder ADD102 and oné adder of type ADD103. The imple­

mentation is shown in the figure 11.

6 Experiments and Results

We have implemented CHASSIS using the 'C' Programming Language on a SUN Worksta­

tion(Sparc). We have verified our technique by performing a few experiments on a couple

of standard benchmark examples. In this section, we will discuss our experiments with the

27

CONTROL

UNIT

A e B

ADD102

F

Figure 11: Implementation of the final design

D E

ADD103

G

elliptic :filter example which is a standard benchmark used by many research groups. This

example, originally from the signal processing book by Kung et.al [13] was used as a standard

example in the High Level Synthesis Workshop 1988.

The VHDL code for the body of the elliptic :filter is shown below. The results of CHASSIS

for both the libraries are shown.

28

6.0. 7 VHDL Description

entity ELLIPTICJ'ILTER is

port (In_port: in BIT; Out_port: out BIT);

end ELLIPTIC_FILTER;

architecture EX of ELLIPTIC_FILTER is

be gin

process

begin

variable ml,m2,m3,m4,m5,m6,m7,m8: BIT;

variable n2, i, ott : BIT ;

variable n40,n41,n42,n43,n44,n47,n46,n48 :BIT;

variable n49,n50,n51,n52,n53,n55,n56,n57, n58 :BIT;

variable n59,n60,n61,n18,n13,n26,n54,n63 : BIT;

variable n64,n65,n66,n38,n33,n67,n39: BIT;

i := In_port;

n40 := n2 + i;
n43 := n33 + n39;

n41 := n40 + n13;

n42 := n41 + n26;

n44 := n42 + n43;

n47 := n44 * ml;

n46 := n44 * m2;

n48 := n47 + n41;

n49 := n46 + n43;

n51 := n48 + n41;

n52 := n49 + n43;

n50 := n48 + n44;

n53 := n51 * m3;

29

n54 := n52 * m4;

n76 := n49 + nSO;

nSS := n53 + n40;

n63 := n54 + n39;

n59 := n48 + nSS;

n64 := n63 + n49;

n56 := nSS + n40;

n65 := n64 + n38;

n60 := n59 + n18;

n67 := n63 + n39;

n57 := n56 * m5;

n66 := n65 * m6;

n58 := n57 + i;
n38 := n66 + n38;

n2 := n58 + n55;

n33 := n38 + n65;

n61 := n60 * m7;

ott := n67 * m8;

n18 := n61 + n18;

n39 := ott + n63;

n13 := n18 + n60;

OuLport := ott;

end process;

end EX;

To synthesize the elliptic filter we created a library of components shown in figure [12]. The

library has three different components capable of performing the standard operations like ad­

dition and multiplication. Each component varies widely in its delay and area characteristics.

As an example there are three adders whose delay varies from 55 ns to 220 ns. In a design

30

that uses a dock period of 100 ns, an add operation could take one, two or three dock cydes

based on which component is being used to perform the addition. The library also contained

other components like drivers and registers that are required to complete the design.

COMPONENT NAME AREA DELA Y

ADDER ADD101 1500 55

ADD102 500 170

ADD103 300 220

SUBTRACTOR SUB101 1500 55

SUB102 500 170

SUB103 300 220

MULTIPLIER MUL101 17000 80

MUL102 8000 180

MUL103 3000 260

COMPARATOR COM101 300 20

REGISTER REG101 1200

(setup) 2

(hold) 2

TRISTATE DR. TRD101 200 3

Figure 12: Component Library

U sing the a hove library Fig. (12] we synthesized the elliptic filter for a wide range of perfor­

mance constraints ranging ffom 1800 ns to 4ÚÚÚ ns. The dock period in all our experiments

was 100 ns. CHASSIS was used to schedule each operation into an appropriate control step

and simultaneously select the best component from the library to perform the operation. The

31

results of are shown in figure [13]. The results dearly indicate that in general a mixture of

components is required to implement the elliptic filter efficiently. Let us consider the case

where the performance constraint was 2900 ns. CHASSISused three different types of adders

to implement the design. (ADDlül, ADD102, ADD103). Thus sorne add operations were

performed in one dock cycle, sorne in two dock cycles and sorne in three dock cycles based

on which component it was bound to. When the performance constraint was 2200 ns, three

adders were required, but it selected ali three fast adders (ADDlül). The functional area of

the design with 2200 ns constraint was higher than the functional area of the design with the

2900 ns constraint since faster adders are more expensive.

In general, CHASSIS was able to determine an efficient mix of components required to com­

plete the design within the given performance constraint. It ensured that critical operations

were being performed in fast components and non critical operations were being performed

by slower components.

With the next experiment we actually verified the fact that better designs are indeed obtained

by combing selection and scheduling. In arder to ascertain this, we compared the designs

produced by CHASSIS when it worked with the foil library, to the designs obtained when

using Reduced Libraries containing single implementations of each operation type.

Since there were three adders and three multipliers in the original library we created ali the

possible Reduced Libraries containing a single adder anda singlé multiplier and other compo­

nents used to complete the design. The add and multiply components in the the nine Reduced

Libraries were RLl(ADDlül, MULlül), RL2(ADD102, MULlOl), RL3(ADD103, MULlül),

RL4(ADD101, MUL102), RL5(ADD102, MUL102), RL6(ADD103, MUL102), RL7(ADD101,

MUL103), RL8(ADD102, MUL103), RL9(ADD103, MUL103).

With each of these libraries, we synthesized the elliptic filter for ali the performance con­

straints (1800 ns to 4000 ns). In figure [13] we have shown the Area Time tradeoff curves

for the entire library shown in Fig. 12 and the Reduced Libraries. The curve for RL9 is not

shown since the critical path was 4200 ns for the fastest design that is implementable with

RL9. This is dueto the fact that the components belonging to RL9 are ADD103 and MUL103

which take three dock cycle delays to complete their operations.

32

DLY LIB ADD ADD ADD SUB SUB SUB MUL MUL MUL FU AREA
103 102 101 103 102 101 103 102 101

1800 FULL 2 2
1 1

20600

1900 FULL 2
1

2
1

17000

2000 FULL 2
1 1

14500

2100 FULL 2 2
1

4
1

16000

2200 FULL 1 3
1

2
1

10500

2300 FULL 1 2
1

2
1 1

9000

2400 FULL 1 2
1

2
1 1

9000

2500 FULL 1 2
1

2
1 1

8500

1
2600

1
FULL

1
2

1 1
8000

1
2700

1
FULL

1
2

1 1
8000

1

1
2800

1
FULL

1
2

1 1
8000

1

1
2900

1
FULL

1 2
1 1

8300
1

1
3000

1
FULL 2

1 1
7800

1

1
3100

1
FULL 2

1 1
7800

1

1
3200

1
FULL 2 2

1
8500

1

1
3300

1 FULL 1 2
1

8300
1

1
3400 FULL 3 2

1
7500

1

1
3500 FULL 2

1
7800

1

1
3600 FULL

1
4800

1

1
3700 FULL 4800

1

1 3800 FULL 2 4000
1

1 3900 FULL 2 4000
1

14000 FULL 2 4000
1

Figure 13: CHASSIS Results - Elliptic Filter Example

33

o
d o o
CXJ
!'<)

:5
l.L..

.. ---
' 1
1

::i
a::
:¡:
1
1
1
1
1
1
1
:;:

~ i"'l :!i ~ tD ~ ro
_J _J _J

o:: a:: o:: o:: o:: o:: ll:'.

* • • i ~ <;] [J
1 1 1 1
1 1 1 : 1 1 1
1 1 1 1 1
1 1 1 1 1
1 ' 1 1 1 1 1
1 1 1 1 1 1 1

* • il • .je <!l [!]

o
g
~

.,
1, 1 11
11 l 11
ti • u
11 11

1 11 u

---------------------t-r r * • • 1 1 1
1 1 1 * • •
' 1 1
1 1 1 * • • 1 1 1
1 1 1 * • • 1 1 1

• i •
l l i ... * • Clf'• 1 1 1 t
l 1 1 1
~ .. __ _ __ J!l-1
1_"\....._ -- 1 * ... -)lo 1 1 ,,,. .. "
1 ¡.'

o
d
~
t<)

* .. -.
1 1 '
1 1 1 * • ¡ l 1 1 ¡
1 1 1 ¡ * • • 1 1 1 1
1 1 1 o

---------------1--· : ·--------------- * j : ------------ ~

o o g d o

~
o
CX)
N

o

§
tt)
N

... --
' 1 1 1 * 1 1 1
1 1

* 1 1 ,

J'

'* 11
11
u
11
11

}*
,1

)(

09.J'tf

o
d o o ro

N

o
d o

o o O LO

~ ~
......

~

Figure 14: AT C1tJ«fe - Elliptic FiltN

........
11)
e ..._,.
G>
E
~

In general the Reduced Libraries could not produce better designs. This .is because the

only available implementation of a component (however expensive it is!) has to be used to

implement ali critical and non-critical operations resulting in ineffi.cient designs. There were

a couple of instances (less than 1 3 of the cases) where CHASSIS could not converge on

the minimal design. We are currently improving the iterative improvement techniques to

encompass a wider search space and converge on to the minimal design in ali cases.

However, we can conclude, that performing scheduling with single implementations of compo­

nents cannot lead to optimal designs. It is important to consider component tradeo:ffs when

performing scheduling in arder to be able to produce high quality designs.

7 Conclusions

In this paper we have clearly demonstrated how the quality of synthesized designs could

be improved by performing scheduling and selection as an interlinked operation. We have

described a new technique CHASSIS which is one of the few research e:fforts to actually

combine these two tasks into one and perform scheduling while simultaneously utilizing the

wide range of library components.

As an extension to this e:ffort, we are currently working on expanding the design model to

incorporate interconnect delay estimates obtained from actual fl.oorplan or from wire-length

estimates obtained from an estimation tool. We are also studying the CHASSIS heuristic on

large designs to examine whether any improvements are necessary.

8 Acknowledgements

This work was supported by grants from the National Science Foundation (#MIP-8922851)

, the Semiconductor Research Corporation (#90-DJ-145), the California MICRO program

(# 90-047), TRW and Texas Instruments. We are grateful for their support. We would also

like to thank ali members of the UCI CADLAB for their helpful suggestions.

35

9 References

[1] Richard Cloutier and Donal E Thomas. The Combination of Scheduling, Allocation

and Mapping in a Single Algorithm. In Proc. of the 27th Design A utomation Con f.

ACM/IEEE, June 1990.

[2] C.Tseng and D.P. Siewíorek. Automated Synthesis of Datapaths in Digital Systems.

IEEE Transactions on CAD, pages 379-395, July 1986.

[3] Alice C. Parker et el. MAHA: A Program for Datapath Synthesis. In Proc. of the 23rd

Design Automation Conf., pages 22-226. ACM/IEEE, June 1986.

[4] L. Hafer and Alice Parker. A Formal Method for the Specification, Analysis and Design of

Register-Transfer Level Digital Logic. IEEE Transactions on CAD, pages 11-14, J anuary

1983.

[5] Rajiv Jain. MOSP: Module Selection far Pipelined Designs with Multi-Cycle Operations.

In Proc. of the IEEE Conference on Computer Aided Design., pages 212-215. IEEE,

September 1990.

[6] J.Nestor and D.E Thomas. Behavioral Synthesis with Interfaces. In Proc. of the IEEE

Conference on Computer Aided Design., pages 112-115. IEEE, November 1986.

[7] G.W. Leive. The Design, Implementation and Analysis of an Automated Logic Synthesis

and Module Selection System. PhD thesis, Carnegie-Mellon University, January 1981.

[8] Alex Orailoglu and D. D. Gajski. Flow Graph Representation. In Proc. of the 23rd

Design Automation Conf., pages 503-509. IEEE/ ACM, June 1986.

[9] B.M Pangrle and D.D Gajski. State Synthesis and Connectivity Binding far Microar­

chitecture Compilation. In Proc. of the IEEE Conference on Computer Aided Design.,

pages 210-213. IEEE, November 1986.

[10] Pierre G Paulin and John P Knight. Force-Directed Scheduling far the Behavioral

Synthesis of ASIC's. IEEE Transactions on CAD, pages 661-678, June 1989.

[11] Pierre G Paulin and John P Knight. Scheduling and Binding Algorithms far High-Level

Synthesis. In Proc. of the 26rd Design Automation Conf., pages 1-6. ACM/IEEE, June

1989.

36

[12] Alice Parker Rajiv Jain and Nohbyung Park. Module Selection far Pipelined Synthesis.

In Proc. of the 25th Design Automation Conf., pages 542-547. IEEE/ ACM, June 1988.

[13] H. J. Whitehouse S.Y Kung and T. Kailath. VLSI and Modern Signal Processing. Pren­

tice Hall Infarmation and Systems Sciences Series, 1985.

[14] Y-P.S.Foo and H. Kobayashi. A Knowledge Based System far VLSI Module Selection.

In Proc. of the IEEE Conference on Computer Aided Design., pages 212-215. IEEE,

January 1983.

37

