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ABSTRACT OF THE THESIS

Label-efficient Representation Learning for Medical Image Analysis

by

Jiawei Yang

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Lei He, Chair

This thesis aims to partially tackle the inherent challenges of data-hungry deep learning

methods for medical image analysis due to the scarcity of annotated training data in the

medical domain. The focus is on investigating novel solutions within the realms of few-shot

learning, multiple-instance learning, and self-supervised learning, specifically centering on

histopathology images for coherence.

The first part of the research involves the use of contrastive learning (CL) and latent

augmentation (LA) to enhance the efficiency and generalizability of few-shot learning in his-

tology images. The study seeks to understand the conditions under which self-supervised

models outperform supervised ones and explores the potential of self-supervised representa-

tions. For instance, it reveals that SSL models pre-trained on pathological images excel in

few-shot classification settings compared to supervised models. This is because SSL models

learn class-agnostic information, whereas supervised models, which focus on discriminative

features, are sensitive to shifts in data distribution. Additionally, it demonstrates that LA, by

introducing semantic variations in an unsupervised way, can significantly improve few-shot

classification performance.

The second part presents ReMix, a novel framework for multiple-instance learning (MIL)-

based whole-slide image (WSI) classification. ReMix addresses training efficiency and data
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diversity challenges by substituting instances with instance prototypes (patch cluster cen-

troids) and employing online, stochastic, and flexible latent space augmentations to enforce

semantic-perturbation invariance. This technique has been shown to boost the performance

and efficiency of both spatial-agnostic and spatial-aware MIL methods.

Finally, the study delves into self-supervised learning (SSL) for dense prediction tasks

in pathology images. A new SSL framework, Concept Contrastive Learning (ConCL), is

introduced, proven to outperform previous state-of-the-art SSL methods. The main objec-

tive of ConCL is to enhance detection and segmentation tasks in computational pathology,

which are often heavily dependent on annotated data, hence challenging to execute efficiently

and accurately. A roadmap is provided for pre-training a superior encoder for downstream

dense prediction tasks. Furthermore, a simple, dependency-free concept-generating method

is proposed that does not rely on external segmentation algorithms or saliency detection

models.

In summary, this thesis broadens the understanding of deep learning applications in

healthcare, demonstrating the power of data augmentation and representation learning in

medical image analysis across various settings. It encourages further investigation into these

challenges to enhance the speed and accuracy of diagnoses, improve treatment decisions, and

reduce medical errors.
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CHAPTER 1

Introduction

Medical imaging plays a pivotal role in medicine, serving as a primary data source for

diagnoses. Physicians heavily rely on these images to aid in the diagnostic process, such as

identifying and grading different diseases. Inspecting medical images is an essential step in

modern medicine but requires non-trivial expertise and time budgets.

Over the years, deep learning (DL) has emerged as a versatile tool for various domains,

healthcare being one of its most significant benefactors [47, 88, 48, 72, 41, 59, 97]. DL based

applications are revolutionizing medical image analysis, bringing a new dawn of automation

and precision in disease detection, diagnosis, treatment planning, and patient care. This

thesis is an effort to contribute to this ongoing revolution by overcoming the key challenges

that currently limit the potential of AI in the medical domain.

The principle challenge addressed here is the data-hungry nature of deep learning mod-

els. These models demand a vast amount of annotated training data to achieve accurate

and reliable performance. However, acquiring such large-scale, annotated datasets within

the medical domain presents a significant obstacle, given the tedious, time-consuming, and

costly nature of medical data annotation. Simultaneously, there exists a treasure trove of

unlabeled medical image data, which raises the question of how to efficiently harness this

underutilized resource. Effectively exploiting these unlabeled datasets not only compensates

for the shortage of annotated data, but it also opens up possibilities for improving the ro-

bustness and generalization capabilities of our models. Thus, the primary objective of this

thesis is to develop effective and efficient methods for medical image analysis that account

for these scenarios. These methods need to effectively utilize limited labeled data and lever-
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age the vast amounts of available unlabeled data. Our aim is to generate solutions that

can balance the need for precision and the practical realities of data scarcity in the medical

imaging domain.

For the sake of coherence, the research within this thesis is focused on histopathology im-

ages, a crucial area of medical image analysis with high clinical value. We seek to address the

challenges outlined earlier from two key perspectives: data augmentation and self-supervised

learning.

Firstly, data augmentation is commonly recognized for its effectiveness in diversifying

training samples, thereby assisting the model in avoiding overfitting, while also enhancing

the generalizability of deep learning models. Traditionally, data augmentation techniques

have been primarily performed in the input RGB space, utilizing either image transforma-

tion functions or generative adversarial networks (GANs). Nevertheless, in this thesis, we

demonstrate the possibility and the benefits of augmenting data samples directly from the

latent space, given that the representations therein are sufficiently powerful. We prove that

this form of data augmentation is robust and generalizes well to various settings, including

few-shot patch classification and whole-slide image classification. In addition, it is much

more efficient compared to augmentation methods that happen in the input RGB space.

Secondly, we advocate for the importance of representations. High-quality representa-

tions could significantly enhance the performance of downstream tasks. In an attempt to

better harness the vast amount of unlabeled data in the medical domain, we explore the im-

pact of different self-supervised learning methods. These methods do not require manually

annotated labels and show great promise for various downstream tasks. More specifically, we

study two issues: the conditions under which self-supervised learning outperforms supervised

learning in medical images, and the strategies for designing superior pre-training methods for

tasks beyond classification, such as detection and segmentation. In addressing these issues,

we propose different new techniques such as Concept Contrastive Learning (ConCL).

We believe the research presented in this thesis not only contributes to the broader

understanding of deep learning applications in healthcare but also provides practical tools
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and methodologies that can be used to address real-world medical image analysis problems.

1.1 Thesis Outline

This thesis is divided into five chapters, each highlighting different aspects of our research

on enhancing the label efficiency and generalizability of deep learning models for medical

image analysis, particularly histopathology images. The chapters are as follows:

Chapter 1 introduces the fundamental challenges of data-hungry deep learning models

and provides an overview of the specific focus of the thesis, including data augmentation and

self-supervised learning. It sets the stage for the research and establishes the context for the

ensuing chapters.

Chapter 2 presents our research on a combination of data augmentation and self-supervised

learning for few-shot learning in histology images [115]. We elaborate on our approach to

incorporate contrastive learning (CL) with latent augmentation (LA) to build an efficient

few-shot system. This chapter details our experimental findings, with an emphasis on the

generalizability and performance improvements of CL-based models compared to the tradi-

tional supervised learning models. It also provides our empirical understanding of when and

why CL-based models generalize better than supervised models.

Chapter 3 delves into the challenges posed by whole-slide images (WSIs) for deep multiple

instance learning (MIL) and presents our solution, ReMix [116]. WSIs are usually large, up to

10000x10000 pixels, yet of little numbers, making them hard to be processed by DL methods

and prone to overfitting. We detail how our proposed ReMix method enhances training

efficiency by reducing the number of instances in WSI bags, and ensures data diversity

by incorporating bag-level latent augmentations. This chapter also presents the results of

applying ReMix to different MIL methods, showing its generality and effectiveness.

Chapter 4 focuses on developing a new self-supervised (SSL) pre-training method for de-

tection and segmentation tasks in computational pathology [114]. We introduce a new SSL

framework, Concept Contrastive Learning (ConCL), and present our comprehensive exper-
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iments comparing ConCL to previous state-of-the-art SSL methods. This chapter outlines

the road map toward a better dense prediction pre-training method and explores the com-

ponents contributing to its success for pathology images. It ends with our proposed simple,

dependency-free, and self-bootstrapping concept-generating method.

Chapter 5, the final chapter, wraps up the thesis by summarizing the findings from our

research. It also discusses potential areas for further investigation, the implications of our

work, and its potential impact on medical image analysis and healthcare.
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CHAPTER 2

Towards Better Few-shot Histopathology Image

Classification

2.1 Introduction

Histological images play a crucial role in providing phenotypical and diagnostic information

for disease assessment and prognosis [91]. However, building computer-aided histological

image classification systems is expensive due to the scarcity of well-annotated data. Addi-

tionally, histological images exhibit diverse characteristics, including variations in acquisition

protocols, body sites, and tissue types. These significant domain shifts and variations pose

challenges in training data-hungry models. Therefore, the key to developing robust diagnosis

systems lies in training models with limited annotated samples.

In this chapter, we focus on addressing these challenges through few-shot learning (FSL).

While FSL has shown success in natural images, its application in histological image analysis

remains largely unexplored. To facilitate the study of FSL and generalized FSL (GFSL) in

histology images, we set up three cross-domain tasks that involve near-, middle-, and out-

domain shifts from base class to novel class. Additionally, we investigate the impact of

homogeneous and heterogeneous shot selection, where few-shot samples come from the same

whole slide image (WSI) or different ones.

To enable label-efficient learning and improve generalizability, we propose a few-shot

system that incorporates contrastive learning (CL) with latent augmentation (LA). Our

approach leverages CL to learn a meaningful encoder during pre-training, while LA transfers

semantic variations in latent space from “unlabeled” base datasets. By fully exploiting the
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base dataset through learned model weights and captured latent variations, our method

enables effective few-shot learning.

Interestingly, we observe a larger generalization gap between state-of-the-art CL models

and supervised models in histological images compared to natural images. Previous studies

on CL primarily focus on “iconic” natural images, where a dominant object occupies the im-

age center. However, histological images contain multiple small objects (e.g., cells, nucleus)

and various textures (e.g., muscle, mucus) densely distributed. Thus, they present a unique

and relatively unexplored challenge. We aim to fill this gap by studying CL for non-iconic,

multi-object, and multi-texture histological images. Furthermore, we provide empirical ex-

planations for the observed generalization gap between CL models and supervised ones in

this context.

To summarize, our chapter’s key findings and contributions are as follows:

• We explore FSL in histological data, focusing on domain-specific problems.

• We propose a simple label-efficient method for few-shot learning that incorporates

contrastive learning and latent augmentation. Through extensive experiments, we

demonstrate consistent gains and improve generalizability.

• In contrast to findings in iconic natural images, we show that CL-learned models

outperform supervised counterparts by a large margin in histology images. We provide

empirical explanations for this observation, contributing to a better understanding of

model generalization in the context of representation learning and histology image

analysis.

A large portion of this chapter has been published in [115].

2.2 Related Work

Few-shot learning (FSL). FSL has been explored from various perspectives, such as

metric-based and optimization-based approaches [33, 77]. This study follows a ”pre-training
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and fine-tuning” methodology in the metric-based domain, where previous research typically

learned a shared metric space using standard fully-supervised pre-training [93, 16, 101]. We

propose the integration of self-supervised pre-training to enable more efficient label use and

demonstrate that it can achieve stronger generalization than supervised pre-training.

FSL in medical images. FSL in medical images is in its early stages, especially in the

case of histology images. Mahajan et al. [67] examined FSL methods for skin disease

classification, while Chen et al. [17] addressed COVID-19 CT image classification using

contrastive pre-training and prototypical network fine-tuning. In terms of histology images,

Medela et al. [68] used a triplet loss [80] to pre-train an encoder, followed by a fine-tuned

SVM classifier for few-shot domain adaptation. Concurrent to our work, Shakeri et al.

[82] also proposed a benchmark for few-shot classification of histological images. Our work

explores similar but distinct settings, with broader investigations conducted, such as the

GFSL task and hetero-/homo-geneous few-shot selection.

Self-supervised learning. Self-supervised learning aims to develop useful representations

without reliance on true labels. Recent leading variants can be classified into contrastive-

based learning [20, 14, 42], cluster-based learning [10, 11], and expectation prediction based

learning [38, 19]. Most of these studies have focused on pre-training on ImageNet-like images,

with recent interest shifting towards images containing multi-objects and multi-textures [15].

We consider histology images as an ideal subject for such study, and demonstrate that con-

trastive learning can cluster structural ”part-whole” information and maintain ”global-local

consistency”, thus enabling better generalization for such data than supervised counterparts.

Representation variation augmentation. The concept of exploiting feature variations

has a long history [45, 78]. Recent variants have further refined this idea. For instance,

[40] and [81] use a generator to create ”hallucinated” novel features from the variation of

base samples. This technique is later extended to not rely on base samples [101]. Several

other studies [103, 120, 62, 118, 102] have utilized class or intra-class variances to augment
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Figure 2.1: Example images from NCT [51]. Each column contains two samples from

the same class (column name).

data for classification, segmentation, and ”long-tail” problems. This study follows the line of

these works, but instead of relying on label information, we obtain and transfer variations,

allowing our method to scale gracefully to other label-hungry problems.

2.3 Preliminaries and Problem Formulation

Whole-Slide Image (WSI). Whole-slide images (WSIs) are digital scans of histology

tissue slides obtained through biopsy or surgery. Due to their micron-sized pixels and

centimeter-sized slides, WSIs are typically gigapixel in size and are divided into numerous

small “patches” for computational analysis. These patches serve as the basic units for patch-

level classification. As WSIs can exhibit variations in tissue context and staining quality, the

extracted patches retain the styles of their source WSIs, leading to inter-WSI domain shifts.

Moreover, unlike iconic natural images that primarily feature a dominant object in their

centers, histological patches contain multiple small objects and texture-like tissues. This

distinction makes the classification process different from traditional recognition systems

that focus on dominant objects.

Few-shot Learning (FSL). Few-shot learning aims to train models using a large “base”

dataset and then generalize to unseen classes with limited labeled data. Formally, the base

dataset is defined as Dbase = {(xi, yi)}Nbase
i=1 ⊂ Xbase × Ybase, where Xbase is the sample set,
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and Ybase is the corresponding label space. The novel dataset Dnovel = {(xi, yi)}Nnovel
i=1 has a

disjoint label space, i.e., Ybase ∩ Ynovel = ∅, where Ynovel represents the novel label space. A

few-shot learner is trained on Dbase and evaluated on a series of meta-tasks sampled from

Dnovel. Each meta-task is defined as T = {(Si,Qi)}Ii=1, where S = {(xi, yi)}NKi=1 ∼ Dnovel

is a small training set, referred to as the support set, and Q = {xi}NQi=1 ∼ Xnovel is a small

test set, known as the query set, with I denoting the number of tasks. This formulation

represents an N -way K-shot (Q-query) task, where N classes are sampled from Ynovel, each

with K labeled samples for training and Q unlabeled samples for testing. Typically, K is

smaller than Q, for example, K = 1 or 5, and Q = 15. The evaluation stage is often referred

to as the meta-testing stage.

Generalized Few-shot Learning (GFSL). In contrast to FSL, GFSL samples meta-

tasks from a joint datasetDjoint = Dbase∪Dnovel, with a joint label space Yjoint = Ybase∪Ynovel.

In GFSL, both the support and query sets contain samples from both seen base classes.

2.4 Methods

Consider a few-shot classifier f = fθ ◦fϕ, where fϕ is an embedding function, also known as a

feature extractor. It maps a high-dimensional input image x ∈ R3HW into a low-dimensional

latent space Rd. The classifier fθ is trained on the support set S and predicts results for the

query set Q. The parameters ϕ and θ correspond to fϕ and fθ, respectively. Our method

consists of two phases: a) pre-training fϕ on base datasets and b) training fθ on support sets

with latent augmentation during the meta-testing stage. Figure 2.2 provides an overview of

our methods. We elaborate on these phases in the following subsections.

2.4.1 Pre-training

Current paradigms in FSL for training fϕ lie in two folds: i) meta-training, also known as

episodic training, where base datasets are divided into various episodic N -way K-shot meta-
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tasks that simulate meta-learning; and ii) standard training, which involves fully supervised

classification pre-training without splitting the data. The former one emphasizes the idea of

meta-learning for fast adaption [79, 33], while the latter one attributes the success of FSL

to feature reuse [74] or good representations [16, 93]. In this work, we follow the standard

training approach and believe that better-learned encoders lead to stronger generalizability.

Fully-supervised pre-training (FSP). We perform joint training of a feature extractor

fϕ and a proxy classifier fψ using the standard cross-entropy loss on a base dataset. After

pre-training, only fϕ is retained and fixed for downstream tasks. We refer to the embedding

functions learned through FSP as fFSPϕ .

Contrastive-learning pre-training (CLP). Self-supervised learning methods alleviate

the need for data annotation. In this work, we focus on contrastive learning, specifically

MoCo-v3 [20], which currently achieves state-of-the-art performance. MoCo-v3 consists of

three components: a feature extractor (backbone) fϕ, a projection head fg, and a prediction

head fq. Given an unlabeled base training dataset Du
base = {xi}Nbase

i=1 , the model learns to

minimize the contrastive loss function with respect to the unlabeled batch data:

ϕ∗, g∗, q∗ = argmin
ϕ,g,q

E
x,x′ t∼Du

base

[
LCLP

(
fq ◦ fg ◦ fϕ(x), fg̃ ◦ fϕ̃(x

′);ϕ, g, q
)]

, (2.1)

where LCLP represents the contrastive loss function. x and x′ are two views of the same

image obtained by applying random data augmentation t. ϕ̃ and g̃ denote the momentum

updated copies of ϕ and g, respectively. In short, contrastive learning aims to maximize the

similarity between positive pairs (two augmented views of the same image) while minimizing

the similarity between negative pairs (two different images). After CLP, the auxiliary heads

fg and fq are removed, while fϕ is retained and fixed, denoted as fCLPϕ .
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Figure 2.2: Overview. With pre-trained feature extractor (a), N-way K-shot classifiers

are learnt (b) based on LA (d) to classify WSI patches (c). Given a novel representation

z, LA generates its new features from the most likely variation in the base dictionary, so

few-shot novel samples can be proliferated in a reasonable way, and the decision boundary

could therefore be improved.

2.4.2 Latent Augmentation

The pre-trained feature extractor fϕ only transfers parts of available knowledge in base

datasets by reusing the learned weights. The more transferable knowledge is inherent in

data representations. It is reasonable to assume that base classes and novel classes share

similar modes of variations [101] since they are all histology-related. Such inductive biases

allow us to transfer variations from seen tissues or styles to unseen ones. Here we propose to

transfer the representation variations in a simple unsupervised way. Below, we first introduce

latent augmentation and then discuss our motivations and intuitions about it.

Base dictionary and Latent augmentation (LA). We aim to optimally leverage train-

ing data, by both reutilizing pre-trained model weights fϕ and enabling the transfer of poten-

tial semantic shifts in clustered representations. With an unlabeled base dataset, K-Means

is performed on the representations z = fϕ(x) to get C clusters (Figure 2.2-(a), red arrows).

We construct a base dictionary, B = {(ci,Σi)}Ci=1, where ci and Σi represent the i-th cluster

prototype and its intra-cluster covariance matrix respectively. In essence, B encapsulates how

fϕ envisions base dataset samples would diverge in the latent space for each cluster, using

a multivariate Gaussian N (ci,Σi). During the meta-testing stage, with the base dictionary

B, LA queries the most likely variations from B using original representations z, leading to

additive augmentation z̃ = z + δ (Figure 2.2-(b,d)). Here, δ is sampled as δ ∼ N (0,Σi∗),

where i∗ corresponds to the maximum cosine similarity between z and ci. The classifier fθ

is trained on both original z and augmented z̃ representations (Figure 2.2-(c)).
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2.4.2.1 Intuitions and motivations on latent augmentation

Why Variation Transfer Works. LA aims at transferring the knowledge of variations.

Such knowledge brings semantic diversity from base classes to novel classes. For instance,

cancerous cells, derivatives of normal ones, can be simulated through LA given limited cancer-

ous samples, employing variations captured in base dictionaries. This mirrors a pathologist’s

knowledge expansion from familiar to unfamiliar phenotypes. From an under-representative

learning perspective [120], emulating latent variations brings underrepresented distributions

nearer to regular ones. In low-data learning scenarios, few-sample distributions are uncal-

ibrated [118]; thus, utilizing base class distributions can potentially rectify novel class cali-

brations. Moreover, LA serves as a consistency regularization technique, enforcing classifier

predictions to remain consistent across varied perturbations, beneficial in low-data circum-

stances [2, 6, 90]. We later demonstrate in §2.5.3 that LA surpasses data augmentation (DA)

significantly, fulfilling DA’s role.

Why linear additive augmentation is meaningful. Thoroughly trained deep networks

are theorized to excel at linearizing deep features [4, 94], motivating linear inter/extrapolation

of features, namely, additive generation of new features. Recent studies [24] validate this by

investigating universal label-preserving additive augmentations in latent space across varied

data modalities, endorsing the efficacy of simple linear transformations.

Why base dictionary construction is warranted in both FSP and CLP. FSP

employs the classification task as a surrogate to train effective encoders fϕ. During opti-

mization, features are impelled to amplify their dot-product similarity with class weights

in fψ, thereby constituting a significant metric space. In the context of CLP, contrastive

loss—a form of metric-based loss—nudges alike features closer and disparate representations

apart, also yielding an informative metric space. Thus, feature distance in the representation

space is meaningful for both FSP and CLP, warranting unsupervised clustering to form a

base dictionary.
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2.5 Experiments

2.5.1 Setup

Datasets. Accounting for tissue variations across body sites, we employ three public his-

tology datasets from different sites to create tasks with diverse domain shifts: NCT-CRC-

HE-100K (NCT) from the colon site [51], LC25000 (LC-25K) from the lung and colon [8],

and PAIP19 (PAIP) from the liver [52]. NCT comprises 9 classes with a total of 100k dis-

tinct patches of size 224× 224. LC-25K includes 5 classes, with 5,000 patches in each, sized

768 × 768. PAIP contains 50 WSIs, each of size about 45k×45k, with 3 annotated mask

classes. For LC-25K, patches are resized to 224 × 224. For PAIP, foreground tissues are

cropped into 75k patches of size 224× 224 and labeled by majority voting. Novel and base

classes from different organs are considered out-domain, and those from the same organ are

near-domain if from the same source; otherwise, they are middle-domain due to imaging

protocol differences.

Task i) Near-Domain Task (GFSL Study). NCT is split randomly into a training

set (80k images) and a test set (20k images) by 80%/20%. The training set undergoes a

leave-one-class-out process to create 9 base datasets, and the test set is utilized as Djoint

for evaluation, generating 9 sub-tasks, each with a novel class omitted from pre-training

datasets.

Task ii) Mixture-Domain Task (FSL Study). NCT’s entire training set (80k im-

ages) serves as Dbase, and LC-25K is used as Dnovel. Two of the five classes in LC-25K

are colon-related (middle-domain novel classes), while the remaining three are lung-related

(out-domain novel classes).

Task iii) Out-Domain Task (FSL Study). As in the mixture-domain task, NCT’s

training set is used as Dbase and PAIP as Dnovel. Considering the liver tissues from PAIP

differ from colon tissues in NCT, we view them as out-domain novel classes. To exam-

ine heterogeneous and homogeneous shot selection, we use WSI ID to split PAIP into a

support WSI set (15 WSIs with 22.5k images) and a query WSI set (35 WSIs with 52.5k
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images). Evaluation draws support and query samples from their respective WSI sets, with

the heterogeneous strategy selecting few-shot samples from various support WSIs, and the

homogeneous strategy selecting from a single randomly chosen support WSI.

Evaluation. Unless specified, the near-domain task evaluates methods over 1000×9 (9 sub-

tasks) random meta-tasks; the mixture- and out-domain tasks over 1000 randomly sampled

meta-tasks. All meta-tasks use 15 samples per class as the query set. We report the average

F1-score and a 95% confidence interval. Given the unequal numbers of base and novel classes,

we adopt the convention from GZSL [106] and GFSL [85] to report their average harmonic

mean.

Implementations. I. Pre-training. We employ ResNet-18 as the embedding function

fϕ and use l2-normalized features for clustering and downstream meta-tasks as in previous

FSL studies [93, 16]. II. Latent Augmentation. For reproducibility, we apply faiss [50],

a clustering library, to execute K-means with a fixed seed. The base dictionary contains 16

prototypes (C = 16), discussed in the ablation section §2.5.3). Each sample is augmented

100 times (including the original one) by LA in each meta-task.

Compared methods. Recent studies [16, 93], including a concurrent work on histology

image [82], indicate that standard pre-training yields result comparable to complex episodic

training. Therefore, we compare methods using standard pre-training:

1. NearestCentroid : This method calculates class centroids from support sets and assigns

query samples to the nearest centroids, as demonstrated in [100], [89], and [21];

2. LinearClassifier : This method trains a new fully-connected layer using different loss

functions [16, 57] with respect to support samples or employs direct linear models from

scikit-learn [71], such as LogisticRegression [118, 93].

For ease of implementation and consistency, we employ NearestCentroid, along with two
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l2-regularized linear classifiers — LogisticRegression and RidgeClassifier, all from the scikit-

learn APIs [71].

2.5.2 Main Results

Fully-supervised fFSPϕ vs. Self-supervised fCLPϕ . Table 2.1 reveals that CLP outper-

forms FSP in generalizing to novel classes significantly. Comparing the best vanilla entries

(w/o. LA) using both pre-training methods, CLP exhibits an average improvement in Harm-

Mean of 4%, 5%, and 8% in 1-/5-/10-shot settings for the near-domain task, and 10%, 19%,

16% for the mixture-domain task. Also, CLP representations benefit more from increased

shot numbers than FSP’s in both tasks, e.g., +17% vs. +11% and +12% vs. +10% when 1-

shot escalates to 5-shot for linear classifiers in near- and mixture-domain tasks, respectively.

Despite FSP’s superior performance in base classes under full supervision, CLP exhibits bet-

ter generalization to novel classes. Moreover, Table 2.3 confirms CLP’s superiority over FSP

in the out-domain task with a larger domain shift. This variance between FSP and CLP

in histology images somewhat contradicts observations in natural images where they exhibit

similar generalizability. We explore and discuss this in §2.5.4.

Latent augmentation yields consistent improvement. Regardless of pre-training

methods, LA consistently outperforms baseline linear classifiers, attesting to its effective-

ness. With base dictionaries, a limited number of few-shot samples can expand reasonably

through the transfer of latent variations. This improvement persists from near-domain to

mixture-domain tasks (Table 2.1), though the enhancement becomes less pronounced in the

out-domain task (Table 2.3). This is expected, as the three classes defined in PAIP (non-

tumor, viable-tumor, and other) are extremely coarse-grained and may encompass several

fine-grained classes. As a result, few samples may not sufficiently represent their intricate

semantics. This observation doesn’t undermine the effectiveness of latent augmentation;

instead, it reassures its validity.
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Table 2.1: Main results in near-/mixture-domain tasks. In near-domain task, the

“Base”/“Novel” columns report average F1-scores of the base/novel classes; the “Harm-

Mean” columns report their average harmonic mean. In mixture-domain task, the same

metrics are reported w.r.t. middle-domain classes and out-domain classes. “±” numbers

denote 95% confidence interval across multiple runs. “LA” denotes latent augmentation.

The bold numbers denote the best while the underscored numbers denote the second best.

1-shot 5-shot 10-shot

9-way-K-shot Near-domain task

Methods Base Novel HarmMean Base Novel HarmMean HarmMean

Fully-supervised pre-training (FSP)

NearestCentroid 77.38±0.96 43.80±1.12 54.84±1.03 88.64±0.41 57.67±0.80 68.36±0.53 71.00±0.46

LogisticRegression 75.14±1.03 37.80±1.17 48.84±1.09 88.45±0.40 48.76±0.93 59.99±0.55 66.39±0.45

RidgeClassifier 75.89±1.02 37.55±1.18 48.75±1.09 88.44±0.40 45.73±0.97 56.96±0.57 60.33±0.48

LogisticRegression + LA (ours) 78.88±0.94 43.42±1.14 54.83±1.02 90.85±0.36 63.54±0.74 73.63±0.48 78.14±0.39

RidgeClassifier + LA (ours) 76.19±1.03 40.71±1.16 51.95±1.07 88.86±0.41 53.90±0.90 64.87±0.55 66.96±0.46

Contrastive-learning pre-training (CLP)

NearestCentroid 71.45±0.95 51.95±1.03 58.81±0.98 83.11±0.52 65.36±0.80 72.51±0.62 75.18±0.54

LogisticRegression 70.83±1.01 48.76±1.12 56.13±1.06 84.04±0.50 62.69±0.87 70.89±0.62 76.83±0.51

RidgeClassifier 71.24±0.99 49.18±1.12 56.56±1.05 85.89±0.46 66.12±0.83 73.73±0.58 79.45±0.45

LogisticRegression + LA (ours) 72.11±0.95 53.15±1.08 59.82±1.01 86.43±0.46 76.68±0.61 80.67±0.51 85.48±0.40

RidgeClassifier + LA (ours) 72.60±0.99 54.50±1.11 60.89±1.04 86.18±0.47 78.00±0.60 81.28±0.51 86.17±0.40

5-way-K-shot Mixture-domain task

Methods Middle Out HarmMean Middle Out HarmMean HarmMean

Fully-supervised pre-training (FSP)

NearestCentroid 45.65±1.27 54.94±1.22 49.87±1.24 49.01±1.05 61.28±0.78 54.56±0.90 55.75±0.84

LogisticRegression 40.07±1.35 48.00±1.44 43.68±1.39 49.42±1.02 54.18±1.04 51.69±1.03 56.12±0.93

RidgeClassifier 41.46±1.36 48.74±1.43 44.81±1.39 55.28±0.98 56.12±1.05 55.70±1.01 60.77±0.88

LogisticRegression + LA (ours) 46.98±1.33 53.34±1.30 49.95±1.31 65.51±0.81 62.64±0.87 64.04±0.84 67.60±0.73

RidgeClassifier + LA (ours) 47.70±1.38 52.13±1.35 49.82±1.36 67.45±0.80 60.97±0.95 64.04±0.86 67.23±0.74

Contrastive-learning pre-training (CLP)

NearestCentroid 71.42±1.14 52.01±1.05 60.19±1.09 84.50±0.49 65.31±0.71 73.68±0.58 76.30±0.49

LogisticRegression 72.16±1.06 51.14±0.97 59.86±1.01 83.91±0.49 61.98±0.71 71.29±0.58 74.89±0.48

RidgeClassifier 72.57±1.04 51.13±0.96 59.99±1.00 85.22±0.43 62.47±0.72 72.09±0.54 75.84±0.46

LogisticRegression + LA (ours) 71.77±1.09 52.73±1.03 60.79±1.06 87.51±0.39 72.92±0.65 79.55±0.48 84.95±0.41

RidgeClassifier + LA (ours) 71.86±1.08 52.92±1.04 60.95±1.06 88.55±0.38 74.04±0.65 80.64±0.48 86.32±0.39
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Figure 2.3: Ablations on latent augmentation. (a) The effect of varying the number of

prototypes. Dashed lines correspond to baselines for the solid lines of matching colors. (b)

The effect of the number of augmentation times. The harmonic mean is plotted. “LA×DA”

denotes that T latent augmentations are applied after T traditional data augmentations

(resulting in T 2 total augmentations). (c) The effect of using labels and calibration. “DC”

refers to Distribution Calibration. “calib.” refers to calibration.

2.5.3 Ablations

To assess the impact of design choices, we perform ablation studies by excluding two cancer-

related classes, specifically cancer-associated stroma (STR) and colorectal adenocarcinoma

epithelium (TUM), from NCT, treating them as novel classes, and using the remaining

classes as base classes. Unless stated otherwise, all ablations are conducted on CLP models

using RidgeClassifier for 300 meta-tasks in a 5-shot setting.

Number of prototypes in base dictionary. Figure 2.3 (a) shows how performance

varies with the number of prototypes C. We observe the similar tendency between base

class and novel class, where their harmonic means peak at C = 16; we subsequently choose

C = 16 for all experiments. Besides, the performance of base classes and novel classes shows

opposite trends from C = 4 to C = 16. The trade-off exists here that as the granularity of

clusters increases (C ↑), the intra-cluster variance decreases, which results in better grouping

accuracy but brings less semantic variation. The novel classes benefit from larger variation

while the base classes benefit from more accurately estimated variation since they have been
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Table 2.2: Ablations on covariance

type. See text for more details.

Cov Type Base Novel HMean

None 85.85±0.78 53.27±1.63 65.74±1.06

Tied 79.35±1.08 65.32±1.21 71.65±1.14

Diag 85.91±0.88 62.66±1.42 72.46±1.08

Spherical 85.78±0.87 62.00±1.39 71.97±1.07

Full (default) 87.51±0.80 65.79±1.36 75.11±1.01

Table 2.3: Results in out-domain tasks.

Average F1-scores from 1000 meta-tasks are

reported.

RidgeClassifier Homogeneous Heterogeneous

3-way K-shot FSP CLP CLP+LA FSP CLP CLP+LA

K = 1 36.90 42.56 43.14 / / /

K = 5 39.00 48.91 49.83 43.35 52.25 53.67

K = 10 40.26 50.57 51.62 45.91 55.96 58.35

K = 50 41.53 51.76 53.71 50.54 61.88 65.38

K = 100 41.23 52.74 54.25 52.45 64.03 67.56

exposed in training. Nevertheless, LA demonstrates its robustness by consistent improvement

over baselines (solid vs. dashed lines of same color in Fig. 2.3-(a)).

DA vs. LA, and number of augmentation times. Here we compare LA with data

augmentation (DA), and their combination. Figure 2.3-(b) shows that LA outperforms

DA by a large margin. The boost brought by DA saturates easily and keeps dropping

thereafter, while LA keeps improving with all tested cases. Besides, DA can marginally

improve LA (LA×DA v.s. LA). We conclude that LA has already covered the role played by

DA in an implicit way since the most of gains are brought by LA. It is worth emphasizing

the computation budget involved in LA (addition in Rd space) is significantly lower than

DA (image augmentation in R3HW space and encoder forwards). Therefore, we run all

experiments only with LA.

Utilizing Label Information. LA constructs the base dictionary without utilizing any

label information, including the number of classes. However, when label information is

available, similar methods like Distribution Calibration (DC) [118] can be employed. Figure

2.3-(c) presents comparisons between using labels and calibration. When supervised, both

“DC” and “LA+supervised dict.” deliver competitive performance. Interestingly, when pro-

vided with the number of base classes, “LA w/ 7-proto” achieves superior results compared
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to using a 16-prototype dictionary, and it performs comparably to the supervised DC ap-

proach. The performance can be further improved with calibration. These results suggest

that with LA, simply knowing the number of base classes can be sufficient to achieve results

comparable to those obtained when all example labels are known.

Covariance Types. We also explore other types of covariances that LA can use. Specifi-

cally, we consider: 1) “Tied”, where all clusters share a covariance matrix estimated from the

entire base dataset, 2) “Diag”, where each cluster has its own diagonal covariance matrix,

i.e., diagonal elements are a variance vector and non-diagonal elements are zeros, 3) “Spher-

ical”, where each cluster has its own single variance scalar shared by all feature dimensions.

The results shown in Table 2.2 demonstrate that LA improves performance with all types of

covariances. This emphasizes the importance of diversifying few-shot samples with variation.

Using a full covariance estimation provides the best performance.

Heterogeneous vs. Homogeneous Patch Selection. We examine the heterogeneous

and homogeneous patch selection strategies defined in the out-domain task (§2.5.1). Table

2.3 presents the results. Two key observations can be made: i) Heterogeneous selection

consistently provides higher baseline performance compared to homogeneous selection; and

ii) LA contributes more significantly to improvements in heterogeneous selection. This in-

dicates that heterogeneous patches offer reliable and diverse “anchor” samples compared to

homogeneous patches, which can thus benefit more from leveraging the base dictionary.

2.5.4 More discussion

Disparity between fCLPϕ and fFSPϕ Influences the Choice of Base Learner. From

Table 2.1, we note that i) the strongest baselines for CLP and FSP can vary, and ii) the simple

NearestCentroid model can sometimes surpass the performance of vanilla l2-regularized linear

classifiers for FSP. Here, we briefly provide some insights on these observations.

The representations generated by CLP can have different distributions compared to those
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Figure 2.4: Visualization of samples learned by CLP and FSP. “Abs./Rel. Sim.”

columns show the absolute/relative cosine similarity between the global feature and the

local ones. Relative similarity is the min-max normalized absolute similarity. k indicate the

cluster numbers used by K-Means. “Low”, “middle” and “high” denote using features from

stage-3, 4, and 5 from a ResNet. See text in §2.5.4 for discussion.

of FSP, as has also been noted in [42]. Given a limited number of training samples, different

classifiers can form their own biases when building decision boundaries, which subsequently

leads to differing degrees of generalizability.

Furthermore, no regularization techniques are employed during FSP [14], for instance,

weight decay [55], DropBlock [57, 93], or ”distill” regularization [93]. Although the linear

classifiers incorporate an l2 penalty, they may still overfit in such a representation space when

only a limited number of samples are available. Consequently, the simplest NearestCentroid

model, which possesses the least complexity, can yield better results than these overfitted

linear models.

Why do CLP Models Generalize Better than FSP Ones in Histology Images? In

an attempt to understand why such a significant generalization gap exists, we followed the

methodology from [15] to examine how features cluster in space. Specifically, we visualized

the cosine similarity between a feature map (a set of local representations) and its global

average (global representation). We also performed K-Means on the feature maps from
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different layers (i.e., stages 3, 4, and 5 of ResNet) with varying numbers of clusters.

From Figure 2.4, we observed that the FSP model maintained a high degree of global-local

similarity in the lower and middle levels, while the CLP model retained this high similarity

at a higher level (solid boxes). Furthermore, the CLP model extracted low-level features

related to edges and subsequently aggregated adjacent similar structures (dashed boxes). In

contrast, the FSP model was able to differentiate nuclei at lower and middle levels but failed

to encode structure-related features in deeper layers.

These findings deviate from those found in ImageNet-like images [15], where FSP and

CLP displayed no difference across layers1

As observed from further visualizations of base class samples (see bottom of Figures 2.4),

the disparity between FSP and CLP is not limited to previously unseen classes, but also

present in seen classes.

In the bottom row of Figure 2.4, it’s observed that FSP focuses primarily on the most

discriminative parts, leaving the remaining ”redundant parts” disordered (indicated by the

dashed box). However, when a new class is introduced, the discriminative parts are likely

to change. FSP’s inability to encode all relevant information could be responsible for its

struggle to generalize to new classes.

Meanwhile, CLP captures most tissue-structure-related features, which are potentially

useful for recognizing novel classes, possibly leading to better generalizability. However, it is

interesting to note that FSP and CLP models exhibit similar behavior in ImageNet dataset

under the same visualization process (a comparison can be found on the website).

So, why does this disparity exist? The ImageNet dataset is more diverse with 1000

classes and approximately 1.28M images, compared to histology datasets. FSP models in

ImageNet need to recognize the discriminative parts of all 1000 classes. In such a case,

redundant information in one class might aid in the recognition of another class. Hence,

FSP may eventually encode most of the available information useful for new classes related

1See [15] or https://contrastive-learning.github.io/intriguing/ for a comparison.
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to ImageNet classes.

However, histology datasets usually lack a diverse range of annotated classes that would

aid the development of a comprehensive FSP model. An intriguing question for future work

could be whether CLP always outperforms FSP in terms of generalization when pre-training

on a base dataset with a limited number of annotated classes, and whether the generalization

gap would increase as label diversity decreases.

Yet, the visualization results and the significant generalization gap demonstrated in our

work remain empirical observations. Our discussion attempts to unravel possible reasons

behind them. We hope our work will contribute to the further development of representation

learning, histology image analysis, and beyond.

2.6 Conclusion

In this work, we have conducted an initial investigation into the problem of few-shot learn-

ing for histology images. We’ve integrated contrastive learning and latent augmentation to

fully harness training data in an unsupervised manner. This approach allows our method

to elegantly scale to other large problems requiring abundant labels. Importantly, our study

demonstrates that the generalization gap between state-of-the-art contrastive learning pre-

training methods and supervised pre-training in histology images is larger than in ImageNet

experiments. We analyze the possible reasons behind this and provide our empirical under-

standing.
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CHAPTER 3

Towards Label and Computation Efficient Training for

Multiple Instance Learning of Whole Slide Image

Classification

3.1 Introduction

Whole-slide pathological images (WSIs) offer critical insights for disease diagnosis and as-

sessment, yet their analysis demands substantial expertise and time [91]. Deep learning

(DL) has significantly contributed to enhancing the efficiency of WSI diagnostic systems

[47, 88, 48, 72, 41, 59, 97]. However, the successful application of DL depends on massive

datasets and diverse training samples, necessitating efficient pipelines for large datasets and

diversification techniques such as data augmentations. WSIs present unique challenges in

these respects due to their massive size and lack of diversity.

WSIs, with up to 100k×100k pixels, are difficult to process with DL models [12]. Despite

efforts to address them in an end-to-end manner at the cost of 300 GB or more memory [12],

a more feasible solution is to divide each WSI into equal-sized “patches” or “tiles” and sort

for weakly supervised multiple instance learning (MIL) methods [110, 63, 83, 22]. Within the

context of MIL, a WSI with extracted patches is considered a bag with multiple instances.

We refer to the number of instances of one bag as its bag size. The bag size usually varies

strikingly in practice; e.g., the Camelyon16 [3] dataset has an average bag size of 8k at

20× magnification (a commonly used magnification), with the largest bag size surpassing

50k. The varying bag size would lead to an unbalanced input/output (I/O) stream and

make the parallelization hard since bags of different sizes cannot be directly composed into a
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batch. Overall, the conventional MIL-based WSI classification pipeline is memory-expensive

(large bags), I/O unstable (varying bag sizes), and computation-inefficient (small batch size).

These problems can hinder current MIL methods from scaling to giant datasets.

Moreover, while WSIs may contain a large number of training patches, the data is often

repetitive and lacks diversity. Enhancing data diversity is crucial since DL models perform

better with more diverse labeled data. Current augmentation methods are inefficient for

WSIs, given that augmenting a single WSI requires tens of thousands of transformations or

new patches, leading to longer training periods [87].

In response, we introduce ReMix, a general, efficient, and effective MIL-based WSI classifi-

cation framework. ReMix reduces the bag sizes significantly by using clustered instance proto-

types to represent a WSI. Then, it applies a novel data augmentation method, ”Mix,” which

introduces online, stochastic, and flexible latent space augmentations. This method combines

different bags by appending, replacing, interpolating instance prototypes, or transferring se-

mantic variations among different bags, thereby enforcing the model to learn perturbation-

invariant class-related features.

The proposed ReMix framework, despite its simplicity, is highly effective and can be

integrated with various state-of-the-art MIL methods for WSI classification to enhance their

performance. Empirical evaluations on two public and one in-house dataset reveal that

ReMix consistently improves generalization performance and reduces the training cost.

• We propose a general, simple yet flexible, and effective method to improve the training

efficiency of the MIL framework for WSI classification.

• We propose a novel and efficient latent augmentation method for MIL-based WSI

classification, an area yet unexplored.

• We significantly enhance the performance of existing state-of-the-art MIL methods,

reducing the costs considerably.

A large portion of this chapter has been published in [116].
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3.2 Related Work

3.2.1 MIL in WSI analysis

Multiple instance learning (MIL) is a viable approach to address the weak supervision issue

inherent in WSI classification. Due to the large size of WSIs, most studies opt for two-

stage learning, training a patch encoder to map tissue patches (tiles) to feature vectors,

and then a MIL learner aggregates all feature embeddings using various mechanisms such

as max-pooling and attention-based pooling [49, 58, 83]. These aggregated representations,

or bag representations, are used for final predictions. There are several strategies for patch

encoder learning. The first, SimpleMIL [23], treats all instances in a WSI as sharing the bag-

level label and trains a classification model accordingly. Recent methods have also found

self-supervised learning effective for pre-training patch encoders [58, 115, 112].

3.2.2 Clustering in WSI analysis

End-to-end training of patch encoder and MIL learner is enabled by [107], proposing to

randomly split WSI patches into k groups and select representative patches from each for

training. Centroids are recomputed and samples reassigned at each epoch’s beginning. [84]

follows a similar process but utilizes K-Means clustering. However, clustering in every epoch

for every slide, as done in [107] and [84], can be exceedingly time-consuming. Various

sophisticated sampling strategies have been developed to alleviate this [107]. [119] clusters

over extracted features based on an ImageNet-pre-trained encoder to define phenotype groups

and sample patches for MIL training. In contrast, our work performs clustering once post pre-

training and uses cluster centroid vectors as input, and further leverages cluster covariance

in the “Mix” step to better capture a cluster’s distribution.
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3.2.3 Data augmentation

Data augmentation is crucial for deep learning when training samples are scarce, a common

situation in medical imaging. While widely studied for natural images [7, 6, 90, 28, 29, 30,

122, 121], and medical images [34, 86, 31, 111, 123, 117, 115], most approaches augment

samples in the input space, posing an efficiency challenge for gigapixel WSIs. The work

of [115] is closely related to ours, applying latent space augmentation for few-shot patch

classification for WSIs. However, it is limited to instance-level patches and lacks bag-level

slide augmentations. We introduce more latent space augmentations applicable to WSIs.

To our knowledge, our work is among the first to explore bag-level augmentations for WSI

analysis.

3.3 Method

In this section, we first introduce the preliminary knowledge of MIL in Section 3.3.1, then

elaborate on the detailed steps of ReMix in Section 3.3.2, introduce a straightforward exten-

sion of ReMix applied to spatial-aware MIL methods in Section 3.3.2.4, and finally discuss

some intuitions on the effectiveness of ReMix in Section 3.3.3.

3.3.1 Preliminary: MIL Formulation

Multiple instance learning (MIL) aims to address the weakly supervised classification prob-

lem. Under the MIL setting, a dataset that has N bags is formulated as D = {(Bi, yi)}Ni=1,

where Bi = {xj}Ni
j=1 denotes the i-th bag that has Ni instances, and yi is the bag label. In

WSI classification, each WSI corresponds to a bag, and all patches extracted from it are re-

garded as its instances. The average bag size varies across datasets and patch magnifications.

For example, the average bag size of the Camelyon16 dataset [3] under 20× magnification is

about 8k, while the largest bag size is around 50k.

This work focuses on the spatial-agnostic MIL methods that do not rely on the spatial

relationship between instances to make predictions. A general spatial-agnostic embedding-
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Figure 3.1: ReMix’s overview. (a) Patch encoder pre-training. (b) Reduce the number of in-

stances by substituting them with prototypes (right); several patches can abstract a large-size

whole slide image (left). (c) Mix the bags by appending, replacing, interpolating prototypes,

or transferring intra-cluster covariance from other WSIs. (d) A visual illustration of append-

augmentation and replace-augmentation. (e) A visual illustration of covary-augmentation.

based MIL classification process can be expressed as

ŷi = g (P (f(x1), ..., f(xNi
))) , (3.1)

where f(·) is a patch encoder, g(·) is a MIL learner that aggregates information and makes

final predictions, and P denotes a permutation operator. The notation of P is only used to

mark the permutation-invariance property of a spatial-agnostic MIL classifier.

We also introduce a straightforward extension of ReMix to spatial-aware MIL methods

in Section 3.3.2.4 and show its effectiveness in Section 3.4.5.

3.3.2 ReMix

3.3.2.1 Overview

Figure 3.1 illustrates the ReMix approach. Initially, (a) we train a patch encoder using

self-supervised contrastive learning. Following that, (b) we assemble reduced bags using
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cluster prototypes and gather their covariance matrices. Finally, (c) we utilize the ”mix”

augmentation shown in (d, e) for MIL training.

3.3.2.2 Patch encoder pre-training

The weak supervision nature of WSI classification challenges the training of patch encoders

due to a lack of adequate patch-level labels. Conventional end-to-end training methods that

utilize all patches are often costly [9, 58], inefficient, and sometimes unfeasible. Therefore,

we adhere to the common two-stage training scheme, where a patch encoder f(·) is initially

trained, and subsequently, a MIL learner g(·) is trained on the extracted features. Typically,

a pre-trained encoder is used [58, 119], such as an ImageNet-supervised pre-trained encoder.

Several works [47, 9, 41, 13] follow SimpleMIL [23] to train a patch encoder based on noisy

labels, where the bag labels are assigned to all instances within the bags. Patch classification

is then conducted using these pseudo labels. Despite its popularity, a recent study shows

that its success is significantly associated with the proportion of label-related patches [58].

However, as we will demonstrate later in the experiments, this type of pre-training eventually

fails in one of our studied datasets, suggesting its use cases are limited.

Self-supervised learning methods such as SimCLR [14] and MoCo [42] produce effective

representations by maximizing the similarity between two different augmented views of the

same patch, and minimizing it between views from different patches. Recent studies have

recognized the superiority of self-supervised pre-training on large-scale and imbalanced WSI

patches over other methods [58, 26, 115]. Additionally, self-supervised pre-training that

doesn’t depend on class label information is preferable for label-hungry WSI problems. We

follow [58] to use a state-of-the-art self-supervised learning method – SimCLR [14] for patch

encoder pre-training. It is important to note that the choice of patch-encoder is relatively

orthogonal to our ReMix framework and downstream MIL learner’s training. For the sake of

completeness, we briefly discuss available pre-training methods here; however, their training

budgets are not considered in this work.
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3.3.2.3 Reduce

Conventionally, all patches extracted from a WSI are assembled as a bag for downstream

MIL classification [58, 47]. However, the bag size fluctuates from bag to bag in a range from

Ni = 500 to Ni = 50, 000, depending on whether it is from the needle biopsies or large/small

excisions. On the one hand, the large bags could lead to high I/O costs and high memory

consumption during training. On the other hand, the strikingly varying bag sizes could make

the I/O stream unstable and the training inefficient.

To tackle them, ReMix reduces the bag size via clustering. Stemmed from the nature of

WSIs that a large portion of tissue patches could be repetitive and redundant, we propose

substituting instances with instance prototypes. Specifically, for each bag, we perform K-

Means clustering on patches’ representations to obtain K clusters and use their prototypes

(centroids) to represent the bag:

B′
i = {ck}Kk=1,where ck =

1

Nk

Nk∑
i=1

f(xi) (3.2)

B′ is referred to as reduced-bag and ck corresponds to the k-th prototype. A WSI thumbnail

in Figure 3.1-(b) depicts how several patches (reduced-bag) can provide sufficient information

of the entire WSI (full-bag) for certain downstream tasks. The reduced-bag (the leftmost of

(b)) contains less than 1% number of patches compared to the full-bag (the leftmost of (a)).

Informally and visually, we can see they contain almost the same information since all the

representative patches are preserved. The reduced-bag can be seen as a denoised abstraction

of the full-bag.

To further exploit WSI information, inspired by [115], we construct a bag dictionary as

Φi = {(ck,Σk)}Kk=1 for each bag, where Σk corresponds to the intra-cluster covariance matrix

of the k-th cluster:

Σk =
1

Nk − 1

Nk∑
i=1

(f(xi)− ck) (f(xi)− ck)
T (3.3)

A bag dictionary captures how its instances distribute at a high level by modeling a multi-

variate Gaussian distribution N (ck,Σk). Besides, the covariance can manifest the semantic

directions inherent in each cluster, e.g., how features vary in that cluster. Therefore, adding
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semantic translation vectors sampled from the covariance matrix could produce meaningful

features. Circles with dashed boundaries in Figure 3.1-(c, e) illustrate the covariance of

different clusters.

3.3.2.4 Mix

Data diversity, the second challenge we outlined in the introduction, is a major hurdle for

deep learning models. These models tend to overfit when there are limited labeled train-

ing samples. Data augmentation can provide additional artificial data [24, 35, 87, 90] and

enhance data diversity. Simple solutions such as applying image processing functions, for

instance, cropping, flipping, or color jittering, are beneficial for typical-sized image recog-

nition but can be highly inefficient for WSIs, given their large sizes and resolution. More

advanced augmentations involve training distinct GANs for different classes to generate new

training samples. However, training GANs demands non-trivial resources and hasn’t been

well-established for WSIs due to issues of tissue imbalance, weak supervision, and more.

Neither of these solutions can be directly applied to WSI classification without careful con-

sideration.

Rather than conducting augmentation in the input RGB space, ReMix applies efficient

latent space augmentation by mixing bags. We propose a ”mix” augmentation, as depicted

in Figure 3.1-(c). After the ”reduce” step, we consider the bag as now being composed

of fundamental semantic prototypes; some are class-related, and others are complementary

”contexts” that don’t impact final decisions. Bags from the same class are likely to share

similar fundamental semantic prototypes. As a result, a prototype in one bag could find

a similar ”cousin” prototype in another bag. The ”cousin prototype” is the most similar

prototype from another bag. Guided by this, we mix only the ”cousins”. In doing so, the risk

of losing the original class identity after augmentation can be significantly reduced. Moreover,

beyond cluster prototypes, the intra-cluster covariance also provides rich information - it

reflects the semantic directions in each cluster. Figure 3.1-(e) demonstrates that translating

a given prototype by expressive semantic directions can generate meaningful samples. It’s
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important to note that while we can only illustrate the augmentation using simple patch

instances, the clusters in practice can contain more complex semantic information.

Specifically, we design four different “mix” augmentations: append, replace, interpolate

and covary. When a bag is fed into a MIL classifier, we randomly sample another bag from

the same class and “mix” them. Without loss of generality, we define the former bag as a

query bag B′
q = {cqi}Ki=1, and the latter bag as a key bag B′

k = {cki }Ki=1. Their instances cq

and ck are called query prototypes and key prototypes. For each query prototype cqi , we find

its closest key prototype cki∗ , and then augment the query bag with an applying probability

of p by one of the following four augmentations:

• Append: append the closest key prototype cki∗ to query bagB
′
q: B

′
q = {cq1, ..., c

q
i , ..., c

k
i∗}.

• Replace: replace the query prototype cqi with its closest key prototype cki∗ : B′
q =

{cq1, ..., cki∗ , ...}.

• Interpolate: append an interpolated feature

ĉi = (1− λ) · cqi + λ · cki∗ (3.4)

to the query bag Bq, where λ is a strength hyper-parameter: B′
q = {cq1, ..., c

q
i , ..., ĉi}.

• Covary: generate a new feature from the key covariance matrix by

ĉi = cqi + λ · δ, δ ∼ N (0,Σk
i∗) (3.5)

and append it to the bag Bq, where λ is a strength hyper-parameter and Σk
i∗ is the co-

variance matrix corresponding to the closest key prototype cki∗ : B
′
q = {cq1, ..., c

q
i , ..., ĉi}.

In addition to four individual augmentations, we propose to combine them sequentially as a

“joint” augmentation.

• Joint: Apply “append”, “replace”, “interpolate”, and “covary” with independent

probability p.
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Figure 3.1-(d,e) illustrate how “append”, “replace”, and “covary” augmentation would be-

have visually. It is important to sample another bag from the same class and mix the query

prototype with the most similar key prototype since it helps preserve critical class-related

information and reduces the risk of losing the original class identity. The above procedures

are applied in the reduced-bag and via simple operations such as appending or numerical

addition, which are highly efficient.

In ReMix, we primarily aim to apply it to spatial-agnostic MIL models. However, it

can be easily extended to spatial-aware MIL methods as well. Here’s a simple extension

approach, although there could be more sophisticated ones.

To ensure minimum modification and not disrupt the design principles of spatial-aware

MIL methods, we make two changes to ReMix. First, we use the full-bag representation

directly for training. For the “interpolate” and “covary” mix augmentations, we use the

original full bags as query bags and the reduced-bags as key bags. This means that the

representations of patches in full-query-bags are combined with the prototypes’ represen-

tations in reduced-key-bags. This approach reduces the time complexity of computing the

pairwise similarity among instances from O(N2) to O(N), where N is the full-bag size. This

is beneficial in practice, as N can range from hundreds to tens of thousands. The second

change is to replace original patches with generated features rather than appending them.

This ensures that the spatial information is not altered.

This process is a variant of ReMix, as it necessitates both the “reduce” (building reduced-

key-bags) and “mix” (interpolating instance features) steps.

3.3.3 Intuitions on ReMix’s Effectiveness

3.3.3.1 Implicit data re-balance behavior

Tissue imbalance is a typical property of WSIs. Most similar patches almost convey the

same information about a WSI but could dominate in numbers over other distinct minority

patches. Using the representative prototypes for bag representation can be seen as an implicit
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data re-balance mechanism that bridges the gap between the majority and minority numbers.

It alleviates the tissue imbalance issue to some extent. Besides, using the mean embedding of

a group of similar patches could obtain a more accurate and less noisy tissue representation.

3.3.3.2 Efficient semantic consistency regularization

Consistency regularization underlies many successful works, such as semi-supervised learning

[7, 6, 90]. Usually, consistency regularization enforces models’ predictions to be invariant

under different data augmentations [90]. Instead of augmenting instances using image pro-

cessing functions in the input RGB space, ReMix augments the bags by bringing various

semantic changes in the latent space. Guided by bag labels and prototypes similarity, such

changes are class-identity-preserving. The bag instance combination is no longer static and

unaltered but diverse and dynamic, i.e., different new bags can be fed into the MIL classifier

every time. “Mix” can be seen as an efficient semantic consistency regularization method

that enforces semantic-perturbation-invariant and is computational friendly.

3.3.3.3 Why clustering and additive latent augmentation work

When learned properly, the deep representation space is shown to be highly linearized [4, 94].

Consequently, the distance metrics could demonstrate the similarity between patches, making

clustering meaningful. Moreover, in such a space, linear transformation, e.g., interpolating

features or adding semantic translation vector δ, is likely to provide plausible representations

[24]. The mixed bag representations can serve as hard examples that help models generalize

better [56, 126, 104].

3.3.4 Datasets and Metrics

3.3.4.1 UniToPatho

UniToPatho [5] is a public dataset comprising 9536 hematoxylin and eosin (H&E) stained

large-size images extracted from 292 WSIs. The slides are scanned at 20× magnification
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(0.4415 µm/px). There are six classes in this dataset, i.e., Normal tissue (NORM), Hyper-

plastic Polyp (HP), Tubular Adenoma with High-Grade dysplasia (TA.HG), and Low-Grade

dysplasia (TA.LG), and Tubulo-Villous Adenoma with High-Grade dysplasia (TVA.HG),

and Low-Grade dysplasia (TVA.LG). We use the official split of 204/88 slides for train-

ing/testing. This dataset provides large-size images extracted at σ = 800 (1812 × 1812

pixels patches) and σ = 7000 (15, 855×15, 855 pixels patches), where σ denotes the physical

pixel size in µm. We refer readers to [5] for more details.

Formally, we refer to the two variants of the UniToPatho dataset as UniToPatho800

and UniToPatho7000. For patch processing, we divide the provided large images to 224×

224 pixels. Patches with average saturation lower than 30 are considered as background

and dropped. Under this setting, for UniToPatho800, the average bag size is about 1.6k,

with the largest bag size surpassing 20k. UniToPatho7000’s average bag size is about 4.9k,

and the largest bag size is 59k. Overall, UniToPatho7000 has larger bags and more noise.

Classification tasks in UniToPatho800 to UniToPatho7000 provide a smooth increment in

recognition difficulty.

3.3.4.2 Camelyon16

Camelyon16 [3] is a publicly available dataset consisting of 400 H&E stained slides from

breast cancer screening. It contains two classes, i.e., normal and tumor. For this dataset, we

directly use the pre-computed features provided by DSMIL [58] without further processing.

Each feature vector is fused by features from 20× and 5× magnifications. We refer readers

to [58] for more details. There are 271/129 slides in the training/testing set. The average

bag size is about 8k, with the largest bag size surpassing 50k.

3.3.4.3 Colon10

Colon10 is an in-house dataset comprising 100 H&E WSIs of colon polyps obtained from

100 patients. A collaborating hospital provides the data. It has 10 classes, i.e., Hyperpla-

sia/normal, Adenoma, Villous adenocarcinoma, Tubulovillous adenoma, High-Grade dyspla-

34



sia, Adenocarcinoma, Carcinoma in situ, Intramucosal carcinoma, Mucinous adenocarcino-

mas, and Signet ring cell carcinoma. WSIs are acquired under 40× magnitude with 0.23 µm

per pixel. We downsample the images to 20× magnitude for analysis. A sliding window of

size 224 × 224 without overlap is adopted to crop foreground patches. Patches with average

saturation lower than 30 are considered as background and dropped. There are 100 slides

in total and 10 slides for each class. We randomly divide them into 70/30 slides to build

training/test sets. The average bag size is around 12.2k, while the largest bag size is 41k.

3.3.4.4 NCT-CRC

To study the robustness of ReMix to the choice of patch encoder, we also pre-train patch

encoders on the NCT-CRC-HE-100K dataset [51], referred to as the NCT dataset. It contains

100,000 non-overlapping patches extracted from H&E-stained colorectal cancer and normal

tissues. All images are of size 224 × 224 at 0.5 µm per pixel (20× magnification). This

dataset has 9 classes, and the class distribution is roughly balanced. We randomly choose

80% of NCT to be the pre-training dataset.

3.3.4.5 Metrics

We report class-wise averaged precision, recall, accuracy, and their average. To alleviate the

issue of randomness, we run all experiments 10 times and report the mean performance.

3.3.5 Implementation Details

3.3.5.1 Patch encoder

We follow SimCLR [14] to pre-train ResNet-18 encoders on the UniToPatho800 dataset [5],

the in-house Colon10 dataset, and the NCT dataset [51] respectively. For the Camelyon16

dataset [3], we use the pre-computed features provided by [58]. We use the codebase of
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OpenSelfSup1 [27] for pre-training. The following elaborates on each component in pre-

training.

1. Architecture: we use ResNet-18 as the backbone, a two-layer non-linear projection

head [14] for contrast, and a temperature parameter of 0.1.

2. Normalization: we use ImageNet normalization parameters, i.e., mean=(0.485, 0.456,

0.406) and std=(0.229, 0.224, 0.225).

3. Augmentation for pre-training: we use the default augmentation settings in the

repository, i.e., RandomResizedCrop to 224×224, RandomHorizontalFlip, ColorJitter

in the ranges of brightness 0.8, contrast 0.8, saturation 0.8, and hue 0.2 with a proba-

bility of 0.8, RandomGrayscale at a probability of 0.2, GaussianBlur with σmin = 0.1

and σmax = 2.0 at a probability of 0.5.

4. Optimizer: we use the LARS optimizer with an initial learning rate of 0.6, a weight

decay of 1e-6, and a momentum of 0.9.

5. Schedule: we use a CosineAnnealing learning rate scheduler with a 10-epoch warm-up.

6. Training: we pre-train the encoder for 200 epochs and use the last model for down-

stream tasks. The batch size for training is 512.

3.3.5.2 MIL models

To demonstrate that ReMix can be MIL model-agnostic, we use two previous state-of-the-art

deep MIL models, ABMIL [49] and DSMIL [58], for our experiments. ABMIL and DSMIL are

attention-based MIL methods that compute the attention-weighted sum of instance features

as the bag representation. They differ in the way of attention computing. ABMIL [49]

predicts the attention score of each patch using a multi-layer perceptron (MLP) without

explicit patch relation modeling. DSMIL [58] is a dual-stream method that comprises an

1The codebase’s name has changed from OpenSelfSup to mmselfsup.
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Table 3.1: Main results. “Pre”, “Rec”, “Acc”, and “Avg” denote precision, recall, accu-

racy, and their average, respectively. Bold and underlined numbers are the first and second

best entries among the row sections. All results are averaged over 10 independent runs.

Numbers are shown in percentage (%). “no aug.” means no augmentation. The “best im-

provement “∆” reports the best gain of ReMix from the corresponding methods trained on

full-bags.

UniToPatho800 Unitopatho7000 Camelyon16 Colon10

Methods\Metrics Pre Rec Acc Avg Pre Rec Acc Avg Pre Rec Acc Avg Pre Rec Acc Avg

TransMIL [83] 58.75 56.14 68.52 61.14 54.18 42.78 60.54 52.50 88.27 85.98 87.91 87.39 63.28 62.67 62.67 62.87

CLAM [66] 60.19 71.98 63.29 65.16 54.18 50.84 61.22 55.39 91.63 93.22 92.48 92.44 60.58 60.67 60.67 60.64

ABMIL [49] 56.18 58.50 60.11 58.26 48.69 58.55 56.62 54.62 92.47 92.79 93.02 92.76 71.42 63.00 63.00 65.81

DSMIL [58] 72.92 79.41 76.36 76.23 59.90 63.41 63.38 62.23 94.37 93.39 94.11 93.96 58.33 59.33 59.33 59.00

ReMix-ABMIL (no aug.) 69.93 72.85 68.75 70.51 57.66 58.89 61.35 59.30 93.97 93.15 93.95 93.69 74.19 68.33 68.33 70.28

ReMix-ABMIL (append) 71.81 74.54 69.09 71.81 64.77 61.81 58.24 61.61 94.59 93.38 94.34 94.10 77.23 74.33 74.33 75.30

ReMix-ABMIL (replace) 70.16 74.34 68.75 71.08 63.82 61.40 55.27 60.17 94.60 93.52 94.42 94.18 74.72 73.67 73.67 74.02

ReMix-ABMIL (interpolate) 71.55 75.54 70.23 72.44 64.67 63.32 62.16 63.38 94.65 93.49 94.42 94.19 77.77 73.00 73.00 74.59

ReMix-ABMIL (covary) 72.32 76.71 71.02 73.35 64.56 58.16 59.05 60.59 94.75 93.55 94.49 94.26 75.76 70.33 70.33 72.14

ReMix-ABMIL (joint) 72.13 76.00 70.91 73.01 64.90 64.38 62.70 63.99 94.69 93.45 94.42 94.18 78.45 74.33 74.33 75.70

Best Improvement ∆ +16.14 +18.21 +10.91 +15.09 +16.20 +5.82 +6.08 +9.37 +2.28 +0.76 +1.47 +1.50 +7.03 +11.33 +11.33 +9.89

ReMix-DSMIL (no aug.) 76.14 79.26 77.95 77.78 61.74 65.17 66.89 64.60 95.68 93.44 94.80 94.64 66.18 66.67 66.67 66.51

ReMix-DSMIL (append) 77.91 80.56 81.02 79.83 64.56 65.97 64.19 64.90 96.39 94.10 95.43 95.31 70.44 70.52 70.52 70.49

ReMix-DSMIL (replace) 76.60 79.30 78.64 78.18 63.62 66.76 59.32 63.24 95.33 93.44 94.65 94.47 67.10 67.00 67.00 67.03

ReMix-DSMIL (interpolate) 76.99 80.26 80.00 79.08 64.80 67.28 66.08 66.05 96.39 93.96 95.35 95.23 68.40 68.18 68.18 68.25

ReMix-DSMIL (covary) 77.72 80.52 80.46 79.57 64.88 68.73 67.43 67.01 96.51 93.88 95.35 95.25 71.20 70.33 70.33 70.62

ReMix-DSMIL (joint) 78.20 80.94 80.68 79.94 66.21 66.91 66.35 66.49 96.18 93.97 95.27 95.14 72.44 70.82 70.82 71.36

Best Improvement ∆ +5.28 +1.53 +4.66 +3.71 +6.31 +5.33 +4.06 +4.79 +2.14 +0.71 +1.32 +1.35 +14.11 +10.95 +10.95 +12.36

instance branch and a bag branch. The instance branch identifies the highest scored instance

while the bag branch measures the similarity between other patches and the highest scored

instance and then utilizes the similarity scores to compute attention.

We use DSMIL’s codebase for MIL models’ implementation and training. Unless oth-

erwise specified, all MIL models are optimized for 50 epochs by the Adam optimizer [53]

with an initial learning rate of 2e-4 and a cosine annealing learning rate schedule [65]. The

mini-batch size is 1 (bag) for a fair comparison, despite that ReMix can easily scale it up

since the reduced bags have the same number of instances and thus can be composed into a

batch for parallel computing.
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For comparison, we further adopt the official codes of TransMIL [83] and CLAM [66]

and train them for 50 epochs for a fair comparison. Other settings, e.g., learning rate and

optimizer remain the same as their original releases.

3.3.5.3 Hyper-parameters

There are three hyper-parameters in ReMix, i.e., the number of prototypes K, the augmen-

tation probability p, and the strength λ. To study the effects of different hyper-parameters,

we first sweep K in {1, 2, 4, 8, 16, 32} to find the optimal K for each method and dataset.

For simplicity and bag diversity, we set p = 0.5 in our main experiments for 4 individual

augmentations, p = 0.1 for the “joint” augmentation, and uniformly sample λ from (0, 1)

in all experiments. For three datasets we study, both MIL methods share the optimal K

values: K = 1 for UniToPatho800 dataset, K = 4 for UniToPatho7000 dataset, K = 8 for

Camelyon16 dataset, and K = 16 for Colon10 dataset. We provide the empirical studies for

each hyper-parameter and the design choices in Section 3.4.2, e.g., studying the robustness

of the choice of augmentation probability p, the choice of the number of prototypes K, and

more.

3.4 Experiments

3.4.1 Main Results

3.4.1.1 Metrics comparison

Table 3.1 shows the main results for four datasets. Regardless of the difference in base-

lines (DSMIL and ABMIL), the results demonstrate ReMix’s superiority and robustness.

Even without “mix” augmentations (no aug.), ReMix can improve DSMIL and ABMIL by

only the “reduce” step in all datasets, e.g., +13.75% and +3.22% precision for ABMIL and

DSMIL, respectively, in the UniToPatho800 dataset, +1.50%/+1.31% precision for them in

the Camelyon16 dataset, and +2.77%/+7.85% for them in the Colon10 dataset. Overall,
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Table 3.2: Comparison of training budgets. Numbers are estimated from 50-epoch

training on the same machine with an 8GB Tesla T4-8C virtual GPU. “Original / ReMix”

rows show the multiplier between the original’s and ReMix version’s budgets.

Average Seconds / Epoch Memory Peak FLOPs

Methods \Datasets UniToPatho800 Camelyon16 UniToPatho800 Camelyon16 UniToPatho800 Camelyon16

ABMIL 18.41′′ 235.72′′ 55.63 MB 332.12 MB 840.51M 4.20G

ReMix-ABMIL 0.84′′ 1.10′′ 6.45 MB 8.76 MB 531.46K 4.20M

Original / ReMix 21.93× 214.29× 8.61× 37.91× 1581.51× 999.76×

DSMIL 19.20′′ 255.14′′ 66.58 MB 364.72 MB 1.06G 5.25G

ReMix-DSMIL 0.85′′ 1.12′′ 6.46 MB 8.76 MB 1.49M 5.38M

Original / ReMix 22.57× 227.80× 10.31× 41.63× 713.38× 975.49×

† All the data are stored in a distributed storage platform, which might exacerbate the I/O problem for large bags.

ABMIL benefits more from ReMix than DSMIL. DSMIL computes self-attention to explic-

itly consider the similarity between different instances inside a bag, while ABMIL directly

predicts attention scores using an MLP for all instances without such explicit inter-instance

relation computing. For this reason, we conjure that ABMIL’s attentions are more likely to

overfit than DSMIL’s, and thus, the denoised reduced-bags can benefit it more. Representa-

tive prototypes can ease the recognition process and alleviate the overfitting problem. These

results suggest that ReMix can reduce data noise in the bag representations to some extent,

improving performance.

Applying “Mix” augmentation further improves the performance of reduced-bags (no

aug.) by a considerable margin, e.g., +2.27% and +3.07% accuracy for ReMix-ABMIL and

ReMix-DSMIL, respectively, in the UniToPatho800 dataset, and +3.58% and +15.30% pre-

cision for them in the Colon10 dataset. The proposed four latent augmentations perform

similarly well across different datasets and MIL methods, indicating their robustness. Es-

pecially, “covary” augmentation achieves top-tier performance in most datasets, confirming

our motivation that transferring others’ covariance in the latent space could provide reliable

and diversified variations for semantic augmentation. Using full-bags can be seen as a par-

ticular case of augmenting the prototypes with their own covariances. However, such bags
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are static and unaltered, as discussed in Section 3.3.3. In contrast, with ReMix, the reduced

and augmented bags can be more diverse and dynamic. Such augmentations are helpful for

low-data applications like WSI classification. “Joint” augmentation integrates advantages

from different latent augmentations and is the most robust augmentation. For example, it

achieves top 2 performance in six of eight settings (2 MIL methods × 4 datasets).

Among the studied datasets and tasks, classification in Camelyon16 is the easiest since it

is a binary classification problem with many samples for each class. In contrast, UniToPatho

and Colon10 datasets are 6-class and 10-class classification problems, respectively, and they

have fewer samples for each class than the Camelyon16 dataset. From the “best improve-

ment” rows in Table 3.1, it is clear that ReMix improves more for datasets that have fewer

training samples and more classes. This indicates ReMix’s good property for “small” data

and “hard” problems.

Overall, solid gains observed in Table 3.1 have confirmed the effectiveness of the proposed

ReMix framework. We next demonstrate its efficiency.

3.4.1.2 Training budgets

We compare the training budgets, i.e., the average training time per epoch, the peak memory

consumed during training, and the estimated floating-point operations per second (FLOPs)

during one iteration in Table 3.2. Our ReMix framework outperforms other entries in all

training budgets. It costs nearly 20× less training time but obtains better results for both

MIL methods in the UniToPatho800 (e.g., +10.91% accuracy). ReMix framework uses fewer

FLOPs to finish one iteration, e.g., 5.25G FLOPs v.s. 5.38M FLOPs. Moreover, it takes

ReMix a much shorter training time to achieve better results than the original ones in the

Camelyon16 dataset, whose average bag size is about 5× as big as UniToPatho800’s. It can

be expected that the training efficiency gains would enlarge as the bag size and the number

of WSIs in the dataset increase. With more data collected in the real world, we argue that

the training efficiency should be as important as the classification performance when scaling

up to large datasets. Therefore, we emphasize the superiority of ReMix in being an efficient
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Figure 3.2: Empirical study on the number of prototypes. Horizontal axes denote

the number of prototypes in the reduced-bags. Baselines are trained on the full-bags. The

results are an average of 10 runs. Blue and orange blocks denote the mil models, ABMIL

and DSMIL, respectively.

framework.

Table 3.3: Empirical study on augmentation probabilities. The displayed metrics are

the average of precision, recall and accuracy. Best performance of each row is in bold. All

results are averaged over 10 runs. Numbers are shown in percentage (%).

UniToPatho7000 dataset

Method ABMIL DSMIL

Aug.\Prob. 0.1 0.3 0.5 0.7 0.9 E(aug|p) 0.1 0.3 0.5 0.7 0.9 E(aug|p)

baseline (full-bag) Not Applicable 54.62 Not Applicable 62.23

ReMix (append) 57.16 60.75 61.61 59.70 58.40 59.52 65.95 65.80 64.90 63.20 62.10 64.39

ReMix (replace) 60.38 60.02 60.17 56.54 56.67 58.76 65.75 64.86 63.24 60.45 62.09 63.28

ReMix (interpolate) 59.45 64.02 63.38 64.38 62.16 62.68 67.48 66.24 66.05 66.39 67.29 66.69

ReMix (covary) 58.76 58.61 60.59 60.72 61.11 59.96 66.21 66.86 67.01 67.09 65.80 66.59

E(p|aug) 58.94 60.85 61.44 60.33 59.58 60.23 66.35 65.94 65.30 64.28 64.32 65.24
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3.4.2 Ablation study

In this section, we investigate the robustness of ReMix to different components and discuss

its design choices.

3.4.2.1 Ablation on the number of prototypes K

Figure 3.2 shows the performance of using different numbers of prototypes for bag represen-

tations. In the UniToPatho800 dataset (Fig. 3.2-(a)), both ABMIL and DSMIL achieve the

best results with only one prototype. Besides, ABMIL is quite robust to the choice of K

in that it consistently outperforms the full-bag representations (baseline) with the reduced-

bag representations. This can be expected since the UniToPatho800 dataset contains small

patches that are mainly concentrated on tissues of interest. When it comes to the Uni-

ToPatho7000 dataset, more prototypes are needed for optimal performance (K = 4) as the

bag size enlarges and the mixture of different types of tissues inside the bag is inevitable.

In the Camelyon16 dataset (Fig. 3.2-(b)), ReMiX performs similarly well when K ≥ 4, with

K = 8 being the best. Camelyon16 has a severe issue of tissue imbalance that the lesion

area of tumorous tissues accounts for only 10% to 30% of all tissue areas. More prototypes

are needed for bag representation to preserve the minority information. Nevertheless, train-

ing on the reduced-bags (1 ∼ 100 instances/bag) is still significantly cheaper than full-bags

(103 ∼ 105 instances/bag). Similarly, ReMix performs the best with 16 prototypes for both

models in the Colon10 dataset (Fig. 3.2-(c)). Both MIL methods share similar curves across

three datasets, showing the generality of the “reduce” step. This study confirms our mo-

tivation that several representative prototypes could provide sufficient information of the

full-bag for specific downstream WSI classification tasks.

3.4.2.2 Ablation on the augmentation probability p

Table 3.3 compares ReMix when applying different augmentations under different probabil-

ities p in the UniToPatho7000 dataset. We estimate the expected performance given an
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Table 3.4: Empirical study on training epochs. The reported numbers shown in per-

centage (%) are the average of precision, recall and accuracy. All results are the mean of 10

trials with their standard deviations denoted by±.

UniToPatho7000 dataset

ABMIL DSMIL

Epoch Full-bag Reduced-bag Full-bag Reduced-bag

50 54.62±3.91 59.30±3.17 62.23±2.06 64.60±1.64

100 55.60±7.61 64.14±2.26 59.86±2.12 65.57±2.02

200 55.41±5.73 64.58±1.84 60.17±1.32 65.21±3.50

augmentation method with varying probability (E(aug|p)) and the expected performance

given a fixed probability with varying augmentation methods (E(p|aug)). In our main ex-

periments, we naively choose p = 0.5 to demonstrate the effectiveness of ReMix. Beyond the

naive selection of p, better performance can be achieved with a properly tuned probability.

In practice, one can use a validation set for parameters tuning. The expected performance

of different augmentations (E(aug|p)) shows that our ReMix can improve baselines in expec-

tation (e.g., +8.06% and +4.46% for “interpolate” in ABMIL and DSMIL, respectively).

These results indicate the robustness of ReMix to the choice of augmentation probability.

3.4.2.3 Ablation on training epochs

Training the MIL classifiers for 50 epochs on full-bags might put them at a disadvantage

compared to training on reduced-bags since full-bags have much more instances and therefore

need longer training. To test it, we compare the candidates with longer training in Table 3.4.

When trained on full-bags, only ABMIL gains from longer training, and the performance of

DSMIL even drops considerably. When trained on reduced-bags, both MIL methods start to

benefit from longer training, showing the better potential of reduced-bags. Overall, all the

tested cases support the superiority of ReMix regardless of the number of training epochs.
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3.4.2.4 Append or replace with generated features?

In Section 3.3.2.4, we append the newly generated features to the query bag. An alterna-

tive is to replace the original feature with the generated features. Table 3.5 reports the

comparison results. Appending newly generated features is slightly better than replacing

the original feature with the generated features. This is anticipated, as replacing the origi-

nal feature with generated features introduces perturbation twice. One perturbation is the

newly generated prototype, which is not as accurate as other fundamental semantic proto-

types (cluster center). The other is the replacement operation. Therefore, the noise may

accumulate. In contrast, appending the newly generated features preserves the original fun-

damental semantic prototypes. Nevertheless, replacing with generated features also works

well.

Table 3.5: Empirical study on appending or replacing with generated features.

The displayed metrics are the average of precision, recall, and accuracy. All results are the

average over 10 trials with their standard deviations denoted by±. Numbers are shown in

percentage (%).

UniToPatho7000 dataset

Method ABMIL DSMIL

Augs.\mode Append Replace Append Replace

ReMix (interpolate) 63.38±3.21 61.10±5.23 66.05±1.55 65.41±1.11

ReMix (covary) 60.59±3.72 59.90±3.15 67.07±1.87 65.51±1.37

3.4.3 ReMix is robust to pre-trained encoders

Our results thus far are based on self-supervised pre-trained encoders, which are known to

provide good representations. We next demonstrate that both the “reduce” and “mix” steps

can generalize to other pre-trained encoders.
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Figure 3.3: Empirical study on the impact of encoder to ReMix and prototype

selection in the UniToPatho7000 dataset. Horizontal axes denote the number of pro-

totypes in the reduced-bags. Results are the average of 10 runs.

3.4.3.1 “Reduce” is robust to pre-trained encoders

Figure 3.3 shows how “reduce” performs with different pre-trained encoders in the Uni-

ToPatho7000 dataset. Our previous observation that reduced-bags are competitive or even

outperform full-bags can also generalize to other pre-trained encoders. Notably, the SimCLR

encoder pre-trained on the UniToPatho dataset performs the best in general (Fig. 3.3-(e)),

followed by the SimCLR encoder pre-trained on the NCT dataset (Fig. 3.3-(b)). This
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emphasizes the importance of pre-training on the target datasets themselves and indicates

the superiority of self-supervised pre-training. There are other two interesting observations.

First, although NCT is a colorectal tissue dataset which should be similar to UniToPatho,

a classification-oriented encoder pre-trained on it does not transfer well to the UniToPatho

dataset (Fig. 3.3-(c)) and even falls behind the ImageNet-supervised pre-trained encoder

(Fig. 3.3-(a)); in fact, it is the worst encoder among others. Second, despite the popu-

larity and success of SimpleMIL [23], pre-training in previous works [47, 9, 41, 13], it does

not necessarily perform better than ImageNet-supervised pre-trained encoder. These two

observations might challenge some common beliefs and encourage people to rethink the pre-

training methods to use.

3.4.3.2 “Mix” is robust to pre-trained encoders

In addition to the results presented in Table 3.1, which are based on a self-supervised encoder

pre-trained on the UniToPatho dataset, Table 3.6 further shows how ReMix improves other

pre-trained encoders in the UniToPatho7000 dataset. For simplicity, we only study ImageNet

classification pre-trained and NCT SimCLR pre-trained encoders. The boosted performance

indicates the generality of the “Mix” augmentation, which means ReMix does not pose a

strict requirement for the patch encoder and can be applied to existing encoders without

re-training.

3.4.4 ReMix improves abnormality recognition

We visualize the attention scores predicted by ABMIL in the Colon10 dataset in Figure 3.4.

The attention of the original ABMIL method only focuses on parts of abnormal tissues,

while with ReMix, more complete coverage of abnormal tissue is observed. Though seeing

only several instances per bag during training, our ReMix behaves decently and improves

the original model in highlighting relevant patches. This implies the advantage of using

representative reduced-bags over uncurated full-bags. This experiment also demonstrates

the potential of ReMix in generating pseudo-instance-level labels, which might help semi-
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Figure 3.4: Visualization of attention maps. (a) Original WSIs. (b) Attention maps of

ABMIL trained on full-bags. (c) Attention maps of ABMIL trained with ReMix-joint. The

classes of (1) and (4) are high-Grade dysplasia and mucinous adenocarcinomas, respectively.

The class of (2) and (3) is carcinoma in situ.

supervised learning, semantic segmentation, and other problems.

3.4.5 Spatial-aware MIL methods also benefit from ReMix

Our ReMix is presumed to be applied to spatial-agnostic MIL models, but it can have a

straightforward extension to spatial-aware MIL methods, as introduced in Section 3.3.2.4.

We demonstrate this on TransMIL [83], a recent state-of-the-art spatial-aware MIL method.

Table 3.7 reports the results using the same probability of 0.5 as previous experiments. Both

augmentations can improve TransMIL in all three metrics. This study supports the use of
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Table 3.6: Comparison of ReMix applied on different pre-trained patch encoders. We report

the “Average” metric here, i.e., the average of precision, recall, and accuracy. Results are

averaged over 10 trails with their standard deviations denoted by±. Numbers in parentheses

denote the improvements from corresponding full-bag representations. We use K = 4 for

“reduce” for both encoders here.

UniToPatho Dataset

Pre-trained encoder Methods Average (%)

ImageNet-Clf

DSMIL 31.34±6.05

+ReMix (no aug.) 45.16±6.10 (+13.82)

+ReMix (joint) 50.82±3.73 (+19.48)

NCT-SimCLR

DSMIL 49.17±5.48

+ReMix (no aug.) 53.15±2.73 (+3.88)

+ReMix (joint) 55.44±2.79 (+6.27)

ReMix also for spatial-aware MIL methods. In addition to the current naive extension,

we believe more improvement would emerge if the “reduce” step could be more properly

integrated with spatial-aware MIL methods, which we leave for future work.

3.5 Limitations and Future Works

Despite ReMix’s empirical success demonstrated in this work, some limitations still exist.

First, ReMix relies on K-Means clustering to obtain fundamental semantic prototypes. How-

ever, the K-Means clustering algorithm has underlying assumptions about the data for its

success, e.g., i.i.d. samples and isotropic feature distribution, which are not always satisfied

for WSI tasks. In addition, tiny regions of interest might be overlooked during the clus-

tering step, which could contribute to the failure of ReMix. Second, there is an underlying

requirement for the number of instances to estimate the covariance matrix for a cluster.
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Table 3.7: “Mix” augmentation improves spatial-aware MIL method. The “Average” col-

umn reports the average of precision, recall, and accuracy. Results are averaged over 10

independent runs with their standard deviations shown after±.

Camelyon16 Dataset

Methods\Metrics Precision (%) Recall (%) Accuracy (%) Average (%)

TransMIL [83] 88.27±1.40 85.98±1.60 87.91±1.17 87.39±1.25

+ReMix (interpolate) 90.20±2.00 88.61±1.43 89.95±1.48 89.55±1.37

+ReMix (covary) 90.92±2.08 87.49±2.30 89.66±1.83 89.07±1.86

Colon10 Dataset

TransMIL [83] 63.28±4.74 62.67±3.79 62.67±3.79 62.87±4.06

+ReMix (interpolate) 65.28±3.33 64.67±2,81 64.67±2,81 64.87±2.87

+ReMix (covary) 63.78±3.78 65.34±2.33 65.34±2.33 64.82±2.74

An insufficient number of patches might yield inaccurate cluster prototypes and ill-defined

covariance matrices, possibly degenerating final performance. Using dynamic numbers of

prototypes for different WSIs could be a way to address it.

The success of ReMix has been supported for WSI classification tasks for image modality

in this work but could go beyond. We also expect its application to survival prediction and

other WSI analysis tasks where data diversity is the major issue. ReMix also has potentials

in multi-modality learning problems, e.g., images with tabular data. Interpolating features

or transferring semantics via covariance matrices are also feasible for tabular data repre-

sentations. More intriguing and interesting methods might be mined from the joint use of

ReMix for different modalities of data.
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3.6 Conclusion

This paper presents ReMix, a general and efficient framework for MIL-based WSI classifi-

cation. For spatial-agnostic MIL models, ReMix reduces the number of instances in WSI

bags by substituting instances with instance prototypes. Subsequently, ReMix enhances data

diversity by mixing the bags using various latent space augmentation techniques. Further-

more, for spatial-aware MIL models, ReMix can provide performance improvement by simply

employing the “Mix” augmentation.

Overall, ReMix enhances the performance of previous state-of-the-art MIL classification

methods, often with less computational resources, demonstrating its effectiveness and effi-

ciency. To the best of our knowledge, the combined use of reduce” and mix” has not been

previously studied in slide-level WSI analysis. We anticipate that the “Mix” augmenta-

tion method proposed in this work will inspire further research in this domain, where data

augmentation is crucial yet underexplored.
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CHAPTER 4

Bootstrapping yourself: Concept Contrastive Learning

for Better Dense Representations

4.1 Introduction

Computational pathology is rapidly advancing due to deep learning (DL) applications on

whole slide images (WSIs) [92]. The use of pre-trained model weights is a common prac-

tice to mitigate the annotation load, with self-supervised learning (SSL) methods, free of

annotations, gaining recent interest [42, 14, 38]. SSL methods, initiated by contrastive

learning [39, 105, 14, 42, 18], have largely focused on image-level representations, leaving a

gap for dense prediction tasks such as object detection and instance segmentation, leading to

detection-friendly pre-training methods [99, 113, 64, 76, 46, 95, 108, 109]. However, similar

studies in the pathology image domain remain scarce. This research aims to address this by

applying SSL to dense prediction tasks in pathology images.

We introduce the Concept Contrastive Learning (ConCL) framework, contrasting local

semantic regions instead of image-level representations [105, 14, 42]. ConCL is an abstraction

of dense contrasting frameworks encompassing related works. We first benchmark current

leading SSL methods and DenseCL [99], revealing a performance gap that indicates the

advantage of dense (grid-level) contrasting over image-level contrasting. Inspired by these

differences and pathology images’ characteristics, we enhance ConCL through several explo-

rations, focusing on dense prediction pre-training success factors and optimal concepts for

pathology images. The results suggest that a randomly initialized model can group mean-

ingful concepts and aid dense pre-training. The final ConCL framework outperforms various
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state-of-the-art SSL methods across different conditions.

The contributions of this work are as follows:

• We present one of the first systematic studies of SSL methods for dense prediction

tasks in pathology images, narrowing the gap between studies in natural and pathology

images.

• We introduce ConCL, an SSL framework for dense pre-training, and show that a ran-

domly initialized model can learn semantic concepts, improving itself while achieving

competitive results.

• We demonstrate the importance of dense pre-training in pathology images and provide

observations that could contribute to other applications in pathology image analysis

or beyond.

We hope this work could provide useful data points and encourage the community to

conduct ConCL pre-training for problems of interest.

A large portion of this chapter has been published in [114].

4.2 Related work

Contrastive learning. Deep learning’s success owes much to the use of vast amounts

of data. When limited data is available, transferring knowledge from pre-trained models

is an alternative [36, 43]. SSL methods, which learn from label-free pretext tasks such as

colorization [124, 125] and denoising [96], have gained attention. Instance discrimination

[39, 105, 42, 18, 14], a pretext task in contrastive learning [42, 18, 14, 70, 105, 11], optimizes

similarity between positive pairs while minimizing it between negative pairs. Later methods,

like SwAV[11] and PCL [60], combined contrasting with clustering.

Dense prediction pre-training. Good image-level representations do not guarantee bet-

ter performance in dense prediction tasks. Hence, recent studies focused on dense prediction
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pre-training [99, 113, 76, 95, 108, 109, 64, 46]. For example, DenseCL [99] applies contrastive

loss at pixel-level, while Self -EMD [64] performs non-contrastive dense predicting. However,

the efficiency of external mask generators used in these works is untested in pathology images,

motivating our proposed concept mask generator.

SSL in pathology images. SSL methods in pathology images remain under-studied.

Some domain-specific self-supervised pretext tasks have been proposed [54], and SimCLR

[14] has been studied for various tasks in pathology images [25]. Nevertheless, studies on

detection/segmentation-friendly SSL methods in pathology images are scarce. Our work

addresses this gap, proposing a roadmap toward better dense prediction performance in

pathology images.

4.3 Method

4.3.1 Preliminary: Instance Contrastive Learning

MoCo[42] abstracts the instance discrimination task as a dictionary look-up problem. Specif-

ically, for each encoded query q, there is a set of encoded keys {k0, k1, k2, ...} in a dictionary.

The instance discrimination task is to pull closer q and its matched positive key k+ in the

dictionary while spreading q away from all other negative keys k−. When using the dot-

product as similarity measurement, a form of contrastive loss function based on InfoNCE[70]

becomes:

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k−
exp(q · k−/τ)

(4.1)

where τ is a temperature hyper-parameter [105]. Queries q and keys k are computed by a

query encoder and a key encoder, respectively [42, 18]. Formally, q = h(GAP(f5(xq))), where

h is a MLP projection head as per [14]; GAP(·) denotes global-average-pooling, and f5(x)

represents the outputs from the stage-5 of a ResNet [44]. Keys k are computed similarly

using the key encoder. In MoCo [42], the negative keys are stored in a queue to avoid using

large batches [14].
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Figure 4.1: ConCL overview. ConCL has three steps: (1) Given a query view xq and a

key view xk, their union region is cropped as a reference view xr. ConCL obtains concept

proposals by processing xr with a “concept generator.” (2) For the shared concepts, ConCL

computes their representations via masked average pooling (MAP). (3) ConCL optimizes

concept contrastive loss (Eq. (4.2)), and enqueues the concept prototypes from the key

encoder to the concept queue.

4.3.2 Concept Contrastive Learning

Instance contrastive methods [14, 42, 105] do well in discriminating among image-level in-

stances, but dense prediction tasks usually require discriminating among local details, e.g.,

object instances or object parts. We abstract such local details, or say, fine-grained semantics

as “concepts.” A concept does not necessarily represent an object. Instead, any sub-region

in an image could be a concept since it contains certain different semantics. From the per-

spective of dense prediction, it is desirable to build concept-sensitive representations. For

example, one WSI patch usually contains multiple small objects, e.g., nucleus, glands, and

multiple texture-like tissues, e.g., mucus [92, 51]. To successfully detect and segment ob-

jects in such images, models need to learn more information from local details. To this end,

we propose a simple but effective framework — Concept Contrastive Learning (ConCL).

Figure 4.1 shows its overview, which we elaborate on below.
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Concept discrimination. We first define a pretext task named concept discrimination.

Similar to instance discrimination [105, 39], concept discrimination requires a model to dis-

criminate among the representations of the same but augmented concepts and the repre-

sentations of different concepts. We formulate concept discrimination by extending the

instance-level queries and keys to concept-level. Specifically, given an encoded query con-

cept qc and a set of encoded key concepts {kc0, kc1, kc2, ...}, we derive concept contrastive loss

as:

Lc = − log
exp(qc · kc+/τ)

exp(qc · kc+/τ) +
∑

kc−
exp(qc · kc−/τ)

(4.2)

where τ is the same temperature parameter and kc− are keys in the concept queue — the queue

to store concept representations. This objective brings representations of different views of

the same concept closer and spreads representations of views from different concepts apart.

Concept mask proposal. We use masks to annotate fine-grained concepts explicitly.

Assume a mask generator is given, as diagramed at the bottom of Figure 4.1; we first pass

a reference view xr, defined as the circumscribed rectangle crop of the union of two views,

into the mask generator to obtain a set of concept masks — Mr = {mi}Ki=1, where K is the

number of concepts. Since the reference view contains both the query view and the key view,

their concept masksMq andMk are immediately obtained if we restore them in the reference

view. Then, we derive concept representations in both views by masked average pooling

(MAP) with resized concept masks. Specifically, we compute qc = h (MAP (f5(xq),mc)) and

kc similarly, where MAP (z,m) =
∑

ij mij · zij/
∑

ij mij, and z ∈ RCHW denotes feature maps,

m ∈ {0, 1}HW is a binary indicator for each concept. Here, only the shared concepts in both

views are considered, i.e., mc ∈ Mq ∩Mk.

Our analysis hereafter focuses on 1) What makes the success of dense prediction pre-

training? 2) What kind of concepts are good for pathology images? Different answers to

these two questions reveal the characteristics of pathology images and the disparity between

natural and pathology images, as we explore in Section 4.4. Below, we first introduce the

benchmark pipeline and setups.
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4.3.3 Benchmark Pipeline

Despite the extensive benchmarks in natural images for dense tasks, to our knowledge, such

studies are unfortunately absent in current works for pathology. Note that studying SSL

methods in pathology images is still at an early stage. Most current works focus on employing

image-level SSL methods for classification tasks. Orthogonal to theirs, we investigate a wider

range of SSL methods for object detection and instance segmentation tasks, which are of

high clinical value. We hope our work could provide useful data points for future work.

We briefly introduce the datasets here:

• Pre-training dataset. We use NCT-CRC-HE-100K[51] dataset, referred to as NCT, for

pre-training. It contains 100,000 non-overlapping patches extracted from hematoxylin

and eosin (H&E) stained colorectal cancer and normal tissues. All images are of size

224 × 224 at 0.5 MPP (20× magnification). We randomly choose 80% of NCT to be

the pre-training dataset.

• Transferring dataset. We use two public datasets, the gland segmentation in pathol-

ogy images challenge (GlaS) dataset [88] and the colorectal adenocarcinoma gland

(CRAG) dataset [37], and follow their official train/test splits for evaluation. GlaS

[88] collects images of 775×522 from H&E stained slides with object-instance-level an-

notation; the images include both malignant and benign glands. CRAG [37] collects

213 H&E stained images taken from 38 WSIs with a pixel resolution of 0.55µm/pixel

at 20× magnification. Images are mostly of size 1512×1516 with object-instance-level

annotation. We study the performance of object detection and instance segmentation.

Experimental setup. We pre-train all the methods on the NCT training set for 200

epochs. For ConCL pre-training, we warm up the model by optimizing instance contrastive

loss (Eq. (4.1)) for the first 20 epochs and switch to concept contrastive loss (Eq. (4.2)).

Then, we use the pre-trained backbones to initialize the detectors, fine-tune them on the

training sets of transferring datasets, and test them in the corresponding test sets. Unless
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otherwise specified, we run all the transferring experiments 5 times and report the averaged

performance.

4.4 Towards Better Concepts: a Roadmap

In this section, we first benchmark some popular state-of-the-art SSL methods for dense

pathology tasks. Then, we start with DenseCL [99] and derive better concepts along the

way, directed by the questions raised in the previous section.

4.4.1 Benchmarking SSL methods for Dense Pathology Tasks

Benchmark results. Table 4.1 (baselines and prior SSL arts) shows the transferring per-

formance for GlaS dataset (left columns) and CRAG dataset (right columns), respectively.

We report results using 200-epoch pre-trained models and a 1× fine-tuning schedule. On the

GlaS dataset [88], we observe that the gap between training from randomly initialized mod-

els and training from supervised pre-trained models is relatively smaller compared to those

in the natural image domain [19, 18, 38, 14]. Nonetheless, state-of-the-art SSL methods all

exceed supervised pre-training, meeting the same expectation as in natural images. Yet, on

the CRAG dataset [37], most of the pre-trained models, including both the self-supervised

ones and the supervised one, fail to achieve competitive performance compared to training

from randomly initialized weights. The only exception is DenseCL [99], a dense contrasting

method.

Among the image-level SSL methods, MoCo-v2 [18] performs the best in GlaS and the

second-best in CRAG. Enhanced by dense contrasting, DenseCL [99] achieves the best results

in both datasets. It should be emphasized that DenseCL [99] gets + 1.6 APbb for GlaS by us-

ing grid-level contrasting. This demonstrates the importance of designing dense pre-training

frameworks when transferring to dense tasks since all the stragglers are only optimized for

image-level representations. Thus, we here conclude dense contrasting matters.
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GlaS CRAG

Detect Segment Detect Segment
Category Methods

APbb APbb75 APmk APmk75 APbb APbb75 APmk APmk75

Baselines
Rand. Init. 49.8 57.3 52.1 60.7 51.1 57.0 50.6 57.3

Supervised 50.2 56.9 53.2 62.1 49.2 55.2 49.4 55.0

Sec. 4.4.1

Prior SSL arts

SimCLR[14] 50.7 56.9 53.6 62.7 49.2 54.8 49.1 54.7

BYOL[38] 50.9 57.7 53.9 62.6 49.9 55.8 49.3 55.3

PCL-v2† [60] 49.4 55.9 51.9 61.0 51.0 56.6 50.5 56.7

MoCo-v1[42] 50.0 56.2 52.1 59.9 47.2 51.1 47.5 52.0

MoCo-v2[18] 52.3 60.0 55.3 65.0 50.0 55.7 50.3 56.8

DenseCL[99] 53.9 62.0 56.5 66.2 52.3 58.2 52.2 59.8

Our differently instantiated ConCLs:

Sec. 4.4.2

Grid concepts

(1) g-ConCL(s=3) 54.9 64.1 57.1 66.3 55.4 62.3 54.4 62.0

(2) g-ConCL(s=5) 55.4 65.2 57.4 67.2 55.5 62.7 54.6 62.2

(3) g-ConCL(s=7) 54.9 63.8 57.0 66.5 55.3 62.5 54.7 62.6

Sec. 4.4.3

Natural-image

priors concepts

(4) fh-ConCL(s=50) 55.8 65.6 58.3 68.8 54.8 60.7 54.1 60.7

(5) fh-ConCL(s=500) 56.2 65.9 57.7 67.9 54.7 61.9 53.8 60.5

(6) bas-ConCL 56.1 66.1 58.1 68.1 54.2 61.1 53.4 60.8

Sec. 4.4.4

Bootstrapped

concepts

(7) b-ConCL(f4) 56.8 66.2 58.7 68.9 55.1 62.2 54.1 61.4

(8) b-ConCL(f5) 56.1 65.6 57.8 67.7 56.5 63.3 55.3 62.9

Table 4.1: Main results of object detection and instance segmentation. APbb:

bounding box mAP, APmk: mask mAP.

4.4.2 Correspondence matters

From the previous section, we find dense contrasting is favored in both natural and pathology

images, where DenseCL [99] all achieves top performance. The next question is: can we

improve the dense contrasting framework? To answer it, we first summarize the overall

pipeline of DenseCL [99]. DenseCL computes the dense representations of two views without

global average pooling, i.e., f5(xq), f5(xk), and passes them to a dense projection head to
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(b) Grid(s=5) (c) FH(s=50)(a) Human (d) FH(s=500) (e) BASNet (f) Cluster-  f3 (g) Cluster-  f4 (h) Cluster-  f5

Figure 4.2: Concept descriptors. (a) Tissue concept illustration. (b) Grid concepts (s:

grid number). (c-d) FH concepts (s: scale). (e) Binary saliency concepts, obtained from

BASNet [73]. (f-h) Clustering concepts (fi: ResNet output stage). The image is resized to

448× 448 for better visualization.

obtain final grid features of size R128×7×7. Then it sets the most similar (measured by cosine

similarity) grids in two views as positive pairs. As such, the correspondence of positive

pairs is learned. However, the reliability of learned correspondence remains questionable

and would affect the quality of learned representations.

To address that, we instantiate DenseCL [99] in ConCL by regarding the grid-prior

as a form of concept, as shown in Figure 4.2-(b). We denote this ConCL instance as g-

ConCL. Compared with DenseCL [99] (learned matching), ConCL naturally restores the

positive correspondence from a reference view (precise matching Fig. 4.1-xr). Table 4.1-(1-3)

compares the original DenseCL [99] and ConCL-instantiated g-ConCL. The results indicate

that g-ConCL with precise correspondence can boost DenseCL [99] by a large margin. Even

with the simplest form of concepts, g-ConCL already has topped entries above it in Table 4.1.

We believe other dense pre-training methods that learn the matching between grids, e.g.,

Self -EMD [64], should perform similarly to DenseCL [99], and g-ConCL could outperform

them. Thus, we conclude that correspondence matters.

4.4.3 Natural Image Priors in Pathology Images

ConCL is a general framework for using masks as supervision to discriminate concepts. Some

previous works in natural image [128, 46, 127, 95, 98] also combines masks with contrastive

learning, where the masks are provided by ground truth annotation [128, 98, 46], or su-

pervised/unsupervised pseudo-mask generation [46, 127, 95]. The mask generators can be
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graph-based (e.g., Felzenszwalb-Huttenlocher algorithm [32]), MCG [1], or other saliency

detection models [73, 69] trained on designated natural image datasets. However, those

methods werer originally proposed for nature images, and their success for pathology images

remains unknown.

Here we instantiate ConCL by using Felzenszwalb-Huttenlocher (FH) algorithm [32] and

BASNet [73] as concept generators, dubbed as fh-ConCL and bas-ConCL, respectively. FH

[32] is a conventional graph-based segmentation algorithm that relies on local neighborhoods,

while BASNet [73] is a deep neural network pre-trained on a curated saliency detection

dataset, which only contains daily natural objects. We use these two as representatives to

study if these natural image priors win twice in both natural and pathology images.

Specifically, we use the FH algorithm in the scikit-image package and set both “scale” and

“size” hyper-parameters to s. We use the pre-trained BASNet provided by [73]. Figure 4.2-

(c-e) shows some examples. Table 4.1 reports the results.

It is not surprising that the BASNet [73] cannot generate decent concept masks (Fig. 4.2-

(e)) for pathology images since it is pre-trained on curated saliency detection datasets. What

is surprising is that bas-ConCL does yield satisfactory results (Table 4.1-(6)). Similar ob-

servations are also found in fh-ConCLs (Table 4.1-(4,5)) that though the generated concept

masks are coarse-grained, the resulted transferring performances are unexpectedly good.

After inspecting more examples, we find that the generated masks maintain high coherence

and integrity despite their coarse-grained nature. That said, each concept contains semantic-

consistent objects or textures. For example, Figure 4.2-(d,e) can be seen as special cases

of Figure 4.2-(a) that merge fine-grained semantics with coarse-grained ones. This property

makes the major difference between fh-/bas-ConCLs and g-ConCLs, where the grid-concepts

are less likely to have coherent semantics.

Thus, we here conclude that coherence matters and natural image priors also work in

pathology images, though they mostly provide coarse-grained concepts.
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4.4.4 Pathology Image Priors in Pathology Images

Can we obtain concept masks away with natural image priors? External dependency is

not always wanted and sometimes may fail to provide the desired masks (e.g., Fig. 4.2-(e)).

We thus task ourselves to find a dependency-free concept proposal method. One of the

key characteristics in pathology images is that they have rich low-level patterns and tissue

structures. Can we use that prior instead?

Figure 4.2-(f-h) shows the clustering visualization from intermediate feature maps gen-

erated by a 10-epoch warmed-up MoCo-v2 [18]. Thanks to the rich structural patterns in

pathology images, we find that simply clustering over the feature maps provided by a barely

trained model can already generate meaningful structural concept proposals. We thus build

upon this “free lunch” and use a “bootstrap your own perception” mechanism that is simi-

lar to the “bootstrap your own latent” mechanism in BYOL [38]. ConCL generates concept

proposals from the momentum key encoder’s perception while simultaneously improving and

refining it via the online query encoder, leading to a “bootstrapping” behavior. Thus, we

denote such ConCL as bootstrapped-ConCL (b-ConCL).

b-ConCL. The concept generator is now instantiated as a KMeans grouper. We first pass

the reference view xr to the key encoder to obtain a reference feature map from ResNet

stage-i: fi(xr) ∈ RCHW . Then, we apply K-Means to group K underlying concepts. b-

ConCL relies on neither external segmentation algorithms nor designated saliency detection

models for natural images.

Our default setting is K = 8, and clustering from f4 or f5. We postpone the study

of hyper-parameters, i.e., the number of clusters in KMeans, and the clustering stage fi

to Section 4.5.2 and report the main results in Table 4.1-(7,8). We find b-ConCL tops

other entries. Compared to MoCo-v2 [18], our direct baseline, b-ConCL outperforms it by

+4.5 APbb and +3.1 APmk. Moreover, b-ConCL obtains more gains in terms of AP75 (+6.2

APbb75, +3.7 APmk75 ) compared to MoCo-v2 [18], which means it improves MoCo-v2 [18] by

more accurate bounding box regression and instance mask prediction. This aligns with our
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motivation for ConCL since discriminating local concepts helps shape object borders.

Closing remarks. So far, we have included: i) dense contrasting matters; ii) correspon-

dence matters; iii) coherence matters; iv) natural image priors, though they might only

provide coarse-grained concepts, work in pathology images as well; and find v) a randomly

initialized or barely trained convolutional neural network, thanks to the rich low-level pat-

terns in pathology images and good network initialization, can generate good proposals that

are dense, fine-grained and coherent, as shown in Figure 4.2. Though the coarse-grained con-

cepts generated from natural image priors could also help tasks in our studied benchmarks,

they might underperform when a fine-grained dense prediction task is given. We hope our

closing remarks could be intriguing and guide future works in designing dense pre-training

methods for pathology images and beyond.

4.5 More Experiments

In the previous section, we have explored how we can obtain concepts, what concepts are

good, and find b-ConCL to be the best. We here conduct more experiments to study b-

ConCL.

4.5.1 Robustness to Transferring Settings

Transferring with different detectors. Here we investigate the transferring perfor-

mance with other detectors, i.e., Mask-RCNN-C4 (C4) [75] and RetinaNet [61]. RetinaNet

is a single-stage detector. It uses ResNet-FPN backbone features as Mask-RCNN-FPN but

directly generates predictions without region proposal [75]. C4 detector adopts a similar

two-stage fashion as Mask-RCNN but uses the outputs of the 4-th residual block as back-

bone features and re-targets the 5-th block to be the detection head instead of building a

new one. These three representative detectors evaluate pre-trained models under different

detector architectures. Results together with Mask-RCNN-FPN’s are shown in Table 4.2.
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Detector Pretrain
GlaS Detection CRAG Detection

APbb APbb75 APbb APbb75

MaskRCNN-C4

Rand. Init. 52.9 59.9 49.4 54.2

Supervised 49.1(-3.8) 55.1(-4.8) 46.1(-3.3) 50.6(-2.3)

MoCo-v2 [18] 53.6(+0.7) 61.8(+1.9) 48.3(-1.1) 52.6(-1.6)

b-ConCL 55.8(+2.9) 63.6(+3.7) 49.8(+0.4) 54.3(+0.1)

MaskRCNN-FPN

Rand. Init. 49.8 57.3 51.1 57.0

Supervised 50.2(+0.4) 56.9(-0.4) 49.2(-1.9) 55.2(-1.8)

MoCo-v2 [18] 52.3(+2.5) 60.0(+2.7) 50.0(-1.1) 55.7(-1.3)

b-ConCL 56.8(+7.0) 66.2(+8.9) 55.1(+4.0) 62.2(+5.2)

RetinaNet

Rand. Init. 46.4 51.0 45.2 47.6

Supervised 44.7(-1.7) 48.4(-2.6) 43.1(-2.1) 44.8(-2.8)

MoCo-v2 [18] 47.2(+0.8) 50.9(-0.1) 43.1(-2.1) 43.8(-3.8)

b-ConCL 52.6(+6.2) 58.6(+7.6) 48.4(+3.2) 51.9(+4.3)

Table 4.2: Detection performance using different detectors. Results are averaged

over 5 trials.

b-ConCL performs the best with all three detectors in both datasets. Notably, training

from scratch (Rand. Init.) is one of the top competitors when the C4 detector is used.

We conjecture that the pre-trained models are possibly overfitted to their pretext tasks in

their 5-th blocks and thus are harder to be tuned than a randomly initialized 5-th block.

In CRAG detection, only b-ConCL pre-trained models consistently outperform randomly

initialized models. In addition, the most significant gap between MoCo-v2[18] and b-ConCL

is found in the RetinaNet detector [61]. As also noted by [64], RetinaNet [61] is a single-stage

detector, where the local representations from the backbone become more important than

other two-stage detectors since results are directly predicted from them. b-ConCL is tasked

to discriminate local concepts, and subsequently, the learned representations could be better

than other pre-training methods here.
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Transferring with different schedules. To investigate if b-ConCL’s lead could persist

with longer fine-tuning, we fine-tune Mask-RCNN-FPN with 0.5×, 1×, 2×, 3×, and 5×

schedules. Table 4.3 shows the results. b-ConCL maintains its noticeable gains in longer

schedules in both datasets, e.g., b-ConCL achieves 56.2 mAP with a 0.5× schedule, which is

better than MoCo-v2 [18] with a 5× schedule but costs 10 × less fine-tuning time. Similar

observations are also found in CRAG, where the gap between b-ConCL and MoCo-v2 [18]

becomes larger (see ∆ row). Together, these results confirm b-ConCL’s superiority across

different fine-tuning schedules.

Method

GlaS dataset CRAG dataset

Fine-tuning schedule Fine-tuning schedule

0.5× 1× 2× 3× 5× 0.5× 1× 2× 3× 5×

Rand. Init. 49.1 49.8 51.4 51.8 52.7 50.2 51.1 51.9 52.4 52.8

Supervised 48.6 50.2 51.4 52.7 54.0 50.0 49.2 50.5 50.1 50.3

MoCo-v2[18] 51.4 52.3 53.7 54.2 55.7 50.2 50.0 50.2 50.8 51.8

b-ConCL 56.2 56.8 57.7 58.3 59.0 54.8 55.1 55.4 55.6 56.0

∆ +4.8 +4.5 +4.0 +4.1 +3.3 +4.6 +5.1 +5.2 +4.8 +4.2

Table 4.3: Detection performance under different fine-tuning schedules. Results

other than 1× schedule are averaged over 3 runs. ∆ row shows b-ConCL’s improvement

over MoCo-v2. We report APbb here.

4.5.2 Ablation Study

In this section, we ablate the key factors in b-ConCL. Our default setting clusters K = 8

concepts from ResNet stage-4 (f4(·)). Since b-ConCL is built on MoCo-v2 [18], we use it as

our direct baseline for comparisons.

Concept loss weight λ. We here study the generalized concept contrastive loss: L =

(1 − λ)Lq + λLc, where λ ∈ [0, 1] is a concept loss weight parameter. It shows a natural

way to combine concept contrastive loss with instance contrastive loss. We start by asking

whether instance contrastive loss is indispensable during the training process of b-ConCL. We
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alter the concept loss weight λ, and Table 4.4a reports the results. We see a monotonically

increasing performance as λ increases in both datasets, which emphasizes the importance of

concept loss. When no warm-up is used (last row in Table 4.4a), only a slight performance

drop is observed, meaning that warm-up is not the key component of b-ConCL. Warming-

up with instance loss (Eq. (4.2)) is a special case of b-ConCL, where at the early training

stage, each instance is regarded as a concept, and we then gradually increase the number of

concepts as training goes on. Thus, the overall findings in this ablation support b-ConCL’s

advance over MoCo-v2 [18].

Number of concepts K. Here, we investigate how the number of concepts clustered dur-

ing pre-training affects performance in downstream tasks. We report the results of different

K in Table 4.4b. b-ConCL performs reasonably well when K >= 4, with most of perfor-

mance peaking at K = 8. This demonstrates the robustness of b-ConCL to the choice of K.

Note that the best performance for the GlaS dataset is higher than our default setting and

outperforms all entries in Table 4.1, showing the potential room for b-ConCL.

Where to group fi(·). b-ConCL groups concepts from a model’s intermediate feature

maps. Our default setting uses feature maps from stage-4 of a ResNet [44], denoted as

f4(·). We now ablate this choice in Table 4.4c. Clustering concepts from f4(·) and f5(·)

works similarly well across two datasets. We choose f4(·) as the default since it achieves top

two performance in both datasets under both metrics. Besides, b-ConCL exceeds MoCo-v2

[18], whichever stage it groups concepts from. This again confirms the effectiveness and

robustness of b-ConCL.

Larger model capacity. Table 4.4d shows the results of using a larger backbone, ResNet-

50. b-ConCL maintains its leading position. For consistency to the previous ablation, a 1×

schedule is also used here, which could put ResNet-50 at a disadvantage since it has more

parameters to tune in a relatively short schedule.
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λ
GlaS CRAG

APbb APbb
75 APbb APbb

75

0.0 52.3 60.0 50.0 55.7

0.1 53.6 61.1 50.5 55.9

0.3 53.6 61.8 51.7 57.1

0.5 53.6 61.8 51.3 57.0

0.7 55.2 64.1 53.1 59.9

0.9 56.0 65.1 53.6 59.6

1.0 56.8 66.2 55.1 62.2

1.0\w.56.1 66.2 54.0 60.6

(a) Concept loss weight.

K
GlaS CRAG

APbb APbb
75 APbb APbb

75

1 52.3 60.0 50.0 55.7

2 54.5 64.1 52.9 60.1

4 55.6 64.7 53.4 59.7

6 56.3 65.1 53.7 60.2

8 56.8 66.2 55.1 62.2

10 57.0 66.0 55.1 61.0

12 57.4 66.2 54.2 60.1

16 55.7 65.3 54.5 61.3

(b) Number of concepts.

K
GlaS CRAG

APbb APbb
75 APbb APbb

75

None 52.3 60.0 50.0 55.7

f1(·) 55.0 65.1 53.3 60.0

f2(·) 55.0 64.7 53.7 60.4

f3(·) 56.2 66.4 53.0 59.6

f4(·) 56.8 66.2 55.1 62.2

f5(·) 56.1 65.6 56.5 63.3

(c) Clustering stage.

GlaS Detection

Pretrain
ResNet-18 ResNet-50

APbb APbb
75 APbb APbb

75

Rand. 49.8 57.3 49.9 56.1

Sup. 50.2 56.9 47.9 54.2

MoCo.v2 52.3 60.0 53.1 60.5

b-ConCL 56.8 66.2 57.0 65.9

(d) Backbone capacities.

Table 4.4: Ablation Study. We study the effect of different hyper-parameters to b-ConCL.

Default settings are marked in gray and MoCo-v2 baselines are marked by gray. In (a),

“\w.” means no warm-up.

4.6 Conclusion and Broader Impact

In this work, we benchmark various SSL methods for dense tasks in pathology images and

introduce the ConCL framework. We identify several key components essential for successful

transfer to dense tasks: i) dense contrasting, ii) correspondence, iii) coherence, and more.
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Ultimately, we developed a dependency-free concept generator that bootstraps from inherent

data concepts, demonstrating robustness and competitiveness.

Although our initial results focus on pre-training and fine-tuning, ConCL’s applicability

extends to tasks such as few-shot detection or segmentation, and semi-supervised learning.

Furthermore, ConCL could be beneficial for speech or tabular data analysis, where min-

imal prior knowledge can be employed. Fine-grained ”concepts” can be extracted using

contrastive learning and clustering in these data modalities.
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CHAPTER 5

Conclusion and Dicussion

This final chapter consolidates the work presented in this thesis, providing an overarching

review of the findings, their implications, and the potential future avenues for this research.

The primary objective of this thesis was to enhance the label efficiency and generalizability

of deep learning models in the field of medical image analysis, specifically in the context of

histopathology images. Our endeavors in this regard have been centered around two key

strategies: data augmentation and self-supervised learning.

In Chapter 2, we delved into the integration of contrastive learning (CL) with latent

augmentation (LA) to devise an efficient few-shot learning system. The findings from our

experimental analysis highlighted the benefits of CL, including superior generalizability com-

pared to traditional supervised learning models. Our work also extended the understanding

of how and why CL-based models demonstrate better generalization. This exploration pro-

vides a solid foundation for further research into few-shot learning in histology images and

has potential implications for other label-hungry domains.

Our discussion in Chapter 3 centered on the challenge of handling large, high-resolution

whole-slide images (WSIs) in the context of deep multiple instance learning (MIL). We

presented our solution, ReMix, which effectively enhanced training efficiency through in-

stance reduction and ensured data diversity through bag-level augmentations. The success

of ReMix across various MIL methods underscores its versatility and effectiveness, opening

up possibilities for its broader application in slide-level WSI analysis.

In Chapter 4, we introduced Concept Contrastive Learning (ConCL), a new self-supervised

learning (SSL) framework, and demonstrated its superiority over previous state-of-the-art
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SSL methods through extensive experimental analysis. We outlined the path toward a

more effective dense prediction pre-training method in pathological images and highlighted

a simple, dependency-free, self-bootstrapping concept-generating method. This work offers

valuable insights into SSL’s potential in the context of dense prediction tasks in pathology

images, contributing to a better understanding of the role of pre-training in computational

pathology.

The research presented in this thesis has made several contributions to the field of med-

ical image analysis. The methods and findings reported herein can significantly impact

healthcare, particularly in improving the efficiency and effectiveness of pathological diag-

nosis. Nonetheless, while we have made progress in enhancing label efficiency and model

generalization, there remains considerable scope for further research. Future work could

delve into refining and extending the methods presented in this thesis and exploring their

applicability in other medical imaging domains. By continuing to challenge the limitations

of current models and innovate, we can hope to further enhance the contribution of deep

learning to medical image analysis and, by extension, healthcare outcomes.
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