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Glucocorticoid Receptor mRNA Ontogeny in the Fetal and
Postnatal Rat Forebrain

Su-Jin Yi, Jeffrey N Masters*, and Tallie Z. Baram
Division of Neurology, Childrens Hospital Los Angeles, and Department of Neurology, University
of Southern California, Los Angeles, CA 90027
*Biotechnology Center, Ohio State University, Columbus, Ohio 43210

Abstract
Glucocorticoid receptor (GR) ontogeny and distribution in postnatal rat brain have been
demonstrated, but onset and distribution of GR gene expression during fetal life has not been
reported. This study focuses on the distribution of GR-mRNA in the fetal and postnatal rat fore-
brain, with emphasis on hypothalamic and limbic structures. Time pregnant rats were decapitated
at 8:30–9:30 AM on Gestational Days 14 (F14), F16, F17, F18, and F19. Postnatally, rats were
sacrificed on Days 1, 4, 6,10, and 16. Cryostat sections were subjected to in situ hybridization,
using a cRNA probe directed to the GR-mRNA. GR-mRNA was detectible in the hippocampo-
septal formation as early as F14. By F16, GR gene expression was evident in the hypothalamic
paraventricular nucleus (PVN) as well. During late gestation (F17–F19), GR-mRNA was localized
also in the thalamus, hippocampus, amygdala, and discrete cortical regions. Postnatally, GR-
mRNA abundance was high in the PVN, CA1/CA2 hippocampal field, piriform cortex and dorsal
endopiriform nucleus, specific amygdaloid nuclei, and the suprachiasmatic nucleus. In PVN, GR-
mRNA was present prior to the onset of CRH gene expression (F17), which may suggest a role for
GR in neuronal differentiation.

INTRODUCTION
The ontogeny of glucocorticoid receptor (GR), and of GR-messenger RNA (GR-mRNA)
distribution has been studied in postnatal rat brain, using immunohistochemistry and in situ
hybridization (ISH), respectively (1, 2). Whole brain GR-mRNA ontogeny has been
demonstrated using Northern blot analysis (3). However, the onset of GR gene expression in
specific limbic structures and the localization and relative abundance of GR-mRNA in fetal
rat brain have not been reported. Such information is of importance in view of the putative
role of glucocorticoids (GC) in neuronal development and differentiation (4–6). This study
focuses on the distribution of GR-mRNA in the fetal and neonatal rat brain, with emphasis
on hypothalamic and limbic structures.

MATERIALS AND METHODS
Animals

Time-pregnant Sprague-Dawley-derived rats (Zivic-Miller, Zelienople, PA; Day 0 defined
by sperm-positive smear) were housed under a 12-h light regimen (light on at 7 AM) and
given unlimited access to lab chow and water. All animals were decapitated at 8:30–9:30
AM, to avoid diurnal variability in GR-mRNA abundance (7). Pregnant rats were sacrificed
on Gestational Days 14 (Fl4), F16, F17, F18, and F19. Fetuses were rapidly harvested and
decapitated, and heads transferred onto finely powdered dry ice. For postnatal rats, delivery
was assessed every 12 h, and rats were sacrificed on Postnatal Days 1, 4, 6, 10, and 16 (day
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of birth = 0). Pups were decapitated, brains were removed from skulls and frozen on dry ice.
A minimum of three brains, derived from two separate litters, was used per age group.

Tissue Preparation
Brains were stored at −80°C. Coronal sections (20 μm) were mounted on gelatin-coated
slides and stored at −80°C. Sections were subjected to ISH. Separate sections were stained
with crystal violet to identify brain structures. Prior to ISH, slides were brought to room
temperature, air-dried, and fixed in buffered paraformaldehyde. Following a graded ethanol
treatment (8, 9), sections were exposed to acetic anhydride-triethanolamine and dehydrated
through 100% ethanol (8–10).

Probe Preparation and ISH Procedure
The GR probe was a 456-nucleotide fragment of a cDNA clone directed against the protein
coding region and the 3′ untranslated region of the GR-mRNA. The GR-specific cDNA
clone (originally from Dr. K. Yamamoto) was obtained from Drs. J. P. Herman and S. J.
Watson (11). A sense-strand was used as specificity control. Both sense and antisense S35-
cDNA probes were synthesized using S35-UTP (Amersham), and Sp6 and T7 RNA
polymerase, respectively. The specific activity of the probes was 1.4 ×109 cpm/μg. The ISH
procedure has been described (8–10). Briefly, acetic anhydride-treated, ethanol-dehydrated
sections were exposed to 20-μl hybridization solution containing 5 ×107 cpm/ml of labeled
probe at 58°C for 15 h. Subsequently, coverslips were removed in 4X SSC, and the slides
treated with 20 μg/ml RNAse A for 30 min at 37°C. Serial washes with decreasing
concentrations of SSC (containing 1 mMDTT), were followed by a high stringency wash
(0.1× SSC) at 75°C for 1 h. The slides were then dehydrated through increasing
concentrations of ethanol solutions containing 0.3 M NH4Ac. Dried sections were apposed
to film (XAR5, Kodak, Rochester, NY). Several sections were subsequently dipped in
emulsion (NTB-2; Kodak) and developed as previously described (8, 9), with the exception
that the emulsion was not diluted.

All sections were subjected to ISH together with adult brain sections at the level of the
hippocampus, as positive controls; all ISH films were analyzed together. Semi-quantitative
and statistical analyses have been described (8–10). Briefly, optical density (OD) was
determined over discrete brain regions using the MCID software image analysis system
(Imaging Research, Ontario, Canada). Each point was derived from 6–12 sections from a
minimum of three individual rats. OD values were compared to brain-paste standards (12).
Ratios of (region-OD)/ (background-OD) were also determined, thus eliminating
background variability (8–10). Fetal and postnatal brain structures were identified according
to Paxinos et al. (13) and Sherwood and Timiras (14), respectively.

RESULTS
GR-mRNA was detectible in the septohippocampal formation as early as F14 (Fig. 1A). By
F16, GR gene expression was evident in the hypothalamic paraventricular nucleus (PVN),
hippocampal formation and some cortical areas (Fig. IB, Table 1). By F18, robust GR-
mRNA hybridization was present over PVN, hippocampal formation (probably CA3), and
superficial cortical layers (Fig. 1C, Table 1).

On Postnatal Day 1, GR-mRNA was clearly localized to the CA1 hippocampal area (Fig.
2A), with little message in CA2, CA3, or dentate gyrus (Table 2). The cingulate and
frontoparietal cortical areas, thalamus and amygdaloid complex contained GR-mRNA as
well: semiquantitative analysis revealed higher GR-mRNA abundance in the PVN than in
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any other forebrain structure (Table 2). GR-mRNA signal was much stronger over the CA1
region in Day 4 than in Day 1 (Fig. 2B, Table 2).

By Postnatal Day 6 (Fig. 2C), GR-mRNA was abundant in parietal cortex, piriform cortex,
endopiriform nucleus, and in specific amygdaloid nuclei, particularly the central nucleus
(Table 2). GR-mRNA was also present in the hypothalamic suprachiasmatic nucleus (SCN)
(Fig. 2C, Table 2). GR-mRNA abundance in PVN remained high throughout the first
postnatal week.

By the 10th postnatal day, (Figs. 2D and 2E) GR-mRNA was maximal in the hippocampal
CA1/CA2 region, PVN, and central amygdaloid nucleus, followed by frontoparietal and
piriform cortex, dentate gyrus, endopiriform nucleus, and cingulate cortex in that order (Fig.
3, Table 2). GR-mRNA was expressed also in hypothalamic ventromedial and amygdaloid
basolateral and basomedial nuclei (Table 2, Fig. 3).

In the 16-day-old rat (Fig. 2F), GR-mRNA abundance was maximal in the hippocampal
CA1/CA2 and PVN (Table 2). Intermediate GR-mRNA signal was observed over the
dentate gyrus, central nucleus of amygdala, endopiriform nucleus, and cortical areas (Table
2). Of interest, GR-mRNA abundance in dentate gyrus increased between Day 10 and 16, in
agreement with Vazquez et al. (15).

DISCUSSION
This study demonstrates the presence of GR-mRNA in rat telencephalon as early as the 14th
fetal day (F14). We further find that hippocampal/septal structures express GR-mRNA prior
to hypothalamic nuclei.

In hippocampus, the fimbria region is the first to contain GR-mRNA, followed by
hippocampal formation by F16–17. By the first postnatal day, robust GR-gene expression is
visible in CA1, with little message in CA3 or dentate gyrus. The differential distribution of
GR-mRNA in hippocampus (CA1/CA2 > CA3) persists throughout the first postnatal week
to Postnatal Day 16. These results are in overall agreement with those of Van Eekelen (2)
and Vazquez et al. (15), though these authors found low amounts of GR-mRNA in CA3-
CA4 as well.

We found GR-mRNA in the hypothalamic SCN on Postnatal Day 6 (Fig. 2C). Van Eekelen
et al. were unable to demonstrate GR-mRNA presence in this region, though the same group
had previously demonstrated GR-containing cells in the SCN. The reason for the
discrepancy is not clear, but may relate to diurnal variability in GR gene expression in cells
of this “biological clock” structure. Van Eekelen et al. (2) did not indicate the time of
sacrifice.

In the hypothalamic PVN, GR-mRNA is clearly detectible on F16. The distribution of GR-
expressing cells overlaps the parvicellular PVN. In postnatal and adult rats, GR-mRNA has
been localized to cells expressing corticotropin releasing hormone (CRH, 16). CRH-mRNA
is first detectible using ISH on the morning of F17 (8, 17). In the mature brain, GR
participate in mediating GC regulation of the CRH gene promoter (12,18). This effect is at
least partially mediated by GR receptors in the PVN (19, 20). In the fetal rat, alteration of
circulating GCs does not affect the time of onset or the magnitude of CRH gene expression,
at least as assessed by CRH-mRNA abundance (8, 9, and unpublished results). Thus, GR-
mRNA presence in the PVN may not correlate with the presence of functional GR, as has
been demonstrated in the fetal sheep (21). Alternatively, second messenger cascades
transducing GC effects on the CRH gene promoter (18, 22, 23) may not be functional in the
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fetal rat. GR in the fetus may play other roles in neuronal development and function,
possibly through trophic or direct membrane effects (24).

In conclusion, discrete limbic and hypothalamic structures express GR-mRNA during the
last third of rat fetal life. GR-mRNA distribution is similar to, but not identical to that in
postnatal and adult rats. GR may mediate different functions in developing versus mature
neurons.
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FIG. 1.
Photomicrographs of the glucocorticoid receptor gene expression in fetal rat forebrain. In
situ hybridization was performed using a cDNA probe directed against GR-mRNA. GR gene
expression is evident in the septohippocampal region on Fetal Day 14 (A). GR-mRNA is
present also in PVN by Fetal Day 16 (B) and Fetal Day 18 (C). Amyg, amygdala; BST, bed
nucleus stria terminalis; Cpu, caudate putamen; Cxn. cortical neuroepithelium; Fnx, fornix;
Spt, septum; Hab, habenular nucleus; Hpf, hippocampal formation; Hypo, hypothalamus;
PVN, paraventricular nucleus (hypothalamus); SCN, suprachiasmatic nucleus; Thal,
thalamus. Bar, 1 mm.
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FIG. 2.
Photomicrographs of the GR gene expression in postnatal rat forebrain, demonstrating the
distribution of GR-mRNA on Postnatal Days 1, 4, 6, 10, and 16. On Day 1 (A), GR-mRNA
is evident in the hippocampal CA1 as well as in the PVN. A similar distribution is seen on
Day 4 (B), with increased signal over the CA1/CA2 region and parietal cortex. GR-mRNA
is evident in the amygdala and endopiriform nucleus by Day 6 (C). The distribution of GR
message on Postnatal Day 10 is seen in two coronal levels (D, E). By Day 16 (F), GR-
mRNA is abundant in dentate gyrus. Hybridization with a sense probe (G) was presented to
show the specificity of the signal. ACE, central nucleus (amygdala); BA, basal nucleus
(amygdala); BLA, basolateral nucleus (amygdala); CIN, cingulate cortex; DGn, dentate
gyrus neuroepithelium; EPN, endopiriform nucleus; LDT, laterodorsal nucleus (thalamus);
MDT, mediodorsal nucleus (thalamus); PAR. parietal cortex; PIR, piriform cortex; VMH,
ventromedial nucleus (hypothalamus); VT, ventral nucleus (thalamus). Bar, 1 mm.
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FIG. 3.
A representative graph for the distribution of GR-mRNA in 10-day-old rat brain. This graph
was generated by analyzing the signal shown in Fig. 2E, using a MCID image analysis
system. In order to illustrate at a glance the developmental changes of GR-mRNA
abundance in various brain areas, the intensity of the signal was simplified from actual
numbers to degrees: a range of intensity between 100 and 500 cpm/mg tissue was given a
rate of +. (background signal <100). Similarly, a rate of ++ was given to the intensity
between 500 and 900, +++ to 900 and 1300, and ++++ to 1300 and 1700 cpm/mg tissue.
That information is provided in Tables 1 and 2.
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TABLE 1

Ontogeny of GR-mRNA in the Prenatal Rat Brain

F14 F16 F18

Cortex

 Cortical neuroepithelium + + ++

 Cortical plate ++ ++ ++

Hippocampal formation + ++ ++

Fornix +++ ++ ++

Septum ++ ++ +

Habenular nucleus ++ ++

Bed nucleus stria teminalis/caudate putamen + +

Thalamus + +

Amygdaloid area +

Hypothalamus

 Paraventricular nucleus +++ +++

 Ventromedial nucleus +

 Suprachiasmatic nucleus +++
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