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ABSTRACT OF THE DISSERTATION

Power Optimization for Medical Sensing Systems

By

Jun Luan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Pai H. Chou, Chair

Medical sensing system collect and analyze the patients’ physiological data for monitoring,

aid or diagnostic purposes. System designers are faced with stringent requirements on not

only correctness and safety but also power. Reference designs and multi-purpose platforms

help to significantly shorten the development cycle.

This work takes a cross-layer, system-level, platform-based approach to addressing the

problem of saving power in a class of portable medical system. We propose a low-power

medical sensing system that can be used to monitor Electrocardiography (ECG), Photo-

plethysmogram (PPG), and muscle tension. It also includes a hand gesture recognition

system to aid mobility-impaired patients.

We explore the theory and application of a compressive sensing framework to medical

signal processing. A novel compressive sensing-based ECG compression algorithm and

a dominant frequency extraction-based PPG heart-rate calculation algorithm are proposed

to reduce the system power. The unique combination of hardware structure and software

signal-processing algorithms makes low-power design possible. The system test results

xi



show that the proposed system is superior to existing works in terms of power consumption

and system size.

xii



Chapter 1

Introduction

The worldwide shortage of health care facilities and workers has posed great challenges to

health care providers and government officials. The remote patient monitoring (RPM) [1]

can be a potential solution to this problem and thus has drawn increasing interest as a

research subject. Generally speaking an RPM implements a medical sensing system that

collects and analyzes physiological data from the patient for monitoring, aid or diagnostic

purposes in general. A typical system is shown in Fig. 1.1. The sensing front-end directly

samples the signal from the patient using medical sensors and sends the raw or processed

data to a mobile device such as a cellphone or a tablet. Depending on the bandwidth

requirement, the sensing front-end can use WiFi, Bluetooth or even wired link to transfer

the data. The mobile device subsequently sends the data to the back-end cloud server via

the Internet. The data is analyzed on the server and the results are directly presented to the

doctors. Front-end devices are required to be made small and light so as not to limit the

patient’s mobility. Usually simple data collection and sensor control are performed in the

front end while complex data processing, analysis and profiling are carried out on the more

powerful server side.

1



Figure 1.1: Medical Sensing System

Some general consumer electronic systems, such as sports and fitness monitors, can also

serve the same purposes and the same technologies may appear in both. But medical grade

systems are considered to be more accurate, reliable and responsive as many of these sys-

tems are more concerned with the patient’s’ health and are often used in life critical condi-

tions. In the Untied States, the Food and Drug Administration (FDA) oversees the manu-

facturing of medical devices, including both software and hardware, to ensure the product

quality and patient safety. These strict requirements place a huge pressure on system de-

signers and manufacturers. A research [2] in 2009 shows that the average research and

development time for these systems is around two years and some high risk systems take

over 3 years. Thus design references and multi-purpose platforms are more important in

medical system design as they help to significantly shorten the development cycle.

Designing a medical platform is very challenging as system designers have to make trade-

offs among several important factors: wearablity, responsiveness, development cost and

time, etc. Power consumption apparently plays an important role. Large power consump-

tion shortens the battery life, thus limits the wearablity as the battery tends to be the largest

component in such systems. Many early generation medical devices are bulky, heavy due to

the lack of high-speed low power micro-controllers ( MCU ) and miniature sensors. They

can only be used in a controlled environment, such as research lab and hospitals. On the

2



other hand, low-power design tends to delay the system as the MCU usually has a simple

structure thus slow in computation. To increase the speed, many signal processing and data

analysis tasks can be moved to the front end but this will inevitably increase the power

consumption and lead to an increased in system size. It is difficult to achieve significant

energy reduction by isolated techniques.

This work addresses the ultimate challenge of power saving in medical sensing system

design. We propose a low-power medical sensing system that can be used to monitor Elec-

trocardiography (ECG), Photoplethysmogram (PPG) and muscle tension. It can be coupled

wirelessly with mobile devices for Telecare or Telehealth services [3]. It also includes a

hand gesture recognition system to facilitate mobility-impaired patients. The system block

diagram is shown in Fig. 1.2. The detailed hardware and software configuration can be

found in Chapter 4 Most of this work focuses on the sensing front end with the exception

of a ECG compression algorithm running on the back-end server. The unique combina-

tion of hardware structure and software signal processing algorithms make the low-power

design possible.

The dissertation is organized as follows: in the rest of this chapter we introduce two im-

portant techniques in power optimization followed by an overview of the proposed system

featuring both of these two techniques. In Chapter 2, we present a motivation example of

designing a heart rate monitor (HRM) to show how to actually optimize the power con-

sumption. In Chapter 3 we provide a background and the related work on this subject. The

detailed system design and power saving algorithms are described in Chapter 4 followed

by the evaluation Chapter 5. We summarize the research and future topics in Chapter 6.

3



Figure 1.2: System Block Diagram

1.1 Power Optimization

In this section, we introduce two important power optimization techniques for medical

sensing systems: low-power component selection and efficient digital signal processing.

These two techniques actually help the designers to define the system architecture within

the confinement of a certain power consumption budget. Hardware components together

with the controlling software can be viewed as a software hardware codesign approach

[4], which applied to general electronic systems. For medical sensing systems, however,

efficient signal processing stands out as a key factor as it can further optimize the power

consumption on top of both the hardware and software. We further explain these two

techniques as follows.

Component Selection Component selection defines the hardware structure as well as the

corresponding controlling software. Selecting low-power components obviously plays an

4



important role. In fact, it is often the first task facing the designers. This is a process

involving investigating the power characteristic of each component and finding the best

among many different options. The system requirement first leads to the medical sensor

selection, which has a huge impact on the system power consumption. For example, a heart

rate monitor can use either ECG based sensors or optical sensors. The power consumption

of a ECG sensor mainly comes from the peripheral circuit such as the ECG amplifier,

which can be controlled down to hundreds of microwatts. While the optical sensor utilizes

LED which usually takes several miliwatts. This easily makes the optical sensor the most

dominant component in the system in term of power consumption.

Most modern medical devices are also equipped with microcontroller units (MCUs). These

integrated chips range from low-power MCU to high-end multi-core digital signal proces-

sors (DSPs). Low-power MCUs usually have a simple structure running at a low clock

rate (MHz to 10s of MHz), thus are low power. They are not suitable to run complex,

time-consuming tasks. To select the most suitable component, one also has to consider the

software development cost, lead time, etc.

Signal Processing Using the right parts alone does not ensure good power performance.

Modern MCUs usually have several power modes. The efficient digital signal processing

helps to reduce the power consumption by lowering the sensor sampling rate. The fewer

samples collected by the sensor, the less processing required by the software, which in

turn enables the MCU to stay in the low-power mode more often. Even though a DSP

may consume as much as hundreds of milliwatts when active, the standby power may

be just tens of microwatts. Meanwhile, a low-power MCU may take more power if it is

kept running actively. In a wireless system, low sampling rate also saves the power used

to transfer the data wirelessly, which can be dominant in a low-power system. However,

less signal samples usually leads to a more complicated processing algorithm, which also

5



impacts the power consumption. Clearly a balance has to be found between the complexity

of the algorithm and the sampling rate.

1.2 System Structure

In this chapter, we introduce the system structure of the proposed low-power medical sens-

ing platform that features both low-power component selection and efficient digital signal

processing. As shown in Fig. 1.2, the system has an ECG sensor, a Photoplethysmogram

(PPG) sensor [5], an optical muscle tension sensor, and an triaxial accelerometer (ACC).

Depending on the requirements, some sensors can stand alone or be removed from the sys-

tem. We divide the whole system into different subsystems to better present the system

architecture.

1.2.1 Digital Signal Processor Subsystem

The main processor in this system is an embedded low-power DSP, TMS320C5515, or

C5515 for short. The C5515 is a fixed point DSP running at 100MHz consisting of a

general MCU core and a Fast Fourier Transform (FFT) co-processor. The reason we favor

C5515 than other low-power MCUs or DSPs is that it strikes the most balance between

processing speed and power consumption. In our medical sensing system, many signal

processing tasks need to be done on the front end, such as real-time signal filtering, index

computation, template matching, etc. These tasks cannot be done in real time by most of

the low-power (i.e. low speed) MCUs. The average active power consumption of C5515

is only around tens of miliwatts. While an ARM cortex A processor would take hundreds

of miliwatts to several watts of power [6]. For some of tasks requiring FFT, the hardware

FFT acceleration makes C5515 run much faster than just a high speed MCU. Except for
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the signal processing tasks, the DSP also runs the Bluetooth Protocol stack to communicate

with the CC2560, which is a dual-mode Bluetooth (i.e., BR/EDR, also known as “classic”,

and low-energy) transceiver. The DSP has the option to either transmit the ECG and PPG

data via BR/EDR or store the data locally to an external flash memory.

1.2.2 Muscle Tension Sensing Subsystem

Muscle tension sensing provides means to monitor the patient’s movement. It cab also be

used as a control interface to aid mobility-impaired patients. We select the optical muscle

tension sensor (MTS) for its low power consumption and wearability. It consists of an LED-

PD pair. The LED emits light into human tissue while the PD measures the backscattered

light from human tissue. It is a fairly complicated process since the muscle movement

has a triple effect: the muscle fiber contraction changes both the light absorbance and the

reflected light path, while the blood volume in the muscle also affects the reflected light. As

a result, muscle movements manifest as changes to the signal frequencies and amplitude in

the PD output. The key to MTS is the low-power control algorithm carried out on the DSP.

The DSP also samples the signal using the on-chip ADC and adds filtering before running

the contraction detection algorithm as described in Section 4.2.1.2.

1.2.3 Hand Gesture Recognition Subsystem

The HGR subsystem fuses MTS and ACC signals. Both sensors are tiny in size. The

add-on of MTS enables the system to detect wrist movements that makes it possible to

detect a variety of common gestures. We propose a template matching based recognition

algorithm for its low complexity and high accuracy. The sampled MTS and ACC signals

are compared with the presets in the DSP memory and each is given a score based on the

dynamic time warping (DTW) [7]. The gesture with the highest score is selected. The core
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sensor fusion algorithm is presented in Section 4.2.2

1.2.4 ECG Monitoring Subsystem

ECG is one of the most important and basic types of physiological signal for cardiac di-

agnosis and analysis. The ECG sensor is a 12-lead electrode as shown in Fig. 5.15. The

sampled signal is sent to ADS1298R [8], an 8-channel front-end chip integrated with a

24-bit ADC. The sampled ECG raw signal is processed on the back-end server instead of

the sensing front end. This demands a high bandwidth to transfer the ECG data and huge

server storage to save the data. For the doctors to make quick diagnoses, we propose a

compressive sensing based ECG compression algorithm running on the back-end server to

save both the bandwidth and storage. The algorithm is presented in Section 4.2.4.

1.2.5 Photoplethysmogram Monitoring Subsystem

The system can monitor PPG signal. PPG is the collection of vital signs from pulse oxime-

try. The most common ones are heart rate and blood oxygen level (SpO2). PPG monitors

are commonly seen in intensive care, elderly care, sports and fitness, newborn screening,

and other medical applications. A more detailed introduction of PPG can be found in

Appendix B. A commercial pulse oximeter consumes 55-120 mW, most of which is con-

sumed by the LEDs [9]. Compressive sensing (CS) [10] can directly save the LED power

by reducing the LED on-time, thus making it a natural candidate. Here we propose a two-

step algorithm consisting of prior estimation and Compressive Sensing Matching Pursuit

(CoSaMP) [11]. The algorithm can be found in Section 4.2.3. Our algorithm can only

report heart rate from PPG signal at this point but shows promising results in estimating

SpO2 as well.
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1.3 Contributions

There are several contributions of this work. First, the proposed framework can be used as

a reference design for medical system designers for fast prototyping and product develop-

ment. Chip manufacturers usually provide specific libraries and applications for develop-

ment engineers to start with but the power optimization techniques and combined solutions

are rarely found. The hardware and software provided in this work can serve as a power

optimization guideline.

Secondly, this work contributes to the muscle tension sensing research field. Traditionally,

the muscle tension is measured by surface Electramygraphy (sEMG). It is bulky, power

consuming and barely wearable. The novel optical sensor design and low-power control

greatly reduce the system size and overcome several shortcomings of sEMG, making long-

time monitoring possible.

Thirdly, in the compressive sensing research area, the proposed dominant-frequency exac-

tion based fast compressive sensing greatly increased the system response speed. We also

utilize CS theories in real applications such as ECG and pulse oximetry.

Finally, we present a novel miniature hand-gesture recognition system utilizing both inertial

and muscle tension sensing. By the fusion of the optical MTS and inertial sensors, the

system size can be greatly reduced while still maintaining a high accuracy.
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Chapter 2

Motivating Example

System power can be greatly reduced by low-power component selection and advanced

signal processing. In this chapter, we present a motivating example of designing a wireless

heart-rate monitor (WHRM) to explain how to utilize these power saving techniques. We

show the hardware and software design, signal processing algorithms, and an evaluation.

2.1 Background

WHRM is a growing class of wearable devices for both personal health and fitness appli-

cations. The most popular type is worn under the shirt in the form of an elastic chest strap

with two wet electrodes that contact the skin directly. Similar to ECG, a heart-rate monitor

(HRM) also measures the electrical impulses generated by the polarization and depolar-

ization of cardiac tissue; but unlike ECG, an HRM does not record raw data. Instead, it

analyzes the waveform, extracts the heart beats over time, and transmits the running aver-

age heart rate within the given time window. By transmitting the heart rate data to the user’s

smartphone wirelessly, the smartphone can use the data in several possible ways, including
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not only uploading the data to a cloud database but also providing musical feedback. For

instance, the app can include a music player that adjusts the musical tempo or other audio

signals to help the user maintain an optimal level of physical activity.

The most important metrics for evaluating a WHRM include the battery life and accuracy

of heart-rate detection. The battery life is clearly important, because recharging or replac-

ing the battery causes additional trouble to the users. Although one may attempt to target

the most power efficient MCU and radio trans-receiver, in practice the opportunities are

limited, because the radios such as ANT+ or Bluetooth 4.0 Low Energy Technology (BLE)

are already very low power, and they are required to implement industry-standard profiles

that prescribe the command format and rate. Therefore, system designers must seek oppor-

tunities in other subsystems.

The most fruitful areas are in the analog-to-digital converter (ADC) sampling subsystem

and the heart-rate detection algorithm. An ADC consumes a significant amount of power

when in operation. Moreover, the more data collected by the ADC, the more processing is

required by the algorithm.

A heart-rate detection algorithm detects the presence of heat beats, records the timestamps,

and calculates the overall heart rate. A heart beat is defined by an ECG complex, which is

composed of 5 waves: P, Q, R, S, and T, as shown in Fig. 2.1. Q-wave and S-wave usually

go downward. Together with R-wave, they form a QRS complex. The duration of QRS

complex is usually 60 ms-120 ms. A longer duration may indicate a heart condition [12]. A

good algorithm also needs to consider the other segments, such as the QT interval, to avoid

false detection. The QT interval begins with the onset of Q wave and ends in the offset

of T-wave. It is usually around 400 ms. A prolonged QT interval may increase the risk of

sudden cardiac death [12].
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Figure 2.1: ECG Complex. Image from Wikipedia.

2.2 System Design

In this section, we introduce the system design of WHRM . As stated in Chapter 1, low-

power component selection and efficient signal processing greatly reduces the system power

consumption. Using WHRM as a real example, we further explain how to utilize these

techniques.

2.2.1 Component Selection

The block diagram of a typical WHRM is shown in Fig. 2.2. It includes an MCU, an

ECG front end, a low pass filter (LPF) and a wireless communication module. We use

MSP430 [13] in this design for its low power consumption. It can have as many as five

modes of operation. Low power mode 3 (LPM3) [13] can be used as the standby mode

because the processor can be woken up periodically to detect the strip connection. An

alternative would be to use a hard key to wake up the MCU, as this would allow the MCU

to stay in power-off mode, which consumes much less power by turning off several modules
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Figure 2.2: WHRM Block Diagram

that are active in LPM3, including the low power oscillator and the real time clock (RTC).

However, it also increases the hardware cost and complicates the mechanical design as

WHRM usually requires water resistance but has only a limited surface area. MSP430 also

has a built-in ADC that can be used to sample the ECG signal.

The front-end ECG amplifier and the LPF block should also consume as little power as

possible. The amplifier is a differential amplifier that amplifies the ECG signal picked

from the electrode while rejecting common-mode noise. The signal can also be further

amplified in the subsequent LPF stage. The cutoff frequency of the LPF is usually set to

around 16 Hz to filter out the environmental noise and muscle noise, which are usually in

the 50-60 Hz range. Another option is to implement an FIR or IIR digital filter in the MCU.

However, the analog filter has near-real-time response speed while reducing the burden on

the MCU.

The most common power source is the rechargeable Lithium battery that can be charged

through a standard USB port. The battery output voltage is 4.2 V. A buck-type DC-DC

converter is used to convert the battery voltage down to the required voltages to power the

MCU, the analog frond-end and the wireless module. A main concern is that the DC-DC

noise from the power block could become a continuous source of interference to the ECG

signal and thus needs special attention. In the actual PCB routing, the ECG signal path

is well separated from the DC-DC converter, and the two ECG input channels are very

carefully balanced to avoid noise amplification.
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Figure 2.3: Observed ECG signal. Left: standstill; Right: in motion.

2.2.2 Signal Processing

The most common way to detect a heart beat from the digital samples is to detect the

R wave peak, which is the most dominant signal in an ECG complex. To achieve real

time performance, the peak detection can be only carried out to a small amount of buffered

samples. This causes a serious problem when the sampling rate is not high enough. Fig. 2.3

shows the ECG signal in both standstill state and in motion. The waveforms are taken after

the LPF in a real WHRM prototype. Significant motion artifact and muscle noise can be

observed even after the smoothing and filtering while in motion. If the ECG signal is

sampled at a relatively low rate, it becomes easy to be trapped into local maximum instead

of the real R-wave peak.

Increasing the sampling rate also increases the power consumption, which further strains

our already limited power budget. Adaptive sampling can help to satisfy the power con-

straint and meet the power specification. Saving ADC operations not only saves the power

to operate ADC but also gives the processor more sleep opportunities. For example, if the

sampling rate is reduced from 128 Hz to 40 Hz, 88 ADC operations are save per second.

Each ADC operation takes about 4µs to complete (1µs for sample and 3µs for conversion).
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The typical ADC power consumption is around 450µw. Total energy saved for 1 hour is:

450 µW×4µs×88 = 0.16mJ (2.1)

Meanwhile, the processor needs to stay in active mode to access the data. The current

consumption is 1.7 mA at 16 MHz [13]. The interrupt subroutine is measured as around 15-

20 µs as entering and exiting the interrupt routine take over 10 cycles and data processing

requires at least another 10 cycles. Energy consumed per sample is

1.7mA×3.3V×0.6 µs×14cycles = 47.12nJ (2.2)

Energy saved per hour is

47.12nJ×88/s×3600s/hr×1hour = 14.92mJ (2.3)

The total energy saved in 1 hour is around 15 mJ. This amount of energy may be small

compared to the whole capacity of the battery, but the system will stay in standby mode

most of the time. The average power consumption is measured to be around 0.3 mW in

heart rate detection mode and 0.3 µW in standby. The amount of energy saved in 1 hour

by adaptive sampling can support the whole system in standby mode for more than 40

minutes. If the original system works 4 hours and sleeps 12 hours, using our algoirhtm the

system can last at least 4 hours more in standby mode. This is just a rough estimate with a

minimum weight but it shows a great potential in saving power by adaptive sampling.
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2.3 Heart Rate Detection Algorithm

We use a digital signal processing algorithm that assesses the noise level in the (2-lead)

ECG signal to steer the sampling rate as a way to save a significant amount of power

while maintaining high accuracy of heart-rate detection. This algorithm involves a double-

threshold QRS complex detector and a mechanism for sampling-rate adjustment. In the

QRS detector, all the local extremes are detected and compared with two sets of threshold:

a signal amplitude threshold and a slope threshold. An R-wave peak point is identified

only when the local extreme goes beyond both thresholds. The underlying rationale is that

R-wave usually has the dominant peaks in an ECG complex, but amplitude alone is insuf-

ficient for the detection. Slope information serves as a good complement and discriminator

from other high peaks such as T-wave peaks.

On top of this algorithm, we introduce an adaptive technique that dynamically adjusts the

sampling rate in response to severe noise such as baseline wondering and muscle noise.

Three sampling rates of 128 Hz, 64 Hz, and 40.8 Hz are implemented on the WHRM

prototype. Our algorithm greatly reduces the power consumption by lowering the sampling

rate while still maintaining a reliable detection by sampling the signal at a higher rate in the

presence of noise. The performance of the algorithm is evaluated using standard MIT-BIH

arrhythmia database [14, 15]. Our algorithm can also be used in other applications that

require peak detection such as pulse oximeters.

2.3.1 Bluetooth Stack

Besides heart rate detection the system also needs to handle the wireless communication.

System level coordination among all the tasks is necessary to achieve the lowest power

consumption. To simplify the design, we select the Bluetopia protocol stack [16] for the
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MCU to control the wireless module. It supports three communication protocols: ANT+,

BLE, and Bluetooth Classic (BR/EDR). Industry-standard profiles such as SPP (serial port

profile) and GAP (generic access profile) are already implemented. The WHRM works as

a slave server while the mobile device (smartphone) works as a master client. The slave

latency, which is defined to be the number of connection events that the slave is allowed

skip, is set to the maximum so that it can remain in low-power mode if no heart rate update

is needed. The stack also runs a non-emptive scheduler. Every task is literally a call-back

function. No real context switching is needed upon scheduling. This greatly reduces the

overhead.

The heart rate detection task (HRDT) performs ECG sampling, peak detection, and heart

rate calculation. When scheduled, HRDT will set the watchdog timer (WDT) to the desired

sampling rate and goes to LPM3. After the timer expires, HRDT will set the ADC to sample

ECG signal and go back to LPM3 again. Upon ADC conversion, the ECG sample is then

stored into a local buffer. Each HRDT takes only one sample at a time, and it is repeatedly

scheduled until a certain number of samples have been accumulated.

Peak detection will be performed inside the local buffer by HRDT. The time of each R-

wave peak will be calculated using the sampling timer and the local buffer index number.

A heart rate then is calculated on three consecutive peaks. The system is designed to report

the running-average heart rate every second. However, if the heart rate has not changed or

has not been updated, the protocol stack can choose to ignore the request from the client

and stay in sleep mode. The peak detection algorithm is described next.

2.3.2 Peak Detection Algorithm

We use the threshold subtraction algorithm proposed by [17] for its low complexity and

simplicity. It can be easily incorporated into our adaptive mechanism because both the
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slope and amplitude threshold comparisons are identical even under different sampling

rates. As discussed in the latter part of this section, all the parameters are set in terms of

time rather than number of samples. This greatly simplifies the sampling rate adjustment.

The core of this algorithm only takes one comparison, one addition, and one multiplica-

tion. The downside of this algorithm is that it relies too heavily on the signal filtering and

smoothing. It is simple and works well for stable ECG signals but cannot catch the com-

plex in the presence of noise, or the complex also happens to have a high T-wave peak.

The underlying reason is that it only extracts amplitude information, but amplitude alone

is incapable to discriminate R-wave peaks from dominant T-wave peaks. We added slope

detection to this algorithm to improve detection rate.

The proposed peak detection algorithm works as follows.

Step 1): Local extreme detection

A total of 180 ms of ECG data is buffered and 60 ms of the total data is copied to the

beginning of the buffer from the previous frame. The buffer holds about 22 samples in

128 Hz sampling rate and only 6 samples in 40.8 Hz sampling rate. The sampling interval

rather than the sampling rate will be recorded for each frame. When a change happens,

the boundary of overlapped samples will be marked so that the timer interval between any

two adjacent samples can be easily calculated. All the samples in the local buffer are

then subject to a local extreme search. A sample is marked as a local extreme if it is a

local maximum or a local minimum within a 60 ms interval of consecutive samples. Every

sample taken between 31 ms-150 ms will be compared with 30 ms of the samples on its

right hand side (later samples), and 30 ms on its left-hand side (earlier samples). Once an

extreme is found, the samples within its immediate 30 ms of neighbors can be ignored. This

step can also be implemented using a divide-and-conquer algorithm, but for such a small

number of samples, the exhaustive way works fast enough as it takes only 6 comparisons

at most for each sample and the lower the sampling rate, the faster it runs.
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Step 2): Slope Detection

Every local extreme is subjected to a slope measurement. The slope is measured using the

following equation.

slope =
|X [30ms]−X [0]|+ |X [−30ms]−X [0]|

2
(2.4)

where X [0] is the local extreme, X [30ms] the sample taken 30 ms after the extreme, and

X [−30ms] the sample taken 30 ms before the extreme.

A slope threshold is maintained as a weighted sum of the previous threshold and the current

slope. Any local extreme whose slope is less than the threshold will be discarded.

Step 3): Amplitude Subtraction

The amplitude is calculated as the absolute value of the difference between the local ex-

treme and bias voltage and further compared with a peak amplitude threshold. If greater

than the threshold, the local extreme will be identified as a R-wave peak. The threshold is

maintained using the approach proposed in [18]. Instead of just one set of threshold of the

signal peak value (SPT), a noise peak value (NPT) is also maintained as a weighted average

of the current extreme and the previous NPT. The final threshold is a weighted sum of SPT

and NPT.

2.3.3 Sampling Rate Selection

We use WDT to trigger ADC operations as mentioned in Section 2.3.1. It is the only

timer resource available to us in LPM3. With only one external 32-kHz crystal oscillator,

WDT duration [13] can be set to 1.95 ms, 15.6 ms, or longer. The normal duration of QRS

complex is 60 ms-120 ms [12]. This requires the sampling rate to go beyond 33 Hz. The
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sampling rate is decided based on our test result. The possible combinations of timers

are tested in simulation using the MIT-BIH arrhythmia database as shown in Fig. 2.3. No

noticeable drop of detection rate is observed. As a result, three level of sampling rate are

selected as 128 Hz (7.8 ms timer), 64 Hz (15.6 ms timer) and 40.8 Hz (24.5 ms timer).

2.3.4 SNR Measurement

Though the noise peak threshold is maintained during peak detection, this threshold cannot

be used in signal-to-noise ratio (SNR) calculation since it contains the information of T-

wave peaks. In some human ECG complex, the T-wave component can also be relatively

high even after the smoothing filter. These T-wave peaks are detectable and can be removed

by comparing with R-wave peaks. However, if it is counted as a noise peak, the sampling

rate might stay at the highest level. For this reason, only the peaks that happen after 360 ms

and identified as noise peaks can be taken into SNR calculation. An adjusted noise peak

threshold (ANPT) is thus calculated as a weighted average of all the noise peaks detected

after an R-wave peak. Unfortunately, this mechanism may not work for some ECG complex

with extremely long QT interval. Long QT interval syndrome is a rare heart condition that

may lead to sudden death. Detection of this type of QRS complex is out of the scope of

this work. The final SNR is calculated as the ratio between SPT and ANPT.

2.3.5 Sampling Rate Adjustment

Different sampling rates are switched based on the measured SNR and RR interval. Sam-

pling rates are controlled using the following lookup table.

Sampling Rate 40.8 Hz 64 Hz 128 Hz

SNR ≤ 5% ≤ 20% > 20%

20



If RR interval is less than 400 ms (corresponding to a heart rate of 150 bpm), the sam-

pling rate will be adjusted to 125 Hz to avoid missing detection because the QRS complex

becomes shorter than the usual fast heart rate.

2.4 Evaluation

The detection rate of our algorithm is evaluated using standard MIT-BIH arrhythmia database

[19]. The database contains over 100,000 QRS complex taken from 48 patients. However,

one problem is that our algorithm, like all other algorithms, cannot detect some abnormal

QRS complexes. Our application only supports the heart rate up to 180 bpm, which corre-

sponds to 330 ms RR interval. For example, in data tape 203, severe noise is observed in

the middle of the tape and hundreds of RR intervals go much shorter than 330 ms. Irreg-

ular QRS complex is also observed in tape 228 as some of R-wave peaks have far greater

amplitude than the others. This makes it difficult to find a proper threshold, and as a result,

several beats are missing. To avoid these problems, we carefully picked up a small chunk

of data that has 30 beats for each patient and evaluate our algorithm. This covers the variety

of QRS complexes while avoiding cases caused by irregular beats.

2.4.1 Sampling Rate Study and Peak Detection Test

As mentioned in the previous section, different sampling rates are evaluated. Table 2.1

shows the results of 128 Hz, 64 Hz, and 40.8 Hz detection rates. The analog filter effect is

simulated using the MATLAB digital filter. The original data is taken at 360 Hz sampling

rate but is down-sampled by 3, 6, and 9 times to simulate our 128 Hz, 64 Hz and 40.8 Hz

sampling rates, respectively. The detection result is compared with the database annotation

and false positive peaks and false negative peaks are counted to the overall false detection
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Table 2.1: Detection rate at 128 Hz sampling rate

Rec. QRS Avg Avg 120 Hz 60 Hz 40 Hz Adapt.
# cpx HR SNR% FP/FN FP/FN FP/FN FP/FN

100 35 73 1.54 0 0 0 0 0 0 0 0
101 35 59 3.84 0 0 0 0 0 0 0 0
112 35 73 8.18 0 0 0 0 0 0 0 0
103 35 67 5.55 0 0 0 0 0 0 0 0
104 35 74 13.11 0 0 0 0 0 0 0 0
105 35 95 18.90 0 0 0 0 0 0 0 0
106 35 60 15.03 0 0 0 0 0 0 0 0
107 35 70 10.40 0 0 0 0 0 0 0 0
118 35 55 2.74 0 0 0 0 0 0 0 0
109 35 85 3.85 0 0 0 0 0 0 0 0
111 35 69 13.49 0 0 0 0 0 0 0 0
112 35 86 3.81 0 0 0 0 0 0 0 0
113 35 62 2.89 0 0 0 0 0 0 0 0
114 35 60 8.76 0 0 0 0 0 0 0 0
115 35 63 2.66 0 0 0 0 0 0 0 0
116 35 82 1.79 0 0 0 0 0 0 0 0
117 35 51 15.51 0 0 0 0 0 0 0 0
118 35 72 2.08 0 0 0 0 1 0 0 0
119 35 70 2.31 0 0 0 0 0 6 0 0
121 35 58 6.25 0 0 0 0 1 0 0 0
122 35 79 0.37 0 0 0 0 0 6 0 0
123 35 50 5.77 0 0 0 0 0 0 0 0
124 35 53 1.05 0 0 0 0 0 0 0 0
200 35 101 0.26 0 0 0 0 0 0 0 0
201 35 54 0.56 0 0 0 0 0 4 0 0
202 35 54 5.11 0 0 0 0 0 2 0 0
203 35 100 18.49 0 0 0 6 0 10 0 0
205 35 89 1.28 0 0 0 0 0 0 0 0
207 35 61 5.49 0 0 0 0 0 0 0 0
208 35 107 6.69 0 0 0 1 0 7 0 0
209 35 111 11.12 0 0 0 0 0 0 0 0
210 35 91 10.92 0 0 0 0 0 0 0 0
212 35 91 7.68 0 0 0 0 0 0 0 0
213 35 106 8.72 0 0 0 0 0 0 0 0
214 35 74 1.00 0 0 0 0 0 0 0 0
215 35 111 11.72 0 0 0 0 0 0 0 0
217 35 71 0.71 0 0 0 0 0 0 0 0
219 35 79 12.55 0 0 0 0 0 0 0 0
220 35 64 4.40 0 0 0 0 0 0 0 0
221 35 84 12.26 0 0 0 0 0 0 0 0
222 35 72 3.12 0 0 0 0 0 0 0 0
223 35 82 2.02 0 0 0 0 0 0 0 0
228 35 64 8.85 0 0 0 0 0 0 0 0
230 35 74 3.62 0 0 0 0 0 0 0 0
231 35 63 13.10 0 0 0 0 0 0 0 0
232 35 58 4.84 0 0 0 0 0 0 0 0
233 35 101 23.51 0 0 0 0 0 0 0 0
234 35 90 0.09 0 0 0 0 0 0 0 0
Total False Detection 0 0 0 7 1 39 0 0
False Detection Rate 0% 0.42% 2.38% 0.00%

22



Figure 2.4: Prototype Test Environment

rate. This is a similar test approach in [20].

The trend is quite obvious that a high SNR does not necessarily leads to false detection

but increases the false detection in 40.8 Hz sampling rate as shown in tape 203 and tape

105. The proposed algorithm sets the SNR for 40.8 Hz to be under 2% to decrease the

misdetection rate. Even at 40.8 Hz sampling rate, our algorithm can still detect around 98%

of the QRS complex. This is good enough for our application since we are not pursuing the

absolute detection rate required by medical grade device.

2.4.2 Real Prototype Test

A prototype is implemented using MSP430 MCU. The accuracy of the prototype is tested

using the heart rate simulation device CARDIOSIM I as shown in Fig. 2.4, which has

five levels of heart rate ranging from 30-120 bpm. Our WHRM prototype tested with an

iPhone4S and a Samsung Glaxy 3. In both cases, it can read all the levels accurately and is

able to pickup the heart rate within a maximum of 3 seconds.
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2.5 Discussion

In this section, we show that a noise adaptive algorithm for heart rate detection can help

to greatly reduce the power consumption while maintaining the accuracy. We also present

a WHRM prototype that implements this core algorithm. Both our simulation and system

test shows that the WHRM meets the expectation and can effectively reduce the power con-

sumption. The power reduction may seem small in numbers. This is because the baseline

power consumption is large. However, our algorithm can be used in other devices that also

require periodic peak detection.

The heart rate detection algorithm utilizes adaptive sampling to reduce the sampling rate. It

is tempting to further cut down the sampling rate by precisely locating the signal segments

of interest. However, this will inevitably introduce extra complexity into the system, thus

narrowing down the error margin. This leads us to consider the more advanced compressing

sensing algorithm utilizing random sampling. We will introduce it in Chapter 3.

Our design experience show that power optimization for medical sensing systems is a com-

plex process that involves both component selection and digital signal processing. It is

difficult to achieve significant energy reduction by isolated techniques.
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Chapter 3

Background and Related Work

This section reviews the background and the related work on three technologies: muscle

tension sensing, hand-gesture recognition and compressing sensing in physiological signal

processing. We briefly discuss the limitations of the related work and how our proposed

system may overcome them. Each related work only focuses on one aspect of the medical

sensing. A contribution of this work is a fully integrated heterogeneous system, which has

not been published in the literature to the best knowledge of the author.

3.1 Muscle Tension Sensing Technology

This section reviews two technologies of muscle tension: surface Electromyography (sEMG)

and optical muscle tension sensing. The state-of-the-art in muscle tension sensing uses

sEMG sensors. We first give an overview of sEMG and analyze its drawbacks. In compar-

ison, we also introduce optical MTS as a promising replacement of sEMG.
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3.1.1 Surface EMG

EMG measures the action potential generated by the contraction of muscle fiber, while

sEMG replaces the needle-type electrodes with the non-invasive surface type, which is

more comfortable to wear. sEMG is commonly used in medical sensing field for its high

sensitivity. A typical sEMG system is shown in Fig. 5.1.

One significant drawback of sEMG is the power consumption. The state-of-the-art sEMG

uses a precision instrumentation amplifier (in-amp) [21]. The in-amp is a special type of

differential amplifier that adopts an input buffer to ease the impedance matching with the

preceding stage. In-amps with low noise, low offset, and low drift are classified as precision

in-amps. Commercially available precision in-amps consume milliwatts of power as shown

in Table 5.1.

Another drawback is the bulkiness of the system due to the use of electrodes. Many applica-

tions require a minimum of three electrodes, two of which on the target muscle to measure

the differential signal and a third ground electrode serving as the reference point for the

precision in-amp. This ground electrode should be put on a bony or non-muscular part of

the body as far as possible from the target muscle in order to generate a stable reference.

Electrodes are big in size. Commercial electrodes are usually over 20 mm in diameter.

A third drawback is that an extra step of skin preparation is needed to get good signal

quality. The purpose of skin preparation is to add moisture between the skin surface and

the electrode to increase the input impedance of the in-amp. The general procedure includes

cleaning and rubbing the skin, hair removal, and applying conductive gel for better contact.

In fact, pre-gelled electrodes are the most often used in sEMG [22], but the gel can cause

skin reaction and drying over time, making it less suitable for long-time monitoring.
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3.1.2 Optical Sensor

The optical sensor requires no skin preparation and can be comfortably worn as long as it is

put close enough to the skin surface. It utilizes an LED to emit light into human tissues and

one or multiple PDs to measure the transmittance or reflectance of the light. The optical

sensor has been widely used in pulse oximetry to obtain photoplethysmogram (PPG) [23].

Many health-critical physiological indices can be extracted from PPG, such as heart rate,

blood oxygen concentration (SpO2), respiration rate, and more. An optical probe can be

potentially made in tiny size using a miniaturized LED-PD combo chip [24].

Using optical sensors to monitor muscle activity is a relatively new research area. It is

shown in [25] that optical sensors can differentiate between isometric and isotonic contrac-

tion and in work [26, 27], and similar optical sensors are used to monitor the upper limb

movement for controlling prosthetic limbs. In all these works, the optical signal is only

used for on-off control. Power consumption and power saving techniques have not been

addressed.

Traditionally, active optical devices are considered high power consumption because of the

LED. Pulse oximeters usually consumes 55-120 mW, most of which is by the LED [9].

To reduce power for long-term monitoring, some researchers resort to compressive sensing

to decrease the sampling rate [28, 29]. Compressive sensing, however, is not suitable for

this purpose, because it usually requires a powerful back-end computing unit to perform

signal reconstruction [30] and the system often suffers from the subsequent delay. In this

work, we design a low-power standalone system with real-time performance. We show that

by careful selection and control of the sensor, the power consumption can be optimized

without complicated high-level techniques.
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3.2 Hand Gesture Recognition System

Most wearable HGRs to date perform inertial sensing (i.e., acceleration and rotation) as the

primary modality for acquiring gesture data. Among them single ACC-based hand gesture

recognition has been well studied. One advantage of ACC is its availability on many off-

the-shelf portable devices. Examples include TI Chronos Watch [31], Nintendo Wii remote

controller, and virtually all smartphones. A digital ACC consumes less than 1 mW in active

mode. Acceleration data can be easily processed locally or transferred through the wireless

interface.

On the software side, simple filters such as low-pass filter (LPF) or median filter [32] are

usually used to smooth the signal before using either feature-based or template-based de-

tection algorithms to detect a gesture. Feature-based methods use machine-learning tech-

niques such as Hidden Markov Model (HMM) or Support Vector Machine (SVM) [33] to

classify the signal according to the extracted features. High accuracy is reported [34] but

a large training set is required to ensure high detection rate. In template recognition, a

widely used technique is dynamic time warping (DTW). It can get started with only one

template for each gesture [35]. The signal is usually divided into fixed-length segments,

and dynamic programming is used to find the best matching subsequence with the preset

templates. The complexity of DTW is O(pST ) with S being the segment size, T the tem-

plate size, and p the number of preset templates. It can be easily implemented on a mobile

platform such as a smartphone and many modern MCUs.

To overcome the limitations of single ACC-based systems’ inability to detect wrist move-

ments, multiple previous works suggest to couple sEMG with ACC. In [36, 37], HMM,

K-means clustering, and decision fusion are used to fuse the multi-channel sEMG signal

with ACC. A set of more than 18 gestures can be detected with a detection rate of over

90%. However, as mentioned in Section 3.1, a multi-channel sEMG can be uncomfortable
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to wear. The closest one to our system is [38], which uses a single-channel sEMG with

three electrodes 30 mm in diameter. The muscle contraction signal from sEMG is used

as on-off control and only five gestures can be detected. It is made wearable with a much

smaller size than the other two but still an order of magnitude larger than our proposed

system and cannot solve the electrode problem. Therefore, ACC-sEMG-based systems are

only suitable for a controlled environment.

New sensing technologies, especially low-power wearable sensors, provide potential solu-

tions to this problem. Optical sensor-based MTS is very promising in replacing sEMG in

this application due its size and wearing comfort. Our study also shows that much detail

on the muscle movement are provided even in a single-channel MTS. We will show how to

utilize the MTS signal in HGR in Chapter 4.

3.3 Compressive Sensing in Physiological Signal Process-

ing

This section gives a brief of review of compressive sensing. Compressive sensing natu-

rally combines sampling and compression in one step saving both the front-end power and

transmission bandwidth. We start with the basic theory followed by an introduction to the

existing CS applications in physiological signal processing.

3.3.1 Basic Theory

A discrete time-frequency signal of N samples can be represented as

T = D−1(N)X
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where T is the time-domain samples, X is the Discrete Cosine Transform (DCT) coefficient

and D−1(N) is the inverse DCT matrix. A randomly sampled signal with s samples can be

represented as

PT = PD−1(N)X

The matrix P, shown as follows, takes the s random rows out of T .

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 1 0 . . .

0 . . . 0 1 0 . . .

. . . . . .

. . . 0 1 0 . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
Let b = PT and Φ = PD−1(N). Then

b = ΦX

where b is the time-domain observation, and X is the frequency-domain signal that we want

to recover from b. To differentiate, we call P the time-domain selection matrix and Φ the

sampling matrix. Φ consists of k random rows from the inverse DCT matrix D−1(N).

When k� N, this linear system is underdetermined, i.e., having infinite solutions. How-

ever, if we know X is sparse, then we can search for the most sparse solution out of all the

possible combinations of coefficients. The classic CS theory states that an exact reconstruc-

tion for a sparse signal is possible from partial knowledge of its Fourier coefficients [30].

An k-sparse discrete signal can be reconstructed from O(k · logN) random samples in time

domain with probability over 1−O(N−C), where C is a given accuracy parameter and N

the size of DFT basis. The actually sparse reconstruction can be solved by basis pursuit

(BP) [30] (l1-norm) minimization or matching pursuit (MP) [39]. In practice, this idea
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can be extended to different transform bases such as wavelet by selecting a set of random

support from the transform matrix.

It is worth noting that there are also other forms of sampling matrices such as Gaussian

random matrix, random Bernoulli matrix [40], etc. The random sampling matrix has to

obey the restrict isometry property (RIP) [41] defined in Definition 1.

Definition 1 A matrix A satisfies the RIP of order k if there exists δk ∈ (0,1) such that for

every k-sparse vector y,

(1−δk)‖y‖2
l2 ≤ ‖Ay‖2

l2 ≤ (1+δk)‖y‖2
l2 (3.1)

where δk is called the isometry constant.

The RIP condition measures the Euclidean length of k-sparse signals. The random DCT

matrix and random Gaussian matrix are used in this work. It is shown in [42] that both

of them satisfy the RIP condition of order 2k, which ensures the universal recovery of a

k-sparse signal [41].

It is generally believed that BP-based algorithms yield higher accuracy if the signal is

sufficiently sparse [43], while MP-based greedy algorithms only guarantee to recover an k-

sparse signal when the number of measurements is proportion to k [39]. On the other hand,

the complexity of MP-based algorithms can be only O(sN k) while that of BP is generally

much higher [39]. For our PPG application, we choose MP, because we are targeting low-

power embedded platforms that usually do not possess the resource to perform convex

optimization. While for the ECG compression algorithm running on the back-end server,

we use BP to take the advantage of its higher accuracy.
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Figure 3.1: Compressive Sensing System Structure

3.3.2 Compressive Sensing Applications

Many CS applications have been developed over the past decade [9,28,44,45]. The typical

diagram of a CS-based sensing system is shown in Fig. 3.1. The transmission link can be

either wired or wireless. Both the coding unit and decoding unit are optional. The economy

of CS is acquired either from transmission link or the sensing unit. For transmission link,

CS is used more as a compression than sampling method. A real-time ECG monitor based

on CS [45] does uniform sampling but uses a sensing matrix during compression to reduce

the bandwidth requirement. ECG sampling may consume only several hundred miliwatts

by low-power ADC [13]. This is negligible even to the power consumption of a Bluetooth

Low Energy SoC [46], which usually consumes more then tens of mW. Compared with

ECG, the sampling process of PPG signal is more expensive due to LED usage. Besides

PPG, magnetic resonance imaging (MRI) [44] also belongs to this category since CS could

reduce the radiation exposure for patients. As opposed to the transmission link case, CS

serves as a sampling paradigm to reduce the sampling power.

Several previous works attempted to recover PPG signal from compressed samples. The

Gradient Projection based Sparse Reconstruction (GPSR) [47] is used in [28, 48]. GPSR

is based on convex optimization, which is generally of higher complexity than MP-based

greedy algorithms. OMP is used in [29]. A significant drawback of OMP is that it picks

only one coefficient every iteration. This inevitably increases the number of iterations and
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requires a higher order of computational resources. It is estimated that OMP would take

tens to even hundreds of iterations for PPG reconstruction [29].

We believe in thoroughly exploring the properties of the source signal before applying the

algorithm. Any reconstruction method within the CS framework should not be used as a

black box. In our PPG application, the reconstruction is based on CoSaMP [11]. Different

from OMP, CoSaMP can rapidly reconstruct the signal by adding multiple coefficients into

the support. We customize several parameters based on the characteristics of PPG signals

to further reduce the number of iterations.
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Chapter 4

Technical Approach

In this chapter, we describe the proposed platform and show how to effectively manage

the system power. The system is divided into ECG, PPG, MTS and HGR sub-systems.

We first explain the hardware structure of each sub-system. We focus on the working

mechanism of each medical sensor with the peripheral control circuit. Next, we present

the featured power-saving algorithms and techniques for each subsystem. Each sub-system

has different requirements of several factors that affect the overall power consumption,

such as sampling rate, filter characteristic, etc. We explain in detail how these factors are

determined to optimize the power consumption.

4.1 Hardware System

4.1.1 Optical Muscle Tension Sensing Subsystem

Fig. 4.1 shows the block diagram of the proposed low-power reflective optical muscle ten-

sion sensing subsystem. It consists of a light emitter with a current source, a PD with an
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Figure 4.1: Optical Muscle Tension Sensing System

OpAMP, a comparator, a DSP, and a Bluetooth transceiver. The system can also be used in

the hand gesture recognition (HGR) subsystem.

To explain how the muscle tension sensing works we give the example of using this system

to monitor the sternocleidomastoid (SCM) muscle contraction. SCM is a paired muscle that

stretches along both sides of the neck area. When acting alone, it is in charge of head tilting

and rotation. It is also involved in various neck movements and aids in forced inhalation

when acting together with other muscles. Monitoring SCM muscle contraction is of great

significance to asthma assessment and control. Abnormal SCM contraction during asthma

is usually a sign of further respiratory impairment. SCM retraction happens in 40% of

the asthma episodes [55], and SCM contraction associated with asthma usually indicates a

more severe disease in children [56].

Light Emitter The light emitter subsystem consists of a pulse width modulation (PWM)-

controlled LED (AM2520ZGC09) driven by a current source (LT3092) [49]. We choose

the green LED with the peak wavelength of 515 nm, which has been shown to be more
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robust to motion artifact than red or blue in the applications of heart rate and pulse volume

detection [50]. The current from the LED is sinked into the PWM controller for brightness

control.

Photo Detector and OpAMP The PD (APDS-9008) is chosen based on its peak response

wavelength matching the LED wavelength. This will achieve the highest efficiency. The PD

outputs a current signal that flows through the load resistor to generate the voltage signal. A

low pass filter (LPF) further filtered the voltage signal to remove noise and motion artifact

and the OpAMP (MCP6001) amplifies it for sampling by the DSP on-chip ADC.

Voltage Comparator The external comparator LTC1440 [51] is added to the system. The

voltage comparator enables the DSP to sleep without sampling the signal and wakes it up

by interrupt upon detecting muscle contraction As shown in Fig. 4.2a, when the amplified

PD signal exceeds the reference voltage, the comparator wakes up the DSP. Two interrupt

service routines (ISR) are set on the falling and rising edges of PWM to measure the timing

of the on-time of DSP. The on-time is very short, and the timing of these routines are shown

by a test pin in the same figure. The reference voltage of LTC1440 is fixed to 1
2Vcc by a

voltage divider. This voltage is set higher than the highest respiration peak in order to

prevent false triggering. By adding this comparator, the DSP can remain in sleep mode

most of time, including walking, sitting, and sleeping. LTC1440 consumes only under

4 µA in active mode.

Digital Signal Processor The DSP will wake up periodically to set the PWM signal

using timer interrupt. Once triggered by the comparator, the DSP will enter continuous-

sampling mode by setting a timer interrupt to the falling edge (i.e. LED-on edge) of the

PWM signal. The amplified PD signal is sampled by a 10-bit ADC every 16 ms, and the

samples are further processed to detect SCM contraction as discussed in Section 4.2.1.2.

36



Comparator
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Figure 4.2: Optical Sensor with comparator control. Yellow, PWM LED control, blue:
comparator trigger, pink: comparator on and off ISRs, green: amplified PD output

Once the SCM contraction is no longer detected, the DSP will go back to standby mode

and keep generating the PWM.

Fast switching of the optical sensor is made easier with the DSP timer. The LED on-time

can be easily set and changed by setting the duty. The clock of PWM is sourced to its low-

speed clock, which is still functioning in standby mode. Delay effect of the LPF can be

seen on Fig. 4.2b. To overcome this delay, the signal is sampled 3 times in around 100 µs

interval, and only the maximum value is taken. We also explored the option to switch off

OpAMP periodically, but the system suffers from the severe delay caused by the LPF and

OpAMP during fast switching. We ended up leaving the OpAMP on all the time instead of

duty cycling it.

4.1.2 Hand Gesture Recognition Subsystem

Fig. 4.3 shows the block diagram of the proposed HGR system. It consists of an optical

MTS with an OpAMP, an inertial sensor, a DSP and a Bluetooth transceiver.

The HGR subsystem uses both the MTS sensor and the accerlerometer. The MTS part is
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similar to the subsystem describe in Section 4.1.1. We also use MPU-9250 [52] as the

ACC controlled by the SPI interface of the DSP. The comparator is not need since user-

programmable threshold can be set in MPU-9250 for motion detection.

MPU-9250 is actually a 9 degree-of-freedom (9-DoF) inertial sensor consisting of a triaxial

ACC, gyroscope, and compass. We use only the ACC for this test while the gyro and

compass are reserved for future use. The typical operating current of the gyroscope is

3.2 mA and only around 450 µA for the ACC. The compass takes around 280 µA and can

be helpful to gesture recognition but it is susceptible to the disturbance of other magnetic

materials in the vicinity [53]. We end up turning off the gyroscope and magnetometer to

save power.

The DSP performs MTS sampling, ACC reading, and data transmission over Bluetooth. It

remains in low-power mode normally. On each timer rollover, the DSP wakes up, reads its

ADC for the MTS signal, and reads the ACC data from SPI. After all the data is acquired

and stored into a local buffer, the DSP queues a sending event in the scheduler and go to

standby mode again, from which the DSP can be waken by interrupts only. This process

repeats at a rate of 62.5 Hz. The sending event will cause the queued data to be sent the

mobile client through the transceiver.

4.1.3 Photoplethysmogram Monitoring Subsystem

Fig. 4.4 shows the structure of the PPG monitoring system. The system is of a typical

transmittance-type pulse oximeter. The DSP is the central computing and control unit.

More information on the hardware can be find in the reference design [54].

The system calculates the SpO2 and heart rate in real-time. A timer interrupt routine is

set to wake up the DSP from the low-power mode. Upon awakening, the DSP will sample
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Figure 4.3: Hand Gesture Recognition System
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Figure 4.4: PPG System Block Diagram
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the PD output. The DSP finds the best signal to noise ratio (SNR) by controlling the LED

driver and both amplifiers based on the voltage level of both amplified and raw inputs from

the photodetector. The LED brightness and the 2nd amplifier bias voltage are constantly

updated and stored. Heart rate and SpO2 are extracted from infrared (IR) and red (R) signal

by a threshold-based algorithm runs sample by sample. More detail of SpO2 calculation

can be found in Appendix Section B.

4.1.4 ECG Monitoring Subsystem

The ECG monitoring system is quite simple. It utilizes a highly integrated front-end chip,

ADS1298 to simplify the system design and reduce the hardware size. Many parameters

can be adjusted in ADS1298, such as sampling rate, amplifier gain, filter characteristics,

lead-off detection, etc.

4.2 Power Optimization

In this section, we present the power optimization algorithms. The system implements four

algorithms in different subsystems. The first is low-power control of the optical sensor,

which can be used in both MTS and hand gesture recognition system. The second is a

Dynamic Time Warping (DTW) based hand gesture recognition algorithm. The third is

a fast compressive sensing method based on dominant frequency extraction used in PPG

sub-system. Currently this algorithm can only be used to rapidly extract the heart rate

from the PPG samples without reconstructing the signal. But it shows great promise in fast

SpO2 level calculation as well. Finally, in the ECG sub-system we introduce a compressive

sensing based ECG compression algorithm. It is used on the back-end server side to save

the storage and bandwidth.
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4.2.1 Optical Muscle Tension Sensor Control

The MTS system developed in this work can be used in a long-term wearable monitoring

device to detect and record SCM contraction events during an asthma attack. The recorded

data will be later assessed by physicians to make a treatment plan. Low power consumption

is essential for battery life and therefore longer monitoring time, as well as wearing comfort

due to the size and weight of the battery. However, the SCM contraction is sporadic and

fast. The duration of the contraction can be as short as 24 ms [57]. The traditional uniform

sampling scheme cannot solve this problem since it takes full power for the DSP to sample

and process the signal at such a high rate.

As mentioned in the previous section, the optical system consists of an LED and a PD, and

a voltage comparator that enables the DSP to stay in low-power mode and wakes it up when

contraction signal detected. The brightness of the LED can be controlled by DSP’s pulse

width modulator (PWM). A two-phase algorithm, learning and detecting, is also designed

to detect the muscle contraction. In the learning phase, the LED brightness level is swept

to determine the best PWM duty that controls the input signal under the desired threshold.

In the detecting phase, the processed signal from the PD is compared with the comparator

reference. Only when it exceeds the reference will the DSP be awakened from low-power

mode to detect the signal peak and count the times of the contraction using a threshold-

based algorithm. The contribution of this work lies in the novelty of the system design and

the lower-power control of the optical sensor.

Because SCM is in the superficial layer of the neck, options capable of detecting muscle

movements inlcude sEMG, the accelerometer and the optical sensor. Among them, sEMG

is most mature technology for this purpose and can capture high quality signal [58], but

its drawbacks include bulkiness, discomfort and power consumption. Commercial sEMG

amplifiers consume miliwatts of power. The surface electrode is usually over 20 mm in
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diameter. To measure the differential signal generated by muscle movement, and many

applications require three electrode: one on the center target muscle, one on the end, and

the third on bony or non-muscular part of the body as a reference. Skin preparation is also

inevitable to increase the electrode-skin contact impedance to acquire a better signal. In

contrast, the optical sensor and the accelerometer are small enough and can be easily inte-

grated into a more comfortable system than sEMG. No special skin preparation is needed

as long as they are placed close enough to the skin surface.

To select the most suitable sensor, we also conducted a comparative study among all three

types of sensors. This study shows the optical sensor to be the best among the three for

low-power monitoring of muscle activities. With proper control of the LED brightness,

the optical sensor can consume much less power than sEMG, while the hardware design is

more compact and more comfortable to wear. Even though the signal-to-noise ratio (SNR)

of the optical signal is lower than that of sEMG, the optical signal is more stable with little

baseline wandering. This feature simplifies the system structure and facilitates the use of a

comparator, which further reduces the power consumption.

This section first provides the usage requirements, followed by a description of the detec-

tion algorithm. The last part shows the comparative study of the sensor selection.

4.2.1.1 Usage Requirements

The optical sensor is placed on top of the sternal head of left SCM muscle inside the an-

terior cervical triangle [59], close to the clavicle as shown in Fig. 4.5a. On this location,

the greatest signal strength of voluntary contraction can be sensed while the respiratory

signal noise is suppressed at a tolerable level. If the sensor is moved more to the left side,

the contraction signal becomes weaker. If moved to the right side, the respiratory noise

increases.
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(a) Optical sensor

(b) Accelerometer (c) sEMG: neck electrodes (d) sEMG: leg electrode

Figure 4.5: Placement of sensors for testing muscle contraction.

4.2.1.2 Detection Algorithm

The detection algorithm can be summarized as a two-phase learning one that adapts the

LED brightness based on the signal peak. The main reason for learning is that the peak level

of SCM contraction varies among people. For example, adults are supposed to generate

stronger contraction than youngsters. Neck or head movement can also trigger the interrupt

as shown in Fig. 5.6 and Fig. 5.7 Such repetitive movements can be falsely detected as the

SCM contraction. This is still tolerable since the recorded signal is supposed to be analyzed

in parallel with other data such as stethoscope recordings [60] by physicians.

The designed algorithm, as shown in Algorithm 1, increases the coverage of our system.

In the learning stage, the patient is asked to breathe normally. The device will scan the

LED brightness by setting the PWM duty. In each duty level, the DSP simply detects the

maximum peak of the signal for 5 s. The duty with the signal peak closest to but below the

threshold is used in the next stage. A threshold-based algorithm is implemented to count
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the peaks. As shown in Section 5.1.1, the signal generated by the optical sensor is robust to

motion artifact and free from baseline wandering. This simple threshold based algorithm

works well enough to detect the contraction.

Input: current signal sample: current sample, sample data buffer: data buf ,
detecting mode: detect mode

Output: contraction flag: contrc flag
learning

while max sample < LO THD do
SAMPLE SIGNAL(data buf )
max sample← MAXIMUM(data buf )
SET PWM DUTY(++pwm duty); /* raise exception if out of the range and
redo learning */

end
SET PWM DUTY(−−pwm duty)
SET DEC MODE(DETECTING)

end
detecting

if current sample≥HI THD and first peak == FALSE then
first peak← TRUE; /* first peak can also be set in the comparator ISR */

else if current sample < HI THD and first peak == TRUE then
peak count++
first peak = FALSE

else if current sample≥ HI THD and first peak == TRUE then
if ++peak timer > PEAK LIMIT then

MODE RESET()
end

else if current sample < HI THD and first peak == FALSE then
if ++ valley timer > VALLEY LIMIT then

MODE RESET()
end

end
if peak count > 2 then

return TRUE

end
return FALSE

end
Algorithm 1: SCM Contraction Detection Algorithm
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Figure 4.6: Detection Algorithm

4.2.2 Hand Gesture Recognition

We propose a recognition algorithm based on DTW and decision fusion. The flowchart of

the algorithm is shown in Fig. 4.6.

4.2.2.1 Gesture Set

Fig. 4.7 shows the tested gestures. What distinguishes them from those that can be handled

by previous ACC-based systems [34, 35, 61] is their use of significant wrist movements,

such as hand up, clicking, and making a fist.

4.2.2.2 Preprocessing and Segmentation

In the preprocessing stage, a median filter is used for both MTS and ACC to remove the

high-frequency noise. A high-pass filter (HPF) is then used to remove the gravity factor

in all three axes of ACC. After the filtering, only the MTS signal is normalized to reduce

the influence of signal amplitude variation due to different speeds of performing the same

gesture. The raw and the filtered signals are shown in Fig. 4.8.

Segmentation is based solely on the amplitude of the MTS signal. A double-thresholding
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(a) Up and down (release)

(b) Left and right

(c) Clicking

(d) Rotation

(e) Fist and release (down)

Figure 4.7: Gestures set. (No distinction between the down gesture from the up position
and the release gesture from the fist position.)
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Figure 4.8: Filtered Signal

algorithm, as shown in Algorithm 2, runs point by point to divide the signal into segments.

Previous single ACC-based systems [34, 35] usually use a fixed-size sliding window with

overlap to segment the signal. The signal content within the window has to be checked con-

stantly to see if any valid gestures exist. Longer delay will be caused by the fixed window

size. By setting the starting point and ending point in the signal of interest, our MTS-based

segmentation improves the system response time while naturally rejecting some segments

based on their length. Any signal that is too short or too long will be automatically dis-

carded and will not go to the computationally complex dynamic programming.

The algorithm keeps counting the samples across or below the corresponding amplitude

threshold. Based on a series of counting conditions, the algorithm resets the counter or

outputs the starting and ending points of the given segment. Fig. 4.9 shows a segmented

MTS signal with its starting and ending points. This algorithm requires that the gestures be

done separately with enough resting interval. Otherwise, several segments may be counted
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Figure 4.9: Signal Segmentation

as one and may be discarded due to oversize.

4.2.2.3 Dynamic Time Warping Algorithm

As shown in Fig. 4.6, DTW is the core algorithm of detection. It is performed to both MTS

and ACC signals. After preprocessing and segmentation, MTS signal is first checked with

all stored templates using one-dimensional DTW. Only those templates with sufficiently

high scores can be sent to the next step. If the segmented signal does not match any pattern

over the threshold, then it will be discarded. We find this rejection step to be able to effec-

tively reduce the number of false-positive detections due to casual, unintended movement.

The basic DTW algorithm is shown in Algorithm 3.

DTW finds a match between two time sequences by dynamic programming. The idea is to

find the shortest path in the cost matrix as shown in Fig. 4.10, where each cell represents the

similarity score between the two corresponding subsequences. The distance between two
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Input: current signal sample: current sample, current sample position:
current position

Output: segment starting and ending points: idstart point, end point or NONE
if current sample < LO THD and start flag == FALSE then

if jump flag == TRUE then
start point← current position

else
reset cont← reset cont+1
if reset cont > RESET COUNT then

RESET()
end

end
else if current sample≥HI THD and start flag == FALSE then

reset cont← 0
jump flag← TRUE

signal cont← signal cont+1
if signal cont > SIGNAL COUNT then

start flag← TRUE

end
else if current sample < LO THD and start flag == TRUE then

if jump flag == TRUE then
end point← current position
jump flag← FALSE

end
ending cont← ending cont+1
if ending cont > ENDING COUNT then

return start point, end point
end

else if current sample≥HI THD and start flag == TRUE then
if jump flag == FALSE

then
ending cont← 0
end point← current position

end
end
return NONE

Algorithm 2: MTS segmentation algorithm
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Input: signal sequence A: seq a of length M, signal sequence B: seq b of length N
Output: similarity score: matching score
initialization

cost matrix cost matrix
slope matrices slope x and slope y

end
for i=2 to M+1 do

for j=2 to N+1 do
1 if ABS(i-j)≤WINDOW SIZE then

neighbors←

 cost matrix(i -1, j)
cost matrix(i, j -1)

cost matrix(i -1, j -1)


2 if slope x(i-1, j) == SLOPE THRESHOLD then

neighbors(1)← INF
end
if slope y(i, j-1) == SLOPE THRESHOLD then

neighbors(2)← INF

end
cost matrix(i, j)← MIN(neighbors)+DISTANCE(seq a(i-1),seq b(j-1)))

3 SLOPE UPDATE()
end

end
end
return cost matrix(M+1,N +1)

Algorithm 3: Dynamic Time Warping
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(a) Cost matrix and warping window constraint (b) Slope constraint

Figure 4.10: Dynamic Time Warping with Constraints

MTS samples is just the absolute value, while for 3D acceleration samples, the distance is

calculated based on Euclidean distance as in shown in Eq. (4.1). The matched signals in all

four dimensions are shown in Fig. 4.11.

√
(ACCX1−ACCX2)2 +(ACCY1−ACCY2)2 +(ACCZ1−ACCZ2)2 (4.1)

Two constraints are implemented here: warping window constraint and slope constraint

[62]. Warping window constraint (line 1) prevents one point from matching any point too

far away by setting global forbidden area, shown as the gray cells in Fig. 4.10, to eliminate

the path far off the diagonal. The local slope constraint (line 2) avoids the alignment paths

that are too steep or too shallow as shown in Fig. 4.10. The slope value along the optimal

path from the starting point to each cell is stored in separate slope matrices. When exceed-

ing the threshold, the path will be discarded along the way. The slope matrix is updated on

line 3. If the two sequences are too different from each other, then the template sequence

will be automatically rejected before DTW.
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Figure 4.11: Signal matched with Dynamic Time Warping

4.2.2.4 Decision Fusion

The final matching score of the segmented signal to each template is given by Formula

(4.2). It is a weighted average of both MTS and ACC scores with the weight γ = 0.66. The

template with the best score is selected as the output gesture.

score final = γ · score ACC+(1− γ) · score MTS (4.2)
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4.2.3 Dominant Frequency Extraction Based Fast PPG Compressive

Sensing

4.2.3.1 Motivation

Compressive sensing (CS) can directly reduce the sampling rate by random sampling.

Some CS systems can work even at a sub-Nyqvist rate. However, the potentially complex

reconstruction process can increase the system’s response time and power consumption by

more than can be saved in sampling. In this section, we explore the inherent signal charac-

teristic to address this problem. One of the most fruitful areas of CS is reconstruction with

known support, also called prior knowledge, which can generally reduce the complexity of

CS. In particular, many signals in the natural world possess strong periodic components.

In frequency domain, these periodicities appear as one or multiple large DCT coefficients.

We introduce a new frequency-dominant model to better represent these signals. On top of

this model, we show that dominant frequencies can be discovered using partially computed

DCT. We also propose a novel system structure with a prior estimation unit as shown in

Fig. 4.12. Comparing with the traditional CS structure shown in Fig. 3.1, this unit enables

signal reconstruction to be bypassed in some applications, thus increasing the system re-

sponsiveness and further reducing the power consumption. A background review for DCT

can be found in Appendix A.

4.2.3.2 Dominant Frequency Signal Model

To describe our algorithm, we first start with a formal definition of dominant frequency:

Definition 2 A frequency fk is dominant to frequency f
′
k with degree M > 0 if |ak| > |ak′ |

and |ak−ak′ |= M.
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Figure 4.12: Proposed Fast Compressive Sensing System Structure

In real situations, spectral leakage [63] happens due to the windowing effect of DCT. Spec-

tral leakage represents the energy from a non-integer frequency leaked into the adjacent

DCT bins. Spectral leakage reduces the dominance degree, as can be seen in Fig. B.1. To

overcome this influence, we introduce an extra factor of tolerance β into the definition of

a dominant frequency over a range. In practice, β can be set to the frequency range of 1-2

DCT bins based on tolerance.

Definition 3 Let fk ∈ { fn1 , fn2}, Γ = { fk−β , fk +β}. Let Γ|a| be the set of all absolute

values of DCT coefficients within Γ. We say fk is dominant in { fn1, fn2} with degree M > 0

if the following holds for all fk′ ∈ { fn1, fn2}−Γ.

|ak|= sup{Γ|a|}, |ak−ak′| ≥M (4.3)

As the above definition shows, a dominant component can be either plus or minus as long as

it stands up in the DCT spectral. The advantage of this model is that it very well quantifies

the dominance degree of a DCT component. It is also related to the sparse model. We can

loosely interpret a sparse signal under our defined model. It is easily shown that if a signal

is s-sparse in DCT domain, then it has s dominant frequencies with a certain degree. We can

approximate a signal with s dominant frequencies using the s-sparse model by discarding
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all the coefficients that are not dominant. In fact, it has been shown in [64] that a signal is

compressible if the sorted transform coefficients decay exponentially. This is equivalent to

exponentially decayed dominance degrees.

4.2.3.3 Dominant Frequency Estimator

We use partially computed DCT transform from random samples to estimate the dominant

frequencies defined in Eq. (4.4).

Cpartial = DPT b (4.4)

where D is the DCT matrix, P is the selection matrix, and b is the time-domain sample.

Letting Φ+ denote the pseudo-inverse of the sensing matrix Φ, Eq. (4.4) is equivalent to

Cpartial = Φ
+ b (4.5)

Fig. 4.13 shows the original DCT and the partially computed DCT with a different number

of samples. It is easy to see the high resemblance of the dominant frequencies. If one

frequency is dominant enough in the original DCT, it may be still dominant in the partially

computed DCT. This method is mentioned in different contexts from the previous works

[11, 65], but neither shows that it can be used to directly extract a significant parameter.

In this section, we analyze the correctness of this approach. Particularly, we show that it

will pick up the dominant frequency with high probability when the dominance degree M

is sufficiently large. We first present the following theorem and also provide a sketch of

the proof. We assume that the source {xn}0≤n≤N−1 is normalized to [−1,1]. We define the

following notations:
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Figure 4.13: Partially computed DCT using different number of random samples

X : ∑
N−1
i=0 ai xi

Y : ∑
N−1
i=0 bi xi

{xn}: the time-domain samples,

{an},{bn}: the two rows from the DCT ma-

trix, 0≤ n≤ N−1

{K1, . . . ,Kk}: a subset of size k randomly

taken from {0,1, . . . ,N − 1}

with k�N

XK: ∑
Kk
i=K1

aixi

YK: ∑
Kk
i=K1

bixi.

Theorem 1 If X−Y = M for some M > 0, then

Pr(XK > YK)≥
M2

N−K
N−1

2N−M2

K +M2
(4.6)

56



.

Proof We define random variable (r.v.) Z to take on {(an−bn)xn}n=0,1,...,N−1. We also use

the following notations.

Var[Z] =
σ2

Z
N

,

Z̄ =
N−1

∑
i=0

(ai−bi)xi,

ZK = XK−YK

Obviously, E[XK] =
K
N

X and E[YK] =
K
N

Y . From Chebyshev-Cantelli inequality [66]

we have:

Pr(XK−YK > 0) = Pr(XK−YK−
k
N

M >− k
N

M)

≥ 1− Var[XK−YK]

Var[XK−YK]+
k2

N2 M2

≥
k2M2

N2

Var[ZK]+
k2

N2 M2
(4.7)

We define another r.v. Z′ to take on {Zk}k=0,1,...,N−1. ZK is the sum of k samples

drawn out of N without replacement. We denote them as {Z′i}i=1,2,...,k. We have

Cov(Z′i ,Z
′
j)i 6= j =−

σ2
Z

N−1 . It follows that

Var[ZK] =Var
[
Z′1 + . . .+Z′k

]
(4.8)

= k2 N− k
N−1

σ2
Z

k
(4.9)
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We need to develop an upper bound for σ2
Z .

σ
2
Z =

N−1

∑
i=0

[(ai−bi)xi− Z̄]2

N

=
N−1

∑
i=0

[
(ai−bi)

2x2
i

N

]
−2Z̄

N−1

∑
i=0

[(ai−bi)xi]

N
+ Z̄2

=
N−1

∑
i=0

[(ai−bi)
2x2

i ]

N
−M2

N2

≤
N−1

∑
i=0

[(ai−bi)
2]

N
−M2

N2

≤ 2
N
−M2

N2 (4.10)

Here, we use the fact that xi ≤ 1 and Z̄ = M
N . Since DCT matrix is orthogonal,

∑
N−1
i=0 a2

i = ∑
N−1
i=0 b2

i = 1 and ∑
N−1
i=0 aibi = 0. Substituting σ2

Z into Eq. (4.9) and then

into Eq. (4.7), we have:

Pr(XK > YK)≥
k2M2

N2

k2 N−k
N−1

σ2
Z

k + k2M2

N2

(4.11)

≥ M2

N−k
N−1

2N−M2

k +M2
(4.12)

�

This problem is actually about two random variables that have a gap between their expec-

tations. We want to find the relationship between them in terms of the gap. The theorem

implies that we can extract the dominant frequencies with the maximum of partial DCT co-

efficients as XK = ∑
Kk
i=K1

aixi. xK1, . . . ,xKk is our time domain observation and aK1, . . . ,aKk is

the corresponding partial row in DCT matrix. In the example of PPG signal, we use 1024-

point DCT and continuously monitored the PPG signal in MIMIC database [19]. When the

heart rate is stable, the dominance degree M is over 9. The probability of success is 93.5%

for 256 random samples and 85.8% for 128 random samples using Eq. (4.12) .

58



32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
90

92

94

96

98

100

Su
cc

es
s 

R
at

e 
(%

)

Number of Samples

Figure 4.14: Success rate of the frequency estimator

This is just a loose bound derived from all the samples at the maximum value in Eq. (4.10).

It is hard to put a tight bound without knowing the distribution of the source signal. How-

ever, if we can assume that Ex[{xn}n=0,1,...,N−1] is around 0, then we can approximate

∑
N−1
i=0 [(ai−bi)

2x2
i ]/N with (∑N−1

i=0 [x2
i ]/N)(∑N−1

i=0 [(ai−bi)
2]/N). According to Popoviciu’s

inequality [66] on variances, this would be less than 1/N. That would give us 96.7%

for 256 random samples and 92.6% for 128 samples. The real situation should be much

higher. Fig. 4.14 shows the success rate of 10,000 tests using a 1024-point segment with

a dominance degree of 9.8 from patient No. 55 in MIMIC database. The success rate is

overwhelmingly high when the number of samples is over 96.

In reality, however, M is unknown. We will next develop an estimator for M and its con-

fidence interval as defined in [66]. Given {Z′i}i=1,2,...,k and ZK = XK −YK = M′, we now

consider how closely we can estimate M. It is proved in [66] that we can estimate M using

the expectation and variance of Z′ for the signal that has a normal distribution.

Pr

(
Z̄′− M

N

S/
√

k
≤ zα/2

)
= 1−α (4.13)
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Here we use the notation

Z̄′ =
∑

k
i=1 Z′i
k

=
M′

k

S =

√√√√ k

∑
i=1

(Z′i− Z̄′)2

k

zα/2 can be derived from the normal distribution N(0,1). For example, z.025 = 1.96 and

z.050 = 1.645. This can usually be done by a lookup table. Even if the original signal is not

normal, (Z̄′−M/N)/(S/
√

k) has an approximate N(0,1) when sample size k ≥ 50 [66].

Fig. 4.15 clearly shows this distribution, which is created from 100,000 tests using the data

of patient No. 55.

In practice, we can fix α and lower bound of M as ML. We also put a threshold on M′ to

decide whether M is large enough. The following has to be satisfied for M ≥ML.

M′ ≥ ML k
N

+
zα/2Sk
√

k
(4.14)
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Figure 4.16: Effect on the variance correction

For example, if we want ML = 5 with 90% of confidence then we would need M′ > 1.0226

with S = 0.0213 for the data shown in Fig. B.1.

4.2.3.4 The Role of Randomness

It is obvious that if all the time-domain samples are zeros or close to zero, then the algo-

rithm will fail, since the samples do not provide enough information to extract the dominant

frequency or to reconstruct the signal. The randomness actually ensures that this happens

with a very small probability. The variance term in Eq. (4.14) also adds a correction factor

to reduce the chance of false detection. Fig. 4.16 shows this effect from the data of 1000

partial DCTs from random samples. Before the variance correction, a large percentage of

the computed dominance degree is beyond the expected line. After the variance correction,

the threshold is raised to prevent wrong detection.
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4.2.3.5 DCT Basis

The performance of sparse reconstruction relies heavily on the transform basis for two

reasons. One is that the basis directly decides the sparsity of the signal. The other is that

complex computation can sometimes be optimized on certain bases. In this work, we use

DCT basis. In previous works [28, 48], however, wavelet basis is used to represent PPG

signals. We favor DCT for PPG compressive sensing for the following reasons.

1. DCT coefficients can be computed fast from FFT [67]. FFT algorithm runs in O(N lgN)

time. Many DSPs are equipped with hardware butterfly units [68] to accelerate FFT. A

great advantage over wavelet is that only a linear processing step is needed to compute

DCT from FFT.

2. The PPG signal in DCT domain is sparse when only few dominant frequencies exist as

shown in Fig. B.1. Our study also shows that most PPG signals can be represented using

around 60 coefficients in the case of 1024-point DCT.

3. The DCT coefficients can be used directly to compute heart rate and SpO2 level. Thus,

no extra time-domain processing is required. In previous works [28, 29, 48], the heart

rate and SpO2 are detected by the extra beat-by-beat analysis after the reconstruction,

therefore consuming extra power.

4.2.3.6 Heart Rate Estimation Algorithm

Our heart-rate detection algorithm has two parts: prior estimation and sparse reconstruc-

tion. We want to find the greatest peak in the cardiac frequency range of 0.5–2.5 Hz and

the dominance degree of the peak frequency. If it is larger than the threshold, then we are

confident that it is the heart rate. If not, we need to reconstruct the original signal for further

signal processing. The sparse reconstruction will be discussed in the next section.
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A partial DCT transform actually performs dot products of size k for N times. Instead of

doing this to the whole DCT basis DN×N , we can pick up the rows in the range {R: 0.5 Hz

≤ f ≤ 2.5 Hz} and store it locally. The algorithm is shown in Algorithm 4. We assume

that Max(C) operation finds the maximum absolute value in set C and outputs a 2-tuple

(cmax, fmax) for the DCT coefficient and the corresponding frequency. We use the same

notation for error β and Γ as in the Section 4.2.3.2. An acceptable error range for heart rate

is usually ±1 beat per minute (bpm), β = 1/60 Hz.

Input: selection matrix P, time domain sample Y , partial DCT matrix D′, confidence
interval α , error β

Output: heart rate Hbpm beats per minute over the sampling period of N
begin

Cpartial ← D′Y ; /* partial DCT */
(cmax, fmax)←Max(Cpartial);
Γ = [ fmax−β , fmax +β ];
for ( f ,c f ) in {R−Γ} do

M′← |cmax− c f |;
T HL← Mk

N +
zα/2Sk√

k
; /* Eq. (4.14) */

if M′ < T HL then
CoSaMP();
Peak Detection();
return;

end
end
Hbpm← 60× fmax;
return;

end
Algorithm 4: Heart Rate Detection Algorithm

The actual range of the PPG signal is usually determined by the range of ADC. There is no

need for normalization but to adjust the threshold of the dominance level. The running time

of the prior estimation part is dominated by variance calculation in Eq. (4.14), which takes

O(k · cR) time with cR being the size of R. Since cR,k� N, it can be easily implemented

on a mobile device or a low-power DSP [68].
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4.2.3.7 Sparse Reconstruction

Heart rate variation or significant noise will result in an insufficient dominance degree. The

original needs to be reconstructed in order to perform a beat-by-beat analysis. Our intention

is not to develop a universal algorithm but one that works effectively for this special type

of signal.

We use CoSaMP for signal reconstruction. The standard CoSaMP algorithm is shown as

follows. Maxn(S) finds the best n support from set S. ΦT denotes the matrix restricted to

the columns in set T .

Input: sampling matrix Φ, time domain sample y, sparsity level s, stopping criteria P
Output: s-sparse representation vector x
begin

x0← 0; /* xi is the ith approximation */
e← y; /* current error */
i← 1; /* iteration count */
while P not true do

C←Φ+y; /* formula (4.5) */
Ω←Max2s(C);
T ←Ω∪ xi−1;
bT ←Φ

+
T y; /* least square */

xi←Maxs(b);
r← y−Φxi; /* time domain residual */
i← i+1;

end
end

Algorithm 5: Basic CoSaMP

Fig. 4.17 shows the reconstructed signal using 30, 60, and 90 coefficients. The original

algorithm does not work well for our application as expected, for two reasons.

1. As mentioned above, CoSaMP also uses partial DCT to approximate the original. It can

easily be seen in Fig. 4.13 that the gap between each pair of frequencies becomes much

smaller or even gets reversed. Even if a component is not dominant enough, it can still
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Figure 4.17: PPG reconstruction with 192 samples

be wrongly selected into the best 2s support. This is especially significant when we do

not have an accurate estimate of the sparsity level.

2. The l2-norm of the time domain residue r is commonly used as a stopping criterion, but

it does not correctly reflect the accuracy of the reconstruction as shown in Fig. 4.17.

We also observed that increasing the sparsity level does not always help when the total

number of samples is relatively small (below 200) compared to the cardinality of the

basis. In Fig. 4.17, the signal reconstructed with sparsity level of 60 actually generates

more error than 30 does, even though the residual l2-norm is smaller.

We reduce the size of the basis to solve this problem. Fig. 4.18 shows the histogram of

1024-point DCT coefficients over the PPG data of 55 patients in MIMIC database. Every

count in the histogram is weighted by the absolute value of the corresponding coefficient.

The majority of the coefficients is concentrated in bins 1–120. To ensure that our algo-

rithm can also work for signals with severe noise, we set up a separate threshold for the

frequencies outside the above range. We still pick them up if they are dominant enough.
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Figure 4.18: Weighted histogram of DCT coefficients

This works much better than just restricting the basis to bins 1–120.

Fig. 4.19 shows the reconstruction over different sparsity level after reducing the basis.

We use the record of patient No. 208 because of its low dominance degree throughout the

whole data. As can be seen from Table 5.6, 399 out of 433 segments require reconstruction.

We compare the reconstructed signal with the original to compute l2-norm instead of the

residue. This gives us the accuracy but it is not available in the real application. It is obvious

that adding more support will improve the accuracy, but it will also increase the complexity

of the reconstruction. In practice, we find that a support of size around 60 is enough for

heart rate detection. The main test result is shown in the next section. Fig. 4.20 shows

the reconstruction of one DCT segment. We could still see the difference that generates

large l2-norm of the time domain signal, but there is no need to add more coefficients to the

support for this application.

4.2.4 Compressive Sensing Based ECG Compression

This section presents a compressive sensing based ECG compression algorithm. ECG sig-

nal is periodic in time domain and sparse in frequency domain. In fact most of the sig-

nificant frequency contents in a typical QRS complex are contained in frequencies below
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Figure 4.20: Reconstruction with the proposed CoSaMP
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Figure 4.21: Compressive Sensing Based ECG Compression Algorithm

30 Hz with the peak power in the range of 4 to 12 Hz [69]. Our novel algorithm belongs

to the lossy compression category. As shown in Fig. 4.21, this two-step algorithm consists

of a training and a reconstruction step. During the training, an overcomplete dictionary is

built from the training data. It will be subsequently used for reconstruction. In the sparse

reconstruction stage, a small number of atoms in the dictionary is chosen to approximate

the ECG signal based on random samples. This is done by using Least Absolute Shrinkage

and Selection Operator (LASSO) [70], a basis pursuit algorithm.

4.2.4.1 Overcomplete Dictionary

The traditional lossy compression uses orthogonal bases such as DCT or wavelet basis. Af-

ter the transform only the significant coefficients in the transformed domain will be used to

reconstruct the signal. The components with less significant coefficients will be discarded.

This approach works extremely well when the signal spectrum power purely concentrates

on a few components. For ECG signal, however, this is not the case. Even though the signal

is sparse in the frequency domain but there are still too many components that are clinical

useful.

To overcome the above limitation of the orthogonal basis, we adopt an overcomplete dictio-
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nary [71] approach which combines orthogonal bases with a trained dictionary built offline

from the clinical data. The trained dictionary fills in part of the information discarded by the

traditional method, keeping the balance between compression ratio and signal distortion.

4.2.4.2 Dictionary Training

As shown in Fig. 4.21, in the training stage the input ECG records are first divided into a

number of segments with each segment containing only one complete ECG complex. The

segmentation is done by R-wave peak detection [18]. Each segment is than normalized to

a fixed length. The K-SVD [71] algorithm is then used to select a small set of segments

to build the dictionary. A random set of atoms is chosen as the initial dictionary. Then K-

SVD will recursively optimize the dictionary by updating only one atom in each iteration

until the stopping criteria is met. The basic K-SVD algorithm is shown in Algorithm 6.

Singular Value Decomposition (SVD) in line 1 is used to find the rank-one approximation

to the residual matrix Ek. The trained dictionary is further combined with the standard

orthogonal bases to build an overcomplete dictionary.

4.2.4.3 Signal Reconstruction

With the overcomplete dictionary we are now ready to reconstruct the signal from a very

small number of random samples. This process is shown in Fig. 4.21. We remove the bias

from the signal to compute the zero mean signal. This is because we are only interested in

the shape of the ECG signal other than the bias.

Let b be the zero bias observation and T0 be the sparsity level. The sparse reconstruction

process is to calculate coefficient x that minimize the l2-norm as shown in 4.15
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Input: Data set Y , sparsity level K, stopping criteria P
Output: Dictionary D of size K
Initialization;
begin

while P is not met ; /* iteration t */
do

Use OMP to compute coefficient matrix X for Y using D(t−1);
for each column dk in D(t−1) with k = 1,2, . . . ,K do

Define ωk as the group of examples that use dk;
Compute Ek = Y −∑ j 6=k d jxT

j;
Restrict Ek to the columns with indices in ωk to obtain ERk

k ;
1 Do SVD to ERk

k =U∆V T ;
Substitute dk with the first column of U ;
Update D(t−1) to D(t);

end
end

end
Algorithm 6: Basic K-SVD Algorithm

min
x
{‖b−Dx‖l2}, subject to ‖x‖0≤T0 (4.15)

We use LASSO to solve this convex optimization problem. The off-the-shelve MATLAB

toolbox [72] is directly used as a solver. The original length of the signal needs to be

restored after the sparse reconstruction.
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Chapter 5

Implementation and Experimental

Results

Without the financial commitment from customers it is difficult to make prototypes to test

the whole system. What is more challenging is to collect the physiological signal from the

real patients. This can only be done by qualified organizations with the consent from the

patients. To avoid these challenges, we test the each sub-system with either recorded data

or patient simulators. We either fabricate prototypes or use existing systems. We perform

both accuracy test and power measurement. The result is also compared with the existing

technologies or systems to show the advantage of the proposed system. The records from

MITBIH Database are used to test ECG subsystem and MIMIC database [19] to test PPG

subsystem. We have shown the CARDIOSIM ECG simulator in Fig. 2.4. We also use the

Fluke Pulse Oximter Functional Tester [73] for PPG testing. The hardware platform is kept

as identical as possible to give an accurate estimation.
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Figure 5.1: Other Sensing Modalities for Muscle Contraction Monitoring

5.1 Muscle Tension Sensing Subsystem Test

To evaluate our muscle tension sensor, we compare the results with different sensing modal-

ities for their power consumption and signal quality. Power consumption varies with the

details of the hardware and software design. We consider not only power at the component

level, but also the complexity of the software algorithm, which directly affects the energy

consumption. The signal quality of the sensor also has an impact since more processing

may be required to recover the key component of interest.

To make our comparison fair and practical, we stick to the specific purpose of monitor-

ing SCM contraction rather than general muscle movements. We also use commercially

available components rather than custom designs for this purpose. We evaluate the power

consumption as the primary objective and accurate detection of contraction in real time as

the secondary, rather than pursuing the best noiseless signal.
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Figure 5.2: Hardware Prototypes for Comparative Study

5.1.1 Comparative Systems

For fast prototyping of the system, we use the pulse sensor board in [74] for the optical sen-

sor and muscle sensor board in [75] for sEMG. We adapted both boards for our comparison

as shown in Fig. 5.1. We use an MSP430G2452 [13] evaluation board as the MCU board

for sEMG and the optical sensor with the MCU running at 1 MHz on a 3.3 V power supply.

For the accelerometer, we designed a prototype using TI’s CC2541 Bluetooth Low Energy

(BLE) single-chip MCU [76] to control the MPU-9250 accelerometer [52]. A UART mon-

itor is used to transfer the signal to a computer. All the hardware used in this study is shown

in Fig. 5.2. The sampling rate is set to 62.5 Hz (16 ms period) as a representative number.

The same contraction detecting algorithm is running on the MCUs for all sensors. It is

a simple threshold-based algorithm doing sample-by-sample analysis described in Section

4.2.1.2.

Accelerometer The system is shown in Fig. 5.1b. The sensor is placed in the same spot as

the optical sensor as shown in Fig. 4.1. MPU-9250 is a low-power 9 degree-of-freedom (9-

DoF) inertial sensor with a triaxial accelerometer, gyroscope, and compass. It is controlled
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(b) Light to moderate movement

Figure 5.3: Voluntary contraction signal from accelerometer

by the SPI interface of the CC2541 MCU. Acceleration data is sent out from the MCU

through UART interface. The size of whole system including CC2541 is only 12 mm×

9 mm, making it highly wearable.

Surface EMG A two-stage design consisting of an instrumentation amplifier plus OpAMP

is common for sEMG. The in-amp serves as a pre-amplifier, rejecting the common mode

noise and amplifying the signal only with a small gain. The second stage further amplifies

the signal and is usually built in with strong filters to deal with motion artifact and baseline

wandering. To simplify the circuitry, we remove the second stage amplifier while increase

the gain in the first stage. This inevitably reduces the signal amplitude but saves power.

5.1.2 Signal Quality

Accelerometer When the body is in a still state, voluntary contraction can be easily seen.

However, SCM muscle contraction cannot be detected during body movement. The signals

of voluntary contraction during body movements are shown in Fig. 5.3. It is extremely

difficult to detect the contraction even under light upper body movement such as walking
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Figure 5.4: Voluntary contraction
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Figure 5.5: Jogging with no neck movement
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Figure 5.6: Turning right and then left
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Figure 5.7: Continuous head up and down

and jogging, while these movements are common in daily life.

5.1.3 Surface EMG vs. Optical

Figs.5.4-5.7 compare the sEMG signals with those from the optical sensor over different

scenarios. sEMG generates better signal in term of amplitude and SNR. The in-amp of the

sEMG can also remove body noise such as electrocadiac and respiratory signals very well

compared to the optical sensor. However, great baseline wandering can be observed from

the graph. Under this influence, the simple thresholding algorithm does not work well on

sEMG. Further hardware or software filtering is definitely needed to remove it. For the

optical sensor, clear respiratory cycles can be seen in the signal in Fig. 5.4a, but the optical

signal is more stable with little changing to the baseline. Similar to sEMG, most of the

moderate movements such as walking and jogging do not necessarily cause motion artifact

unless the neck area moves. Among all the movements, right turn triggers the greatest peak.

Lifting the head up and down generates similar signal peaks to voluntary contraction.

We realized from this study that sEMG is not suitable for this application for two main

reasons. First is the use of adhesive gel. The signal changes over time due to the drying
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of the gel that changes the skin-electrode impedance. The other is that a third ground

electrode is critical to the signal and has to be put far away to generate a stable reference.

These constraints inevitably increase the discomfort level and inconvenience to the patient’s

daily life.

5.1.4 Power Consumption

Accelerometer The current consumption of MPU-9250 is just 19.8 µA in active ac-

celerometer mode and 8 µA in standby mode. Unfortunately, as shown in Section 5.1.2,

the MPU-9250 is too susceptible to body movement for this application, even though it

would otherwise be perfect in terms of power consumption and wearing comfort.

Surface EMG vs. Optical The dominant power consumer in sEMG is the precision in-

amp. AD8221 [77] is used in our sEMG design. Table 5.1 compares it with some other

commercially available products that basically have the same function set. It shows that

AD8221 is one of the best among the list with a relatively low supply current but good

performance in term of noise and bandwidth. There are also so-called micro-power preci-

sion in-amps that consume only hundreds of micro-watts, but they are usually optimized

for very low input stage current [21]. Thus, the noise level is usually higher than the higher

current amplifiers shown in Table 5.1.

Frequent switching of in-amp is not an option for power saving. Power supply should be

turned on before the input signal to avoid overloading the amplifier. In the case of AD8221,

once the output voltage goes beyond the supply rails, the protection diodes will be turned

on. Even if the in-amp is not damaged, significant noise and delay might occur due the fast

switching. As a result, we keep the AD8221 on all the time. A 16-ms timer is set to wake

up the MSP430 from LPM3 and sample the signal. The ISR duration and the in-amp output
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Table 5.1: Commercial Precision Instrumentation Amplifiers

P. N. AD8221 AD624 INA326 LTC2053 LT1167 MAX4208
Supply 0.9mA 2.5mA 2.4mA 0.75mA 1.3mA 0.75mACurrent
Gain 1−103 1−103 0.1−104 1−103 1−104 100

Bandwidth 825kHz 25MHz 1kHz 200kHz 200kHz 750kHz(0.1-10Hz)
Input
Noise 0.25 0.2 0.8 2.5 0.28 2.5

(µV P−P)
CMRR 90dB 80dB 70dB 116dB 86dB 135dBDC G=1
CMRR
10kHz 80dB 40dB 70dB ¡100dB 62dB 120dB
G=1

signal are shown on Fig. 5.8b. An MCU port is pulled up at the beginning and pulled down

at the end of the interrupt. The duration of the ISR varies depending on the input signal and

the stage of signal processing. For the optical sensor, the interrupt is set on the falling edge

of PWM to sample the signal without activating the comparator. This is shown in Fig. 5.8c

with the current signal from the power supply.

The power consumption is compared by attaching sEMG to one side of the SCM muscle

and the optical sensor to the other. In this way, approximately the same input signal can be

generated by the symmetric left and right movements. The current signal is monitored and

recorded using an oscilloscope. The data is very noisy as shown in Fig. 5.8, and current

consumption is mostly in the form of surge current due to the charging and discharging of

the capacitive components in the circuit. We are able to calculate the average power by

doing integral. For sEMG, the average current during the ISR is 2578 µA and a current of

over 2 mA is constantly drawn by the in-amp with an average power of over 6.6 mW. The

ISR duration is measured as from 170 µs to 280 µs. For the optical sensor, the average

current consumption from LED on to the end of the ISR is calculated as 589 µA with the

duration varies from 320 µs to 540 µs. Even though the duration is much longer than

78



(a) Optical sensor interrupt. Pink: PWM, blue:
amplified PD output

(b) sEMG interrupt. Blue: interrupt flag, green:
in-amp output

(c) Optical sensor current consumption. Yellow:
system current (mA), pink: interrupt flag, green:
PWM

(d) sEMG current consumption. Yellow: system
current (mA), blue: interrupt flag

Figure 5.8: Signal comparison between optical sensor and sEMG

sEMG because of the sampling interval, the average power consumption in a 16 ms cycle

is only around 450 µW. The current probe definitely introduces large error in measuring

the noisy sub-mA current, but the comparison clearly shows that sEMG consumes much

more current than the optical sensor does.
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Figure 5.9: Hand Gesture Recognition Hardware Prototype

5.1.5 Discussion

In this section we have presented the evaluation for the proposed low-power, compact, op-

tical MTS system. The system is tested on SCM muscle contraction monitoring for asthma

symptoms and other respiratory diseases. This is currently an important area with sorely

unmet need for wearable monitors. We compared common sensing modalities, including

accelerometry and surface Electromyography, and we showed the optical one to be the

most suitable by striking the best balance among the size, power, and sensitivity. In ad-

dition to the hardware, our detection algorithm can also handle variations ranging from

adults to young children. Together, our hardware and software techniques will enable a

new generation of highly wearable monitors for precise monitoring of muscle tension.

5.2 Hand Gesture Recognition Subsystem Test

5.2.1 Prototype Implementation

The prototype of the HGR system is shown in Fig. 5.9. To quickly validate our design,

we implement our sensor board using a commercially available pulse-sensor design [74]

but customize the board to our design. For the accelerometer and BLE board, we designed
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Figure 5.10: Sensing location on the wrist area.

a board as shown in Fig. 5.9. Both boards are connected using jumpers. The overall

dimension of the system including the battery is 30 mm (L) × 15 mm (W) × 8 mm (H).

The optical sensor board for prototyping purpose may appear bulky but can be shrunk easily

by fabricating a flexible PCB, as the optical sensors themselves are small. Even without

optimization, the whole system is lightweight and can be easily adhered onto the wrist area

or further integrated into a wearable sensing platform such as a wrist band or a watch. The

sensing location of the optical sensor is shown in Fig. 5.10.

The LED on-time is set to approximately 200 µs in every 16 ms by PWM control. Fast

switching of LED causes the current surge due to the change of LED forward voltage.

To suppress the inrush current, we use the current source to drive the LED. The driving

current is fixed to 500 µA. Changing both the LED and the PD would make it hard to take

the advantage of commercially available prototype.

5.2.2 Detection Accuracy

We tested our HGR system on three subjects, two male and one female. One important

aspect of HGR is the noise rejection. In real situations, gestures coexist with random

activities. These random activity should be rejected instead of being recognized as a valid
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gesture. Otherwise, the system will become hard to use due to many false positives. We

collected 40 non-gesture noise patterns, including random hand or wrist shake with both

short and long wrist activities from each subject. Another 40 samples of each gesture from

each person are also recorded. The total collection time is over 1 hour each. The system

is implemented on a laptop computer to repeatedly study the data. The detection rate is

defined in Eq. (5.1).

Detection Rate = 1− True Negtives+False Positives
Total Gestures

(5.1)

As shown in Table 5.2, the detection rate is over 93% with the highest over 95%. We also

implemented a single ACC-based HGR with the sliding window algorithm. A threshold is

set to reject the noise based on the DTW score. The result clearly indicates that our system

is superior to single ACC-based system in terms of noise rejection and detection accuracy.

The detailed result for each gesture is shown in Table 5.3. The detection rate is just the true

positive rate, since no noise gesture is involved. Even though for some gestures, ACC-only

results in slightly higher detection rate than the fusion method does, the fusion method

helps improve the accuracy of the majority at a very small cost. The overall result shows

the advantage of decision fusion over the single ACC-based method. The same gesture

is usually done multiple times with different stopping points or angles to record multiple

templates for each gesture. This multi-template setting helps eliminate ambiguity. Fig. 5.11

shows the influence of the weight γ in Eq. (4.2). The detection rates for all three people go

beyond 93% when γ = 66%.
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Table 5.2: Total Detection Rate

Det. Alg. Sub. TN FP Dec. Rate

Acc+MTS
Male 1 18 4 93.89%
Male 2 11 5 95.56%
Female 18 3 94.17%

Acc
Male 25 17 88.33%

Male 2 14 9 93.61%
Female 31 7 89.44%

Table 5.3: Detection Rate of Each Gesture

Sub. Gesture Fusion Rate Acc. Rate Temp. Length
Up 92.5% 87.5% 4 240ms-928ms

Dn/Rel. 90.0% 60.0% 6 304ms-1312ms
Rot.← 92.5% 95.0% 2 304ms-1120ms

Male 1 Rot.→ 90.0% 90.0% 2 288ms-1200ms
γ = 0.66 Fist 97.5% 67.5% 2 448ms-1120ms

Clicking 97.5% 32.5% 4 336ms-1040ms
Left 95.0% 92.5% 1 480ms-1200ms

Right 97.5% 100.0% 1 288ms-768ms
Tol. 94.4% 78.1% 22 240ms-1312ms
Up 97.5% 100.0% 5 512ms-1408ms

Dn/Rel. 92.5% 95.0% 5 480ms-1264ms
Rot.← 97.5% 97.5% 4 592ms-2880ms

Male 2 Rot.→ 100.0% 100.0% 4 560ms-2384ms
γ = 0.82 Fist 97.5% 67.5% 1 656ms-1376ms

Clicking 92.5% 100.0% 3 1072ms-1488ms
Left 100.0% 50.0% 2 784ms-1040ms

Right 95.0% 45.0% 2 672ms-1296ms
Tol. 96.56% 81.9% 26 480ms-2880ms
Up 97.5% 100.0% 4 784ms-1392ms

Dn/Rel. 97.5% 100.0% 5 624ms-1424ms
Rot.← 92.5% 82.5% 2 1024ms-1840ms
Rot.→ 92.5% 90.0% 2 1264ms-2544ms

Female Fist 92.5% 80.0% 2 448ms-1408ms
γ = 0.75 Clicking 90.0% 80.0% 3 688ms-2480ms

Left 95.0% 77.5% 2 912ms-1488ms
Right 90.0% 80.0% 1 912ms-1264ms
Tol. 94.4% 86.3% 21 448ms-2544ms
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Figure 5.11: Decision Weight

5.2.3 Power Consumption

The power consumption of the system is measured using a current probe. The current val-

ues are integrated over a period of 5 minutes to calculate the average power consumption.

Fig. 5.12 shows the periodic current signal of the optical sensor board. Even though the

LED takes around 500 µA when turned on, the duty of PWM is around 1.25%. The optical

sensor consumes around 258µW on average. The majority of the power is consumed by

BLE communication sending and receiving data. The average power consumption of the

CC2541 and MPU-9250 is around 57.5 mW. Thus, the power consumption increased by

the MTS is only around 0.4% of the system power. The current system can last for more

than 6 hours without recharging. Further optimization for future work includes lowering

the SoC’s Tx power, adjusting the sampling rate, and enabling threshold detection in the

accelerometer.

5.2.4 Time Delay

The recognition system has also been ported to an iPhone4s. The measured computation

delay is around 50 ms in the worst case with an average of 14 ms. Even with an expansion
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(a) PWM and PD output. Green: PWM, pink: PD
output

(b) Current consumption. Green: PWM, yellow: op-
tical sensor board current signal

Figure 5.12: LED control and current consumption.

of around 30 gestures, the delay is under 100 ms.

5.2.5 Other Applications

We also tested the system on elbow and knee joints. The sensing locations are shown in

Fig. 5.13. Signal samples are shown in Fig. 5.14. The degree of freedom of movement

is generally less than the wrist joint. The MTS signal can be used to detect the muscle

movement around the joint while the ACC data provides the detailed movement, such as

moving direction, timing, etc. The fusion of both MTS and ACC can be synergistic in

classifying the movements.
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(a) Knee (b) Elbow

Figure 5.13: Sensing locations on the knee and elbow.
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(a) Knee bending and recovering while sitting
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(b) Elbow bending and recovering

Figure 5.14: Signals from the knee and elbow joint.
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Figure 5.15: ECG hardware prototype

5.3 ECG Subsystem Test

5.3.1 ECG Prototype

The fabricated ECG board and a 12-lead electrode are shown on Fig. 5.15. The actual board

uses TI’s BLE SoC CC2541 [76] instead of CC2560. CC2541 is an integrated MCU and

radio frequency transceiver SoC that runs TIs BLE protocol stack and the application code

on a single chip. The device can record the ECG data into the flash memory and transfer

the data to a server via BLE after recording. Fig. 5.16 shows a recorded signal and the

real-time display on an iPad.
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(a) iOS App. Display (b) Web Server Display

Figure 5.16: ECG Signal

5.3.2 Compression Algorithm Evaluation

To evaluate the proposed compression algorithm, we use the records from MIT-BIH ar-

rhythmia database [19]. A total of 48 records of 2-lead ECG signal from the database is

partitioned into two sets for cross validation. The reconstruction results are compared with

traditional CS approaches. The percentage root-mean-squared distortion (PRD) and com-

pression ratio (CR) are calculated based on the original and reconstructed signal. PRD is

given by

PRD =

√
∑

n
i=1(x[i]− x̂[i])2

∑
n
i=1 x[i]2

×100 (5.2)

where n is the total number of samples, and x[i] and x̂[i] denote the original samples and the

reconstructed samples respectively. CR is defined as

CR =
Boriginal−Bcompressed

Boriginal
×100 (5.3)
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Table 5.4: Training and Testing Data Set

Training Set Testing Set
100, 101, 102, 103, 104, 105, 106, 107, 117, 202, 203, 205, 207, 208, 209, 210,
108, 109, 111, 112, 113, 114, 115, 116, 212, 213, 214, 215, 217, 219, 220, 221,
118, 119, 121, 122, 123, 124, 200, 201 222, 223, 228, 230, 231, 232, 233, 234

where Boriginal and Bcompressed stand for the number of bits for the original and compressed

signals respectively.

As shown in Table 5.4, 24 out of 48 records are used to train our signal model to build

the overcomplete dictionary, while the rest are used to evaluate the performance. Some of

the noisy data is avoided manually during the training process. This is because they do

not represent the typical ECG complex. The final dictionary has a total of 5140 supports

combining the trained 5012 atoms, 64 DCT basis and 64 wavelet basis (Daubechies 4) [78].

Each atom has 64 elements. Only 10 supports were used to reconstruct each record.

The original and reconstructed signals are shown in Fig. 5.17. Comparing with the tradi-

tional DCT, wavelet and the trained dictionary, the combined dictionary method achieved

PRD= 1.34% with CR= 50%, which means only half of the samples are randomly selected

for the reconstruction.

The relation between CR and PRD for each reconstruction algorithm is shown in Fig. 5.18.

The trend is obvious that a high CR leads to a high PRD. With combined dictionary, the

PRD is greatly improved comparing with other methods.

5.4 Photoplethysmogram Subsystem Test

The PPG monitoring system is tested using an existing prototype as shown in Fig. 5.19. The

system structure is the same as shown in Fig. 4.4 The DSP, TMS320C5515, will sample

the PD output at a high rate of 1kHz. A 351-tap finite impulse response (FIR) and infinite
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Figure 5.17: Reconstructed Signal
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TMS320C5515	DSP	 K9F1208R0C	Flash	ROM	DLED-660	R-IR	Dual	LED	

PIN-8.0-CSL	Photo	Diode		

Figure 5.19: PPG Monitor Prototype

impulse response (IIR) based band-pass filter of 0.1Hz− 10Hz is implemented in DSP

to remove the noise and motion artifact. More information about the filter can be found

in [54].

5.4.1 Real Time SpO2 and HR Calculation

A real-time sample-by-sample heart rate and SpO2 detection algorithm is implemented to

test the accuracy of the SpO2 sensor. The DSP keeps a dynamic threshold equals to 70 %

of the maximum AC peak value. Once the sampled value passes this threshold for a second

time, a valid cardiac cycle is detected and an instantaneous heart rate is calculated using

(5.4). The red to infrared RMS ratio of the detected cardiac cycle is then calculated using

(B.4) and (B.7). An average of 10 instantaneous heart rates is reported to the user as in

(5.5).
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Table 5.5: SpO2 Calibration Table

ratio SpO2
>97% ratio+ ratio

50
96%-97% ratio+ ratio

75
92%-95% ratio+ ratio

100
92%-95% ratio+ ratio

100
89%-92% ratio
87%-89% ratio− ratio

100
85%-87% ratio− ratio

50
<85% ratio− ratio

33.3

INST HR =
60∗ sampling rate

(cont2nd peak− cont1st peak)
(5.4)

HR =
∑

10
i=1 INST HRi

10
(5.5)

The curve of the ratio versus SpO2 is further calibrated using Table 5.5.

The evaluation is carried out using Fluke Pulse Oximter Functional Tester [73]. The tester

works like a reversed pulse oximeter. It mimics the real fingers by using a group of PDs to

detect the light intensity and using LEDs to emit light according to the PD output and the

preset SpO2 level. The SpO2 level can be easily set from 70 %-100 %. The reading from

our prototype is within ±2% of the tester which shows the correctness of the sensor and

the calibration.
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5.4.2 Compressive Sensing Based Heart Rate Detection

To test the compressive sensing based heart rate detection algorithm, we continuously di-

vide the digital samples from MIMIC database into 1024-point segments and run our algo-

rithm on them. The sampling rate is 125 Hz. The number of random samples is 192 over

each DCT segment. We find it is very difficult to get a stable performance of the sparse

reconstruction when given fewer samples. Some other parameters for the experiment are

shown as follows.

a) interval α = 0.1 with zα/2 = 1.645

b) Threshold on dominance degree ML: 5

c) Threshold out of the range MR: 4

d) Tolerance β : 1 DCT bin

e) CoSaMP stopping criteria: residual l2-norm < 10−10, or residue l2-norm difference

between current and last iteration < 10−10, or iteration count > 100

The main result is shown in Table 5.6. The heart rate on some segments is detected just

by prior estimation while others by beat-by-beat analysis after reconstruction. The error

columns in the table are average error in the unit of bpm. We manually removed some

segments severely polluted by noise. Examples of such segments are shown in Fig. 5.20.

The results show that our algorithm is effective to over 99% of the data.

The reference heart rate is calculated by two algorithms, a beat-by-beat peak searching

algorithm [79] for the reconstructed signal and a DCT algorithm for the signal with the

prior estimation. For the peak searching algorithm, the signal first goes through a band

pass filter (BPF). Then each sample is compared with the thresholds for peak detection.
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Table 5.6: Detection rate

Patient Seg. Det. Recons. Prior Esti.
# Tol. Rate. Tol. Err. Tol. Err.
55 14206 99.58% 5363 0.08 8843 0.25

208 433 95.61% 399 0.30 34 0.76
209 8590 94.99% 8037 0.25 553 0.41
210 5835 95.29% 5326 0.23 509 0.89
211 8866 99.37% 4750 0.05 4116 0.29
212 17570 99.88% 1951 0.09 15619 0.32
216 10107 98.43% 2773 0.28 7334 0.45
218 8792 97.71% 4357 0.19 4435 0.45
219 9638 99.22% 2935 0.10 6703 0.35
220 482 99.99% 190 0.00 292 0.41
221 10087 99.96% 917 0.07 9170 0.28
224 20199 99.68% 4879 0.16 15320 0.28
225 17935 99.64% 6357 0.07 11578 0.34
226 12204 99.56% 2346 0.13 9858 0.29
230 3400 99.94% 1006 0.00 2394 0.28
231 18083 99.89% 15441 0.01 2642 0.27
237 16318 99.53% 4590 0.10 11728 0.34
252 10901 99.75% 2371 0.10 8530 0.30
430 2753 98.80% 1658 0.13 1095 0.30
437 19978 99.26% 5601 0.19 14377 0.27
438 19746 98.27% 18074 0.08 1672 0.56
439 19872 99.82% 2855 0.11 17017 0.24
446 10511 97.47% 9043 0.13 1468 0.19
449 6353 99.98% 1659 0.01 4694 0.53
451 11661 99.81% 4599 0.02 7062 0.29
452 13861 97.35% 10154 0.21 3707 0.28
453 17461 96.08% 14554 0.21 2907 0.46
454 14374 95.11% 11776 0.25 2598 0.53
456 15776 99.32% 6428 0.14 9348 0.27
466 5927 99.95% 1132 0.02 4795 0.33
471 25291 98.66% 10036 0.16 15255 0.37
472 2997 94.56% 2145 0.31 852 0.60
474 3850 99.92% 97 0.14 3753 0.31
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Figure 5.20: Corrupted and noisy PPG signal segments. Top: data containing NaN (not a
number), bottom: data with high noise

Two sets of adaptive threshold are maintained for peaking searching, one for heart beat and

the other for noise peaks. For the DCT algorithm, a full DCT is performed to the original

signal to compute the heart rate.

The average iteration count of the reconstruction over different sparsity levels is shown in

Fig. 5.21. Again, the data of patient No. 208 is used. The traditional OMP algorithm would

take at least 50% more iterations since the OMP iteration count is roughly the same with

the size of support.
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Figure 5.21: Iteration count vs. sparsity level

Power Consumption The under sampling rate (USR) is generally used to quantify the

rate of random sampling. It is equal to N/k with the same N and k defined in Appendix

Section 3.3. For our work, the USR is around 5. The previous works claim they can

reconstruct the PPG signal with a USR of under 20 without losing much information [29].

However, the target of our reconstruction algorithm is the data with high level noise and

high heart rate variation. The prior estimation stage will naturally screen the signal to avoid

reconstruction for the more sparse signal generally shown in other works. We believe the

setting of our experiment is closer to the real applications.

The power saving mainly comes from the optional reconstruction in the back end. It is

hard to estimate the actual effect without the detailed information. However, as shown in

Table 5.6, for PPG signal with a stable heart rate, over 99% of the reconstruction can be

saved with very little power increase in the front end. The system response is also greatly

improved.

As a justification for the power saving effect of CS, the LED power saved at the USR of

5 is around 0.99 mW. This alone is already around 16% of the system power. The PPG

samples are taken and processed during the interrupt service routine (ISR) by the DSP. The

parameters used for this calculation are shown as follows. These data is measured from the
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real prototype board.

Average ISR time: 600 µs [28]

DSP active power: 59.1 mW@100MHz [80]

DSP standby power: 0.7 mW [80]

IR LED on power: 19.8 mW (60mA at 3.3V)

IR LED on time: 50 µs

Sampling rate: 125 Hz

The system takes 6.32 mW overall before applying CS. Over 50% of the power is actually

saved from setting the DSP to standby mode than turning off the LED.

One would think to uniformly sample the signal at 25 Hz and detect the heart rate. We

run our peak searching algorithm to the down-sampled data from patient No. 208 and find

a maximum heart rate error of over 1.8 bpm for the same data set used in Table 5.6. This

is much larger than the error after the sparse reconstruction, which is around 0.6 bpm.

Several heart beat peaks are detected as noise peaks when using down-sampled signal.

Even though the frequency range of interest is 0.4-5 Hz [23] for the PPG signal, detection

algorithms require a higher sampling rate to tolerate noise and irregular heart beats. Most

of the systems are actually running at high sampling rates of 100-1k Hz [54, 81–85].

Discussion Increasing the number of random samples inevitably increases the power con-

sumption, but it actually discourages reconstruction since the probability of discovering the

dominant cardiac frequency in prior estimation becomes higher. It would be very interest-

ing to find an optimal point for power consumption on a real platform. This will be done

for our future work.

For the segments needing reconstruction, we did observe some significant deviation from

beat-by-beat analysis as large as 7–10 bpm, but we ascribe that to the environment noise and
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corrupted samples such as the data shown in Fig. 5.20. Our implementation of the detection

algorithm could not even yield a reliable result under these conditions. The overwhelmingly

large number of the total segments still validates the correctness of our algorithm.

For the segments estimated with the prior, the error is mainly caused by the spectral leakage

as discussed in Section 4.2.3.2. One obvious way to deal with the error is to decrease the

minimum sampling interval, i.e. shorten the width of each DCT bin. Another is to change

the signal to a zero-padded DCT as discussed in [64]. This topic is beyond the scope of

this work.

Our sparse reconstruction obviously takes advantage of the low-pass filtering to the source

signal, as it makes the source signal sparse. This could be implemented in hardware [86]

without significantly increasing the power consumption. The intuition is that the proposed

CoSaMP should also be effective on unfiltered data. The components outside the cardiac

frequency range have little effect on the heart rate. As our future work, we will acquire

unfiltered data using real hardware to confirm the performance of our algorithm.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation describes a low-power wearable medical sensing platform. A combination

of physiological signals can be monitored by this system including ECG, PPG and muscle

tension. It also contains a HGR system that can be used as a human-machine interface to

aid mobility impaired patients. The system power is optimized by low-power component

selection and advanced digital signal processing. Several hardware prototypes are devel-

oped to test the performance of this system. Simulation and real hardware measurements

show that our platform is superior to the existing systems in terms of power consumption

and system size. Several sensing sub-systems presented in this work can be used directly

to build stand-alone medical devices. The software and hardware presented in this work

can serve as a design guideline or reference for medical system designer to greatly shorten

the development cycles.

This work also explores the theory and application of compressive sensing framework in

physiological signal processing research. A novel compressive sensing based ECG com-

99



pression algorithm and a dominant frequency extraction based PPG heart rate calculation

algorithm are proposed to reduce the system power. Simulation results show the compres-

sive sensing effective in power saving without compromising the performance.

Our design experience shows some profound implications:

• The signal properties should be thoroughly studied in order to reduce the complexity

of the processing algorithm.

• No need to make universal applicable system. The compatibility often poses over-

head to the system power and response speed.

• No single isolated technique can work while dealing with the integrated system as a

whole. System level coordination and trade-offs have to be made to realize the power

optimization.

6.2 Future Work

Except for the tasks already mentioned in previous chapters, we have a few more to be done

in future. The first is to actually implement the compressive sensing based PPG HRM in a

real hardware platform to evaluate the power consumption and accuracy. We also want to

perform a similar evaluation on SpO2 calculation. We can not present it in this dissertation

due to the lack of clinical data even though Equation (B.4) in Section 5.4.1 shows this is

highly possible. Secondly, we want to prototype the whole system including the back-end

server to test the overall performance. Due to the cost and time considerations, we are

unable to finish it at this point. Finally, the clinical trail is essential to medical system

design. We will seek opportunities to perform the trail.

100



Appendices

A Discrete Cosine Transform

DCT is widely used in image and audio signal compression. It is similar to Discrete Fourier

Transform ( DFT ) basis but using only real numbers.

xn =
N−1

∑
k=0

α(k)ak cos
[

π(2n+1)
2N

k
]
, n ∈ [0,N−1]

an = α(n)
N−1

∑
k=0

xk cos
[

π(2k+1)
2N

n
]
, n ∈ [0,N−1] (A.1)

In both equations, α(n) is defined as:

α(n) =


√

1
N

if n = 0,√
2
N

if n 6= 0
(A.2)

x = [x1x2· · ·xN ]
T is the time-domain observation, and a = [a1a2· · ·aN ]

T is the DCT coef-

ficient vector. The following equation transfers an index in N-point DCT into the corre-

sponding frequency. id is the DCT index number, fs is the sampling rate, and ft is the

frequency.

ft =
fs× id

2N
; (A.3)
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For simplicity, we directly use frequency as the DCT index omitting the projection.

B SpO2 Calculation

Photoplethysmogram uses pulse oximetry to measure the absorbance of light due to the

pulsatile arterial blood. A single infrared LED or a pair of infrared and red LEDs emit

light into body tissues, and one or multiple photo receivers measure the transmittance or

reflectance of the light. The system structure of a typical transmittance-type pulse oximeter

based on a DSP is shown in Fig. 4.4. The DSP finds the best SNR by controlling the

LED driver and both amplifiers based on the voltage level of both amplified and raw inputs

from the photoreceiver. Heart rate and SpO2 are the two most basic indices that can be

extracted from PPG. Among several signal-processing techniques used, the most common

one is called weighted moving average (WMA) [23]. It is a beat-by-beat algorithm that

detects signal peaks in a PPG signal and computes the average HR and SpO2. SpO2 can

be estimated from the ratio of R to IR signal. A traditional approximation formula from

work [23] is shown in (B.4). In practice, RMS value is usually used for approximation

(B.7).

Ratio =
AC(Red)
DC(Red)

/AC(IR)
DC(IR)

SpO2 =−2.5Ratio+110 (B.4)
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Figure B.1: Typical PPG signal and its DCT transform. Top: PPG signal from patient
No. 55 in MIMIC database, bottom: absolute value of the DCT coefficients

Rrms =

√
∑

n
i=1 R2

i
n

(B.5)

IRrms =

√
∑

n
i=1 IR2

i
n

(B.6)

ratio = 1.1−0.25
Rrms

IRrms
(B.7)

The SpO2 also needs to be calibrated with a reference curve and a co-oximeter [5].

DFT and DCT are also shown as alternative measures [5, 23, 87]. In contrast to WMA,

these are known as transform-based algorithms. They transform a series of time domain

samples to a frequency domain signal and perform spectral analysis. A typical PPG signal

and the magnitude of DCT coefficients are shown in Fig. B.1. HR can be calculated from

the highest peak between 0.5-2.5 Hz. The AC and DC components can be calculated from

the cardiac line and DC line, respectively. Thus, SpO2 can be calculated from the ratio.
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