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Abstract 

 

 

Engineering Low Dimensional Materials with van der Waals Interaction 

 

By 

Chenhao Jin 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Feng Wang, Chair 

 
 

Two-dimensional van der Waals materials grow into a hot and big field in condensed matter 
physics in the past decade. One particularly intriguing thing is the possibility to stack different 
layers together as one wish, like playing a Lego game, which can create artificial structures that 
do not exist in nature. 

These new structures can enable rich new physics from interlayer interaction: The 
interaction is strong, because in low-dimension materials electrons are exposed to the interface 
and are susceptible to other layers; and the screening of interaction is less prominent. The 
consequence is rich, not only from the extensive list of two-dimensional materials available 
nowadays, but also from the freedom of interlayer configuration, such as displacement and twist 
angle, which creates a gigantic parameter space to play with. 

On the other hand, however, the huge parameter space sometimes can make it challenging 
to describe consistently with a single picture. For example, the large periodicity or even 
incommensurability in van der Waals systems creates difficulty in using periodic boundary 
condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts 
involved to some extent prevent the establishment of a simple physical picture to understand the 
evolution of system properties in the parameter space of interlayer configuration. 

In the first part of the dissertation, I will focus on classification of the huge parameter space 
into subspaces, and introduce suitable theoretical approaches for each subspace. For each 
approach, I will discuss its validity, limitation, general solution, as well as a specific example of 
application demonstrating how one can obtain the most important effects of interlayer interaction 
with little computation efforts. Combining all the approaches introduced will provide an analytic 
solution to cover majority of the parameter space, which will be very helpful in understanding 
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the intuitive physical picture behind the consequence of interlayer interaction, as well as its 
systematic evolution in the parameter space. 

Experimentally, optical spectroscopy is a powerful tool to investigate properties of materials, 
owing to its insusceptibility to extrinsic effects like defects, capability of obtaining information 
in large spectral range, and the sensitivity to not only density of states but also wavefunction 
through transition matrix element. Following the classification of interlayer interaction, I will 
present optical spectroscopy studies of three van der Waals systems: Two-dimensional few layer 
phosphorene, one-dimensional double-walled nanotubes, and two-dimensional 
graphene/hexagonal Boron Nitride heterostructure. Experimental results exhibit rich and 
distinctively different effects of interlayer interaction in these systems, as a demonstration of the 
colorful physics from the large parameter space. On the other hand, all these cases can be well-
described by the methods developed in the theory part, which explains experimental results 
quantitatively through only a few parameters each with clear physical meaning. Therefore, the 
formalism given here, both from theoretical and experimental aspects, offers a generally useful 
methodology to study, understand and design van der Waals materials for both fascinating 
physics and novel applications. 
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Chapter 1 – Introduction 

1.1 Background	and	Motivation	

The emergence of two-dimensional (2D) materials is one of the major developments in 
condensed matter physics for the last decade, as it marked the capture of the last new land in 
spatial dimensional, decades after the development on zero-dimensional quantum dot and one-
dimensional nanowire/tubes. It is impressive to see that this field is still growing after more than 
10 years since the first discovery of monolayer graphene. Improving material quality and 
searching for new 2D materials are of course always among the objectives; the Holy Grail to 
fabricate 2D integrated circuit with ultimate scalability and potentially higher power efficiency is 
also a persistent goal in pursuit. Another unique aspect of 2D materials that greatly contribute to 
their prosperity, however, is the virtually infinite new possibilities from combining layers into 
artificial van der Waals systems. 

The interlayer interaction is not only strong, leading to significant modification of material 
properties; but also rich, forming a gigantic parameter space through choices of materials and 
their alignment. Fascinating physics has indeed been observed from the huge parameter space, 
such as the versatile engineering of material properties through different layer configuration. 
Even more interestingly, parts of the parameter space can be difficult to reach in natural system, 
enabling realization of long-sought models such as the Hofstadter butterfly pattern. The 
dynamics of excited states can also be efficiently tuned through interlayer charge transfer or 
electron-phonon interaction.  

These exciting new possibilities emphasize the necessity of a proper language to describe 
van der Waals systems. Given the huge parameter space, it would be helpful if the language can 
provide an intuitive picture of how system properties are evolving in the parameter space through, 
for example, pinpointing and isolating the most important part in the interaction. Various 
candidates for this goal have been around in literatures, which, nevertheless, can often create 
confusions without specifying the range of application. In the theory part, I aim to provide a set 
of approaches that are consistent with each other, because they are essentially coming from the 
same parent methodology; however each particularly suitable for describing specific region in 
the parameters space. In this way, confusion between different approaches can be removed and 
one would be able to find a physically-intuitive approach almost anywhere in the parameter 
space. 

In the experiment part, I want to demonstrate the great potential of van der Waals systems 
from actual observation of fascinating physics with optical spectroscopy studies. In addition, the 
comparison to theory part confirms the accuracy and usefulness of formalism developed.  
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1.2 Outline	of	Thesis	

The dissertation starts with a series of theory-oriented discussions in chapter 2, in which I 
will classify the large parameter space of interlayer interaction in van der Waals materials, and 
introduce suitable approaches in each case. 

Section 2.2 introduced the most general approach, direct diagonalization, based on tight 
binding model. Section 2.3 classifies the parameter space into commensurate and 
incommensurate systems, from which we find deficiency of direct diagonalization in the latter 
case. Therefore, section 2.4 introduces the momentum space diagonalization method, which can 
further be expanded to different orders, with the two leading orders corresponding to the “direct 
mixing” and “effective potential” approaches discussed in section 2.5. With the expansion, the 
criterion of “weak coupling” and “strong coupling” can also be naturally derived. While the 
momentum space diagonalization method based on the “global picture” is generally suitable for 
the “weak coupling” case, a “local picture” is introduced in section 2.6 as an appropriate tool in 
the “strong coupling” regime. The equivalence between the two pictures is also discussed. 

Following chapters will focus on experimental studies with optical spectroscopy to 
demonstrate the great potential of van der Waals systems in engineering material properties in 
different regimes of the parameter space.  

Chapter 3 reveals the conveniently tunable bandgap and electronic structure in few layer 
phosphorene. Theoretically, this corresponds to the simplest case in “direct mixing”, i.e. “direct 
mixing” at zero momentum, allowing the description of optical resonances in arbitrary layer 
phosphorene with single master equation. Experimentally, optical absorption spectroscopy is 
performed to directly demonstrate a tunable bandgap from 0.34-1.73eV in phosphorene, as well 
as extra optical resonances above the bandgap from higher subband transitions. The nice match 
between theoretical and experimental results confirms the reliability of both approaches and 
enables the determination of interlayer coupling strength. These observations suggest 
phosphorene as versatile platform for applications in both electronic and optoelectronics from the 
infrared to visible spectral range, and provide guidance to further engineering its properties.  

Reference: (1). Likai Li*, Jonghwan Kim*, Chenhao Jin*, et al. Nat Nano 12, 21 (2016) 

Chapter 4 shows another example of “direct mixing”, though much more complicated than 
in chapter 3, that electronic structure of 1D incommensurate double-walled nanotubes (DWNTs) 
can be strongly modified by intertube electronic interaction. Experimentally, through both TEM 
and optical absorption measurement on the same individual DWNT, we simultaneously 
determine the atomic and electronic structures of the DWNT, and observe a large shift of optical 
transition energies in DWNT compared to constituent single-walled nanotube. The transition 
energy shifts exhibit an intricate and interesting family pattern, which can be well described by 
theory developed here. These observations for the first time demonstrate strong intertube 
electronic hybridization in incommensurate 1D system, as opposed to previous belief that 
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intertube electronic coupling between incommensurate DWNT is negligible; therefore providing 
key information to understand and engineer the electronic and optical properties of 1D materials.  

Reference: (2). Kaihui Liu*, Chenhao Jin*, et al. Nat Phys 10, 737 (2014) 

Chapter 5 studies graphene/hBN as one representative van der Waals heterostructure, where 
the “effective potential” approach applies. Interestingly, discussions in chapter 2 suggest this 
effective potential to have a spinor, rather than scalar nature, which directly accesses graphene’s 
pseudospin degree of freedom. Experimentally, micro-infrared optical absorption spectroscopy 
was performed on the graphene/hBN heterostructure. With the capability of probing not only 
density of states but also wavefunction, the peculiar response from optical spectroscopy directly 
confirms the spinor nature of the effective potential and the dominant role of the “pseudospin-
mixing” component, which opens an “inverse gap” in the Moiré Brillouin Zone. The 
“pseudospin-mixing” potential and its nontrivial effect on the pseudospin structure of graphene 
are virtually impossible to achieve with applied external field. These results therefore 
demonstrate the unique capabilities of van der Waals systems to generate unusual type of 
effective potential allowing versatile engineering on the properties of low-dimensional materials.  

Reference: (3). Zhiwen Shi*, Chenhao Jin*, et al. Nat Phys 10, 737 (2014) 

Chapter 6 briefly discusses some more recent results not included in the main body of the 
dissertation. These contents consider a broader scope of interlayer interaction, such as the 
interlayer electron-phonon interaction and interlayer charge transfer process, and are also closely 
related to discussions in previous chapters; therefore can be of great interest in future studies.  

References: (4, 5). Chenhao Jin*, Jonghwan Kim*, et al. Nat Phys 13, 127 (2017), 
Jonghwan Kim*, Chenhao Jin*, Arxiv, 1612.05359 (2017) 
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Chapter 2 – Tuning Single Particle Eigen‐states in 

van der Waals structures  

2.1	Introduction	

Quantum mechanics is one of the most significant progresses in the physics history, which 
allows accurate description of motion of particles, e.g. electrons, with simple and elegant forms: 
By writing down the Hamiltonian and solving Schrödinger or Dirac equations, the eigenstates of 
the system, both energy and wavefunction, can in principle be fully obtained. Because the 
behavior of a system, such as electrical, optical, thermal, magnetic properties etc., are often 
determined by the response of the system to external perturbations, and ultimately by the motion 
of particles constituting the system; Obtaining the eigenstates of a system is usually the first step 
to understand its behavior theoretically, and tuning the eigenstates of a system is one of the most 
important methods to engineer its properties.   

For a simple system like non-interacting Fermi gas, its eigenstates can be readily calculated, so 
are its physical properties. However, when the interaction between particles is turned on, the 
difficulty starts increasing exponentially with particle number. While motion of two interacting 
particles can still be solved with pencil and paper within an hour, three particles will already 
need numerical assistance. For a macroscopic system which contains billons of trillions of 
particles, the time it takes to solve their motion with brute force would be much longer than the 
age of the universe. 

Fortunately, a few approximations can be made to significantly simply the problem. Born-
Oppenheimer approximation allows for separation of interactions at different energy scale, and 
isolating the equation of motion for electronic part alone. Fermi liquid theory states that the 
ground state of an interacting Fermi system can be adiabatically connected to a non-interacting 
system; and that the interacting electrons can be considered as non-interacting quasi-particles 
with renormalized dynamical properties. These approximations work quite well in many real 
systems, e.g. crystals, which make them quite similar to the simple free electron gas, with one 
difference: Periodicity. While free electron gas has translational symmetry with arbitrary 
displacement, the Hamiltonian of a crystal is only symmetric to a displacement of multiple lattice 
vectors. 

It is therefore clear that the periodicity of a crystal plays an important role in determining its 
eigenstates. From this perspective, low dimensional van der Waals materials are really a unique 
platform since their periodicity can be conveniently tuned through artificially stacking layers into 
specific alignment; and the effects of such periodicity will be strong enough as all the electrons 
are at the interface and therefore sensitive to the interaction between layers. By tuning the 
strength and pattern of interlayer coupling, not only properties of materials can be significantly 
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modified, but also rich physical phenomena can emerge, among which many are difficult to be 
realized in traditional systems. On the other hand, such overly large parameter space makes it 
sometimes confusing to correctly describe the effects of interlayer interaction, since there are 
multiple ways and each may be only valid within certain range. 

In this chapter, I will try to provide a comprehensive description of the interlayer interaction in 
low dimensional van der Waals systems by classifying the interaction into several parameter 
subspaces, and providing qualitative picture and quantitative analyzing methods suitable for each 
region.  

To achieve this, we first need the tool to obtain eigenstates of systems at arbitrary parameter 
configuration (of interlayer coupling strength and pattern). The tool I will use here is tight 
binding model. The following Section 2.2 provides a brief review of important results of tight 
binding model, which will be used throughout the chapter. 
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2.2	Review	of	Tight	Binding	Model	

2.2.1	General	solution	to	periodic	system:	Direct	Diagonalization	

Discussion of tight binding model can be found in almost every solid state physics textbook. 
Therefore here I will not provide a detailed and rigorous derivation. Instead, a practical approach 
will be used. 

Given ܪ to be the Hamiltonian of a crystal, Schrödinger equation reads ߰ܪ ൌ  ܧ where ,(1-2)	߰ܧ
and ߰ are the eigen-energy and wavefunction, respectively. The crystal is composed of atoms 
tightly bound to ions. Therefore it is convenient to use the wavefunction of isolated atoms as the 
basis. i.e. ߰ሺ࢘ሻ ൌ ∑ ܾ௡߮ሺ࢘ െ ೙ࡾ௡ሻࡾ ൌ ܾ௡߮௡ (2-2). Here ߮ሺ࢘ െ  ௡ሻ is the local wavefunctionࡾ

(or local orbital) of the atom at ࡾ௡, ܾ௡ is its coefficient. Einstein convention is used to simplify 
notation of summation. Multiply Eq. (2-1) by ߮௠ on left and use Eq. 2-2, we have: 

߮௠߰ܪ ൌ ܾ௡߮௠߮ܪ௡ ൌ ܾ௡߮ܧ௠߮௡     (2-3) 

Define ݐ௠௡ ൌ ߮௠߮ܪ௡, ݏ௠௡ ൌ ߮௠߮௡, Eq. 2-3 can be rewritten as: 

ሺݐ௠௡ െ ௠௡ሻܾ௡ݏܧ ൌ 0     (2-4) 

Eq. 2-4 naturally correspond to a matrix equation ሺܶ െ ሻܺܵܧ ൌ 0 (2-5), where the elements of 

matrix ܶ and ܵ are given by ݐ௠௡ and ݏ௠௡, respectively. ܺ ൌ ሺܾଵ, ܾଶ, … ሻ୘. Solving Eq. 2-5 is 
standard, and the eigen energy can be obtained directly from det|ܶ െ |ܵܧ ൌ 0. 

Note that ݏ௠௡ physically represents the wavefunction overlap between two local orbitals at 
different sites. Assuming the local orbitals are local enough that the above overlap is very small, 
we have ݏ௠௡ ൌ ܵ ௠௡ andߜ ൌ ܺܶ With such simplification, Eq. 2-5 becomes .ܫ ൌ  :(6-2) ܺܧ
Solving eigen-energy and wavefunction of the system becomes equivalent to the eigenvalue 
problem of matrix ܶ. Therefore, we may call this method Direct Diagonalization. 

Eq. 2-5 is generally true for system with arbitrary (or no) periodicity. However, if the system 
consists of N atoms, an N by N matrix is necessary to be solved. For a macroscopic system, this 
is still not possible. However, by taking advantage of translational symmetry, we can further 
simplify the calculation: for system with certain periodicity, the momentum ࢑ is a good quantum 
number. According to Bloch theorem, Eq. 2-2 can be reduced to  

߰࢑ሺ࢘ሻ ൌ ∑ ∑ ܾ௡࢑߮௡ሺ࢘ െ ೗ࡾ೗௡ࡾ∙௟ሻ݁௜࢑ࡾ      (2-7) 

Here ࡾ௟ is arbitrary lattice vector, ݊ labels all different local orbitals within a unit cell (either 
multiple orbitals from the same atom or multiple atoms from the same unit cell). The above 
equation have clear physical meaning: In a periodic system, the summation over all local orbitals 
can be done into two steps; first summing within a unit cell (over ݊), then summing over all unit 
cells (over ࡾ௟). Following the same procedure as in Eq. 2-3, we now obtain: 
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࢑߰ܪ ൌ෍෍ܾ௡࢑߮௠ሺ࢘ െ ௡ሺ࢘߮ܪ௦ሻࡾ െ ೗ࡾ∙௟ሻ݁௜࢑ࡾ

௡ࡾ೗

ൌ ෍෍ܾ௡࢑߮௠ሺ࢘ܧ െ ௦ሻ߮௡ሺ࢘ࡾ െ ೗ࡾ∙௟ሻ݁௜࢑ࡾ

௡ࡾ೗

 

Again assuming ߮௠ሺ࢘ െ ௦ሻ߮௡ሺ࢘ࡾ െ ௟ሻࡾ ൌ  :௟௦, the above equation becomesߜ௠௡ߜ

෍ܾ௡࢑෍߮௠ሺ࢘ െ ௡ሺ࢘߮ܪ௦ሻࡾ െ ೗ࡾ∙௟ሻ݁௜࢑ࡾ

೗௡ࡾ

ൌ ܾ௡݁ܧ௜ࡾ∙࢑ೞ 

෍ܾ௡࢑ ቎෍߮௠ሺ࢘ െ ௡ሺ࢘߮ܪ௦ሻࡾ െ ೞሻࡾ೗ିࡾሺ∙௟ሻ݁௜࢑ࡾ

೗ࡾ

െ ௠௡቏ߜܧ
௡

ൌ 0 

With translational symmetry, ࡾ௦ can be arbitrary lattice vector. Choosing ࡾ௦ to be 0, we have  

෍ܾ௡࢑ ቎෍߮௠ሺ࢘ሻ߮ܪ௡ሺ࢘ െ ೗ࡾ∙௟ሻ݁௜࢑ࡾ

೗ࡾ

െ ௠௡቏ߜܧ ൌ 0
௡

 

which again corresponds to solving the eigen value and vector of matrix ܶ, where 

௠ܶ௡
࢑ ൌ ∑ ߮௠ሺ࢘ሻ߮ܪ௡ሺ࢘ െ ೗ࡾ೗ࡾ∙௟ሻ݁௜࢑ࡾ      (2-8) 

 

2.2.2	Few	remarks	

Eq. 2-6 takes the same form as the Schrödinger equation, because it is simply the matrix form of 
Schrödinger equation in the basis of local orbitals. Comparing Eq. 2-6 and Eq. 2-1 directly gives 
the second quantization form of the Hamiltonian: ܪ ൌ ∑ ௡௠.௡ܥ௠ାܥ௠௡ݐ , where ܥ௠ା  and ܥ௠ are 
creation and annihilation operators of local orbital ݉. 

Comparing Eq. 2-8 to 2-6, the problem of solving a matrix containing all orbitals within the 
system, which is impractical, has been reduced to solving a matrix containing only orbitals 
within a unit cell, which is often doable. As an extreme example, regardless of dimension, if a 
simple lattice has only one atom in each unit cell, and only one relevant orbital from each atom, 
then only a 1x1 matrix needs to be solved, which actually does not need to be solved at all. 

Since multiple orbitals from the same atom and multiple atoms in the same unit cell are on an 
equal footing in Eq. 2-8, from now on we assume that only one orbital is involved from each 

atom. To calculate matrix element ௠ܶ௡
࢑ , Eq. 2-8 in principle requires summing over the coupling 

between atom ݉ in a given unit cell and atom ݊ in each unit cell. However, since both atom ݉ 
and ݊ have localized wavefunction, it is natural that their coupling will decay very fast over their 
spatial separation. In fact, only a few unit cells need to be considered for atom ݊ where it is close 
enough to the given atom ݉. Depending on how fast the coupling decay over space and how 
accurate the result need to be, different approximations can be made. For example, the nearest-
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neighbor (NN) approximation assumes that only two atoms next to each other have finite 

hopping, and will contribute to ௠ܶ௡
࢑ . 

In reality, if N atoms exist in a unit cell, we can follow the below steps to write down the matrix 
element ௠ܶ௡: 

1. Choose any unit cell (which cannot changed afterwards), label each atom with 
1,2, …, N. 

2. Starting from atom 1 in the chosen unit cell, find all atoms close enough to it so 
that they will have finite coupling. 

3. For each of the atom found with finite coupling, determine its label ݆, and add the 
coupling to matrix element ଵܶ௝. If this atom belongs to a different unit cell from the chosen 

one, and the lattice vector connecting them is ࡾ௟, then an additional phase factor ݁௜ࡾ∙࢑೗  needs 
to be added. 

4. In step 3, note that the “coupling ” between atom ݆ with itself (i.e. with atom ݆ in 
the exactly same unit cell), ܧ௝ ൌ ߮௝߮ܪ௝, is roughly the energy of isolated atom ݆, which will 

be added to the diagonal term ௝ܶ௝. 

5. Keep doing step 3 for all atoms from the chosen unit cell. 
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2.3	Classification	of	Interlayer	Interaction,	I:	Commensurate	

and	Incommensurate	system	

2.3.1	Example	of	Direct	Diagonalization:	Mono	and	Bilayer	Graphene	

The formalism developed in last section is generally applicable to any system, certainly 
including van der Waals structures stacked from multiple layers: we can write out the matrix ܶ 
for the overall, multi-layer system and solve it as a whole. This method is valid for all pattern 
and strength of interlayer interaction, and can in principle produce all the information we need. 

Indeed, for many layered systems, the above description is good enough. Taking graphene as an 
example: For monolayer graphene, each unit cell has 2 atoms (usually called A and B 

sublattices). Following the steps from last section, the matrix ܶ࢑ (or ࢑ܪ) should be 2-by-2, which 
reads: 

ெ௅ܪ
࢑ ൌ ൬

஺ܧ െߛ଴݂ሺ࢑ሻ
െߛ଴݂∗ሺ࢑ሻ ஻ܧ

൰ , ݂ሺ࢑ሻ ൌ 1 ൅ ݁௜ࢇ∙࢑૚ ൅ ݁௜ࢇ∙࢑૛ 

Here only nearest neighbor interaction is considered, ࢇ૚,  ૛ are real space primitive latticeࢇ
vectors of graphene; െߛ଴ is the hopping parameter between two neighboring carbon atoms, 
where ߛ଴~3eV.   

For bilayer graphene, the matrix ܪ can be written in exactly the same way, except for the fact 
that now there are 4 atoms (A1, B1 from 1st layer and A2, B2 from 2nd layer) in each unit cell; 
and therefore ܪ should be 4-by-4 matrix, which takes the form(6, 7): 

஻௅ܪ
࢑ ൌ

ۉ

ۇ

஺ଵܧ െߛ଴݂ሺ࢑ሻ ସ݂ሺ࢑ሻߛ ଷ݂∗ሺ࢑ሻߛ
െߛ଴݂∗ሺ࢑ሻ ஻ଵܧ ଵߛ ସ݂ሺ࢑ሻߛ
ସ݂∗ሺ࢑ሻߛ ଵߛ ஺ଶܧ െߛ଴݂ሺ࢑ሻ
ଷ݂ሺ࢑ሻߛ ସ݂∗ሺ࢑ሻߛ െߛ଴݂∗ሺ࢑ሻ ஻ଶܧ ی

 ۊ

 

While more complicated than monolayer case, the above matrix is still obtained following the 
exact process in section 2.2.2: we label the four atoms from 1 to 4, and write done the coupling 
between each two of them as the matrix element. All the ߛ symbols are just parameters 
describing interaction between different pair of atoms. e.g. ܪଶଷ ൌ  ଵ describes the couplingߛ
between B1 and A2 atoms, which corresponds to an interlayer coupling term. 

Both ܪெ௅
࢑  and ܪ஻௅

࢑  can be solved analytically to obtain the band structure and eigen-
wavefunction of mono- and bi-layer graphene, which has proven amazingly successfully in 

understanding physical properties of graphene. By expanding ܪெ௅
࢑  around ࢑ ൌ  so that ,ࡷ

݂ሺ࢑ሻ ൌ ௫݌ െ ࢖ሺ	௬݌݅ ൌ ࢑ െ ெ௅ܪ ,ሻࡷ
࢑  can be rewritten into the form of Weyl equation for ultra-
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relativistic particles, which essentially gives the linear Dirac cone dispersion and all the spinor 
physics. 

Similar expansion can be done for ܪ஻௅
࢑  that clearly demonstrates the effect of interlayer 

interaction.  For example, at ࢑ ൌ so that ݂ሺ࢑ሻ	ࡷ ൌ 0, for monolayer this requires that both bands 
are degenerate at energy 0 (Assuming that two sublattices are the same and thus ܧ஺ ൌ  ஻). Inܧ
bilayer, however, the interlayer interaction ߛଵ leads to a partial lift of degeneracy: two of the four 
bands are raised/lowered to the energy of േߛଵdue to antibonding/bonding between sublattice B1 
and A2, while the other two bands from A1 and B2 remain at energy 0. When ࢑ is slightly away 
from ࡷ, with ࢖ ൌ ሺ࢑ െ  ሻ expansion we can readily obtain the analytical form of the bandࡷ
dispersion, which turns out to be a parabolic dispersion corresponding to an effective mass 
଴ߛ/ଵߛ~

ଶ. Detailed discussion can be found in various references. 

 

2.3.2	Commensurate	and	Incommensurate	System	

Given the success of direct diagonalization, it is naturally to ask when we need additional 
methods, or if we need them at all. The answer is: YES. 

Considering a twisted bilayer graphene with twist angle ߠ. Apparently, the unit cell size of the 
bilayer system (which is the common unit cell of both layers) depends on angle ߠ. When ߠ ൌ 0, 
the unit cell size is the same as monolayer, such as the Bernal-stacked case in last section, for 
which direct diagonalization is a good approach. However, the bilayer unit cell (BUC) size can 
be much larger than that of monolayer (MUC), which can contain thousands of atoms. This 
means that a matrix of the order of thousands needs to be diagonalized. Worse still, the bilayer 
unit cell size can be infinite, for example when ߠ is infinitely small. Since we cannot diagonalize 
a matrix with infinitely large dimension, the direct diagonalization method automatically fails. 

The last case is often considered the “strict” definition of incommensurate system. Just like two 
incommensurate numbers do not have a finite common multiple, two periodic system are 
incommensurate if no finite common periodicity can be found. Therefore, direct diagonalization 
is apparently not suitable for “Strict” incommensurate system. 

Even for the second case where the bilayer unit cell has medium size, the direct diagonalization 
method also has problems. Although a matrix with dimension of thousands is solvable with the 
help of modern computer, such size is large enough to prevent any analytical solution even with 
expansion around certain momentum. This is not always a problem, but does make it harder to 
build an intuitive physics picture that relates the system configuration to its properties, since now 
solving the eigen-states of the system becomes a process in black box with pure computational 
efforts. Especially often when the properties of each isolated layer is elegantly simple and well-
studied, it is counter-intuitive to completely neglect those beautiful results and do everything by 
brute force. 
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Another apparent problem of direct diagonalization method is its discontinuity. For example, if 
certain twist angle ߠ gives a bilayer unit cell size with one thousand atoms, by increasing the 
angle to ሺߠ ൅  is small, the new bilayer unit cell can have one million, one billion, or ߜ ሻ, whereߜ
even infinite number of atoms as long as ߜ is small enough. On the other hand, if we smoothly 
change ߠ in the parameter space, the properties of the system should also change smoothly, 
unless encountering some phase transitions or quantum critical points. Therefore, we would 
expect that small ߜ will not affect much the properties of the system, and that diagonalizing the 
above matrices with dimension of either one thousand, one million, one billion or infinite should 
give almost the same results. 

The above case shows an intrinsic problem of direct diagonalization method, and actually it is 
also a problem for the definition of incommensurate system, since incommensurate and 
commensurate systems can be infinitely close in parameter space and in their properties. 
Therefore, here I prefer to introduce a “practical” version of the definition: the system can be 
considered “incommensurate” if the relative position between atoms from one layer and the other 
layer are almost random. This definition is compatible with the strict one. Taking one-
dimensional case as an example, where the periodicity is simply the length of unit cell. If two 
layers are strictly incommensurate, the local offset between interlayer atoms will never be the 
same (or they will be commensurate). Therefore when we consider a long enough total length, 
the local offset will be approximately random. On the other hand, Bernal-stacked graphene is 
definitely not incommensurate as relative configuration between interlayer atoms are constant 
everywhere. 

All the notion of “incommensurate” in the following sections are referring to the practical 
definition if without specification. At this point, such definition is still very vague, e.g. how 
random is “almost random”. In section 2.4.2 we will see further, and more quantitative 
discussion. 

Now we can conclude that, direct diagonalization is a good method for commensurate system, 
but not necessarily for incommensurate system. We should bear in mind that, however, the 
problems of direct diagonalization do not mean that it is wrong. In the next sections, we will 
try to develop alternative languages specifically for incommensurate system, with certain 
approximations. These methods can have advantages such as that they can require less 
computation efforts, better represent the nature of interlayer interaction, and provide more 
intuitive picture into the system properties. Nevertheless, they should still be all compatible with 
the direct diagonalization method. Therefore, it is often helpful to combine multiple methods 
together. For example, we can use other methods to obtain a simple and intuitive picture of some 
most important properties of the system; and then use direct diagonalization to confirm that all 
these results are valid. 
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2.4	Momentum	Space	Diagonalization	

2.4.1	Isolation	of	Interlayer	Interaction	

As we discussed in the last section, direct diagonalization, the most universal method, might not 
be the best one in all situations. One fundamental reason is that it treats intralayer and interlayer 
interaction on an equal footing, while the parameter space we want to (and we can) explore is 
only for interlayer interaction, since we cannot modify much to intralayer interaction. Also, it 
will be desirable if we can start with the well-known monolayer and investigate how it is 
modified by interlayer interaction, instead of starting over from the beginning. 

These considerations make it advantageous to isolate the interlayer interaction to discuss its 
effects at different parameters. Taking a system with two layers as example, the isolation of 
interlayer interaction is quite straightforward. 

Following Eq. 2-6, assuming the combined bilayers have ሺ ଵܰ ൅ ଶܰሻ atoms, where ଵܰ and ଶܰ are 
atoms from each layer. The general eigen state ߰ of the system can be written as ߰ ൌ
ሺ߰ଵ், ߰ଶ்ሻ், which has ሺ ଵܰ ൅ ଶܰሻ components. The first ଵܰ components, ߰ଵ, and the rest ଶܰ 
components, ߰ଶ, represents the contribution from atoms from 1st and 2nd layer, respectively.  

With the above notation, the Hamiltonian of the whole system is a matrix with order ሺ ଵܰ ൅ ଶܰሻ: 

ܪ ൌ ൬
ଵܪ 	௜௡௧ܪ
௜௡௧ܪ
ା ଶܪ

൰ ൌ ଴ܪ ൅  ூ     (2-9)ܪ

଴ܪ ൌ ൬
ଵܪ 0	
0 ଶܪ

൰ , ூܪ ൌ ൬
0 	௜௡௧ܪ
௜௡௧ܪ
ା 0

൰ 

Where ܪଵ ( ଵܰ by ଵܰ) and ܪଶ ( ଶܰ by ଶܰ) are the Hamiltonian for isolated 1st and 2nd layer, in 
which all elements describe interaction between atoms within the same layer; while each element 
in ܪ௜௡௧ describes the coupling between two atoms from different layers. e.g. interlayer 
interaction. 

If we already know each layer very well, which means that we have already solved all the eigen 

states of layer 1 ߰ଵ࢑ሺ࢘ሻ ൌ ࢑ܥ
ଵା|0ۧ with energy ࢑ܧ

ଵ. Then we have ܪଵ ൌ ∑ ࢑ܧ
ଵ࢑ܥ

ଵା࢑ܥ
ଵ

࢑ , or 

߰ଵܪ࢑ଵ߰ଵ࢑ᇲ ൌ ࢑ܧ
ଵ࢑࢑ߜᇲ. Similarly, we have ܪଶ ൌ ∑ ࢗଶࢗܥଶାࢗܥଶࢗܧ , or ߰ଶܪࢗଵ߰ଵ૛ ൌ  ᇲ. Inࢗࢗߜଶࢗܧ

addition, by assuming that wavefunction overlap between two local orbitals at different layers is 

negligible, i.e. ߰ଵ࢑߰ଶࢗ ൌ 0, all the Bloch states ߰ଵ࢑ and ߰ଶࢗ will form an orthogonal basis. We 
can therefore try to write and solve the Hamiltonian in this new basis of Bloch states, which can 
be called momentum space diagonalization. Similar to the case in section 2.2, we now need 

calculate coupling matrix element between two basis states ߰௣࢑ and ߰௥࢑ᇱ, where ݊,݉ labels 
layer and can either be 1 or 2. 
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The first advantage with such basis is that, we have ߰௣ܪ࢑଴߰௥࢑ᇱ ൌ ࢑ܧ
௣࢑࢑ߜᇲߜ௣௥ and 

߰௣ܪ࢑ூ߰௣࢑ᇲ ൌ 0: the intralayer interaction part, ܪ଴, is purely diagonal and extremely simple; 
while the interlayer interaction part, ܪூ only contributes to off-diagonal elements. We can 
therefore separate the two parts and focus on the interlayer interaction part only. 

 

2.4.2	Gift	from	Incommensurability	

The final task is to calculate ࢗ࢑ܯ ൌ ߰ଵܪ࢑ூ߰ଶࢗ, the off-diagonal matrix element from interlayer 
interaction. To do this, we first expand the Bloch states back into local orbitals: 

߰ଵ࢑ ൌ ∑ ∑ ܾ௡࢑߮௡ଵሺ࢘ െ భࡾభ௡ࡾ∙ଵሻ݁௜࢑ࡾ   

߰ଶࢗ ൌ ∑ ∑ ܽ௠
ࢗ ߮௠ଶ ሺ࢘ െ మࡾమ௠ࡾ∙ࢗଶሻ݁௜ࡾ     (2-10) 

Where ࡾଵ, ࡾଶ are summing over unit cells of layer 1 and layer 2 respectively. 

ࢗ࢑ܯ ൌ ߰ଵܪ࢑ூ߰ଶࢗ ൌ෍෍ܾ௡࢑∗߮௡ଵ∗ሺ࢘ െ ூ෍෍ܽ௠ܪభࡾ∙ଵሻ݁ି௜࢑ࡾ
ࢗ ߮௠ଶ ሺ࢘ െ మࡾ∙ࢗଶሻ݁௜ࡾ

௠ࡾమ௡ࡾభ

 

ൌ෍෍ܾ௡࢑∗ܽ௠
ࢗ ෍෍݁ି௜ࡾ∙࢑భ݁௜ࡾ∙ࢗమ

మࡾ

௡ଵሺ࢘߮ۦ െ ூ|߮௠ଶܪ|ଵሻࡾ ሺ࢘ െ ଶሻۧࡾ
భ௠௡ࡾ

 

ൌ෍෍ܾ௡࢑∗ܽ௠
ࢗ ෍݁ି௜ሺࢗ࢑ିሻ∙ࡾభ෍݁௜ࢗ∙ሺࡾమିࡾభሻ

మࡾ

௡ଵሺ࢘߮ۦ െ ூ|߮௠ଶܪ|ଵሻࡾ ሺ࢘ െ ଶሻۧࡾ
భ௠௡ࡾ

 

ൌ෍෍ܾ௡࢑∗ܽ௠
ࢗ ෍݁ି௜ሺࢗ࢑ିሻ∙ࡾభ෍݁௜ࢗ∙୼ࡾ

୼ࡾ

ூ|߮௠ଶܪ|௡ଵሺ࢘ሻ߮ۦ ሺ࢘ െ Δࡾሻۧ					ሺ2 െ 11ሻ
భ௠௡ࡾ

 

Here Δࡾ ൌ ଶࡾ െ  ଵ. Eq. 2-11 looks rather complicated, however has a very simple physicalࡾ
meaning: To calculate the coupling matrix element between two interlayer Bloch states, we need 
sum over the contribution from all interlayer atom pairs (each with a proper phase). This can be 
done in two steps. First for a given atom in layer 1, we sum its interaction with all atoms in layer 
2 (summing over	Δࡾ). Second we sum all atoms within layer 1 (summing over	ࡾଵ). The 
interaction between each pair of interlayer atoms, ݐ௡௠ሺΔࡾሻ ൌ ூ|߮௠ଶܪ|௡ଵሺ࢘ሻ߮ۦ ሺ࢘ െ Δࡾሻۧ, is often 
called “pair interaction”. Intuitively, the pair interaction will depend on atom species and the 
relative displacement between the two atoms. 

The key step to further simplify Eq. 2-11 is to take advantage of incommensurability. As 
discussed in section 2.3.2, incommensurability means that the relative displacement Δࡾ is 
random. Therefore, we can replace the first summation over Δࡾ in Eq. 2-11 with an integral: 

෍݁௜ࢗ∙୼ࡾ

୼ࡾ

ூ|߮௠ଶܪ|௡ଵሺ࢘ሻ߮ۦ ሺ࢘ െ Δࡾሻۧ → න݀݁ࡾ௜߮ۦࡾ∙ࢗ௡ଵሺ࢘ሻ|ܪூ|߮௠ଶ ሺ࢘ െ  ሻۧࡾ
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ࢗ࢑ܯ ൌ෍෍ܾ௡࢑∗ܽ௠
ࢗ ෍݁ି௜ሺࢗ࢑ିሻ∙ࡾభ න݀݁ࡾ௜ݐࡾ∙ࢗ௡௠ሺࡾሻ					ሺ2 െ 12ሻ

భ௠௡ࡾ

 

The integral over ࡾ goes over the whole two-dimensional surface of layer 2. Such approximation 
may look weird at first: for a given atoms in layer 1, its displacement from layer 2 atoms are 
discrete and regular, and therefore definitely not random. However, we need take into account 
the second summation over ࡾଵ, that we ultimately will consider all atoms from layer 1 instead of 
a single given atom. As a result, the above approximation will be valid as long as the interlayer 
displacement is random after considering all atoms pairs, which is exactly the practical definition 
of incommensurate system.  

Another way to think is, we can spatially shift all the atoms from layer 1 to a given atom, each 
through a corresponding lattice vector. Then we can also shift the lattice of layer 2 by the same 
amount (i.e. by all lattice vectors of layer 1), which will result in many lattices with different 
offsets. Now layer 1 becomes a single atom, and we just need consider the coupling between this 
single atom in layer 1and all the shifted lattices in layer 2. For strictly incommensurate system, 
all the shifted lattices of layer 2 will not overlap, and they will ultimately form a continuous and 
homogeneous distribution of atoms covering everywhere, justifying the integral in Eq. 2-12. This 
is also approximately true for the “practically” incommensurate system, where all the shifted 
lattices form a dense but not necessarily continuous lattice; however already good enough to 
support the approximation in Eq. 2-12. 

Eq. 2-12 can now be conveniently calculated, because the summation over ࡾଵ and integral over 
 :are independent and can be obtained separately ࡾ

ࢗ࢑ܯ ൌ ∑ ∑ ܾ௡࢑∗ܽ௠
ࢗ

௠௡  (13-2)     ࢗ,భࡳ࢑ାߜሻࢗ௡௠ሺݐ

The summation over ࡾଵ gives the momentum selection rule, ࢑ߜାࡳభ,ࢗ, which restrict states that 

can couple. Once the selection rule is satisfied, the integral determines the amplitude of the 
coupling matrix element: simply the Fourier component of the pair interaction, ݐ௡௠ሺࢗሻ. 

 

2.4.3	Discussion	on	Interlayer	Coupling	Matrix	Element	

It is quite surprising to see that the complicated expression in Eq. 2-11 ends up with the simple 
and elegant form in Eq. 2-13. Therefore momentum space diagonalization is intuively a more 
suitable method for incommensurate system, as it takes full advantage of the incommensurability. 

To fully appreciate the power of this method, we need take a closer look of Eq. 2-13. The 
selection rule requires: 

࢑ଵ ൅ ଵࡳ ൌ ࢗ ൌ ࢑ଶ ൅  ଶ     (2-14)ࡳ
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where ࢑ଵ, ࢑ଶ are two bloch states from layer 1 and layer 2 (restricted in respective first Brillouin 
zone); and ࡳଵ, ࡳଶ are reciprocal lattice vectors of layer 1 and layer 2, respectively. This selection 
rule has very simple physical meaning, that the momentum has to conserve during interlayer 
coupling, with the help of additional momentum provided by lattice of both layers. 

The amplitude of matrix element, ݐ௡௠ሺࢗሻ, can be directly obtained if the pair interaction ݐ௡௠ሺࡾሻ 
is given, which can often be done by introducing an empirical potential through comparing to 
experimental or first-principle calculation results. Regardless of the exact form of ݐ௡௠ሺࡾሻ, we 
know that it should decrease with the increase of ܴ: when the two atoms are more separated, 
their interaction should be weaker. Therefore, the pair interaction can often be modeled with an 
exponential decay over separation,  

ሻݎ௡௠ሺΔݐ ൌ  .଴݁ି୼௥/ఒ      (2-15)ݐ

Here for simplicity we assume that the interaction is isotropic, which may not be true for orbitals 
with in-plane anisotropy such as ݌௫,  ௬. In those cases, an additional in-plane angle needs to be݌

introduced. The generalization, however, will be straightforward.  

We note that, Δݎ in Eq. 2-15 is the total distance between two atoms, while in the expression of 
Eq. 2-12 all the ࡾ are referring to in-plane displacement. Therefore we have  

Δݎ ൌ ඥ݀ଶ ൅ ܴଶ 

ሻࡾ௡௠ሺݐ ൌ ଴݁ିݐ
√ௗమାோమ/ఒ ൌ ଴݁ିݐ

ඥௗమା௫మା௬మ/ఒ ൎ ଴݁ݐ
ି൬

೏
ഊ
ା
ೣమశ೤మ

మഊ೏
൰
     (2-16) 

Where ݀ is the out-of-plane displacement, i.e. separation between the two layers, which can 
often be considered a constant and obtained experimentally. ߣ is the characteristic decay length 
of interaction, which is often in the order of atomic radii. Usually ݀ ≫  which allows us to ,ߣ
further expand the pair interaction as in the last step of Eq. 2-16. 

With Eq. 2-16, we can directly obtain the analytical form of ݐ௡௠ሺࢗሻ: 

ሻࢗ௡௠ሺݐ ൌ න݀݁ࡾ௜ݐࡾ∙ࢗ௡௠ሺࡾሻ ൌ ଴݁ݐ
ିௗఒ න݀݁ݔ௜௤௫ݐ଴݁

ି ௫మ

ଶఒௗ න݀ݕ ݁ି
௬మ

ଶఒௗ	 

଴݁ݐ~
ି
೏
ഊ݁ି

ഊ೏
మ
௤మ     (2-17) 

Without loss of generality, we have define the direction of  ࢗ to be ݔ, and the perpendicular in-
plane direction to be ݕ.  

The important implication from Eq. 2-17 is that, the amplitude of coupling decays very fast with 
increasing ݍ. This conclusion is generally true for all types of reasonable pair interaction, and is 
not limited to the specific form in Eq. 2-15.  

Combining the above observation and the selection rule in Eq. 2-14, the second advantage of 
momentum space diagonalization now becomes apparent: It can provide a very simple and 
intuitive, often analytical picture to understand the most important properties of the system. 
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These properties are often related to electronic states at specific momentum ࢑, such as at band 
extrema, at Fermi level, or in a certain energy range. Now we can selectively isolate states with 
one or few momentum and investigate their behavior with interlayer interaction.  

For example, if we are interested in state ࢑ଵ from layer 1, according to selection rule in Eq. 2-14, 
we can determine all states ࢑ଶ in layer 2 that satisfy the selection rule, by drawing a reciprocal 
lattice of layer 1 centered at  ࢑ଵ in momentum space. All states ࢑ଶ that can couple to ࢑ଵ are 
simply states on this lattice. Furthermore, Eq. 2-17 indicates that, only states that are close 
enough to ડ point (with zero momentum) will have non-negligible coupling amplitude. With a 
proper cutoff, usually only a few ࢑ଶ need to be considered. Afterwards, the same procedure can 
be done iteratively for all  ࢑ଶ involved, until a second cutoff is reached. Such process implies the 
possibility to classify the interaction based on number of iteration, or equivalently order of 
expansion, which we will discuss in section 2.5. 

The third advantage of momentum space diagonalization can also be directly seen from Eq. 2-
14 and Eq. 2-17, that the inherent discontinuity problem of direct diagonalization is completely 
gone. Continuous change of interlayer configuration necessarily leads to smooth change in their 
lattice vector, and also reciprocal lattice vector ࡳଵ, ࡳଶ. Therefore all quantities in the equations 
will be continuous to interlayer configuration, even after doing derivative up to arbitrary order. 

One may argue, however, that being always continuous is not always correct: at some critical 
points in parameter space, the system may indeed become discontinuous. For example, in twisted 
bilayer graphene, people both predict theoretically and observe experimentally that the Fermi 
velocity get strongly renormalized at small twist angle(8-11), which does not smoothly 
dependent on twist angle anymore (after certain order of derivative). How does such 
discontinuity come out of all the continuous quantities? The answer is simple: In the above 
situation, although the selection rule and coupling matrix element are still continuous, the 
iteration process will converge very slowly, and may ultimately not converge. Just like the fact 
that the sum of an infinite series may not be continuous if it is not convergent, even if all the 
elements are continuous; the system properties can be discontinuous even if each iteration is 
continuous. Such situation can be called “strong coupling regime”, and will be discussed more 
detailedly in section 2.6. 

 

2.4.4	Example:	Indirect	Bandgap	in	Twisted	Bilayer	MoS2	

 Combining Eq. 2-14 and 2-17 can in principle give information of Bloch states at any 
momentum ࢑. A especially simple case is when the state of interest is at ࢑ ൌ 0, i.e. Γ point of the 
Brillouin Zone. From Eq. 2-14, ࢑ଵ ൌ 0 state form the 1st layer will always satisfy the selection 
rule to couple with ࢑ଶ ൌ 0 state form the 2nd  layer. Furthermore, such coupling will be 
particularly strong according to Eq. 2-17. The strong coupling here can be intuitively understood 
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as when both ࢑ଵ, ࢑ଶ are equal to zero, all the atoms are in-phase; and their pair interaction 
directly adds up without any cancellation. Therefore, considering only the coupling between 
࢑ଵ ൌ 0 and ࢑ଶ ൌ 0 states is usually sufficient, and coupling to all other states can be largely 
neglected. 

The situation is actually quite often where ડ point property is important, since ડ point is often a 
band extrema as is required by various symmetries. One example is phosphorene that has a direct 
bandgap at ડ point, which will be discussed in detail in chapter 3. Here we take bilayer MoS2 as 
another example. 

It is now well-known that monolayer MoS2 is semiconductor with direct bandgap at K point, and 
multilayer, including bilayer MoS2 has indirect bandgap(12, 13). While the direct bandgap 
nature makes monolayer transition metal dichalcogenides (often shorted as MX2) an attractive 
candidate for optoelectronics application, the transition between indirect to direct bandgap 
depending on layer number is often invoked as an excellent example of how interlayer 
interaction can efficiently tune the properties of the system. 

Such transition can be readily understood with the knowledge we have developed in this section: 
In bilayer MX2 the ડ point energy of valence band is shifted up a lot and becomes the new 
valence band maximum. The conduction band minimum may also change to away from K point 
depending on specific materials, but the energy difference is not as large. The energy shift of ડ 
point can be directly obtained by considering the coupling between ࢑ଵ ൌ 0 and ࢑ଶ ൌ 0 states, 
which are simply the same ડ point state from each layer, ߰ଵડand ߰ଶડ. These two states are 
degenerate to start with, and therefore will split into two energy levels with energy and 
wavefunction: 

േܧ ൌ േݐ଴݁
ି೏
ഊ, ߰േ ൌ ߰ଵડ േ ߰ଶડ     (2-18) 

The splitting of ડ point into two bands can be clearly seen in any DFT band structure 
calculations of bilayer MX2(12, 13). Furthermore, Eq. 2-18 should be generally true for bilayer 
MX2 with any twist angle. In principle, the energy shift ܧേ may slightly deviate from the above 
value in commensurate case, such as AB stacked bilayer. However, it turns out that even AB and 
AA stacked bilayer MoS2 still follow the same scaling law. As a result, the shift of ડ point state 
at valence band, which mostly determines the indirect bandgap size in bilayer MX2, is only 
determined by interlayer separation ݀, regardless of the twist angle. This poses a sharp contrast 
to the cases of graphene where states near ۹ point are important, because for ડ point the twist 
angle will not affect the momentum selection rule between ࢑ଵ ൌ 0 and ࢑ଶ ൌ 0 states. 

Another difference between  ડ point and ۹ point states is, as we discussed at the beginning of 
this section, ડ point can have particularly strong interlayer coupling. i.e. Eq. 2-17 becomes 
maximum when ࢗ ൌ 0. In addition, the dominant orbitals may also vary with momentum, which 
will affect ݐ଴, and therefore the coupling amplitude. For example, ۹ point states in MX2 are 
more dominated by ݀ orbitals from M atoms(14), which is quite localized and also spatially 
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separated from the other layer by two layers of X atoms. The above two reasons make ۹ point 
coupling much weaker than ડ point, resulting in much less energy shift. Therefore, the ડ point at 
valence band ultimately becomes higher than ۹ point in bilayer MX2. 

The scaling law for energy shift and indirect bandgap size in twisted bilayer MX2, as well as the 
much smaller shift of ۹ point states, has been confirmed both by experiment and by DFT 
calculation(15).This is a good demonstration of the momentum space diagonalization method we 
introduce here, that we can obtain all the results in a physically intuitive and computationally 
effortless way. 
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2.5	Classification	of	Interlayer	Interaction,	II:	Direct	Mixing	and	

Effective	Potential	

2.5.1	Relation	Between	Momentum	Space	Diagonalization	and	

Perturbation	Theory	

As we discussed in the section 2.4.3, the momentum space diagonalization method provides a 
possibility to obtain the modified properties of specific Bloch states at ࢑ with expansion. 
Naturally, we then classify interlayer interaction depending on the leading order in the expansion. 
In fact, different orders of expansion are related to different orders of perturbation theory. To see 
such relation, we can first write down the general perturbation theory for a quantum system: 

࢑ۧᇱ݌| െ ࢑ۧ݌| ൌ ൅෍|ݎଵࢗଵۧ
௥భࢗభ

࢑ۧ݌|ூܪ|ଵࢗଵݎۦ

௣࢑ܧ െ భࢗ௥భܧ
	 

൅෍ ෍|ݎଶࢗଶۧ
௥మࢗమ௥భࢗభ

࢑ۧ݌|ூܪ|ଵࢗଵݎۦଵۧࢗଵݎ|ூܪ|ଶࢗଶݎۦ

ሺܧ௣࢑ െ ௣࢑ܧభሻሺࢗ௥భܧ െ మሻࢗ௥మܧ
 

െ෍|ݎଵࢗଵۧ
௥భࢗభ

࢑ۧ݌|ூܪ|ଵࢗଵݎۦ࢑ۧ݌|ூܪ|࢑݌ۦ

൫ܧ௣࢑ െ భ൯ࢗ௥భܧ
ଶ  

െ
1
2
࢑ۧ෍݌|

࢑ۧ݌|ூܪ|ଵࢗଵݎۦଵۧࢗଵݎ|ூܪ|࢑݌ۦ

൫ܧ௣࢑ െ భ൯ࢗ௥భܧ
ଶ

௥భࢗభ

					ሺ2 െ 19ሻ 

 

Here |࢑ۧ݌ is a state of interest in the original system, and |࢑ۧ݌ᇱ is the modified state in the 
perturbed system. All states on the right hand side of the equation are unperturbed states. The 
first line corresponds to 1st order perturbation in wavefunction, while the other three lines 
correspond to terms in 2nd order perturbation in wavefunction. Orders equal and higher than 3 are 
neglected here, but can be written in similar way if necessary. 

Eq. 2-19 can be further simplified from the discussion in section 2.4.1: We have ߰௣ܪ࢑ூ߰௣࢑ᇲ ൌ 0, 
i.e. the interlayer interaction only directly couples states from one layer to the other layer, but not 
two states of the same layer. As a result , the third line of Eq. 2-19 is simply 0, and Eq. 2-19 can 
be rewritten as: 

࢑ۧᇱ݌| െ ࢑ۧ݌| ൌ ൅෍|ݎଵࢗଵۧ
௥భࢗభ

࢑ۧ݌|ூܪ|ଵࢗଵݎۦ

௣࢑ܧ െ భࢗ௥భܧ
	െ

1
2
࢑ۧ෍݌|

࢑ۧ݌|ூܪ|ଵࢗଵݎۦଵۧࢗଵݎ|ூܪ|࢑݌ۦ

൫ܧ௣࢑ െ భ൯ࢗ௥భܧ
ଶ ൅ ⋯

௥భࢗభ
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൅෍ ෍|ݎଶࢗଶۧ
௥మࢗమ௥భࢗభ

࢑ۧ݌|ூܪ|ଵࢗଵݎۦଵۧࢗଵݎ|ூܪ|ଶࢗଶݎۦ

ሺܧ௣࢑ െ ௣࢑ܧభሻሺࢗ௥భܧ െ మሻࢗ௥మܧ
൅ ⋯					ሺ2 െ 20ሻ 

Eq. 2-20 has re-arranged the perturbation into two lines. The first line only involves matrix 
element ݎۦଵࢗଵ|ܪூ|࢑ۧ݌. Comparing to the iteration process in section 2.4.3., this matrix element 
appears in the first step of the iteration, when we consider all states |݌ଵ࢑ଵۧ that can directly 
couple to the given state |࢑ۧ݌. And apparently we have |ݎଵࢗଵۧ ൌ  ଵ࢑ଵۧ, as they both represents݌|
states that directly couple to |࢑ۧ݌. The omitted terms at right hand side are those of higher orders, 
however still only involving |ݎଵࢗଵۧ states. 

On the other hand, the second line in Eq. 2-20 involves a new set of states |ݎଶࢗଶۧ, which cannot 
directly couple to |࢑ۧ݌. Instead, they only directly couple to states |ݎଵࢗଵۧ; and then, by using 
 This is closely related to the second step of the .࢑ۧ݌| ଵ as an intermediate bridge, couple toࢗଵݎ
iteration process, that we include all states |݌ଶ࢑ଶۧ that can directly couple to states considered in 
the first step. Again we have |ݎଶࢗଶۧ ൌ  ଶ࢑ଶۧ, as they both represents states that directly couple݌|
to |ݎଵࢗଵۧ, or |݌ଵ࢑ଵۧ. 

The above correspondence can be extended to any order. For example, if we keep writing Eq. 2-
20 up to nth line, the last line will take the form: 

෍ ෍…෍|ݎ௡ࢗ௡ۧ
௥೙ࢗ೙௥మࢗమ௥భࢗభ

…௡ିଵۧࢗ௡ିଵݎ|ூܪ|௡ࢗ௡ݎۦ ࢑ۧ݌|ூܪ|ଵࢗଵݎۦଵۧࢗଵݎ|ூܪ|ଶࢗଶݎۦ

ሺܧ௣࢑ െ …೙ሻࢗ௥೙ܧ ሺܧ௣࢑ െ ௣࢑ܧమሻሺࢗ௥మܧ െ భሻࢗ௥భܧ
					ሺ2 െ 21ሻ 

Which describes a process that the state |ݎ௡ࢗ௡ۧ couples to |࢑ۧ݌ through n steps, with (n-1) 
intermediate states. Apparently, only states able to couple to |ݎ௡ିଵࢗ௡ିଵۧ need, and should be 
considered in the above equation. Comparing to the nth step in the iteration, which adds all states 
 ௡ିଵ࢑௡ିଵۧ, we can reach a݌| .௡࢑௡ۧ that can directly couple to states in the (n-1)th step, i.e݌|
conclusion by recursion that |ݎ௡ࢗ௡ۧ ≡  ௡࢑௡ۧ, that the nth step in the iteration and nth order݌|
perturbation always introduce exactly the same states. 

However, we note that, the close relation above does not mean a one-to-one correspondence 
between the nth step in the iteration and nth order perturbation. For example, the first line in Eq. 
2-20 includes both 1st and 2nd order perturbation term, and we can add even higher order terms 
afterwards. Nevertheless, as long as only states |ݎଵࢗଵۧ are involved, this type of perturbation is 
fully captured in the first step of interaction. For example, in section 2.4.4 where |࢑ۧ݌ and |ݎଵࢗଵۧ 
are ડ point states from each layer, respectively. The fact that ܧ௣࢑ ൌ  భ makes it impossible toࢗ௥భܧ

use perturbation theory, which can be clearly seen in the first line of Eq. 2-20. In contrast, in 
2.4.4, we already see that everything can be solved by considering two states from just one-step 
iteration. 
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2.5.2	Weak,	Strong,	Perturbative	and	Non‐perturbative	

The relation between the iteration process and the perturbation theory now becomes clear: Each 
step of the iteration corresponds to one line, instead of one term, in Eq. 2-20. Therefore, the case 

of |ݎۦଵࢗଵ|ܪூ|࢑ۧ݌| ൐ หܧ௣࢑ െ  భห,  which is often considered as the strong coupling condition inࢗ௥భܧ

perturbation theory, is NOT a strong coupling condition in the iteration method, since the 
required steps (or lines in Eq. 2-20) may still be only a few.  

To avoid confusion, from now on we will introduce a few terms to describe different situations 
discussed above. We call it “weak” if only a few steps in the iteration is required or equivalently, 
a few lines in Eq. 2-20 need to be considered. We call it “perturbative” only a few terms in Eq. 
2-20 need to be considered. We therefore have “weak perturbative coupling” condition when a 
few lines, and a few terms from each line, are important; “weak non-perturbative coupling” if 
at least one line have near-degenerate coupling and cannot be treated perturbative; “strong 
coupling” if many, or even infinite lines are required to fully describe the system. Because 
infinite lines necessarily mean infinite terms, “strong coupling” is always “non-perturbative”. 

Now we can easily see that the example of 2.4.4 belongs to “weak non-perturbative coupling”. 
When using momentum space diagonalization method, we will ultimately solve the eigen-values 
of a matrix involving all relevant Bloch states, which is valid for both weak perturbative 
coupling and weak non-perturbative coupling cases. On the other hand, perturbation theory 
only works for weak perturbative coupling. The reason we still want to introduce it here is that 
when applicable, it can give a particularly simple and potentially intuitive picture to understand 
the properties of the system. e.g. If only a few terms are important, Eq. 2-20 guarantees an 
analytical solution to the modified eigen-states in the coupled system when we combine the 
matrix element obtained in Eq. 2-17. In addition, it is straightforward to separate the contribution 
from each term, therefore one can conveniently divide the parameter space into partitions where 
one term may dominates, and pinpoint the most relevant interaction in a specific sub-space. 

In this section, we will focus on the weak coupling regime, and the strong coupling case will be 
discussed in section 2.6. 

 

2.5.3	Direct	Mixing	and	Effective	Potential	

Direct	Mixing	

Similar to perturbation theory that is classified according to the order of perturbation, the 
iteration process of momentum space diagonalization can also be classified by the number of 
steps to consider.  
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In many cases, the first line in Eq. 2-20 is good enough to describe the major change in the 
system’s properties from interlayer interaction. We can call this situation “Direct Mixing” as the 
first line in Eq. 2-20 describes a direct coupling between two states from different layers. The 
modified eigen-wavefunction and the corresponding change in eigen-energy can be particularly 
interesting for states at specific momentum ࢑, such as those at the band extrema; since these 
states can determine important properties of the system like bandgap, as we have seen in section 
2.4.4.  

In chapter 3 and 4, I will give two examples that direct mixing can provide a versatile and 
efficient way to engineer the bandgap in systems such as few layer phosphorene and double-
walled nanotubes (DWNTs), which are directly probed and confirmed by optical spectroscopy. 

Another situation when specific states become especially important is when they have non-
perturbative coupling, and in the extreme case, degenerate coupling. Generally, while non- 
degenerate coupling tends to shift or slightly modify the profile of the system’s spectrum, 
degenerate coupling can induce a much more dramatic and fundamental effect, such as 
emergence of new resonance or bandgap, which can qualitatively change the behavior of the 
system. One simple and famous example is Peierls instability, in which one-dimensional crystal 
develops a bandgap from perturbed lattice potential. The bandgap forms at the edge of the 
Brillouin zone, where degenerate coupling happens. 

It is therefore desirable to find all states ࢑ with degenerate coupling since these states are likely 
responsible for any qualitatively new behavior of the system. This can be simply done by 
combining the selection rule from Eq. 2-14 and the degenerate coupling condition: We can plot 
the energy-momentum dispersions of both layers together in periodic Brillouin Zone scheme, all 
the states with degenerate coupling will be at crossing points between the two dispersions. This 
is because, according to Eq. 2-14, only states with the same momentum in the periodic Brillouin 
Zone can satisfy the momentum selection rule; and they should also have the same energy to 
satisfy degenerate coupling conditions. This method also allows explicit selection of spectrum 
range by plotting only the relevant energy range in band dispersion. Similarly, the momentum 
range, i.e. how many period of Brillouin Zone needs to be plotted, can be determined by 
comparing Eq. 2-17 to a certain cutoff of interaction strength (for example, one can use the 
energy resolution of relevant experimental techniques as the cutoff). 

One example of how degenerate coupling in direct mixing can give rise to new interesting 
spectral features in twisted bilayer graphene will be given in section 2.5.6. 

 

Effective	Potential	

From the above criterion, we can see that in some systems the degenerate coupling may not 
happen at all from direct mixing. One simple example is that, if layer 2 is a wide bandgap 
insulator that does not have any electronic state within the energy range of interest, then certainly 
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there will no interlayer band crossing or degenerate coupling from direct mixing. Especially if 
ሺܧଵ࢑ െ భሻࢗଶܧ ≫  holds for all states of interest (in layer 1), i.e. the highly ூ|1࢑ۧܪ|ଵࢗ2ۦ

perturbative regime, the 1st  line in Eq. 2-20 will only lead to a shift or slight change in the 
spectrum of the system, as we have discussed before. While this shift can still be important for 
some states such as those at the band extrema; for other states it may not be very interesting, and 
can often be neglected. On the other hand, the 2nd line in Eq. 2-20 can still have non-trivial 
effects as the denominator involves ሺܧଵ࢑ െ  భሻ, which can be 0 and induces degenerateࢗଵܧ

coupling. In such situation, the major and qualitative change of the system may completely 
originate from the 2nd line, which describes the mixing between two states from the same layer, 
in sharp contrast with the “Direct Mixing” case.  

Once effects of direct mixing can be neglected, the role of layer 2 becomes quite subtle: It only 
serves as a bridge to mix two states both from layer 1, but not directly involved in mixing. On 
the other hand, to mix two states from layer 1 can also be done by simply applying an external 
potential to layer 1. Therefore, we can in principle replace the effect of interlayer interaction with 
a potential solely acting on layer 1, and completely get rid of layer 2 afterwards. From Eq. 2-20, 
this can be done by defining the effective potential below: 

෍෍|1ࢗଶۧ
భࢗమࢗ

ூ|1࢑ۧܪ|ଵࢗ2ۦଵۧࢗூ|2ܪ|ଶࢗ1ۦ

ሺܧଵ࢑ െ ଵ࢑ܧభሻሺࢗଶܧ െ మሻࢗଵܧ
ൌ෍|1ࢗଶۧ

మࢗ

ൻ1ࢗଶห ௘ܸ௙௙ห1࢑ൿ

൫ܧଵ࢑ െ మ൯ࢗଵܧ
 

→෍
ூ|1࢑ۧܪ|ଵࢗ2ۦଵۧࢗூ|2ܪ|ଶࢗ1ۦ

ሺܧଵ࢑ െ ଵ࢑ܧభሻሺࢗଶܧ െ భࢗమሻࢗଵܧ

ൌ
ൻ1ࢗଶห ௘ܸ௙௙ห1࢑ൿ

൫ܧଵ࢑ െ మ൯ࢗଵܧ
 

→ ൻ1ࢗଶห ௘ܸ௙௙ห1࢑ൿ ൌ෍
ூ|1࢑ۧܪ|ଵࢗ2ۦଵۧࢗூ|2ܪ|ଶࢗ1ۦ

ሺܧଵ࢑ െ భࢗభሻࢗଶܧ

					ሺ2 െ 22ሻ 

 

The right hand side of 1st line in Eq. 2-22 is simply the first order perturbation wavefunction of 
state |࢑ۧ݌ upon an external potential ௘ܸ௙௙. In other words, if we are able to find an effective 

potential ௘ܸ௙௙ satisfying Eq. 2-22, it will be indeed possible to forget about all the details of layer 

2 and use this effective potential instead. We therefore call such situation “Effective Potential”. 

The advantage of effective potential description is apparent: it can significantly simplify the 
system into a single layer, and can reduce interlayer interaction into an external potential on the 
single layer, which has been intensively-studied for decades. This allows for directly borrowing 
concepts and conclusions from similar systems and studies; and further approximation such as 
continuum model. 
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2.5.4	Determining	the	Effective	Potential	

Momentum	of	the	Effective	Potential	and	Periodicity	of	the	Moiré	Superlattice	

With the significant advantages of using effective potential description, now the problem is how 
to determine ௘ܸ௙௙. Naturally, one can do a Fourier transform and expand ௘ܸ௙௙ into Fourier 

components: 

௘ܸ௙௙ ൌ෍ ௝ܸ

࢑࢐

݁௜࢑࢐∙࢘					ሺ2 െ 23ሻ 

where each term corresponds to one Fourier component with momentum ࢑࢐. Now the question 

become how to determine ௝ܸ and ࢑௝. From the definition in Eq. 2-22, we have:  

ൻ1ࢗଶห ௘ܸ௙௙ห1࢑ൿ ൌ ൾ1ࢗଶቮ෍ ௝ܸ

࢑࢐

݁௜࢑࢐∙࢘ቮ1࢑ං ൌ෍ൻ1ࢗଶห ௝ܸห1࢑ൿ
࢑࢐

ሺ࢑ߜ ൅ ࢑௝ ൅ ଵࡳ െ ሺ2					ଶሻࢗ െ 24ሻ 

The ߜ function again comes from the fact that both |1ࢗଶۧ and |1࢑ۧ are Bloch states from the 1st 
layer, and therefore the momentum conservation is only good up to a reciprocal lattice vector ࡳଵ. 

We can now compare Eq. 2-24 to the right hand side of Eq. 2-22 to obtain the momentum ࢑࢐ of 

the effective potential. From the momentum selection rule Eq. 2-14, the matrix element 
 :is non-zero only when ூ|1࢑ۧܪ|ଵࢗ2ۦଵۧࢗூ|2ܪ|ଶࢗ1ۦ

ଶࢗ ൅ ଵ′′ࡳ ൌ ଵࢗ ൅ ଶ′′ࡳ ൌ ,ଵࡷ ଵࢗ ൅ ଶ′ࡳ ൌ ࢑൅ࡳ′ଵ ൌ  ଶࡷ

→ ࢑൅ࡳᇱଵ െ ᇱଶࡳ ൅ ଶ′′ࡳ െ ଵ′′ࡳ ൌ  ଶࢗ

→ ࢑൅ ଵࡳ െ ଶࡳ ൌ ሺ2					ଶࢗ െ 25ሻ 

We have used the fact that ሺࡳᇱଵെࡳ′′ଵሻ is still a lattice vector of layer 1, and similarly to 
ሺࡳᇱଶെࡳ′′ଶሻ. Comparing Eq. 2-24 and 2-25 directly gives the expression of ࢑௝: 

࢑௝ ൌ ଵࡳ െ ሺ2					ଶࡳ െ 26ሻ 

The value of ࢑௝ here is limited to the 1st Brillouin Zone of layer 1. 

The amplitude of ௝ܸ will depend on both matrix element ࢗ1ۦଶ|ܪூ|2ࢗଵۧ and ࢗ2ۦଵ|ܪூ|1࢑ۧ. 

According to Eq. 2-17, they should decrease quite fast with |ࡷଵ| and |ࡷଶ|. If ࡳଵ ൌ ሺࡳᇱଵെࡳ′′ଵሻ 
has large amplitude, then at least one of |ࡳᇱଵ| and |ࡳᇱᇱଵ| should be large, so as one of |ࡷଵ| and 
 ଶ|. As a result, we can conclude that the amplitude ௝ܸ should also decrease quite fast with bothࡷ|

 .ଶ|, though in a more complicated mannerࡳ| ଵ| andࡳ|

Things can become particularly simple if the reciprocal lattice vectors of the two layers are very 
close, e.g. when they have the same type of lattice but slightly different lattice constant and/or a 
small twist angle. Assuming the primitive reciprocal lattice vectors of the 1st layer are ࢈ଵଵ and 
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࢑௝ ଶଶ for the 2nd layer. Now࢈ ଶଵ and࢈ ଵଶ; and࢈ ൌ ݊ଵ࢈ଵଵ ൅ ݉ଵ࢈ଵଶ െ ሺ݊ଶ࢈ଶଵ ൅ ݉ଶ࢈ଶଶሻ. Since 

ଶଶ, we must have ݊ଵ࢈ ଶଵ and࢈ ଵଶ are very close to࢈ ଵଵ and࢈ ൌ ݊ଶ ൌ ݊ and ݉ଵ ൌ ݉ଶ ൌ ݉ to 
keep ࢑௝ in 1st Brillouin Zone of layer 1: 

࢑௝ ൌ ݊ሺ࢈ଵଵ െ ଶଵሻ࢈ ൅ ݉ሺ࢈ଵଶ െ  ଶଶሻ࢈

							ൌ ଵ࢈݊
ெ ൅݉࢈ଶ

ெ																		ሺ2 െ 27ሻ 

Here ࢈ଵ
ெ ൌ ଵଵ࢈ െ ଶ࢈ ଶଵ and࢈

ெ ൌ ଵଶ࢈ െ  ଶଶ  are the primitive reciprocal lattice vectors of the so࢈
called “Mini Brillouin Zone”, or “Moiré Brillouin Zone”. The corresponding real-space lattice 
vectors, ࢇଵ

ெ and ࢇଶ
ெ, define the Moiré superlattice from by the two layers. This can be a general 

way to determine the Moiré superlattice periodicity in the system. Eq. 2-27 then dictates that 
all the momentum in the effective potential will be a reciprocal lattice vector of the Moiré 
superlattice. In this sense, we may also call the effective potential a “Moiré potential” in this 
case. 

In addition, the conclusion that ௝ܸ should decrease quite fast with both |ࡳଵ| and |ࡳଶ| now 

becomes that ௝ܸ should decrease quite fast with ݊ and ݉. Combining with Eq. 2-27, the effective 

potential can have a very simple and intuitive real-space picture: The effective potential should 
follow the same periodicity as the moiré superlattice in real space, therefore the only existing 
Fourier components are given by the reciprocal lattice vectors of the Moiré Brillouin Zone. 
Furthermore, the effective potential is not likely to change much faster than the length scale of a 
unit cell, thus the amplitude of the Fourier components should decrease quite fast with increasing 
momentum, and only the first few need to be considered. 

Given the elegance of such explanation, I want to note its limitation at the same time. The Moiré 
periodicity obtained above is only a “quasi-periodicity” that is approximately correct when the 
two layers have similar lattices; however will fail when the two lattices are very different. For 
example, when ܾଵଵ ൌ 0.7ܾଶଵ.  In such situation, important components of ࢑௝ are not fully 

described by Eq. 2-27, and their amplitudes will not necessarily decrease with ห࢑௝ห. Therefore, 

the Moiré periodicity defined from Eq. 2-27 is not a good, or real periodicity of the system 
anymore. One should instead refer to Eq. 2-26 to fully determine the effective potential. 

Now we have obtained all the momentum involved in the effective potential, which already gives 
important implications even without knowing the amplitude of each component. For example, 
using the criterion ܧଵ࢑ ൌ  (2-28), we can already determine states with degenerate	ଵሺ࢑ା࢑ೕሻܧ

coupling, and in turn positions on the energy spectrum that will be strongly modified. 
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Amplitude	of	the	Effective	Potential	

The last piece of information is the amplitude ௝ܸ. While the general calculation of matrix element 

is already given in Eq. 2-13 and 2-17, here again I want to simplify the problem a bit more by 
looking at some special but useful cases. 

Let us stay with the case in Eq. 2-27, and calculate ଵܸ for one of the first Fourier components 
࢑ଵ ൌ ଵଵ࢈ െ  :ଶଵ. First we need expand the three involved Bloch states into local orbitals࢈

|1࢑ۧ ൌ ∑ ∑ ܾ௡࢑߮௡ଵሺ࢘ െ భࡾభ௡ࡾ∙ଵሻ݁௜࢑ࡾ   

|1࢑′ۧ ൌ ∑ ∑ ܾ௡ᇲ
࢑ᇲ߮௡ᇲ

ଵ ሺ࢘ െ ଵࡾ
ᇱ ሻ݁௜࢑

ᇲ∙ࡾభ
ᇲ

௡ᇲࡾభ
ᇲ   

ۧࢗ2| ൌ ∑ ∑ ܽ௠
ࢗ ߮௠ଶ ሺ࢘ െ మࡾమ௠ࡾ∙ࢗଶሻ݁௜ࡾ      (2-29) 

From the left hand of Eq. 2-22 we have: 

ൻ1࢑ᇱห ௘ܸ௙௙ห1࢑ൿ ൌ෍෍෍෍ܾ௡࢑߮௡ଵሺ࢘ െ భࡾ∙ଵሻ݁௜࢑ࡾ

௡ࡾభ

ܾ௡ᇲ
࢑ᇲ∗߮௡ᇲ

ଵ∗ሺ࢘ െ ଵࡾ
ᇱ ሻ݁ି௜࢑

ᇲ∙ࡾభ
ᇲ

௡ᇲ
ଵܸ݁௜࢑భ∙࢘

భࡾ
ᇲ

 

ൌ ∑ ∑ ܾ௡ᇲ
࢑ᇲ∗ܾ௡࢑௡௡ᇲ ଵܸߜ௡௡ᇲ     (2-30) 

In which we have used the fact that ߮௡ଵሺ࢘ െ ଵሻ and ߮௡ᇲࡾ
ଵ∗ሺ࢘ െ ଵࡾ

ᇱ ሻ are both localized in space, so 

that ൻ߮௡ᇲ
ଵ ሺ࢘ െ ଵࡾ

ᇱ ሻห ଵܸ݁௜࢑భ∙࢘ห߮௡ଵሺ࢘ െ ଵሻൿࡾ ൎ ଵܸߜ௡௡ᇲࡾߜభࡾభᇲ . 

On the other hand, using Eq. 2-13, we have: 

ூ|1࢑ۧܪ|ࢗ2ۦۧࢗூ|2ܪ|1࢑ᇱۦ ൌ෍෍ܾ௡ᇲ
࢑ᇲ∗ܽ௠ᇲ

ࢗ

௠ᇲ௡ᇲ

ଶሻ෍෍ܽ௠ࡷ௡ᇲ௠ᇲሺݐ
௡࢑ܾ∗ࢗ

௠௡

∗௡௠ݐ ሺࡷଵሻ 

ൌ ∑ ∑ ܾ௡ᇲ
࢑ᇲ∗ܾ௡࢑௡௡ᇲ ൣ∑ ∑ ܽ௠ᇲ

ࢗ ܽ௠
∗ࢗ

௠௠ᇲ ∗௡௠ݐ ሺࡷଵሻݐ௡ᇲ௠ᇲሺࡷଶሻ൧      (2-31) 

Comparing Eq. 2-30 and 2-31, it seems that we need let 

ଵܸߜ௡௡ᇲ ൌ
ଵ

ሺாభ࢑ିாమࢗሻ
∑ ∑ ܽ௠ᇲ

ࢗ ܽ௠
∗ࢗ

௠௠ᇲ ∗௡௠ݐ ሺࡷଵሻݐ௡ᇲ௠ᇲሺࡷଶሻ       (2-32) 

If ଵܰ ൌ 1, i.e. there is only 1 atom (or orbital) in the unit cell of layer 1, we can conclude 

straightforwardly that ଵܸ ൌ ∑ ∑ ܽ௠ᇲ
ࢗ ܽ௠

∗ࢗ
௠௠ᇲ ଶሻ. However, when ଵܰࡷ௠ᇲሺݐଵሻࡷ௠ሺݐ ൐ 1, the above 

equality seems impossible since the LHS is a simple number, while the RHS have multiple 
components in the space expanded by ݊ and ݊ᇱ; and there is no reason that the sum 
∑ ∑ ܽ௠ᇲ

ࢗ ܽ௠
∗ࢗ

௠௠ᇲ  .௡௡ᇲߜ ଶሻ should give anything likeࡷ௡ᇲ௠ᇲሺݐଵሻࡷ௡௠ሺݐ

In fact, this does not mean that we cannot use the effective potential description when ଵܰ ൐ 1. 
On the contrary, this is one of the most interesting aspects of the effective potential created by 
interlayer interaction: The mismatch in Eq. 2-32 origins from the fact that we assume ଵܸ to be a 

simple number. As a result, 	 ଵܸ݁௜࢑భ∙࢘ is a simple spatially-varying scalar potential that can be 
fully described by an electrostatic potential with periodicity of the Moiré superlattice. 
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However, given the multiple periodicities involved in the intricate interplay between layers, such 
as ࡳଵ, ,ଶࡳ  ெ, it is hard to imagine that the effect can be solely represented by a simple scalarࡳ
potential. Indeed, Eq. 2-32 just means that this would be impossible when ଵܰ ൐ 1. 

On the other hand, if we let ଵܸ to be a matrix instead of a number. Eq. 2-30 will become: 

ൻ1࢑ᇱห ௘ܸ௙௙ห1࢑ൿ ൌ ∑ ∑ ܾ௡ᇲ
࢑ᇲ∗ܾ௡࢑௡௡ᇲ ଵܸ,௡ᇲ௡       (2-33) 

Where ଵܸ is a ଵܰ by ଵܰ matrix, whose elements are ଵܸ,௡ᇲ௡. Comparing to Eq. 2-31 becomes now 

natural, which gives: 

ଵܸ,௡௡ᇲ ൌ
ଵ

ሺாభ࢑ିாమࢗሻ
∑ ∑ ܽ௠ᇲ

ࢗ ܽ௠
∗ࢗ

௠௠ᇲ ∗௡௠ݐ ሺࡷଵሻݐ௡ᇲ௠ᇲሺࡷଶሻ       (2-34) 

i.e. All the matrix elements of ଵܸ can be directly obtained. We note that, the above calculation 
only considers a single state |2ۧࢗ as the intermediate state. If multiple states from layer 2 can 
contribute to the same component in ௘ܸ௙௙, we will need sum their contribution. 

 

Few	Remarks	

The ability to provide a matrix potential instead of simple scalar one is a quite unique 
consequence of interlayer interaction. Components in the matrix ଵܸ can have fundamentally 
different physical meaning from each other, some are otherwise almost impossible to achieve by 
applying any artificial external field. As a result, they will generate distinctively different effects 
on the electronic properties of the system, which offers unique and exciting opportunities. One 
example of the matrix potential in graphene/hBN heterostructure will be calculated in detail in 
section 2.5.7; and the induced fascinating physics is demonstrated by experimental studies in 
Chapter 5. 

From Eq. 2-34, apparently the effective potential ଵܸ will depend on momentum ࢑. While it is still 
fine to calculate ଵܸ at each specific ࢑, it turns out that in many cases ଵܸ can be approximately 
considered a constant if we are focusing on electronics states around a specific ࢑. In Eq. 2-34, 
ሺܧଵ࢑ െ ଵ࢑ܧ|  especially when ,࢑ ሻ can be quite insensitive toࢗଶܧ െ  is much larger than the |ࢗଶܧ

energy range we are interested in. Similarly, ݐ௡௠ሺࡷଵሻ and ݐ௡ᇲ௠ᇲሺࡷଶሻ can also be treated as 
constant if we focus on a small enough momentum range. Therefore, the main problem will be 

coming from ܽ௠ᇲ
ࢗ  and ܽ௠

 ࢑ which may change sensitively regardless of how small a range of ,∗ࢗ

we are looking at. For example, ܽ௠
ࢗ  of two states can change from √

ଶ

ଶ
 to െ√ଶ

ଶ
 when near the Dirac 

point of graphene even if they are infinitely close. 

There is one case, however, in which we have no worry about ܽ௠
ࢗ : if ଶܰ ൌ 1, and therefore 

ܽ௠
ࢗ ≡ 1. In fact, in many situations this will be approximately true. For example, if layer 2 is a 

wide bandgap insulator, the wide bandgap usually means that the valence band and conduction 
band are coming from different orbitals that almost do not mix between each other. In this 
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situation, although there can be more than one orbitals in each unit cell of layer 2, only one is 

contributing to the effective potential at a time, and we still have ܽ௠
ࢗ ൎ 1. It is then possible to 

calculate the effective potential only once for all electronic states within certain range. 

 

2.5.5	Summary	

In present section 2.5, we have classified the momentum space diagonalization method for 
incommensurate system into weak, strong, perturbative and non-perturbative regime; and then 
focused on the weak coupling regime by further classifying it into direct coupling and effective 
potential cases. Here I want to briefly summarize the difference and similarities of these two 
cases. 

Fundamentally, both direct mixing and effective potential origin from interlayer interaction, but 
correspond to different order: The former describes a direct mixing between two states from 
different layers; while the latter is a mixing between two states from the same layer, mediated by 
a third state from the other layer. 

To determine states with degenerate coupling, one need take into account band dispersion from 
both layers in the direct mixing case, by overlaying them and searching for crossing points; 
however only band dispersion from single layer in the effective potential case, by shifting it by 
certain amount and find crossing points with the original dispersion. If specific electronic state 
satisfy one criterion, it is likely that the corresponding process plays a critical role in 
understanding its behavior upon interlayer interaction. One specific state cannot satisfy two 
criterion at the same time, otherwise the system will be in strong coupling regime. 

Practically, if the two layers both have electronic states in the energy range of interest, especially 
if they are the same type of materials, the direct mixing process is likely to be the one giving 
major effects. On the other hand, if one layer does not have states in the energy range of interest, 
especially when it is a wide bandgap insulator for substrate or encapsulation purpose, the 
effective potential description can be a better choice. We note, however, that the two processes 
are not mutually-exclusive and can be considered simultaneously. 

 

2.5.6	Example	of	Direct	Mixing:	Twisted	Bilayer	Graphene	

This section will give one representative example of how direct mixing can modify the properties 
of the materials, and the model materials here will be twisted bilayer graphene. 

Twisted bilayer graphene is one of the first and most intensively studied bilayer van der Waals 
structure. The richly varied behaviors depending on twist angle is a good example that the large 
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parameter space of interlayer interaction can provide new rich possibilities: Near the Dirac point, 
the bilayer with large twist angle will recover the linear band dispersion as in monolayer(16-18); 
when twist angle becomes smaller, the Fermi velocity will get renormalized and decrease(19-21); 
even smaller twisted angle can result in more bizarre behaviors such as flat bands and zero 
energy nodes(8-11). Away from the Dirac point, new Van Hove singularities have been observed 
in scanning tunneling spectroscopy from interlayer interaction(22), which can further affect the 
system’s properties on various aspects such as Raman response(23, 24); and can be used to 
determine the interlayer twist angle. 

Here I want to show that, given such richly varied behaviors depending on twist angle, we can 
qualitatively understand all of them in a quite simple and straightforward way, with the 
knowledge we have built in previous sections. 

Firstly, we have mentioned in section 2.5.3 that two types of electronic states are of particular 
interest, one type is those near important momentum ࢑ in monolayer; and the other type is those 
have degenerate coupling. For graphene, the most worth-investigating electronics states in 
monolayer are of course those near the Dirac point. We can therefore take a look at them first. 

Given a state in layer 1 at momentum ࢑ ൌ ሺࡷଵ ൅  ଵ is the Dirac point in monolayer 1ࡷ where ,(࢖
and ࢖ is very small. Because of the linear dispersion near Dirac cone, its energy is simply 
ଵ࢑ܧ ൌ  .ி is the Fermi velocity in grapheneݒ where ,݌ிݒ

States from layer 2 that can have direct mixing with |1࢑ۧ are given by the selection rule Eq. 2-14. 
For a qualitative understanding, let us just take one of these states, |2࢑ۧ, and see how the mixing 
between them will modify the system. 

We first need determine the energy of |2࢑ۧ. For this, we use the Brillouin zone of layer 2 as the 
reference frame: 

ଶ࢑ܧ ൌ ࢑|ிݒ െ |ଶࡷ ൌ ࢖|ிݒ ൅ ሺࡷଵ െ |ଶሻࡷ ൌ ࢖|ிݒ ൅ Δ(35-2)       |ࡷ 

Here Δࡷ is the difference between Dirac points in two layers due to interlayer twist. |Δࡷ| ൌ

sinሺܭ2
ఏ

ଶ
ሻ 	ൎ  is small. Therefore ߠ when ߠܭ

ଶ࢑ܧ ൌ ߠܭிሺݒ ൅  ሻ       (2-36)ߙcos݌

Where ߙ is the angle between ࢖ and Δࡷ, and we have assumed ݌ ≪ Δܭ. 

In non-perturbative regime, we can directly obtain the effect of direct mixing between |1࢑ۧ and  
|2࢑ۧ from the 1st term in Eq. 2-20, and the corresponding energy shift is simply a second-order 
perturbation in energy: 

Δܧଵ࢑ ൌ
ଶ|ଶ࢑,ଵ࢑ܯ|

ଵ࢑ܧ െ ଶ࢑ܧ
ൌ െ

ଶ|ܯ|

ߠܭிሾݒ ൅ ߙሺcos݌ െ 1ሻሿ
ൎ െ

ଶ|ܯ|

ߠܭிݒ
െ

ଶ|ܯ|

ሻଶߠܭிሺݒ
ሺ1݌ െ cosߙሻ		ሺ2 െ 37ሻ 

The last term in Eq. 2-37 is proportional to ݌, meaning that the Fermi velocity near Dirac point 
will be changed by the direct mixing between |1࢑ۧ and  |2࢑ۧ. To quantitatively obtain the 
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amount of Fermi velocity renormalization will require considering direct mixing between |1࢑ۧ 
and at least six states from layer 2, three from conduction band and three from valence band, 
each can have different ܯ and ߙ.  However, we can already reach important conclusions from Eq. 
2-37: first, the linear dispersion will be recovered; and second, the relative change in Fermi 

velocity Δݒி/ݒி scales like 
|ெ|మ

ሺ௩ಷ௄ఏሻమ
, which will be negligible at large twist angle ߠ, but can be 

significant when ߠ is small. At even smaller ߠ, the system will enter strong coupling regime, 
which can give rise to more bizarre behaviors. 

Now we have understood the behavior of states near Dirac point, and can turn to the second type 
of interesting states: those have degenerate coupling. Determination of these states can be done 
straightforwardly following the discussion in section 2.5.3, and can often benefit from symmetry. 
Let us again consider the example of mixing between |1࢑ۧ and  |2࢑ۧ. Degenerate coupling 
condition requires ࢑ to satisfy: 

ଵ࢑ܧ ൌ ࢑|ிݒ െ |ଵࡷ ൌ ଶ࢑ܧ ൌ ࢑|ிݒ െ  ଶ|       (2-38)ࡷ

Apparently, the lowest energy ࢑ satisfying the above equation is at the middle point between the 

line connecting ࡷଵ and ࡷଶ in momentum space, with the energy ܧଵ࢑ ൌ ଶ࢑ܧ ൌ sinሺܭிݒ
ఏ

ଶ
ሻ	. The 

degenerate coupling between these two states lead to avoided crossing and Van Hove 
singularities, which strongly modify the system’s density of states (DOS) near this energy, as is 
observed in ref.  (22). Since this will happen both in conduction band and valence band, the 
transition between states near the two Van Hove singularities create a large joint density of states 

(JDOS) near 2࢑ܧ ൌ sinሺܭிݒ2
ఏ

ଶ
ሻ, which leads to enhancement of Raman signal when optical 

excitation are in resonance with this energy(23, 24). 

The above example of twisted bilayer graphene clearly shows the power of the framework here 
in qualitatively understanding the consequence of seemingly complicated interlayer interaction. 
Furthermore, quantitative information are also readily available by doing one more step of 
considering all relevant states. Two examples on black phosphorus and double-walled nanotubes 
(DWNTs) will be given in chapter 3 and 4, which provide quantitative explanation to 
experimental results from optical spectroscopy studies of these systems. 

 

2.5.7	Example	of	Effective	Potential:	Graphene/hBN	Heterostructure	

Graphene and hexagonal boron nitride (hBN) have close lattice structure: both with hexagonal 
lattice, and the lattice constant is only different by ~2%. The heterostructure formed by stacking 
graphene and hBN together therefore are quite similar to bilayer graphene in atomic 
configuration. However, the physics induced by interlayer interaction is distinctively different in 
these two systems. In graphene/hBN heterostructure, experiments have observed emergence of 
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replica of Dirac points away from the original Dirac point in monolayer, often called “mini Dirac 
points”(25, 26); with an external out-of-plane magnetic field, the interplay between original 
Dirac points and “mini Dirac points” give rise to a beautiful fractal pattern in magneto-transport 
studies(27-29), which is the first experimental demonstration of the famous Hofstadter’s 
butterfly pattern that was predicted 40 years ago(30). We can now readily understand the 
drastically different consequences of interlayer interaction between the two systems, as the 
majority of effects will be coming from direct mixing in bilayer graphene, but effective potential 
for graphene/hBN heterostructure. 

 

Figure 2.1 (A) Real space lattice structure of graphene,  ࢇଵ,  ଶ are the two primitive lattice vectors. ࣎ isࢇ
the real space vector connecting two sublattices in the same unit cell. (B) First Brillouin Zone of isolated 
graphene monolayer in momentum space, ࢈ଵ,  ଶ are the two primitive reciprocal lattice vectors. Two࢈

inequivalent Dirac points are at ۹ and –۹. ࡷଶ and ࡷଵ are differed by a reciprocal lattice vector of the 
substrate, ࢈ଶௌ, and therefore represent the same substrate state. This substrate state acts as a bridge to 
couple two graphene states at ࡷଶ and ࡷଵ. The difference between ࢈ଶ and ࢈ଶௌ is exaggerated for clarity. 
(C) Mini-Brillouin Zone (MBZ) of graphene/hBN heterostructure. High symmetry points are labeled as 

ଶ࢈࢑ଵ is one of the first Fourier components in the effective potential, which is simply െ .ெ and ۹ெۻ
ெ. (D) 
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Available momentum in the effective potential are all on the reciprocal lattice formed by ࢈ଵ
ெ and ࢈ଶ

ெ.The 
six components with smallest momentum ݇ are labeled by ࢑ଵ to ࢑଺. All of them are related by symmetry. 

 

The general formalism to obtain the effective potential has been given in section 2.5.4. Here I 
will follow the process and quantitatively calculate the effective potential for a representative 
interlayer configuration, where the graphene and hBN have zero twist angle.  

First of all, let us apply our conclusion developed in section 2.5.4 and determine how ௘ܸ௙௙ 

should look like in this case: 

Given the small lattice mismatch between graphene and hBN lattices, results from Eq. 2-27 can 
be safely used. We can therefore define the Mini Brillouin Zone (MBZ) in momentum space 
with two primitive reciprocal lattice vectors ࢈ଵ

ெ ൌ ଵଵ࢈ െ ଶ࢈ ଶଵ and࢈
ெ ൌ ଵଶ࢈ െ  ଶଶ. The MBZ࢈

has the same hexagonal shape as the Brillouine Zone (BZ) of graphene and hBN, however with a 
size ~2% as large. Correspondingly, the Moiré superlattice in real space will be ~50 times larger 
than the unit cell in graphene and hBN. 

An illustration of the MBZ is shown in Figure 2.1C.  High symmetry points of the MBZ are 
labeled as MM, KM and Γ, where the superscript “M” indicates that they are referring to MBZ 
instead of BZ of isolated graphene or hBN. 

Eq. 2-27 also states that the amplitude ௝ܸ decreases quite fast with ௝݇, and that we might only 

consider the components with smallest ௝݇. To do this, we can draw the reciprocal lattice formed 

by ࢈ଵ
ெ and ࢈ଶ

ெ, and select points closest to the center. Since the reciprocal lattice is a triangular 
lattice, there are six points closest to the center, given by ࢑ଵ to  ࢑଺ in Figure 2.1D. A 
representative component, ࢑ଵ ൌ െ࢈ଶ

ெ , is drawn in the MBZ in Figure 2.1C, from which we can 
clearly see the relation between the MBZ and the momentum in the Moiré potential. 

The Moiré potential now takes the form:  

௘ܸ௙௙ ൌ෍ ௝ܸ݁
௜࢑࢐∙࢘

଺

௝ୀଵ

					ሺ2 െ 39ሻ 

Before really going into the derivation of  ௝ܸ, it is always good to first further simply the problem 

with more general consideration like symmetry. Both hBN and graphene have three-fold 
rotational symmetry, so is their Moiré superlattice. ଵܸ, ଷܸ, ହܸ are therefore related by the 
rotational symmetry and not independent; same argument applies to ଶܸ, ସܸ, ଺ܸ. 

Another restriction to ௘ܸ௙௙ is that it must be Hermitian. i.e. ௘ܸ௙௙ ൌ ௘ܸ௙௙
ା , which relates ଵܸ and ସܸ. 

Therefore all the six components in Figure 2.1D are related and only one is independent, which 
we can choose to be ଵܸ. From the discussion in section 2.5.4, in general ଵܸ is a matrix potential 
with dimension ଵܰ ൌ 2. A general form of 2-by-2 matrix is: 
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ଵܸ ൌ ൬
଴ݑ ൅ ଷݑ݅ ଵݑ ൅ ଶݑ݅
ଵݑ െ ଶݑ݅ ଴ݑ െ ଷݑ݅

൰					ሺ2 െ 40ሻ 

where all the 4 parameters ݑ௝ are in principle complex numbers. Comparing to the Hamiltonian 

of electronic states in graphene near ࡷ point in Eq. 2-9, we can see that the term ݑଵ, ݑଶ actually 
correspond to vector potential in ݔ and ݕ direction, respectively. This can be seen by replacing ࢖ 

with ሺ࢖ െ ࡭ ଶ term is effectively a vector potentialݑ ,in Eq. 2-9. Therefore (࡭݁ ൌ ௨మ
௘
ෝ࢟݁௜࢑૚∙࢘, with 

ෝ࢟ the unit vector along y axis. Because that both ࡭ and ࢑૚ are along y direction, the 
corresponding magnetic field ࡮ ൌ સ ൈ ࡭ ≡ 0. In other words, the ݑଶ term in Eq. 2-40 will not 
have any real effect and can be gauged away. The expression of ଵܸ now becomes: 

ଵܸ ൌ ൬
଴ݑ ൅ ଷݑ݅ ଵݑ

ଵݑ ଴ݑ െ ଷݑ݅
൰					ሺ2 െ 41ሻ 

We note that, to be able to assume ଵܸ as a constant, all discussion here are necessarily limited to 
electronic states in a small momentum range. i.e. near one Dirac point (ࡷ point) of BZ of 
isolated graphene; effective potential for the other inequivalent Dirac point (െࡷ point) can be 
directly obtained from time reversal symmetry: 

ଵܸ෩ ൌ ൬
଴ݑ
∗ െ ଷݑ݅

∗ ଵݑ
∗

ଵݑ
∗ ଴ݑ

∗ ൅ ଷݑ݅
∗൰					ሺ2 െ 42ሻ 

Another symmetry we can take advantage of is inversion symmetry. While it is not apparent why 

௘ܸ௙௙ should be inversion symmetric, we can infer it from several approximations: 

First, the important BN states involved as intermediate states, i.e. |2ۧࢗ in Eq. 2-30, are also near 
band edge in hBN's energy dispersion. As we have mentioned in section 2.5.4, the large bandgap 
of hBN indicates that the conduction and valence band edges are likely belong to different 
orbitals that do not mix much. Indeed, the conduction band minimum and valence band 
maximum are mainly from p orbitals of Boron and Nitrogen atom, respectively. Therefore, when 
considering the conduction band state from hBN as intermediate state |2ۧࢗ, only Boron atoms 
are important; and the hBN layer is approximately equivalent to a triangular lattice of Boron 
atoms only, which is inversion-symmetric. 

Second, it is reasonable to assume that both graphene and hBN layers are sufficiently flat. If the 
interlayer separation along ݖ (out-of-plane) direction is a constant, then the pair-interaction 
between two interlayer atoms will only depend on their displacement in ݕݔ plane. As a result, the 
symmetry of effective potential should not depend on the interlayer separation between the two 
layers, and we can shift them vertically to be in the same plane. 

Third, now we effectively have a graphene layer and a Boron layer in the same ݕݔ plane, and 
both are inversion symmetric. Due to the lattice mismatch, the relative displacement between 
unit cells of the two layers will change over space, and we can always find a point where the two 
inversion centers overlap. Therefore the whole system should be approximately inversion-
symmetric, so is the effective potential. 
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The above argument is generally true for two incommensurate layers that both are inversion-
symmetric or effectively inversion-symmetric. However, given the approximations involved, the 
inversion-asymmetric part of the effective potential also exists, but should be much smaller. 

Let us neglect the inversion-asymmetric part for now. The inversion symmetry put an another 
restriction on the parameters ݑ௝ by requiring: 

ቀ 1
݁ି௜ఏ

ቁ
ା

ଵܸ ቀ
1
݁௜ఏ

ቁ ൌ ൬݁
ି௜ఏ

1
൰
ା

ଵܸ෩ ൬
݁௜ఏ

1
൰					ሺ2 െ 43ሻ 

Here ቀ 1
݁ି௜ఏ

ቁ  and ቀ 1
݁௜ఏ

ቁ describes two electronic states of graphene near ࡷ point that can be 

coupled by the component ଵܸ of the effective potential, ߠ ∈ ሺ0,  ሻ is the phase differenceߨ
between the two sublattices. Inversion symmetry operation will bring a state near ࡷ point to near 

 .and also exchange the two sublattices, therefore giving the expression on the right hand side ,ࡷ–

By plug in ଵܸ and ଵܸ෩  into Eq. 2-43, one can readily see that all the parameters  ݑ௝ in Eq. 2-41 

must be real.  

It is quite impressive that the general formalism developed in section 2.5.4, combined with 
symmetry consideration for specific systems, can reduce the interaction in a complex 
incommensurate system to such simple expression as in Eq. 2-41. It then becomes very 
convenient to discuss the physical nature of each component of the potential, as well as their 
effects on the system, even without knowing their exact values. These discussions will be 
provided in chapter 5, combined with experimental studies. Here, I will go back to the original 
task of present section, and finally calculate the values of these components. 

According to Eq. 2-34, we have:  

ଵܸ,௡௡ᇲ ൎ
1

ሺܧଵ࢑ െ ௌሻܧ
ሺ2					ଶሻࡷ௡ᇲሺݐଵሻࡷ௡∗ሺݐ െ 44ሻ 

In which ܧௌ is the energy of substrate state from hBN, and ܵ ൌ ௠ܽ ;ܰ,ܤ
ࢗ ൎ 1 due to little mixing 

between Boron and Nitrogen orbitals at band edge; ࡷଵ ൎ
ଵ

ଷ
ሺ࢈ଵ െ ,ଶሻ࢈ ଶࡷ ൎ

ଵ

ଷ
ሺ࢈ଵ ൅   ଶሻ, with࢈2

,ଵ࢈  ଶ the primitive reciprocal lattice vectors of graphene, see Figure 2.1B. We can then࢈
calculate ݐ௡ሺࡷଵሻ and ݐ௡ᇲሺࡷଶሻ following similar steps as in Eq. 2-17: 

ଵሻࡷଵሺݐ ൌ න݀݁ࡾ௜ࡷభ∙ࡾ ർ߮௚ଵ ቀ࢘ ൅
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Here ࣎ ൌ
ଵ

ଷ
ሺࢇଵ െ  ,ଶሻ is the real space vector connecting two sublattices in graphene unit cellࢇ2

see Figure 2.1A. Plugging Eq. 2-45 into Eq. 2-44, we now have: 
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ௌ|ଶܯ|
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in which ܯௌ~ݐௌ݁
ି
೏
ഊ݁ି

ഊ೏
మ
௄మ, and we have used ܧଵ࢑ ൎ 0. By comparing Eq. 2-46 and Eq. 2-41, the 

value of parameters can be obtained as:  

ሺݑ଴, ,ଷݑ ଵሻݑ ൌ
ௌ|ଶܯ|

ௌܧ
ሺ
1
2
, െ

√3
2
,െ1ሻ					ሺ2 െ 47ሻ 

Indeed, all the parameters ݑ௝ are real, since the inversion symmetry is automatically included in 

our calculation of ݐሺࡷሻ. 

Similar results are also given in several references, with potentially different notations on 
symbols(31, 32). The above calculation can also be readily extended to the case of finite twist 
angle between graphene and hBN substrate. 
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2.6	Classification	of	Interlayer	Interaction,	III:	Strong	and	Weak	

Coupling	

2.6.1	Introduction	

I have already given a brief discussion on the condition of “strong coupling” and “weak 
coupling” in section 2.5.2, that “strong coupling” happens if many, or even infinite lines in Eq. 
2-20 are of similar amplitude and require consideration. From such conclusion, it is quite 
straightforward to mathematically derive a criterion as definition of strong coupling regime. 
However, following this way, the whole process will be like obtaining an abstract equation from 
another abstract equation, which may prevents one from seeing a deeper physics picture behind. 
Therefore, here I want to take an alternative route: First discuss some physical consequences of 
strong coupling, then the implications of these consequences, which naturally sets requirements 
on the strong coupling regime. 

 

2.6.2	Two	(Conflicting)	Pictures	of	Describing	Incommensurate	Systems	

Reviewing all literature discussing properties of incommensurate systems (or systems with large 
common unit cell size), we will find two main methodologies adopted to solve the problem:  

One methodology is by considering all atoms in the system, like what we have been doing from 
section 2.1 to 2.5. The direct diagonalization, momentum space diagonalization, and the 
following derivative methods are all essentially belong to this methodology, just with different 
perspectives and approximations. Using this methodology, we necessarily obtain the global 
properties of the system: all the obtained eigen-states are Bloch states extended to infinitely far 
away in real space; and the corresponding energy dispersion is also for the whole system. For 
example, a gap in the energy spectrum will be a “global bandgap” that does not allow particles 
to travel through (unless considering the tunneling process). 

Another methodology, however, is by considering the “local properties” of the system (33, 34). 
Since the interlayer displacement is changing over real space, we may focus on the local 
configuration between two layers, and obtain a local band structure. For example, in twisted 
bilayer graphene, if we only look at the range of one or a few unit cells, then locally it may 
resemble AB-stacking, AA-stacking, etc., depending on the center position. One may say that the 
band structure should be like AB-stacking at point 1, but like AA-stacking at point 2. For many 
systems, since the bandgap can certainly depend on stacking order, following the same argument 
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one can obtain a “local bandgap” at point 1, and a different “local bandgap” at point 2, and 
even map out the distribution of “local bandgap” over space. 

Now there is an apparent problem: These two pictures seem to be not compatible, at least not 
intuitively. We can easily raise tons of questions. For example, how to understand the concept of 
“local bandgap” in the global picture? What is the eigen-wavefunction of states at “local 
bandgap”, and what are their relation to the extended Bloch states in the global picture? 

Worse still, the two seemingly conflicting pictures both have reasons to be valid, from different 
perspectives. The global picture is a direct result of symmetry and Bloch theorem that should be 
generally correct. It then seems necessary to include all atoms in a periodic system to account for 
the behavior of a Bloch state, because the boundary condition always play a critical rule in Bloch 
theorem. The local picture, however, also has its own reasoning as one can argue that when the 
change of local configuration over space is very slow, particles at one point should only feel the 
local environment and behave accordingly. 

We now find that, all the above conflict is originating from one fundamental question: To 
determine the behavior of particles at a specific point (in real space), how large a range of the 
system is necessary to consider? An intuitive answer is: the range of the wavefunction of that 
particle, since that defines the region where the particle “lives”. This answer, however, does not 
really solve the conflict; and we may still ask whether its wavefunction should extended to 
infinity as described by a Bloch state, or should be localized. 

The answer to the this question is actually very simple: The wavefunction is always extended 
formally, so Bloch theorem is always correct; however, in some situations, it can be also 
localized at the same time. 

How can a wavefunction be both extended and localized? Let us consider a simple example. For 
an isolated quantum well, it is well known that if the potential well is deep enough, there can be 
bound states in the well. i.e. The wavefunction ߰௡ will only penetrate a short distance into the 
potential wall if the kinetic energy is small compared to the amplitude of the wall. Naturally, we 
call a particle at such state a “localized” particle in the quantum well. 

Now let us move one step forward, and consider a periodic array of the above quantum wells, 
with lattice vector ࡾଵ. Assuming the separation between neighboring wells is large enough so 
that the “localized” particle in different quantum wells does not see each other at all. As a result, 
the particle will not feel the change of environment and will stay in the original state ߰௡. In this 
sense, this “localized” state ߰௡ should be still an eigen-state of the system, even now in a 
periodic system.  

On the other hand, one can also use Bloch theorem and band theory to obtain energy dispersion 
and corresponding Bloch states, which is simply,  

߰௡࢑ሺ࢘ሻ ൌ෍݁௜ࡾ∙࢑భ

భࡾ

߰௡ሺ࢘ െ  ଵሻࡾ
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௡࢑ܧ ≡  ௡   (2-48)ܧ

The Bloch states are still extended over the whole space from superposition of every quantum 
well in the array, with the phase difference described by momentum ࢑. However, due to the lack 
of interaction between any two quantum wells, the band dispersion is completely flat, and that 
the Bloch states are all degenerate regardless of momentum. One can therefore re-construct the 
basis through an arbitrary linear combination of Bloch states. As a result, both the “localized” 

states  ߰௡ሺ࢘ െ  ௡, justܧ ଵሻ and Bloch states ߰௡࢑ሺ࢘ሻ are eigen states of the system with energyࡾ
from different basis. 

The example above is an extreme case where the exact eigen-states can be both “extended” and 
“localized”; and therefore both the global and local pictures are equivalent and will give the 
same results. In reality, there could always be finite hopping between different quantum wells. 
While the Bloch states are still exact eigen-states, the localized states are not anymore. However, 
if the interaction is small, then the induced modification should be also small; and the localized 
picture should still give an approximately correct results. 

Such situation is quite similar to the case of comparison between direct diagonalization and 
momentum space diagonalization at the end of section 2.3.2, that direct diagonalization is always 
mathematically valid, however not always physically intuitive; while momentum space 
diagonalization provides better physics picture, but are limited to certain conditions. Here the 
global picture always gives the correct results, but may prevent one to capture what is really 
happening. For example, the Bloch state in Eq. 2-48 does take form of a periodic state with 
momentum ࢑. However the momentum here is somewhat artificial, snice it does not change 
anything. On the contrary, the local picture directly obtain ߰௡, which contains the really 
important information. Furthermore, adopting the local picture can significantly reduce the 
computation efforts since only one or a few unit cells require consideration, as opposed to the 
potentially thousands of unit cells in a superlattice. 

We have now solved the “conflict” between the global and local pictures by finding out that 
there is actually no real conflict. Instead, the latter can be an approximately correct and 
potentially more intuitive picture under some conditions. The remaining question is, what these 
conditions are. While the condition to use local picture is quite straightforward for an array of 
quantum wells, it is far less clear in the context of van der Waals systems. 

One can make an educated guess, however, that the answer should be “strong coupling” regime. 
The reason is simple: the eigen-states in an isolated monolayer are described by Bloch states 
with equal amplitude in each unit cell. However, the local picture requires that the eigen-states 
after interlayer interaction become localized in one or few unit cells out of thousands, which is 
definitely a “strong” modification to the system. Moreover, from simple uncertainty principle, a 
localized state in real space must be a superposition of Bloch states of a large range in 
momentum space. To involve momentum of a large range, many steps are required in the 
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iteration process in section 2.4.3, which is exactly the criterion for “strong coupling” regime 
that we have discussed in section 2.5.2. 

 

2.6.3	Conditions	of	Strong	Coupling	Regime	

Having established the relation between the local picture and “strong coupling” regime, we now 
have an alternative way to understand the quantitative condition of “strong coupling” regime, as 
it should also be the condition for using the local picture; and we can thereby get some 
inspiration from the simple quantum well case. 

 

Figure 2.2 Illustration of an array of quantum well with periodicity ܮ. Each quantum well has width ܽ and 
height ܸ. 

 

Assuming we have an array of quantum well with periodicity ܮ; and each quantum well has 
width ܽ and height ܸ, as illustrated in Figure 2.2. The eigen-states and energy for an isolated 
quantum well is well-known: 

~ܧ
԰ଶ

2݉ܽଶ
, ~ߢ

ඥ2݉ሺܧ െ ܸሻ
԰

					ሺ2 െ 49ሻ 

Where ܧ is the kinetic energy of the particle, and ߢ is its momentum outside the quantum well. 
For a bound state, we have ܧ ൏ ܸ, and therefore the amplitude of wavefunction will decay 
outside the well, with characteristic length  

~ଵିߢ	~ߣ
԰

ඥ2݉ሺܧ െ ܸሻ
					ሺ2 െ 50ሻ 

 As is discussed in the last section, using the local picture requires that the two neighboring 
quantum wells have little hopping with each other, therefore: 

ܽ 

ܮ

ܸ
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ߣ ≪ ሺܮ െ ܽሻ → ܸ ≫ ቆ
԰ଶ

2݉ܽଶ
൅

԰ଶ

2݉ሺܮ െ ܽሻଶ
ቇ~

԰ଶ

ܮ2݉
ሺ2					௞ܧ~ െ 51ሻ 

We have assumed in the last step that ܽ and (ܮ െ ܽ) are comparable, which should be true in a 
van der Waals system where local configuration is continuously changing over space. In reality, 
there are cases where the change is not continuous, e.g. when the strain between layers are 
concentrated at some narrow domain walls. One can adjust the ratio between ܽ and ܮ in the 
above toy model accordingly. 

The condition given in Eq. 2-51 can be intuitively understood as a competition between kinetic 
energy and the potential energy, since it is natural for a particle to be localized if the confining 
potential energy is much greater than its kinetic energy. The interesting part here, however, is 
that the relevant kinetic energy is determined by the periodicity of the superlattice, which can be 
conveniently tuned in the parameter space of interlayer configuration. Such tunability could give 
rise to rich possibilities, which will be further discussed in section 2.7. 

We can now go back to Eq. 2-20 to see if the condition for “strong coupling” obtained here 
from an intuitive picture does match the one we expect from pure mathematical derivation. 

To have a more direct comparison, let us consider the effect potential picture, which focus on the 
mix between two states within the same layer. These type of terms correspond to even number of 
lines in Eq. 2-20, with the first term: 

෍ ෍|ݎଶࢗଶۧ
௥మࢗమ௥భࢗభ

ൻݎଶࢗଶห ௘ܸ௙௙ห݇݌ൿ
ሺܧ௣࢑ െ మሻࢗ௥మܧ

~෍ ෍|ݎଶࢗଶۧ
௥మࢗమ௥భࢗభ

௘ܸ௙௙

Δܧ
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The amplitude of wavefunction mixing is in the order of 
௏೐೑೑
୼ா

, where Δܧ is the energy difference 

between two states. In the approximation of large Moiré superlattice (Eq. 2-27), the momentum 
difference between the two states should be ሺࢗଶ െ ࢑ሻ ൌ Δ࢈~࢑ெ. For states near the band edge, 

this correspond to an energy difference of Δܧ~
԰మሺ௕ಾሻమ

ଶ௠
. 

Similarly, the second term (4th line in Eq. 2-20) is in the order of: 

ସۧࢗସݎ|~
௘ܸ௙௙
ଶ

ሺܧ௣࢑ െ ௣࢑ܧమሻሺࢗ௥మܧ െ రሻࢗ௥రܧ
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We have used the fact that the since ሺࢗସ െ ଶࢗଶሻ and  ሺࢗ െ ࢑ሻ both ~࢈ெ, so does ሺࢗସ െ ࢑ሻ. We 
can further write down higher order terms, which, following the same argument, should scale 

like ቀ
௏೐೑೑
୼ா

ቁ
௡

. Therefore, how fast the series converge, and how many steps are required in the 

iteration process, will be ultimately determined by the comparison between ௘ܸ௙௙ and Δܧ; and the 

strong coupling condition should be ௘ܸ௙௙ ≫ Δܧ. Note that Δܧ here is exactly the kinetic energy 

corresponding to the momentum of Moiré superlattice, we therefore have reached the same 
conclusion as in Eq. 2-51. 
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2.6.4	Equivalence	between	the	Two	Pictures:	1D	Toy	Model	Example	

We have now resolved the fundamental “conflict” between the two pictures: the local picture can 
be an approximately correct, and physically more intuitive language in the “strong coupling” 
regime. However, we have yet answered all questions raised at the beginning of section 2.6.2, 
such the meaning of “local bandgap” in the global picture. 

To further confirm the condition of using the local picture, as well as to establish a 
correspondence to the global picture for various concepts, here I will take a simple 1D toy model 
as an example. 

 

Bandgap	Change	Obtained	from	Both	Pictures	

Considering the simplest possible periodic system, a 1D atom chain with simple unit cell, with 
lattice constant ܽ and nearest-neighbor hopping ሺെݐሻ. The eigen-energy and eigen-wavefunction 
of the system is well known to be (if not, one can refer to section 2.2): 

௞ܧ ൌ െ2ݐcosሺ݇ܽሻ					ሺ2 െ 54ሻ 

Now let us simulate the superlattice effect by adding a Moiré potential on top of the above 1D-
lattice, with the form: 

ܸሺݔሻ ൌ െ ଴ܸ cos ൬
ߨ2
ܰܽ

൰ݔ ൌ െ ଴ܸ cosሺ݇଴ݔሻ					ሺ2 െ 55ሻ 

Which corresponds to a periodic potential (in real space) with periodicity ܰܽ. We can then try to 
solve the modified system with both the global and local pictures, and see at what condition they 
will give consistent results. 

One of the most important properties of a system is its bandgap. Assuming that there are some 
other bands below the energy spectrum in Eq. 2-54 that are not affected by ܸሺݔሻ (for example, 
from other orbitals not considered in Eq. 2-54 that do not have interlayer interaction), the 
bandgap of the system will be solely determined by the minimum energy in Eq. 2-54. For 
unperturbed system, the band minimum will be at ݇ ൌ 0, with ܧ ൌ െ2ݐ. 

Let us first use the local picture to calculate the bandgap change with the periodic potential 
described in Eq. 2-55. The local picture suggests that we can consider the “local environment” of 
each unit cell, and calculate a “local bandgap” for each of them. Note that this does not mean 
that we consider a system of an isolated single unit cell, since it is apparently unreasonable to 
remove any intralayer bonding. Instead, the “local environment” only refers to the interlayer 
interaction part, or the effective potential in the above example. Therefore, the correct way of 
adopting the local picture is to determine the local environment (i.e. interlayer configuration, 
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Moiré potential, etc.) at a given point, and assume that this local environment applies to 
everywhere. For example, a twisted bilayer graphene may locally resemble AB or AA stacking. 
To calculate the local properties, we should in turn consider an AB or AA stacked bilayer 
graphene, i.e. a periodic bilayer graphene that is AB- or AA- stacked everywhere. 

Back to the 1D model, for a unit cell at position ݔ ൌ ݊ܽ, the “local environment” is described by 

a potential ௡ܸ ൌ െ ଴ܸcos	ሺ
ଶగ

ே
݊ሻ. As discussed above, obtaining the local properties requires 

considering a system with ܸሺݔሻ ≡ ௡ܸ everywhere. i.e. a constant external potential. The “local 
energy dispersion” then simply reads: 

௡௞ܧ ൌ െ2ݐcosሺ݇ܽሻ ൅ ௡ܸ 

௡ܧ
ᇱ௚ ൌ ௚ܧ ൅ ௡ܸ					ሺ2 െ 56ሻ 

Here ܧ௚ is the bandgap of the unperturbed system, and ܧ௡
ᇱ௚ is the “local bandgap” at  ݊௧௛ unit 

cell with the external potential. 

To have a direct comparison with the global picture, it will be helpful to obtain a “global 
bandgap”. Intuitively, the “global bandgap” should be the smallest one among all “local 
bandgap”, because within which no state should exist. From Eq. 2-56, the “global bandgap” 
should be at ݊ ൌ 0 with  

ᇱ௚ܧ ൌ ௚ܧ െ ଴ܸ					ሺ2 െ 57ሻ 

Interestingly, the “global bandgap” obtained from the local picture is not dependent on the 
periodicity of ܸሺݔሻ. This result is definitely not unconditional: from the global picture, the 
energy shift of ݇ ൌ 0 state (in second perturbation regime) can be directly obtained as: 

Δܧ௞ୀ଴~ െ ଴ܸ
ଶ

2ሺܧ௞ୀ௞బ െ ௞ୀ଴ሻܧ
					ሺ2 െ 58ሻ 

which not only depends on ݇଴, but also scales with ଴ܸ
ଶ. The discrepancy here is expected since 

the local picture should not work in weak perturbative regime. 

To quantitatively evaluate the deviation between the global bandgap change obtained from the 
two pictures, we define the following error function of global bandgap change: 

ሺߝ ଴ܸ, ܰሻ ൌ
௣௜௖௧௨௥௘	௟௢௖௔௟ܧ߂

௚ െ ௣௜௖௧௨௥௘	௚௟௢௕௔௟ܧ߂
௚

௣௜௖௧௨௥௘	௟௢௖௔௟ܧ߂
௚ ൌ

െ ଴ܸ െ ௣௜௖௧௨௥௘	௚௟௢௕௔௟ܧ߂
௚

െ ଴ܸ
					ሺ2 െ 59ሻ 

in which we have used ܧ߂௟௢௖௔௟	௣௜௖௧௨௥௘
௚ ≡ െ ଴ܸ. ܧ߂௚௟௢௕௔௟	௣௜௖௧௨௥௘

௚  can be obtained numerically 

following methods in section 2.2, which should generally depend on both  ଴ܸ and ܰ. 

Figure 2.3A shows numerical results of the error function ߝ depending on the potential amplitude 

଴ܸ and periodicity ܰ. Apparently, the deviation between the two pictures decreases with increase 
of both the potential amplitude ଴ܸ and periodicity ܰ. This result is consistent with Eq. 2-51, 
which states that the local picture can give approximately correct results when potential energy 
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଴ܸ is much larger than the kinetic energy ܧ௞ associated with superlattice periodicity. Here the 
kinetic energy ܧ௞ is: 

௞ܧ ൌ
԰ଶ݇଴

ଶ

2݉
ൌ ൬

ߨ2
ܰ
൰
ଶ

ሺ2					ݐ െ 60ሻ 

in which we have used the effective mass ݉ ൌ
԰మ

ଶ௔మ௧
 obtained from Eq. 2-54. Increasing ܰ will 

decrease the kinetic energy ܧ௞, therefore making the local picture more accurate. 

 

Figure 2.3 (A) Error of global bandgap change as a function of potential amplitude ଴ܸ and periodicity ܰ. 
(B) The error between two pictures only depends on the ratio between kinetic potential energy. 

 

We can further plot the error ߝ directly as a function of the ratio between kinetic and potential 
energy ߟ ൌ /௞ܧ ଴ܸ, as shown in Figure 2.3B. Interestingly, all data points now collapse onto one 
straight line, indicating that the ߝ should be function of only one parameter ߟ. Such observation 
further confirms our conclusion in Eq. 2.51, that the only important criterion to determine the 
validity of the local picture, as well as the strong coupling regime, is the ratio between kinetic 
and potential energy. 

Now we can now take a closer and more quantitative look at the relation between ߝ and ߟ. First, 
it would be good to know that how small a ratio ߟ is necessary for the local picture to give a 
reasonably accurate bandgap change. From Figure 2.3B, when the ratio ߟ ൌ 0.1, the error 
 If we consider this amount of error as “barely acceptable”, then it means that the .20%~ߝ
potential energy needs be at least one order larger than the kinetic energy. In reality, how small a 
 is acceptable usually depend on actual systems, such as other relevant energy scales. A few ߝ
remarks and thoughts on this will be provided in section 2.6.5. 
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In addition, the ߟ െ  dependence behaves like a straight line in Figure 2.3B, implying a power ߝ
law scaling. One can directly obtain the power index to be 1/2 from the slope of the straight line. 
We therefore have: 

ଵ/ଶ~ܰିଵߟ~ߝ
଴ܸ

ି
ଵ
ଶ					ሺ2 െ 61ሻ 

 

Localization	of	Wavefunction	at	the	Global	Bandgap	

Now let us take a look at the wavefunction of the ݇ ൌ 0 state at band minimum. According to 
discussion in section 2.6.2, its wavefunction should be localized when the local picture becomes 
approximately correct. 

 

Figure 2.4 (A) Probability distribution of the ݇ ൌ 0 state with external potential of different periodicity N. 
Only two superlattice unit cells are shown (each corresponding to N original unit cells). ଴ܸ ൌ  Each .ݐ0.1
curve is shifted downward for visual clarity. (B) Probability distribution of the ݇ ൌ 0 state with external 
potential of different amplitude ଴ܸ. ܰ ൌ 100.  

 

Figure 2.4 shows the probability distribution of ݇ ൌ 0 state in real space as a function of the 
periodicity and amplitude of the external potential. Only two superlattice unit cells are shown (i.e. 
new unit cell with the external potential), which can be repeated on both sides to obtain the 
probability distribution over the entire 1D space. Clearly, we find that the probability becomes 
more “localized” (compared to superlattice unti cell) with increasing ܰ and ଴ܸ, consistent with 
expectation from the simple picture we introduce in section 2.6.3. 
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Wavefunction	of	States	away	from	the	Global	Bandgap	

Up to here, the results in this section from the toy model are merely confirmation of conclusions 
in previous sections. Now we can try to answer the meaning of “local bandgap” in the global 
picture. In Eq. 2-56, we have already obtained the size of “local bandgap” at each unit cell with 
index ݊: Given a specific ݊, the “local bandgap” takes a value of ሺܧ௚ ൅ ௡ܸሻ, which is between 
ሺܧ௚ െ ଴ܸሻ to ሺܧ௚ ൅ ଴ܸሻ over the whole atom chain. One may guess that the state at the “local 
bandgap” should again be localized at unit cell ݊, similar to the case for the global bandgap state 
at ݊ ൌ 0.  

However, we may then ask another question: considering the local band dispersion 2-56 at any 
unit cell ݊′ ൏ ݊, there should also be a state of the same energy ሺܧ௚ ൅ ௡ܸ). What is the 
wavefunction distribution of these states? If they are also localized in each unit cell, we will end 
up with ݊ degenerate states each localized at a unit cell. On the other hand, if we take every two 
unit cells as the smallest unit in the local picture, following the same argument, we would expect 
݊/2 denegerate states at this energy. Nevertheless, the local picture necessarily requires that the 
external potential change very slowly over space; therefore considering one or two unit cells as 
the smallest unit should not make any difference. 

The only way to resolve the above conflict is to admit that there is only one state at this energy, 
which spans over all the ݊ unit cells. Apparently, such conclusion always holds regardless of the 
smallest unit chosen in the local picture. Furthermore, we can handwavingly provide an 
explanation: Because unit cells with ݊ᇱ ൑ 	݊ all have a state at this energy, the state at this energy 
should be at all unit cells with ݊ᇱ ൑ 	݊. This argument may seem a little weird, but one can 
always refer to the quantum well picture in section 2.6.3 to help understand. 

 

Figure 2.5 Probability distribution of eigen-states at different energy. All energy in the legend is in unit of 
଴ܸ  .ݐ ൌ ,ݐ0.1 ܰ ൌ 200. State at the global bandgap (black) is localized at the center in real space; while 
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states at “local bandgap” spans over a larger range. Once the energy is above the maximum of all local 
minimum, states become completely delocalized. 

 

Figure 2.5 shows numerical results of wavefunction probability distribution for states at different 
energy. Indeed, we find that states away from the global bandgap are not as localized; instead, 
they span a larger range up to a point beyond which its energy will be lower than the “local band 
minimum”. Such observation is exactly what we expect from the above discussions. If the energy 
further increases and becomes higher than all the “local band minimum”, then the corresponding 
state should be everywhere. Here the maximum of all the “local band minimum” is roughly at 
ሺെ2ݐ ൅ ଴ܸሻ ൌ െ1.9ݐ. Therefore the two states in navy and purple are completely delocalized. 

 

2.6.5	Practical	Considerations	When	Using	the	Local	Picture	

We have finally answered all questions about the relation between the local and global picture. 
Here I want to give a brief summary of system properties that can be conveniently obtained from 
the local picture (especially form an experimental perspective) when it is valid, and things one 
need keep in mind to ensure that it is indeed valid. 

The spatial distribution of “local bandgap” is readily available information one can obtain with 
the local picture. As we have discussed in last section, the “local bandgap” at a certain point 
indicates that no state within it can span to this point.  i.e. the local density of states (LDOS) at 
this point should be zero for the whole energy range within the “local bandgap”. Experimentally, 
LDOS can be directly measured from scanning tunneling spectroscopy (STS) technique; 
therefore the spatial distribution of “local bandgap” directly gives the STS mapping results in 
experiment, and vice versa. 

One can further obtain the wavefunction distribution of states at any given energy by adopting 
the criterion that “if this energy exists in the local energy spectrum of one point, the 
corresponding state should span to this point”. We have already seen a simple example in section 
2.6.4, and one can easily extend it to more complicated cases, such as a monolayer graphene with 
a mass term ݉ሺ࢘ሻ ൌ ݉଴ cosሺ࢑ ∙ ࢘ሻ. It is well-known that the mass term opens a gap in energy 
spectrum, with the gap size equal to the amplitude of the mass term. As a result, any state at 
energy ܧ ൏ ݉଴ should be localized to the range ݉ሺ࢘ሻ ൑  and the most localized state will ;ܧ
have energy ܧ ൌ 0, which is completely localized at ݉ሺ࢘ሻ ൌ 0. An alternative way to reach the 
same conclusion is by using the language in topological insulator, that the Hamiltonian for two 
regions with ݉ሺ࢘ሻ ൐ 0 and ݉ሺ࢘ሻ ൏ 0 cannot continuously connect to each other without closing 
the gap, therefore a gapless state must emerge at the edge of ݉ሺ࢘ሻ ൌ 0. 

Given the usefulness of the local picture, one has to be particularly careful regarding its validity. 
The first thing to check is of course if the strong coupling condition 2-51 is reached. It is often 
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difficult to predict if the condition will be satisfied before doing calculation. One can therefore 
adopt the concept of reductio ad absurdum by assuming that the local picture is valid to start with, 
which greatly reduces the computation effort and gives important information such as local band 
dispersion. With all this information, one can go back and see whether the strong coupling 
condition is satisfied, which should now be easy. 

How accurate the local picture need to be often depends on actual system. Still using the 
example of bandgap change: if the error of the local picture is much less than any relevant 
energy scale, then it is acceptable. One relevant energy scale is of course the bandgap itself, and 
it is apparent that the result will not be acceptable if error becomes a large portion of it. There 
can also be other relevant energy. For example, if there are multiple band extrema in the system 
and some are very close in energy, the energy difference between them will then become an 
important energy scale; since error on this order may lead to incorrect conclusion on whether the 
system will have a direct or indirect bandgap. Thermal energy is another energy scale often 
involved in various processes. Therefore, one needs carefully evaluate the error and its effect 
before drawing any conclusion from the local picture. 

Even if the strong coupling condition is reached, there are still potential problems one will 
encounter when using the local picture. For example, how to calculate the local properties from 
local configuration? It is quite straightforward for bilayers with the same unit cell size, such as 
twisted bilayer graphene that we have discussed in section 2.6.4. What if the unit cells are 
different, such as WSe2 on WS2? To make computation possible, we still need a periodic 
boundary condition. Given the few percent lattice mismatch between them, we have three 
choices: compress the WSe2 unit cell by ~4% percent to match with WS2; or stretch the WS2 
unit cell by ~4% percent to match with WSe2; or just let both lattices relax (which most likely 
leads to both stretch of WS2 and compress of WSe2 to match with each other). Which one is 
correct? 

To answer this question, we can again refer to the criterion we introduced in section 2.6.4, that 
we want to maintain the intralayer coupling part, and consider the local interlayer configuration. 
Therefore, we should fix the intralayer hopping of each layer (i.e. assume that it does not change 
with bond length). If this is not practical, a compromised way is that when we are calculating 
properties of WSe2, we can fix its unit cell and stretch WS2 to match with it; and do the opposite 
when calculating properties of WS2. In this way, we at least have not changed the intralayer part 
of the target layer. On the other hand, doing it in an incorrect way will introduce few percent of 
artificial strain, which can easily give error of hundreds of meV. 

As an ultimate criterion, one can always compare to the global picture, if possible, to ensure that 
the results from the local picture are correct. By combining with the global picture, one can also 
use the local picture to only provide an intuitive physical picture for important results, which just 
need to be qualitatively correct; and numerical accuracy can become less important. 
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2.7	Summary	of	the	Theory	Section	

Summary	of	the	Classification	and	Methods	

In the entire section 2, I have been classifying van der Waals systems into different categories in 
light of interlayer interaction, and presenting corresponding theoretical methodologies to 
investigate the properties in each case. Although discussion here is focusing on single particle 
picture, one can always further turning on many body interaction later based on the modified 
eigen-states. See chapter 6 for a general discussion on many body effects. 

Below I briefly summarize all the categories and suitable methodologies: 

In all cases, direct diagonalization is mathematically correct, however not necessarily practical 
or intuitive. 

Depending on interlayer configuration, the system can be classified into “commensurate” and 
“incommensurate” cases. 

In commensurate case, direct diagonalization is practical and can be a good approach. (Section 
2.2 and 2.3) 

The Incommensurate case, depending on the amplitude and periodicity of interlayer interaction, 
can be further classified into “strong coupling” and “weak coupling” regime. 

In case of “strong coupling”, the “local picture” can be a suitable method. (Section 2.6). 

In case of “weak coupling”, momentum space diagonalization is a generally applicable tool. 
(Section 2.4) 

Interlayer interaction in the “weak coupling” regime can be further expanded into different 
orders, and classified depending on the important order. The two lowest-order effects can be 
described by “direct mixing” and “effective potential” approaches. (Section 2.5) 

One will find that the above classification and methodologies almost cover all van der Waals 
systems in reality. Therefore, one can always readily choose the corresponding approaches for an 
actual problem. 

 

New	Rich	Possibilities	from	van	der	Waals	Systems	

Providing a thorough classification and investigation methods for van der Waals systems is only 
one major goal of this section. In addition, I hope that the all these discussions have also 
provided a general picture that the van der Waals systems are indeed interesting, and can offer 
fascinating physics. While at the beginning of this section I have already given a brief 
introduction that interlayer interaction in low dimensional systems can create new rich 
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possibilities; now with all the knowledge and examples given in the section, we can look back to 
gain a deeper understanding of why this is the case. 

The richness of physics from the large parameter space of interlayer interaction can already be 
seen from the many different regimes classified in the section. The commensurate coupling case, 
which only accounts for a tiny little bit of the parameter space, is relatively easy to study and 
usually investigated first. On the other hand, the incommensurate case occupies a much richer 
parameter space and is becoming center topic of research in many systems. The fundamental 
reason to all these new possibilities can be traced back to the general rule governing the behavior 
of a physical system: A real physical system always involve multiple relevant energy, length, 
time etc. Their competition largely determine the ultimate phase of the system. For example, 
whenever we see a “critical temperature”, most likely some other energy scale is competing with 
thermal energy; and type II superconductor is an interplay between superconducting coherent 
length and London magnetic field penetration depth. 

The first unique advantage of van der Waals system is that, one can artificially create a length 
scale and/or energy scale to compete with other existing ones, which might not be achievable in 
traditional systems. For example, the observation of Hofstadter butterfly pattern requires the 
periodicity of the system to be comparable to the magnetic length, which demands an 
impractically high magnetic field in traditional solid state systems. However, van der Waals 
structure can easily create such periodicity through formation of Moiré superlattice. 

Things can become even more interesting if we consider the strong coupling regime. As 
discussed in section 2.6, the relevant kinetic energy now is determined by the periodicity of the 
superlattice. While kinetic energy is ubiquitous for every particle, it is also one of the most 
uninteresting objects to study: When the kinetic energy is too high, the particle becomes 
effectively a free particle, which is simple but trivial. On the other hand, when other interactions 
are able to compete, we start to see variety of fascinating behavior, such as localization, paring, 
quantization, Mott transition etc. However, practically it can often be challenging to lower the 
kinetic energy to a point that other specific energy start to play a critical role. This problem can 
be again solved in van der Waals systems, as we can readily achieve a very low kinetic energy 
through a large superlattice periodicity; which enables exciting opportunities when other 
interaction, such as Coulomb interaction, starts to dominate. 

Naturally, the second advantage of van der Waals system will be tunability. Closely following 
the above discussion, if it is possible to bring the system into a new phase not achievable 
previously, there must be also a transition region during the process. Since the energy scale we 
“create” is readily tunable through design of the interlayer configuration, it would provide a 
convenient and unique opportunity to observe the complex interplay of different scales near the 
transition, such as quantum criticality. 

The third advantage might look more subtle, as we discussed the section 2.5, that the effect the 
interlayer interaction cannot be described by a simple electrostatic potential in most cases, due to 
the involvement of several energy and length scales. In contrast, it is generally a matrix that can 
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directly access multiple degree of freedoms (DOFs) of the system, e.g. the pseudospin DOF in 
graphene. Many components of the interlayer interaction can be difficult to achieve with any 
other existing field in a solid state system. Therefore again new possibilities become available. 
Furthermore, all these components are tunable through careful design of the system. 

Given all these exciting new possibilities, the field of van der Waals systems is only at a starting 
point. For example, while many interesting results have already been reported from “weak 
coupling” systems, the “strong coupling” regime is still relatively unexplored, which could be 
even more interesting. Part of the reason is the potentially higher requirement  on sample quality, 
which is becoming less and less a problem nowadays thanks to the rapid progress on sample 
preparation and device fabrication technique, such as polymer transfer, BN encapsulation, 
graphite electrode, etc. Therefore, it is reasonable to expect that van der Waals systems will keep 
acting as a seedbed from which fascinating physics will grow. 
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Chapter 3 – Bandgap Engineering in Phosphorene 

3.1	Introduction	and	Background	

Since the discovery of 2D crystals, one major pursuit is always towards their application in 
electronics and photonics, given their intrinsic advantages over bulk materials (e.g. Silicon and 
GaAs) on aspects such as scalability and power consumption (12, 28, 35-40). The electronic and 
photonic applications of these materials will fundamentally depend on whether they are metal, 
semiconductor, or insulator; and what type of light they can have strong interaction with, which 
are ultimately determined by their energy gap. In this sense, one of the most important task is 
always to find a 2D material with the correct bandgap for specific device. This can certainly be 
done by searching from the rich bank of layered materials and trying thinning down each to see 
if any will match with the goal. Indeed, intensively studied 2D materials now include semi-
metallic graphene with zero bandgap, semiconducting transition metal dichalcogenides (TMDs) 
with 1.5~2eV bandgap, and insulating hexagonal boron nitride (hBN) with giant bandgap ~5.8eV. 
However, achieving desirable bandgap by searching new materials often involves lots of trial and 
error, and may not match exactly with the desired value. 

Alternatively, one can try to modify the bandgap of an existing material. The advantage is 
apparent: one can often achieve greater tunability, which allows for fine tuning and optimization 
for specific purposes. Depending on the method used for bandgap engineering, such modification 
may not be necessarily static, enabling further possibilities such as high speed modulator. 

As discussed in chapter 2, one unique tool for bandgap engineering in 2D materials is through 
interlayer interaction. To maximize the tuning range, we want the interlayer interaction to be as 
strong as possible. According to section 2.4, this is usually achieved through “direct mixing” at ડ 
point in the Brillouin Zone. One example is illustrated in section 2.4.4 on bilayer MoS2, in which 
the strong interlayer interaction at ડ point shift the valence band maximum to ડ point in bilayer. 
Following the same argument, if one material has a direct bandgap already at ડ point in 
monolayer, we would expect it to maintain a direct bandgap when getting thicker, meanwhile 
with changing bandgap size. Monolayer phosphorene (or monolayer black phosphorous) is one 
such material. In this chapter, we will investigate the layer-tunable electronic structure in 
phosphorene from both theoretical and experimental perspectives. Part of the discussion is also 
presented in a published paper (1). 
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3.2	Tunable	Electronic	Structure	in	Few	Layer	Phosphorene		 	

Monolayer phosphorene has a predicted direct bandgap of ~1.5eV at ડ point. Among the five 
valence electrons of phosphorus atom, three will form near sp3 bonds with the three adjacent 
atoms (since it is “near” sp3, the angle will be different from exact sp3 bonds); and the other two 
form a lone-pair, giving a puckered honeycomb structure (41), as illustrated in Figure 3.1.  
 

 

Figure 3.1 Atomic structure of monolayer phosphorene. Each phosphorus atom is covalently bonded with 
three adjacent phosphorus atoms, forming a puckered honeycomb structure 

 

Following the discussion in section 2.4.4, the situation for ડ point coupling is particularly simple, 
as it is usually sufficient to only consider coupling between ડ point states from different layers. 
Here the situation is even simpler in that few layer phosphorene is regularly stacked without any 
twist angle; and therefore the coupling between ડ point states become a strict selection rule. One 
can expect, however, that even at finite twist angle, this conclusion can still approximately hold 
in many situations, similar to the case of bilayer MoS2. What is different here, is that 
phosphorene has strong in-plane anisotropy, so does the band extrema states at ડ point. As a 
result, the coupling amplitude between states at ડ point from different layers will generally 
depend on their relative rotation angle, in contrast to the MoS2 case. One can still, however, use 
the same formalism in section 2.4 to obtain the coupling matrix element at arbitrary 
configuration. 

Here I will focus on the simplest case, i.e. naturally stacked few layer phosphorene, as it is 
experimentally ready. The bandgap change in bilayer phosphorene is already given in section 
2.4.4, which can be viewed as bonding and anti-bonding states between two atoms. The 
extension to arbitrary layer number ܰ is straightforward: We can treat the conduction band 
minimum state (which is at ડ point) in each layer of phosphorene as an atom with energy ܧ௖, the 
interlayer coupling will be effectively the hopping between these atoms. By assuming that only 
coupling between two neighboring layers are important, with matrix element amplitude ߛ௖. The 
system of ܰ layer phosphorene can be mapped into a simple model of finite 1D atom chain: 
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where ݏ ൌ ܿ, ௝ܥ .stands for conduction and valence band, respectively ݒ
ା/ܥ௝	ሺ݆ ൌ 1…ܰሻ is the 

creation/annihilation operator on ݆௧௛ atom (i.e. ݆௧௛  layer), ܥ௝
ା|0ۧ ൌ ห߶௝ൿ is the state from  ݆௧௛ 

atom (i.e. ડ point state from ݆௧௛ layer), ߛ௦ is real since ۦ߶ଵ|ߛ௦|߶ଶۧ ൌ  ௦|߶ଵۧ. The eigenߛ|ଶ߶ۦ

wavefunction of the Hamiltonian can be generally written as |߰ۧ ൌ ∑ ܽ௝ே
௝ୀଵ ห߶௝ൿ, which has a 

clear physical meaning that the eigen wavefucntion |߰ۧ of N layer BP have contribution from 

each layer; and that the coefficient ܽ௝ contains full information of how different layers are mixed. 
We have assumed that conduction band states do not interact with valence band states, which is 
reasonable given their large energy separation.   

The eigen-energy and wavefunction of Eq. 3-1 can be solved by directly diagonalizing the ܰ-by-
ܰ tridiagonal matrix. Alternatively, here we will use a simpler and more intuitive approach, 
owing to analogy to the 1D lattice. An infinite 1D lattice supports a travelling wave, with eigen 

wavefunction ܽ௝ ൌ ݁௜௞௝ and eigenenergy ܧ௞ ൌ ௦ܧ ൅  For a finite 1D lattice, the two .݇ݏ݋௦ܿߛ2
atoms at the end have only one nearest neighbor (to the inner side of the chain), and the 
boundary condition is equivalent to having two additional fixed atoms on each end (i.e 0௧௛ and 
ሺܰ ൅ 1ሻ௧௛ atoms with ܽ଴ ൌ ܽேାଵ ≡ 0). This finite 1D lattice of N+2 atoms with fixed ends can 
be easily solved, giving ܰ eigen-states and corresponding eigen-energy: 

ܽே,௡
௝ ൌ sin൫݇ே,௡݆൯ , ݇ே,௡ ൌ

ܰ ൅ 1 െ ݊
ܰ ൅ 1

,ߨ ݊ ൌ 1…ܰ 

ே,௡ܧ
ሺ௦ሻ ൌ ௦ܧ ൅ ே,௡݇ݏ݋௦ܿߛ2 ൌ ௦ܧ െ ݏ݋௦ܿߛ2 ቀ

݊
ܰ ൅ 1

ሺ3						ቁߨ െ 2ሻ 

Here ݊ indexes the ܰ eigen-states and eigen-energy, which is in reality the ݊ conduction and 
valence subbands at ડ point in ܰ layer phosphorene.  

These eigen-states have well-known physical meaning for a real 1D lattice: When the travelling 
wave gets reflected by the two fixed ends, the eigen-states will become standing waves, with 
different number of nodes. From the wavefunction given in Eq. 3-2, the number of nodes of each 
mode is simply given by ሺܰ െ ݊ሻ. Note that each atom represents one phosphorene layer; 
therefore the standing wave actually describes the distribution of the eigen-states over each layer, 
i.e. along ݖ direction. For example, a standing wave with more nodes corresponds to a faster 
oscillation of the wavefunction along ݖ direction. 

The energy order between different modes will depend on the sign of ߛ௦. To obtain this 
information, one can refer to the bulk black phosphorous situation, where people already know 
that both the conduction band minimum and valence maximum are at ܈ point (41). Note that 
such observation does not conflict with our expectation that the direct bandgap should maintain 
at ડ point: Eq. 3-2 is from the perspective of 2D Brillouin Zone in ݕݔ plane, and ܈ point is 
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indeed projected to ડ point in ݕݔ plane, along with a fast oscillation on ݖ direction. If we take 
ܰ → ∞ limit in Eq. 3-2, such fast oscillation on ݖ direction is corresponding to the ݊ ൌ ܰ mode. 
Therefore, the fact that the direct bandgap in bulk black phosphorous is at ܈ point of the 3D 
Brillouin Zone indicates that ߛ௖ is positive, and ߛ௩ is negative in Eq. 3-2; and therefore ݊ also 
indexes the conduction and valence subbands starting from the bandgap. 

Having obtained the eigen-states and eigen-energy of band extrema states in ܰ layer 
phosphorene, we can now readily predict the electronic and optical responses of the system. First, 
as expected, the direct bandgap has a sensitive dependence on layer number, which could be very 
useful in electronics and optics. Furthermore, the other subbands in Eq. 3-2 should give a series 
of interband transitions at higher energy, which can potentially access even larger energy range 
for application in optics. Given the standing wave-like nature of each subband, the optical 
transition can only happen between two subbands with the same node number, as they are 
otherwise orthogonal to each other. The transition between ݊௧௛ valence to ݊௧௛ conduction band 
will have the energy: 

ே,௡ܧ
ோ ൌ ୥଴ܧ െ 2ሺߛ௖െߛ௩ሻ cos ቀ

݊
ܰ ൅ 1

ሺ3						ቁߨ െ 3ሻ 

e.g. ݊ ൌ 1 corresponds to bandgap transitions, ݊ ൌ 2 and ݊ ൌ 3 describes the first and second 
above-bandgap resonances, respectively. ܧ୥଴ ൌ ሺܧ௖ െ  ௩ሻ is the bandgap in isolated monolayerܧ

phosphorene. There will be altogether ܰ resonances. 

The tunability of electronic structure can be further expanded with an external field, such as an 
electric field along ݖ direction. This problem can again be mapped to a 1D atom chain with an 
electric field along the chain, and one can immediately write down the effective Hamiltonian: 

ேܪ
௦ ൌ෍ሺܧ௦ െ ݆ܸሻܥ௝

ାܥ௝

ே

௝ୀଵ

൅ ሺ෍ ௝ାଵܥ௦ߛ
ା ௝ܥ

ேିଵ

௝ୀଵ

൅ h. c. ሻ						ሺ3 െ 4ሻ 

where ܸ is the electrostatic potential drop over neighboring layers. Solving above eigen-value 
problem is straightforward, and will be omitted here. One can already see without real 
calculation, however, that the conduction band minimum and valence band maximum state will 
shift to the two ends of the chain (i.e. the two outermost layer); and the bandgap energy should 
decrease. 
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3.3	Experimental	Observation	of	Layer	Dependent	Electronic	

Structure	

3.3.1	Reliable	Determination	of	Electronic	Structure	with	Absorption	

In the last section, we have theoretically investigated the highly-tunable electronic structure in 
few layer phosphorene, which could bridge the much-need bandgap range from 0.3eV to 1.5eV 
in 2D materials. Given the conciseness of Eq. 3-2 and 3-3 that describe subbands and optical 
transitions through only two parameters with well-defined physical meaning; it seems 
straightforward to link theory and experiment to further confirm both the theoretical picture and 
experimental results. 

However, this seemingly simple task has not been done until recently. Actually, previously 
measured layer-dependent optical bandgap in phosphorene is often compared to a power-law 
model ܧே

ோ ൌ ܽܰ ൅ ܾܰଶ ൅⋯, where the coefficients are fitting parameters without clear physical 
meaning. 

Part of the reason is that, almost all previous experimental measurements are using 
photoluminescence (PL) spectroscopy to probe the optical band gap (37, 42-44). While PL is a 
powerful and convenient technique to investigate the properties of materials, it has certain 
shortcoming, among which one of the most critical is its sensitivity to sample quality. Actually, 
the ratio between photon number in excitation light and PL emission, the quantum yield, is often 
used as a figure of merit to evaluate the quality of a certain sample. Such sensitivity is ultimately 
coming from the fact that PL emission involves relaxation process: the spontaneous emission 
rate of a given type of excited state can often be considered constant, therefore how much light it 
emits in its life largely depend on how long it lives, i.e. its total lifetime. The existence of defect 
can greatly decrease the total lifetime of excited states by providing additional non-radiative 
decay channel, which often dominate the overall decay process. 

The defect states can not only significantly eliminate the PL signal we want to study (e.g. from 
the direct bandgap). Even worse, since they are usually quite localized and are more 
energetically favorable than bandgap states, once excited electron and holes fall into a defect 
state, it may get trapped for a longtime. As a result, although the spontaneous emission rate of 
the defect states is often quite low, their integrated emission can still be significant given the 
long lifetime. In a defect-rich sample, majority of the experimentally measured PL emission can 
come from the in-gap defect states, which may not contain any direct information of the bandgap. 
Therefore, it requires careful control experimental and data analysis to probe bandgap energy 
with PL measurements alone. Such problem is further amplified in phosphorene system, which is 
long known to be air-sensitive, and can easily become “defect-rich” if without careful sample 
preparation process. 



56 
 

To avoid inaccurate information, it would be helpful to find an alternative technique that is not 
sensitive to defect states. From the above discussion, the key to avoid defect effects is to exclude 
the relaxation in the process. One such technique is optical absorption spectroscopy. As opposed 
to PL spectroscopy, no relaxation process in involved in absorption spectroscopy; and the 
absorption cross section is only determined by the oscillator strength of a state (transition dipole 
moment and density of states), while not affected by lifetime (45). Therefore, if there is 1% 
defect states in the system, generally the absorption signal from defects will be at 1% level of the 
overall signal. Therefore the defect signal will not dominate unless the defect density become as 
high as the material itself. One well-known example to illustrate the difference between 
absorption and PL spectroscopy is the comparison between monolayer and bilayer MoS2. While 
the PL in bilayer is orders of magnitude weaker than in monolayer due to the direct-to-indirect 
bandgap transition and significantly shorter lifetime direct bandgap excitons; absorption of 
bilayer is roughly twice as of monolayer because lifetime is not relevant here. 

An another advantage of absorption spectroscopy is that, again owing to the lack of relaxation 
process, we can also probe properties of states away from bandgap, which are very difficult to 
measure from PL because they will relax down to band edge (and further to in-gap defect states) 
very quickly. The information of higher energy transitions can provide direct comparison to the 
subbands transition with ݊ ൐ 1 in Eq. 3-3. 

  

3.3.2	Experimental	Configuration	

 

Figure 3.2 (A) Optical microscope image of few layer phosphorene on silicon substrate with 300nm 
silicon oxide. (B) Preliminary determination of layer number through red channel contrast. 

 

A B
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Even with a defect-insensitive technique, we certainly still want the sample to have high quality 
by itself. To avoid sample degradation in air, all samples are fabricated in an inert gas glove box 
with oxygen and moisture levels lower than 1 ppm. In addition, we adopt BN-encapsulation to 
further prevent contamination: Phosphorene flakes are first exfoliated onto silicon substrates 
with a 300 nm oxide layer (Fig. 3.2A). The optical contrast of phosphorene flakes under optical 
microscope shows step like feature, which can be used to preliminarily identify layer number 
(Fig. 3.2B).  Later this layer number information will be confirmed with absorption spectroscopy 
studies. Phosphorene fakes are then transferred to sapphire substrate with a top hBN 
encapsulation using a dry transfer technique in the glove box (46). During optical spectroscopy 
studies, the samples are kept in high vacuum.  

The phosphorene samples are encapsulated between sapphire substrate and hBN, as illustrated in 
Figure 3.3. The optical absorption spectrum of few layer phosphorene is obtained through 
measuring its reflectance contrast ܴ߂/ܴ at 77 K.  

 

 

 

Figure 3.3 Light reflection from few layer black phosphorous (BP) under experimental configuration. The 
incident light is normal to sample surface, however drawn as oblique for visual clarity. 

 

The reflectance contrast spectrum ܴ߂/ܴ from phosphorene is related to its complex dielectric 
constant through Fresnel equation. In the visible and near-infrared spectral region, the refractive 
index of hBN and sapphire can be approximated as a constant with ݊஻ே ൌ ݊ௌ௔௣௣௛௜௥௘ ൌ 1.75 

(denoted as ݊ଵ). The hBN thickness (݀ଵሻ	is approximately 15 nm in our devices. We denote the 
phosphorene dielectric constant and effective thickness as ߝଶሺ߱ሻ and ݀ଶ, respectively. 
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Optical reflection changes from atomically thin layers such as phosphorene can be treated as a 
small perturbation, and it has the form of  (47, 48). 

ܴ߂
ܴ

ൌ െܴ݁ሾߪ ∙ ܿ௟
ଶ/ܿ௥ሿ						ሺ3 െ 5ሻ 

where	ܿ௟ is the local field factor at the sample,  ܿ௥ is the reflection coefficient, and ߪ ൌ
ఠௗమ
௜
	ሺߝଶ െ

1ሻ is the two-dimensional optical conductivity of black phosphorous. The reflection is dominated 

by the hBN-air interface ݎଵ as shown in Figure 3.3, therefore ܿ௥ ൌ ଵݎ ൌ
௡బି௡భ
௡బା௡భ

. The local electric 

field at sample has the form ܿ௟ ൌ ଵݐ ଵ݁௜ఝ. Hereݐ ൌ
ଶ௡బ

௡బା௡భ
 is the transmission from air to hBN, and 

߮ ൌ ߨ2
௡భఠௗభ
௖బ

 is the phase change of light propagating through the hBN layer. The final result is. 

ܴ߂
ܴ

ൌ
4߱݀ଶ
݊ଵ
ଶ െ 1

Imൣሺߝଶ െ 1ሻ݁௜ଶఝ൧ ൌ
4߱݀ଶ
݊ଵ
ଶ െ 1

Im ቈሺߝଶ െ 1ሻ݁
௜ସగఠௗభ௖బ ቉						ሺ3 െ 6ሻ 

If the hBN thickness is negligible (i.e. ݁௜ఝ ൌ 1), the reflectance contrast is proportional to the 

imaginary part of ߝଶ (i.e. optical absorption). However, the finite hBN thickness makes ݁௜ఝ 
complex; thus both real and imaginary part of ߝଶ will contribute to the reflectance contrast. Eq. 
3-6 shows that the contribution from real part of ߝଶ increases with light frequency. In reality, the 
thickness of hBN is quite small compared to wavelength range of measurement; and we can 
determine the optical absorption resonance energies from the reflection peaks with an uncertainty 
less than 25 meV. 

We combine the supercontinuum laser and tungsten lamp to cover an energy range from near-
infrared to visible. The incident light is focused onto the phosphorene flakes in by an 40X 
objective with 0.60NA, and the reflected light was collected by the same objective to analyze in 
a spectrometer equipped with both silicon and InGaAs arrayed detectors. The polarization of 
incident light was controlled using a broadband calcite half-wave plate placed in between the 
objective and beamsplitter to avoid polarization distortion from the beamsplitter. For comparison, 
we also measured the absorption spectrum of a thick phosphorene flake (~ 100 nm) using Fourier 
Transform Infrared Spectroscopy (FTIR) at room temperature, which yields the electronic 
structure of black phosphorus in the bulk limit. 

 



59 
 

3.3.3	Experimental	Results	

 

Figure 3.4 (A-E) Reflectance contrast spectrum of monolayer (A), bilayer (B), trilayer (C), tetralayer (D), 
and pentalayer (E) phosphorene at 77K. Red and black curves are spectrum taken with incident light 
polarized along ݔ and ݕ direction, respectively. Optical resonances only show up in ݔ-polarization 
configuration, which are coming from subband transitions at center of Brillouin Zone. II and III labels 
transitions away from the direct bandgap with ݊ ൌ 2 and ݊ ൌ 3. (F) FTIR reflectance spectra of bulk 
black phosphorous at room temperature, the step like feature in ݔ-polarization corresponds to the direct 
bandgap of ~0.35eV in bulk black phosphorous. 

 

Figure 3.4 shows the measured reflectance contrast spectrum of mono- to penta-layer 
phosphorene (Figure 3.4A-E), as well as of bulk black phosphorous (Figure 3.4F). Each sample 
is measured with two incident light polarization along ݔ and ݕ direction, respectively. All spectra 
have prominent polarization dependence, with resonance features only showing up in ݔ-
polarization configuration. In monolayer phosphorene, a prominent absorption peak shows up at 
1.73 eV for x-polarized incident light (Fig. 3.4A, red curve), which can be attributed to lowest 
energy exciton arising from direct bandgap transitions, as no optical absorption is observed for 
photon energies below this resonance. This optical bandgap decreases systematically with layer 
number, to 1.15 eV for bilayer, 0.83 eV for trilayer, below 0.75 eV (the lower detection limit of 
our spectral range) for tetralayer and pentalayer, and ultimately 0.35eV in bulk black 
phosphorous (Fig. 3.4B-F). 

In addition to optical bandgap transitions, additional resonances show up at higher energy from 
subband transitions with ݊ ൐ 1, as expected from our discussion in section 3.2. We label the 

A B C

D E F
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resonances from ݊ ൌ 2 and ݊ ൌ 3 subband transitions with “II” and “III” in Figure 3.4, which 
also shows a systematic evolution with layer number: transition “II” does not exist in monolayer, 
emerges at 2.44 eV in bilayer, and then decreases to 1.93 eV, 1.52 eV, and 1.16 eV in trilayer, 
tetralayer, and pentalayer, respectively. Transition “III” should in principle show up in trilayer, 
however is still out of our experimental spectral range; therefore is only observed in tetralayer 
and tetralayer at 2.31 eV and 1.94 eV, respectively. 

 

 

Figure 3.5 (A-C) Photoluminescence spectrum monolayer (A), bilayer (B) and trilayer (C) measured at 
77K. Black and red curves are spectrum taken with incident light polarized along ݔ and ݕ direction, 
respectively. Blue dashed lines show reflectance contrast spectra of each layer as reference. The good 
match between resonances in absorption and PL confirms the direct bandgap nature of few layer 
phosphorene. (D-F) Polarization dependent PL intensity corresponding to (A-C) as a function of angle 
between detection direction and ݔ direction. The near-perfect cosଶ -dependence indicates the linear ߠ
polarized nature of PL, as expected from theory. 
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We can also examine the PL emission from few layer phosphorene. Figure 3.5 shows the 
measured PL spectrum for monolayer to trilayer phosphorene at 77K, with comparison to 
corresponding reflectance spectrum. The PL peaks are very close to the optical bandgap 
transitions in reflectance contrast, confirming the direct bandgap nature of the system. We also 
observe similar polarization dependence, that the emission only shows up at ݔ-polarization. Note 
that here the polarization refers to detection direction, and excitation light is always unpolarized 
with energy of 2.33eV. Figure 3.5D-F further shows the PL emission with respect to ߠ, the angle 
between detection direction and ݔ direction. The near-perfect cosଶ  dependence indicates that ߠ
the PL emission is almost completely linearly-polarized, though excited with unpolarized light. 

 

3.3.4	Comparison	to	Theoretical	Model	

 

Figure 3.6 Comparing experimental and theoretical evolution of subband transition energy. Solid line is 
from the theoretical prediction in Eq. 3-3, with different color corresponding to subband transition with 
different ݊ from 1 to 5. Measured resonance energies are shown as solid symbols, with dashed lines mark 
the experimentally available spectral range. Open symbols represent theoretically predicted resonances 
that are outside of the experimental spectral range. 

 

With the experimentally measured subband transition energy available, we can now have a direct 
comparison with theoretical predictions in Eq. 3-3. Figure 3.6 summarizes all the measured 
resonance energy dependence on layer number as solid symbols, with different color 
representing different subband index ݊. Solid line of the same color illustrates the predicted 
transition energy at corresponding ݊, as given by Eq. 3-3. Two fitting parameters ܧ௚଴ ൌ 1.8	ܸ݁ 

and ߛ௖െߛ௩ ൌ 0.73	ܸ݁ are used for all curves. The two horizontal dashed lines mark the 
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available spectral range in our measurement, outside which symbols are shown in open because 
they are theoretically predicted but not observable due to experimental limitation.  

Results from the simple 1D model match quite well with experimental observation for all 
resonances, including the direct bandgap in bulk. Such good match further confirms the validity 
of both our theoretical model and experimental technique. Furthermore, we are able to 
quantitatively obtain important parameters of interlayer interaction, which is indeed very strong. 

Another important experimental observation from Figure 3.4 and 3.5 is the apparent polarization 
dependence that all the absorption and emissions only show up in ݔ-polarization configuration. 
For monolayer, such behavior can be understood from its symmetry: Monolayer phosphorene 
has mirror symmetry with respect to the ݖݔ plane. As a result, Electron wavefunctions at ડ point 
must be eigen-states to the ݕ → െݕ operation, with eigen-value of either 1 or -1. Indeed, both the 
conduction band minimum (CBM) and valence band maximum (VBM) of phosphorene are 
composed of ݏ,  ,mirror plane. As a result ݖݔ ௭ orbitals and are even with respect to the݌ ௫ and݌
excitation from VCM to CBM (or emission from CBM to VCM) is only allowed through an 
interaction that is also even under this symmetry. While an electric filed along ݔ is even to 
ݕ → െݕ operation, electric field along ݕ is odd; therefore the latter is strictly forbidden at ડ point, 
giving the well-defined polarization selection rule in monolayer phosphorene. 

In few layer phosphorene, states from each layer will mix in a way described by Eq. 3-2. 
However, the mix mainly changes the distribution of wavefunction along ݖ direction, leaving the 
in-plane part largely unaffected. Therefore again from the simple 1D model, we expect the in-
plane polarization selection rules for all subband transitions to be the same as in monolayer, 
which is exactly what we observe experimentally. 

. 
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3.4	Discussion	and	Outlook	

The study in this chapter is straightforward in concept, however already presents many useful 
and important results: The combination of physical theoretical model and reliable experimental 
technique provide an accurate determination of layer-dependent direct bandgap as well as higher 
subbands transitions in few-layer phosphorene, which serves as a fundamental guidance to its 
application in electronics and optoelectronics. The tunability of electronic states, high carrier 
mobility and two-dimensional nature, together make few layer phosphorene a desirable platform 
for novel devices. In addition, the perfect match between results from the simple model and 
reflectance spectrum unambiguously identifies the strong interlayer interaction as the origin to 
the systematic evolution of electronic structure in few-layer phosphorene; and also allows us to 
quantitatively determine the interlayer coupling strength. 

On theoretical aspect, this study is an example application of our discussion in chapter 2, though 
the “simplest of simplest” type. However, we can already see the power of the formalism 
introduced in chapter 2, that we can understand the physical picture behind the interlayer 
interaction-induced electronic structure change in a simple and elegant way. e.g. with only one 
parameter in the present case. This parameter, the interlayer coupling strength (or matrix element 
amplitude), is in the order of 1eV, which is indeed quite strong. Such strong coupling can also be 
intuitively understood as a result from direct mixing at ડ point, as has been discussed at the 
beginning of this section (which is not the only factor determining the coupling matrix element 
though, see section 2.4.3). 

We note that, although the 1D model does a good job in explaining all the experimental 
observation, it also has limitations. First, it is still a single-particle model which does not take 
into account many-body effect. However, one can justify its use from the fact that the exciton 
binding energy and quasi-particle bandgap renormalization (i.e. Coulomb interaction of electron-
electron and electron-hole) will large cancel each other. One extreme case is that, if Coulomb 
interaction is infinitely long range with no length dependence at all, then the electron-electron 
and electron-hole interaction will completely cancel as long as the total charge is conserved. As a 
result, the optical bandgap can often be represented reasonably well by single-particle bandgap, 
which is demonstrated in the bandgap calculation of many systems using density functional 
theory (DFT) methods. 

Another deficiency of the model is that we only consider one valence and conduction band from 
each layer. As layer number increases, Eq. 3-2 tells us that the energy span of all the subbands 
will significantly increase, which can also be clearly seen in Figure 3.6. Therefore, when the 
layer number is too large, high energy subbands in Eq. 3-2 will inevitably overlap with the low 
energy subbands from other bands in monolayer that are not considered in the model. In such 
case, their interaction will be important; and the 1D model can become significantly inaccurate. 
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Thus the 1D model will ultimately fail if both ݊ and ܰ are large. Note that if only ܰ is large but 
݊ is small then the model will still work.  

In principle, however, we can always improve the model by considering more bands at ડ point in 
monolayer, which can be mapped into multiple 1D atom chains interacting with each other 
following the same concept as in section 3.2. In this way, the model can in principle work in an 
arbitrarily larger energy range, as long as all important orbitals are considered. 
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Chapter 4 – Strongly Coupled Electronic States in 
One‐dimensional van der Waals Systems 

4.1	Introduction	and	Background	

In the last section, we have seen one example of how interlayer interaction can act as a 
convenient and powerful tool to engineer the properties of 2D materials. The explanation of 
interlayer coupling effects is particularly simple because of the nature of ડ point interaction. 
Given the rich and useful effects of interlayer interaction in 2D van der Waals systems, it is 
naturally to ask: can we extend to other dimension?  

To answer this question, we can look back to see why the concept of material engineering 
through interlayer van der Waals coupling is only intensively studied recently, accompanying the 
emergence of 2D materials. If we put two bulk graphite together, it is hard to imagine that their 
bulk properties will change significantly, since most of the atoms are deeply buried below the 
interface and can hardly see the other material unless there are some macroscopic field produced. 
As a result, combining two graphite will lead to nothing but bigger graphite, which is quite trivial. 
In two-dimension, however, the “bulk” of the material is really just the surface. As a result, all 
the electrons are exposed at the interface and are close to the other layer; which can result in 
strong modification of their behaviors even with non-covalent, van der Waals interaction. 

Another factor further facilitating the strength of interlayer interaction is the reduction of 
dielectric screening in low dimension. It is well known that a perfect metal sphere can 
completely screen external electric field from its interior spaces, because the free carriers inside 
metal will response to the external electric field and rearrange to cancel it upon equilibrium. In 
actual case the screening effect will not be always perfect. However as long as particles, such as 
electrons, phonons, etc. in a system are responding to external potential or interaction, their 
redistribution will generate additional field that partially cancels the original one, as described by 
their dielectric function or susceptibility. In 3D system, such screening effect can often reduce 
the potential/interaction to be orders magnitude smaller than the original one (or bare one). 
However, in 2D system the material itself is limited to a plane; therefore the screening effect 
coming from all particles inside the material is also much less significant. Intuitively, one can 
think of the penetration depth of metal; and the field will be finite everywhere inside the metal if 
its thickness is smaller than the penetration depth. 

The reduced dielectric screening effectively increases the amplitude of any potential or 
interaction. One representative consequence of such strong interaction is the orders of magnitude 
stronger binding energy for many-body sates like excitons, trions, etc., in atomically-thin 
semiconductors than in the case of quantum wells (49-51). Such strong many-body interaction 
enables various new perspectives of 2D materials that I will not discuss in detail here. The point 
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is, owing to the same reason, interlayer interaction will also be particularly strong in low 
dimension, which, combined with its large parameter space, creates a whole field of rich new 
possibilities. 

With the above discussion, now we can answer the initial question: It is difficult to extend to 3D; 
however 1D may have similar effect. The “similarity” comes from the fact that in 1D the 
electrons are also exposed to the interface; and the dielectric screening is largely reduce, actually 
even more reduced than 2D case, from the outstandingly large exciton binding energy of carbon 
nanotubes (52, 53). On the other hand, 1D is never identical to 2D, since almost all the important 
theoretical models will give different results in different dimensions, in many cases even 
qualitatively different. In this way, we would expect that the interlayer interaction in 1D van der 
Waals systems should, like in 2D, gives rise to strong and rich modification to system properties; 
however in a way that might be fundamentally different from 2D case. In this chapter, I will 
focus on these new exciting possibilities in 1D. Part of the discussion is also presented in a 
published paper (2). 
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4.2	New	Rich	Possibilities	from	Interlayer	Interaction	in	One‐

Dimensional	Double	Walled	Carbon	Nanotubes	(DWNTs)	

4.2.1	Carbon	Nanotubes:	Ideal	System	to	Study	One‐Dimensional	Physics	

In last section, we have seen the potential new rich possibilities in one-dimensional van der 
Waals systems from interlayer interaction. The first step to realize all these possibilities is to find 
suitable materials as platform and playground. In 2D, the “suitable materials” compose a long list 
including graphene, transition metal dichalcogenide, phosphorene, boron nitride and many more. 
It is therefore natural to look into their 1D counterpart, among which carbon nanotube stands out 
as an almost ideal system to study. 

Carbon nanotubes have been intensively studied as a model 1D system owing to its attractive 
properties on both fundamental and application aspects. Studies on quantum conductance and 
intriguing Luttinger liquid physics has always chosen nanotube as the subject. On the other hand, 
field effect transistor based on carbon nanotubes has also been a central topic in new-generation 
circuits owing to its great potential in scalability and reducing the power consumption. 

More fundamentally, what benefits carbon nanotube on both aspects is its well-defined but 
richly-varied structures: A single-walled carbon nanotubes (SWNTs) has an atomic structure 
uniquely defined by its chiral indices, i.e. two integer numbers ሺ݊,݉ሻ. What is impressive, a 
SWNT can have near-perfect lattice ordering without single defect over a large length, since its 
structure dos not have any edge except for at the two ends. In addition, its electronics properties 
sensitively depend on the chirality (or chiral indices), from metallic to semiconducting with 
different bandgap size. Given the infinite combination of integer pairs ሺ݊,݉ሻ, SWNT will also 
have infinite number of unique structures. 

These advantages of carbon nanotube make it very preferable for the study of interlayer 
interaction. Similar to the 2D case, the necessary preparation before isolating and understanding 
interlayer interaction is to understand individual layer first. Therefore, here I will first give a 
brief introduction to SWNTs. 

 

4.2.2	Real‐	and	Momentum‐Space	Structure	of	Single‐Walled	Nanotubes	

To understand the electronic structure of SWNT, a commonly adopted method is from the 
perspective of graphene, as nanotube can be considered a rolled-up version of graphene. If we 
neglect the curvature effect, which is reasonable if the radius is much larger than the carbon-
carbon bond length, then nanotube’s electronics properties will have direct relation to graphene’s. 
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Certainly, the electronic properties should also depend on how we “roll-up” the graphene sheet, 
which is given by the chiral indices ሺ݊,݉ሻ: Assuming the two primitive lattice vector of 
graphene to be ࢇଵ, ௛࡯ ଶ, we can choose an arbitrary lattice vectorࢇ ൌ ଵࢇ݊ ൅݉ࢇଶ as the chiral 
vector of the nanotube, and roll the graphene up by connecting both ends of ࡯௛ to form a circle. 
Figure 4.1A illustrates one example with ࡯௛ ൌ ଵࢇ4 ൅  ଶ, corresponding to a SWNT withࢇ2
chiral indices ሺ݊,݉ሻ ൌ ሺ4,2ሻ. Depending on the ratio between ݊ and ݉, there will be an angle ߙ 

between ࡯௛ and ࢇଵ, given by ߙ ൌ tanିଵ √ଷ௠

ଶ௡ା௠
 is often called “chiral angle” since it ߙ .

represents the orientation of the tube. 

 

 

Figure 4.1 (A) Relation between nanotube and graphene through the chiral vector ࡯௛. A nanotube with 
chiral indices ሺ݊,݉ሻ corresponds to a chiral vector ࡯௛ ൌ ଵࢇ݊ ൅  ଶ, and is formed by rolling up theࢇ݉
chiral vector into a circle. In the above example we have ሺ݊,݉ሻ ൌ ሺ4,2ሻ. The 1D lattice vector ࢀ is 
always perpendicular to ࡯௛. (B) Electronic states of SWNT in 2D Brillouin Zone of graphene. The 
boundary condition along the periphery of tube leads to quantized cutting lines on which eigen-states 
reside, labeled by discrete integer ߤ. On the other hand, along the tube the periodic distribution of atoms 
gives a continuous momentum ݇. 

 

Because the chiral vector ࡯௛ forms the circumference of the cylinder, the tube axis should 
always be perpendicular to ࡯௛. We can therefore determining the 1D periodicity of a given 
nanotube along the axis by searching for the shortest lattice vector ࢀ of graphene that is 
perpendicular to ࡯௛. One can show that a general form of periodicity ࢀ can be expressed as  

A B

 ଵࢇ

 ଶࢇ

ଵࢇ݊
ଶࢇ݉

௛࡯ ൌ ଵࢇ݊ ൅݉ࢇଶ 

ࢀ ൌ ଵࢇଵݐ ൅ ଶࢇ૛ݐ

 ߤ

݇ 

 ݔ

 ݖ
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ࢀ ൌ ሺݐଵࢇଵ ൅ ଶሻࢇଶݐ ൌ
ሺ݊ ൅ 2݉ሻ

݀ோ
ଵࢇ െ

ሺ2݊ ൅݉ሻ

݀ோ
ሺ4					ଶࢇ െ 1ሻ 

Where ݀ோ ൌ gcd	ሺ݊ ൅ 2݉, 2݊ ൅ ݉ሻ is the greatest common divisor of ሺ݊ ൅ 2݉ሻ and ሺ2݊ ൅ ݉ሻ. 

The close relation between nanotube and graphene in real space necessarily indicates their 
correspondence in momentum space, i.e. band dispersion. To see this, one can unfold the 
nanotube into a piece of graphene with finite width ࡯௛ (which is defined as ݔ direction) and 
infinite length on the perpendicular direction (ݖ direction). In real nanotube, the two ends of ࡯௛ 
are connected, so does any eigen-state of the system. Therefore, to make the “unfolded” 
graphene piece equivalent to nanotube, we need require its eigen-state to satisfy a boundary 
condition: 

߰ሺ࢘ሻ ൌ ߰ሺ࢘ ൅ ሺ4					௛ሻ࡯ െ 2ሻ 

As a result, compare to a freestanding graphene sheet, the eigen-states in unfolded nanotube 
cannot freely choose a momentum in the 2D Brillouin Zone of graphene. Instead, they can only 
reside on discrete cutting lines separated by Δ࢑ఓ ൌ  ௛. These cutting lines are labeled by anܥ/ߨ2

integer ߤ, often called the cutting line number. 

On the other hand, along axial direction the unfolded tube is infinitely long with a periodicity of 
ܶ. This indicates that eigen-states can sit at wherever they like on the cutting line, described by a 

continuous momentum ݇ along the ݖ direction; however only those within ሾെ
గ

்
,
గ

்
ሻ are 

independent. In this way, any eigen-state of given nanotube takes the form: 

߰ఙ,ఓ,௞ሺݔ, ሻݖ ൌ ߰ఙ,࢑మವሺ࢘ሻ ൌ෍߮ఙ,࢑మವ	൫࢘ െ ௝൯݁ࡾ
௜࢑మವ∙ࡾೕ

ೕࡾ

, ࢑ଶ஽ ൌ ߤ
ߨ2
௛ܥ

ෝ࢞ ൅ ,ොࢠ݇ ݇ ∈ ቂെ
ߨ
ܶ
,
ߨ
ܶ
ቁ 

ఙ,ఓ,௞ܧ ൌ ࢑మವ,ఙܧ ൎ ሺ4					ி݇ଶ஽ݒߪ െ 3ሻ 

Here ߰࢑మವሺ࢘ሻ is simply the wavefunction of graphene at 2D momentum ࢑ଶ஽ (Note that the 
graphene is in the ݖݔ plane due to our definition), and ࡾ௝ is summing over unit cells of graphene; 

ෝ࢞ and ࢠො are unit vectors along ݔ and ݖ direction. In calculating the energy we have assumed a 
linear band dispersion, which is only valid when ݇ଶ஽ is reasonably small. ߪ ൌ ൅1/െ1 stands for 
conduction/valence band states in graphene, respectively. 

With the wavefunction obtained in the reference frame of unfolded nanotube, we can now roll it 
back, and see how the wavefunction looks like in reality. Naturally, we will adopt cylindrical 
coordinate ሺݎ, ,ߠ  ,ሻ, corresponding to radial distance, azimuth angle, and axial heightݖ
respectively. For nanotube rolled-up from an atomically thin graphene sheet, we can neglect its 
thickness and assume that ݎ ≡ ,ߠThen the coordinate ሺ .ߨ௛/2ܥ  ሻ in cylindrical frame will haveݖ

one-to-one correspondence to coordinate ሺݔ, ߠ ሻ in Eq. 4-3 throughݖ ൌ ௫

௥
, ݖ ൌ  We can .ݖ

therefore directly write down the wavefunction in cylindrical coordinate as:  
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߰ఙ,ఓ,௞ሺߠ, ሻݖ ൌ ߰ఙ,ఓ,௞ ൬
ݔ
௛ܥ
, ൰ݖ ൌ෍߮ఙ,࢑మವ	൫࢘ െ ௝൯݁ࡾ

௜ሺఓఏೕା௞௭ೕሻ					ሺ4 െ 4ሻ
ೕࡾ

 

where ሺߠ௝,  ௝. From Eq. 4-4, we canࡾ ௝ሻ is the cylindrical coordinate of graphene unit cell atݖ

clearly see the physical meaning of both ሺߤ, ݇ሻ: ߤ is an angular momentum and describes the 
angular distribution of wavefunction, which has to be quantized because of the 2ߨ periodicity 
requirement of any angular distribution. On the contrary, ݇ is a one-dimensional momentum 
coming from nanotube’s translational symmetry along axial direction, and therefore can be 
continuous. 

 

4.2.3	Existence	of	Interlayer	Electronic	Coupling	in	1D	

With the knowledge of individual “layer”, here SWNT, now we are finally at a point to try to 
investigate interlayer, or intertube interaction in DWNTs. A DWNT is formed by two concentric 
SWNTs, just like rolling up a piece of bilayer graphene. Given the intimate relation between 
SWNT and single layer graphene, one would naturally expect DWNT to resemble the behavior 
of bilayer graphene, which we have intensively discussed in Chapter 2. If so, supposedly a 
variety of new physics should show up depending on specific regime of interlayer configuration, 
such as commensurate and incommensurate, strong and weak coupling etc.. 

However, as we mentioned in the beginning, there can be intrinsic difference between 1D and 
2D systems. One example is that, the parameter space of interlayer interaction in 1D is even 
larger. While in 2D bilayer graphene the only relevant parameter is the interlayer twist angle; in 
1D this is apparently not the case: even if the difference between their chiral angle, ሺߙଵ െ  ଶሻ, isߙ
fixed; both inner- and outer-tubes can still vary significantly, e.g. from metallic to 
semiconducting tubes, depending on ߙଵ and ߙଶ individually. Therefore it is necessary to at least 
consider both chiral angles, instead of only their difference. Furthermore, even if both chiral 
angle are fixed, the diameter will still play critical role in determining the properties of each tube, 
as well as their intertube interaction, which adds additional knobs to tune.  

Such huge parameter space should create a large playground for potentially new physics. Several 
previous studies have already attempted to investigate the consequence from intertube interaction. 
However, the results suggest that there is virtually no intertube electronic coupling in 
incommensurate DWNTs (54, 55). Here the definition of “incommensurate” DWNT is quite 
similar to incommensurate bilayer in 2D: The 1D periodicity of a SWNT, 

ܶ ൌ ඥ3ሺ݊ଶ ൅ ݉ଶ ൅ ݊݉ሻ/݀ோ, is an irrational number; and therefore ଵܶ and ଶܶ of inner- and 

outer-tubes are in general strictly incommensurate unless 
௡భ
௠భ

ൌ
௡మ
௠మ

, or equivalently ߙଵ ൌ  .ଶ. i.eߙ

zero twist angle. While in 2D the zero twist angle case, such as AB stacked bilayer graphene is 
naturally available. In 1D it is extremely rare because the probability is too low for two SWNTs 
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to have the same chiral angle and proper radius difference simultaneously; and almost all 
experimentally observed DWNTs are incommensurate ones (56-65). As a result, theoretical 
predictions seem to suggest the non-existence of intertube electronic coupling in almost all 
realistic DWNTs. 

Such conclusion, though disappointing, seems to have some support both from theoretical and 
experimental aspects. Theoretically, the negligible intertube coupling was explained as a 
consequence of the random local intertube configuration from incommensurability, which gives 
a random phase when summing up contribution from different atom sites and ultimately cancel 
with each other. Experimentally, transport measurement on multi-walled nanotubes (MWNTs) 
surprisingly resembled behavior of a single-walled tube (54), which was believed to originate 
from the lack of intertube interaction and therefore tunneling; and only the outermost tube is 
conducting current. 

With our discussion in chapter 2, however, we can immediately see that both arguments are not 
complete: As we have derived in section 2.4.2, incommensurability indeed leads to cancellation 
of interlayer coupling in most cases, however not when the two interlayer electronic states satisfy 
specific momentum selection rules (see Eq. 2-14). Similarly, we also already know that multi-
layer graphene will show an effective interlayer decoupling and single-layer behavior near Dirac 
point at large twist angle  (section 2.5.6), which is apparently very similar to the case of multiple-
walled nanotubes. Therefore, effective monolayer (or single-walled) behavior at specific energy 
does not necessarily suggest complete non-existence of interlayer interaction. For example, 
specific states in bilayer graphene away from the Dirac point can always be strongly modified, 
even at large twist angle. Thus we would expect interlayer electronic coupling to persist in 
incommensurate DWNTs. 

What is different in 1D DWNTs, however, is that the above literature also investigated situation 
of small intertube twist angle; and it seems that states near Dirac point are still largely unaffected 
by interlayer interaction. This poses a sharp contrast to 2D bilayer graphene case, where states 
near Dirac point should be strongly modified at small twist angle, even forming flat bands and 
zero energy modes if entering the strong coupling regime. 

Such difference indicates that 1D and 2D cases are not completely identical, which is hardly 
surprising at all. Below I will follow similar approaches as in chapter 2, section 2.4.2, to obtain 
the interlayer (or intertube) coupling selection rules and matrix element in 1D DWNTs. 
Afterwards, we can have a direct comparison between 1D and 2D cases, which will help us 
understand the similar and different aspects in their behavior. 
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4.2.4	Interlayer	Electronic	Coupling	in	Incommensurate	DWNTs	

Selection	Rule	and	Matrix	Element	

Similar to the derivation in section 2.4.2, to consider the intertube electronic coupling between 

two states ଵ߰
ఓ௞ఙ and ߰ଶ

ఓᇲ௞ᇲఙᇲ, we can start with expanding them into local orbitals of each carbon 

atom: 

ଵ߰
ఓ௞ఙ ൌ

1

√2ܰ
෍݁௜ሺఓఏభା௞௭భሻൣ߮ሺ࢘ െ ଵሻࡾ ൅ ௜థభሺ࢘݁ߪ െ ଵࡾ െ ࣎ሻ൧
భࡾ

ൌ ߰஺
ఓ௞ ൅ ஻߰ߪ

ఓ௞					ሺ4 െ 5ሻ 

߰ଶ
ఓᇲ௞ᇲఙᇲ ൌ

1

√2ܰ
෍݁௜ሺఓ

ᇲఏమା௞ᇲ௭మሻൣ߮ሺ࢘ െ ଶሻࡾ ൅ ᇱ݁௜థమሺ࢘ߪ െ ଶࡾ െ ࣎′ሻ൧
మࡾ

ൌ ߰஺
ఓᇲ௞ᇲ ൅ ᇱ߰஻ߪ

ఓᇲ௞ᇲ 

in which we have separated the contribution from A and B sublattices of atoms by splitting the 
total wavefunction into two parts. ࡾଵ and ࡾଶ sum over all graphene unit cells in the inner- and 
outer-tube, respectively, with their cylindrical coordinate given by ሺߠଵ, ,ଶߠଵሻ and ሺݖ  ଶሻ. ߶ଵ, ߶ଶݖ
represent the phase difference between the two sublattices, which depend on ࢑ଶ஽. The coupling 

matrix element between ଵ߰
ఓ௞ఙ and ߰ଶ

ఓᇲ௞ᇲఙᇲ can therefore be expanded as: 

ଵଶܯ ൌ ർ߰ଵ
ఓ௞ఙቚܪூቚ߰ଶ

ఓᇲ௞ᇲఙᇲ඀ ൌ ଵଶܯ
஺஺ ൅ ଵଶܯᇱߪ

஺஻ ൅ ଵଶܯߪ
஻஺ ൅ ଵଶܯᇱߪߪ

஻஻ 

ଵଶܯ
஺஺ ൌ

1

2√ܰܰ′
෍݁௜ൣ൫ఓ

ᇲିఓሻఏభାሺ௞ᇲି௞൯௭భ൧෍݁௜൫ఓ
ᇲ୼ఏା௞ᇲ୼௭൯

୼ࡾ

ሻࡾሺΔݐ
భࡾ

 

ଵଶܯ
஺஻ ൌ

1

2√ܰܰ′
݁௜థమ෍݁௜ൣ൫ఓ

ᇲିఓሻఏభାሺ௞ᇲି௞൯௭భ൧෍݁௜൫ఓ
ᇲ୼ఏା௞ᇲ୼௭൯

୼ࡾ

ࡾሺΔݐ ൅ ࣎′ሻ
భࡾ

 

ଵଶܯ
஻஺ ൌ

1

2√ܰܰ′
݁ି௜థభ෍݁௜ൣ൫ఓ

ᇲିఓሻఏభାሺ௞ᇲି௞൯௭భ൧෍݁௜൫ఓ
ᇲ୼ఏା௞ᇲ୼௭൯

୼ࡾ

ࡾሺΔݐ െ ࣎ሻ
భࡾ

 

ଵଶܯ
஻஻ ൌ

1

2√ܰܰ′
݁௜ሺథమିథభሻ෍݁௜ൣ൫ఓ

ᇲିఓሻఏభାሺ௞ᇲି௞൯௭భ൧෍݁௜൫ఓ
ᇲ୼ఏା௞ᇲ୼௭൯

୼ࡾ

ࡾሺΔݐ ൅ ࣎′ െ ࣎ሻ					ሺ4 െ 6ሻ
భࡾ

 

The expression of above matrix element is exactly the 1D counterpart of Eq. 2-11. Again we can 
take advantage of the random interlayer configuration and replace the second summation over 
Δࡾ with an integration: 

෍݁௜൫ఓ
ᇲ୼ఏା௞ᇲ୼௭൯

୼ࡾ

,ߠሺΔݐ Δݖሻ →
1
ܵ
ඵݎଶ݀݁ݖ݀ߠ௜൫ఓ

ᇲఏା௞ᇲ௭൯ݐሺߠ, ሺ4					ሻݖ െ 7ሻ 

Here the integration goes over the whole outer-tube, and ܵ is the graphene unit cell area. Eq. 4-7 
is simply the Fourier component of the pair interaction in the cylindrical coordinate. With such 
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simplification, we can further obtain the selection rule and amplitude of matrix element, similar 
to the process from Eq. 2-13 to Eq. 2-17. Using an pair interaction in exponential decay form 

,ߠሺΔݐ Δݖሻ ൎ ሺ4					ඥ୼௥మାሺ୼௥୼ఏሻమା୼௭మ/ఒି݁ߛ െ 8ሻ 

In which ߣ  is the characteristic decay length of the pair interaction, and Δݎ ≡ ሺݎଶ െ  ଵሻ is theݎ
radius difference between the two tubes. i.e. intertube distance. We then have: 

ଵଶܯ
஺஺ ൌ 	ᇲࢗ,భࡳାࢗߜ

ݎΔߣߨ2
ܵ

ି݁ߛ
୼௥
ఒ ݁

ି
ఒ୼௥
ଶ ሺ௞ᇲ

మ
ା
ఓᇲ

మ

௥భ௥మ
ሻ
					ሺ4 െ 9ሻ 

where ࢗ ൌ ࢑ଶ஽ ൌ
ఓ

௥భ
ෝ࢞ ൅ ᇱࢗ ,ොࢠ݇ ൌ

ఓᇲ

௥మ

௥మ
௥భ
ෝ࢞ ൅ ݇ᇱࢠො ൌ P࢑ଶ஽

ᇱ . P is defined as an operatior on vector 

that stretches its ݔ component by ߟ ൌ ௥మ
௥భ

, while keeps its ݖ component unchanged. With such 

definition, we can write the selection rule as: 

࢑ଶ஽ ൅ ଵࡳ ൌ Pሺ࢑ଶ஽
ᇱ ൅ ሺ4					ଶሻࡳ െ 10ሻ 

Eq. 4-10 looks very similar to Eq. 2-14, the selection rule in 2D system. However they are 
definitely not identical, from the additional operatior P. Such discrepancy originates from the 
intrinsic difference between bilayer graphene in 2D and DWNTs in 1D: Although the latter is 
indeed a rolled-up of the former, it is rolled up from two pieces of graphene with different width, 
as can be seen from the different circumference of inner- and outer-tubes. During the rolling up 
process, we make the two pieces of graphene with different width into the same angle 2ߨ, 
therefore introducing an intrinsic strain in the outer tube in the real space (by taking the inner 
tube as reference). In other words, to construct a bilayer graphene with the same interlayer atom 
configuration as in a DWNT, we need compress the second layer (corresponding to the outer-
tube) by ߟ ൌ  ଵ to make its width the same as the first layer. Such intrinsic compress in realݎ/ଶݎ
space also leads to a stretch in momentum space described by the operation P, as shown in 
Figure 4.2. Pink and grey hexagons represent Brillouin Zone of 1st and 2nd layer graphene, they 
are twisted against each other due to the different chiral angle of the inner- and outer-tubes. In 
addition, the Brillouin Zone of the 2nd layer is stretched by ߟ along the ݔ direction. Because this 
“twisted and stretched” 2D bilayer graphene is completely equivalent to 1D DWNT, we can 
directly apply the 2D selection rule Eq. 2-14, which states that the momentum need be conserved. 
Immediately, we will reach the same conclusion as Eq. 4-10. 

Another way to see the difference between 2D and 1D is directly from the perspective of 1D. 
Similar to 2D case where the 2D momentum need be conserved; in 1D case we would naturally 
expect both the angular momentum ߤ and 1D linear momentum ݇ to be conserved. While it is 
not so apparent how lattices of both tubes can provide additional momentum, at least two 
interlayer states should satisfy the selection rule if ߤ ൌ ݇ and ′ߤ ൌ ݇′. According to Eq. 4-3, 
however, they will have different  ࢑ଶ஽ in the 2D Brillouin Zone of graphene. Such difference 
comes from the different cutting line spacing between inner- and outer-tubes; and ultimately 
originates from the intrinsic strain involved. 
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Practically, it would be convenient to adopt the picture in Figure 4.2 to determine states 
satisfying the selection rule. Since this picture considers a 2D bilayer graphene system, the 
process is essentially the same as in chapter 2: For a given electronic state at ࢑ଶ஽ in layer 1, we 
can draw a reciprocal lattice ሺ࢑ଶ஽ ൅  ଵሻ, illustrated as an array of dots in Figure 4.2. All statesࡳ
from layer 2 that satisfy the selection rule will be on this lattice. Note that, although all states on 
the lattice correspond to the same momentum in layer 1, they represent different states in layer 2 
since is Brillouin Zone is not only twisted but also intrinsically stretched compared to layer 1. 

 

 

Figure 4.2 Interlayer coupling selection rule in 1D DWNT. The 1D DWNT system is equivalent to a 2D 
system of bilayer graphene, with the 2nd layer intrinsically compressed by ߟ ൌ  ,As a result .ݔ ଵ alongݎ/ଶݎ
the Brillouin Zone of 2nd layer graphene (grey hexagons) is stretched by ߟ along ݔ direction compared to 
1st layer (pink hexagons). In such picture, the selection rule will be the same as 2D case: We can draw the 
reciprocal lattice of 1st layer centering at the given momentum, states from the 2nd layer satisfy the 
selection rule only when they are on this lattice. The three red dots on the lattice labels states closest to 
the center of Brillouin Zone, therefore having the strongest coupling. 

 

Modification	of	Optical	Transition	Energy	at	Van	Hove	Singularities	

Following similar procedure as in Eq. 4-7 to 4-9, we can obtain ܯଵଶ
஺஺,ܯଵଶ

஺஻,ܯଵଶ
஻஺,ܯଵଶ

஻஻, 
respectively, which gives ܯଵଶ: 

ଵଶܯ ൌ ଵଶܯଵଶܥ
஺஺ 

ଵଶܥ ൌ ൫1 ൅ ௜ఉభ൯൫1ି݁ߪ ൅ ଵଶܯ௜ఉమ൯݁ߪ
஺஺, ଵߚ ൌ ߶ଵ െ ࢗ ∙ ࣎, ଶߚ	 ൌ ߶ଶ െ ′ࢗ ∙ ࣎′					ሺ4 െ 11ሻ 

Similar to Eq. 2-17, the exponential decay in Eq. 4-9 indicates a fast decrease of coupling 
amplitude with increase of ݍ′; and therefore only those close to center of Brillouin Zone will 
have strong coupling, shown as the three red dots in Figure 4.2. 

 ݔ

 ݖ
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With both selection rule and amplitude of matrix element obtained, we can start investigating 
modification of electronic structure in DWNT from interlayer interaction. One unique 
consequence of 1D system is the emergence of Van Hove singularities in the density of states at 
band extrema. The extremely large density of states near Van Hove singularities can easily 
dominate system behavior, such as giving prominent optical transitions between pairs of van 
Hove singularities. It is therefore natural to look at how these Van Hove singularities and 
induced optical transitions are modified by interlayer electronic interaction. 

Assuming we are in the simplest, weak perturbative regime. Since both inner- and outer-tubes 
have electronic states in the same energy range, most likely the dominant effect will be from 
direct mixing. The induced energy change of an arbitrary state ሺߤ, ݇,  ሻ from layer 1 isߪ
approximately: 

ଵܧߜ ൌ෍
หܯଵଶ

௝ ห
ଶ

ଵܧ െ ଶܧ
௝

ଷ

௝ୀଵ

					ሺ4 െ 12ሻ 

In which we only consider the coupling to states from layer 2 at three important momentum 
closest to ડ point, and neglect the coupling between conduction band and valence band states 
because they will have large energy difference. 

It is then straightforward to calculate the energy shift for a given optical transition from ሺߤ, ݇, െሻ 
to ሺߤ, ݇, ൅ሻ. We can choose ሺߤ, ݇ሻ to be at the ݅௧௛ Van Hove singularity of layer 1 starting from 
the valence band maximum/lowest conduction minimum. This type of optical transition is often 
called ௜ܵ௜ or ܯ௜௜ transition depending on whether the tube is semiconducting or metallic. Its 
energy change, Δܧ௜௜ is: 

Δܧ௜௜ ൌ Δܧఓ௞ା െ Δܧఓ௞ି ൌ෍
ฬܯଵଶ

ఓ௞ା,ఓೕ
ᇲ௞ೕ

ᇲା
ฬ
ଶ

ଵܧ
ఓ௞ା െ ଶܧ

ఓೕ
ᇲ௞ೕ

ᇲା
െ෍

ฬܯଵଶ

ఓ௞ି,ఓೕ
ᇲ௞ೕ
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ଶ
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஺஺ ห
ଶ
 is the effective 

coupling matrix element combining the contribution from both conduction band and valence 

band energy shift; Δܧ௝ ൌ ଵܧ
ఓ௞ା െ ଶܧ

ఓೕ
ᇲ௞ೕ

ᇲା
. We have used ሺܧଵ
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ᇲା
ሻ 	ൎ െሺܧଵ
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ఓೕ
ᇲ௞ೕ

ᇲି
ሻ 

due to the approximate electron-hole symmetry for states close to ۹ and ۹’ points in 2D 
Brillouin Zone of graphene. 
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Rich	Parameter	Space	of	Interlayer	Interaction		

Eq. 4-13 indicates that the energy shift will generally depends on the amplitude of matrix 
element ܣ௝, as well as the energy difference Δܧ௝. Similar to the case in 2D, if we confine our 

discussion to states within a reasonably small range in momentum space (here it means optical 

transitions of reasonably low energy), then ܯଵଶ,௝
஺஺  in Eq. 4-9 can be considered approximately as 

constant. Though there is still a factor ሺหܥଵଶ,௝
ା ห

ଶ
൅ หܥଵଶ,௝

ି ห
ଶ
ሻ between ܣ௝ and ܯଵଶ,௝

஺஺ , one can show 

that such factor has a large chance to take value around 8. As a result, the variation of ܣ௝ can be 

largely described by a simple scaling law ݁ି୼௥/ఒ. i.e. the variation of intertube spacing. Figure 
4.3A shows the maximum ܣ௝ (݆ ൌ 1 െ 3) calculated for each experimentally observed optical 

transitions in many DWNTs. Indeed, ܣ௠௔௫ is roughly following a simple scaling law of ݁ି୼௥/ఒ, 
as given by the red solid line; and their non-perfect match is understandable as a result of all the 
approximations we make. In calculating ܣ௝ we used parameters ߛ ൌ ଴ߛ405 ൎ 1200eV and the 

characteristic length ߣ ൌ 0.045nm (66, 67) in Eq. 4-9, where ߛ଴ ൎ 3eV is the (intralayer) 
nearest-neighbor hopping constant in graphene.  

The simple behavior of ܣ௝ in Eq. 4-13 suggests that the large parameter space of interlayer 

interaction in 1D should be mainly coming from the denominator, Δܧ௝. This conclusion is similar 

to the situation in 2D, as we have seen in various examples in chapter 2, that the selection rule 
instead of the amplitude of matrix element gives all the richly varied effects, such as weak and 
strong, perturbative and non-perturbative coupling. From our discussion at the beginning of 
section 4.2.3, we would expect the coupling in 1D DWNT to depend on the chiral angles of both 
inner- and outer-tubes, as well as tube diameter and specific transition energy. Figure 4.3B 
shows the calculated maximum 1/Δܧ௝ (݆ ൌ 1 െ 3) depending on inner-tube chiral angle ߠ௜ and 

intertube twist angle ߠ௧௪௜௦௧ for inner-tube transition ܵଶଶ, at fixed tube diameter ݀௜ ൌ 1.0nm and 
݀௢ ൌ 1.7nm. The value of ሺ1/∆ܧሻ௠௔௫ shows systematic evolution with respect to chiral angles 
of both tube; as well as distinct family pattern between the modሺ݊ െ݉, 3ሻ ൌ 1 family (left half) 
and modሺ݊ െ ݉, 3ሻ ൌ 2 family (right half). The modሺ݊ െ݉, 3ሻ ൌ 0 family corresponds to 
metallic nanotube and is not shown here. ሺ1/∆ܧሻ௠௔௫ varies dramatically over the parameter 
space, and can be very large in specific region (white color contour). These regions can have 
particularly strong modification on electronics structure of DWNTs, even entering non-
perturbative or strong coupling regime. 

We can therefore focus on these “strong-coupling contours” by investigating its evolution in the 
parameter space. In Fig. 4.3C we examine its dependence on different optical transitions for a 
fixed nanotube diameter (݀௜ ൌ 1nm, ݀௢ ൌ 1.7nm). The strong-coupling contour line shrinks 
with decreasing transition index (or equivalently lower transition energy). It suggests that the 
probability to have strong inter-tube coupling becomes lower for low energy transitions.  
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Figure 4.3D shows the diameter dependence of the strong-coupling contour line for the ܵଶଶ 
transition with ݀௜ ൌ 0.5, 1.0, 2.0	݊݉. The strong-coupling contour line pattern shrinks with 
increasing diameter, largely due to the lower energy of ܵଶଶ transition in a larger diameter tube. 
Besides, we notice that at the large diameter limit, this contour line approaches ߠ௧௪௜௦௧ ൌ 0, the 
requirement of strong coupling in 2D. But for small diameter nanotubes, the contour pattern line 
rotates away from the line of constant twist angle.  

 

Figure 4.3 (A) Calculated maximum matrix element ܣ௠௔௫ for experimentally observed optical transitions, 
which roughly follows a simple exponential scaling law with intertube distance (red solid line). (B) 
Calculated dependence of ሺ1/∆ܧሻ௠௔௫ on inner-tube chiral angle ߠ௜ and intertube twist angle ߠ௧௪௜௦௧ for 
the inner-tube ܵଶଶ transition with tube diameter ݀௜ ൌ 1.0nm and ݀௢ ൌ 1.7nm. The value of ሺ1/∆ܧሻ௠௔௫ 
shows an interesting evolution with respect to chiral angles of both tube; as well as distinct pattern 
between the modሺ݊ െ ݉, 3ሻ ൌ 1 family and modሺ݊ െ ݉, 3ሻ ൌ 2 family. White contour correspond to 
small ∆ܧ, and strong intertube coupling. (C) Transition energy dependence of the strong-coupling 
contour with ݀௜ ൌ 1.0nm. The contour shrinks to the center as transition energy decreases. (D) Inner-tube 
diameter dependence of the strong-coupling contour for ܵଶଶ transition, with intertube spacing is fixed to 
0.35nm. The contour rotates away from ߠ௧௪௜௦௧ ൌ 0 at small diameter, due to the intrinsic strain in 1D. 
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4.2.5	Distinctive	Pattern	of	Interlayer	Interaction	in	1D	

Now we can go back to answer questions raised at the end of section 4.2.3: Why states near 
Dirac point cannot have strong interlayer coupling even if the twist angle is small? Figure 4.3C 
indicates that if the transition energy gets further closer to zero (the Dirac point), then the strong 
coupling contour will ultimately shrink to a single point at the center. i.e. It will not have strong 
intertube coupling unless it is an armchair/armchair tube, which is however extremely rare 
experimentally. The fundamental origin of such distinctive behavior from 2D is the intrinsic 
“strain” ߟ in 1D DWNTs. Such “strain” leads to a stretch of the Brillion Zone of the outer-tube. 
As a result, if we focus on an electronic state at Dirac point in the inner-tube; the outer-tube 
states that satisfy the selection rule will generally be away from the Dirac point depending on the 
amount of strain, which creates a large energy difference, and therefore preventing strong 
coupling to happen. 

Such intrinsic “strain” also makes the parameter space for interlayer interaction in 1D even larger 
than 2D. As shown in Figure 4.3D, the larger “strain” in smaller diameter tube will rotate the 
strong coupling contour further away from the horizontal line of zero twist angle, which from 
another aspect demonstrate the necessity to consider chiral angles of each tube as well as their 
diameters; instead of just the twist angle. 
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4.3	Experimental	Observation	of	Strong	Interlayer	Electronic	

Coupling	in	Incommensurate	DWNTs	

4.3.1	Experimental	Configuration	

The new rich possibilities from interlayer interaction in incommensurate DWNTs are still almost 
a virgin land; and a good first step is always starting with the simplest case: weak perturbative 
coupling regime. The induced energy shift of optical transitions is already given in Eq. 4-13, 
which can be directly probed with optical spectroscopy. 

Before any comparison between experiment and theory, however, one need first determine the 
chiral indices ሺ݊ଵ,݉ଵሻ and ሺ݊ଶ,݉ଶሻ for inner and outer tubes, just like determining the twist 
angle in twisted bilayer graphene. This requires an independent measurement to provide 
structural information of constituent nanotubes in a DWNTs, which is achieved here by 
measuring the electron diffraction pattern of given nanotube (60, 61). With the obtained 
structural information, we can further obtain its optical transitions from single-tube absorption 
spectroscopy (68, 69) to experimentally investigate the energy shift induced by interlayer 
electronic coupling, as illustrated in Figure 4.4. 

 

 

Figure 4.4 Experimental Configuration. Chiral indices and optical transitions of the same individual 
DWNT is obtained from TEM diffraction pattern and absorption spectrum, respectively. 

 

4.3.2	Experimental	Results	

Figure 4.5A and 4.5B are the electron diffraction pattern and absorption spectrum of a 
representative DWNT, respectively. The electron diffraction pattern (4.5A) unambiguously 
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determines the DWNT chiral indices ሺ݊௢,݉௢ሻ/ሺ݊௜,݉௜ሻ to be (22,9)/(11,11), which corresponds 
to a semiconducting outer-wall nanotube with diameter of 2.16 nm and an armchair metallic 
inner-wall nanotube with diameter of 1.49 nm. Its absorption spectrum (Fig. 4.5B) shows four 
prominent optical resonances at 1.58, 1.66, 2.08, and 2.41 eV. In comparison, the isolated (22,9) 
outer SWNT have three optical transitions ܵଷଷ

௢ , ܵସସ
௢ , ܵହହ

௢  at 1.66, 2.17, and 2.58 eV, respectively, 

and the isolated (11,11) inner SWNT has one ܯଵଵ
௜  transition at 1.77 eV in the experimental 

spectral range (70). These transition energies of the isolated SWNTs are indicated by vertical 
dashed lines in Fig. 4.5B. There is a one-to-one correspondence between the DWNT optical 
resonances and those from the constitutive SWNTs, but the resonance energies are shifted by -80, 

-90, -170 and -110 meV for the ܵଷଷ
௢ , ܵସସ

௢ , ܵହହ
௢  and ܯଵଵ

௜  transitions, respectively.  

 

 

Figure 4.5 (A) TEM Diffraction pattern and (B) optical absorption spectrum of a representative DWNT. 
The chiral indices can be unambiguously determine as (22,9)/(11,11) for the outer- and inner- tube, which 
allows for the prediction of absorption resonances in isolated tubes without intertube interaction, shown 
as the dashed vertical lines. By comparing experimentally measured DWNT absorption spectrum to that 
of constituent SWNTs, we find a one-to-one correspondence of transitions, and therefore can assign each 
optical resonance in DWNT spectrum to a specific transition from either inner- or outer-tube. 
Interestingly, there is a large energy shift between the same transitions in SWNT and DWNT, which 
varies between each transition. 

 

We performed the combined electron diffraction and single-tube absorption measurements on 28 
individual suspended DWNTs with total 99 optical transitions. In all studied DWNTs, we can 
map each observed optical transition to that from corresponding isolated constituent SWNT, but 
the resonance energy is always shifted.  
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Figure 4.6 summarizes the observed resonance energy shifts for all optical transitions in DWNTs 
sorted by the shift value. All the DWNTs consist of incommensurate inner and outer walls, but 
the optical transition energy shift can be quite large, varying from a red shift of 190 meV to a 
blue shift of 50 meV in different DWNT species. Even for optical transitions from the same 
DWNT, the energy shifts can vary significantly (See Figure 4.5). Indeed, our observation 
signifies a very strong effect from inter-tube coupling in DWNTs, which depends sensitively on 
the chiral indices of the DWNT as well as the exact electronic state of specific transition.  

 

 

Figure 4.6 Summary of experimentally measured transition energy shift of 99 optical transitions from 28 
DWNTs (yellow circles). The average redshift can be explained by the dielectric screening between the 
inner- and outer-tubes. However the large variation of shift from -200meV redshift to even 50meV 
blueshift requires the existence of another type of interlayer interaction. i.e. interlayer electronic coupling. 
Red symbols are theoretical prediction of transition energy shift. ݏ ൌ ൅1/െ1 depending on whether the 
inner- and outer-tube have the same handedness or not. 

 

Before quantitatively comparing the experimental results to theory developed in section 4.2, we 
should first take a look at other effects that can induce transition energy shift in DWNTs. In 
previous literature the only well-established interaction between adjacent SWNTs is dielectric 
screening. It has been shown in previous studies of nanotube in different environments (71, 72) 
that dielectric screening can lead to a redshift in optical transition energies, and the redshift value 
is similar for all optical transitions. This dielectric screening effect can account for an average 
redshift of optical transition energies observed in DWNTs (Figure 4.6), but it cannot explain the 
very large and strongly transition-dependent variations in optical transition shifts, especially the 
significant blue shifts for certain optical transitions. We can therefore treat it as a constant Δ, and 
obtain the overall shift of optical transition energy Δܧ௜௜

௧௢௧ from  
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Δܧ௜௜
௧௢௧ ൌ Δܧ௜௜

௘௟ ൅ Δ					ሺ4 െ 14ሻ 

Red symbols in Figure 4.6 show the theoretical energy shift for the 99 optical transitions with 
Δ ≡ െ55meV. We note that, the handedness (݊ ൐ ݉ or ݊ ൏ ݉) does not affect the optical 
spectra of SWNT; however in DWNT the relative handedness between constituent tubes can 
affect the intertube electronic coupling strength due to different intertube twist angle (unless the 
DWNT contains at least one armchair or zigzag tube). Here we introduce an “ݏ” parameter 
indicating whether the inner and outer tubes have the same ሺݏ ൌ 1ሻ or opposite ሺݏ ൌ െ1ሻ 
handedness. The electron diffraction pattern cannot determine the relative handedness (i.e. the ݏ 
parameter) experimentally. Instead we assign the ݏ parameter based on a better match between 
the experimental and theoretical transition energy shifts. The up triangle, down triangle and 
diamond in Figure 4.6 represent transitions in DWNT with ݏ ൌ 1, -1 and 0 (contains armchair or 
zigzag tube), respectively. The agreement between experimental and theoretical results is quite 
nice given that all parameters in the model in section 4.2 are obtained from literature values, and 

the only fitting parameter is Δthe energy shifts from the dielectric screening.  
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4.4	Summary	and	Outlook	

In this chapter, we have unambiguously revealed the strong intertube electronic coupling in 
DWNTs from both theoretical and experimental perspectives. Such observation is certainly 
critical to our understanding of electronic properties of double-walled and multi-walled carbon 
nanotubes. More generally, however, the study here demonstrate the possibility to strongly 
modify material properties in 1D incommensurate systems through interlayer electronic coupling, 
which opens up new exciting opportunities to engineer 1D materials for electronic and optical 
application. 

From the theoretical aspect, the framework we adopt in this chapter is essentially an extension of 
chapter 2, which further demonstrates the universality of methodologies developed in chapter 2, 
that it should be applicable to general incommensurate systems regardless of dimension. 

Compared the the 2D case, 1D incommensurate system will have an even larger parameter space 
from interlayer configuration and even stronger interlayer coupling from reduced screening. 
Such huge playground should be able to give rise to rich and fascinating physics. First of all, 
most of the discussions in chapter 2 should be able to find their counterpart in 1D, such as weak 
and strong coupling, perturbative and non-perturbative coupling, direct mixing and effective 
potential etc. The present study is only focusing on the simplest case, i.e. direct mixing in weak 
perturbative coupling regime. While being an important first step, it is only a starting point 
followed by a long road filled with excitement. 

Furthermore, we would expect many more possibilities once starting considering the difference 
between 1D and 2D. The greater quantum confinement in 1D can lead to distinctive behavior on 
almost every aspect. The larger parameter space in 1D is only one consequence; emergence of 
van Hove singularities and Peierls instability are among other famous examples, both coming 
from the peculiar Fermi surface structure in 1D. Things can become even more interesting when 
we include Coulomb interaction: the Coulomb force can have distinctive effect in 1D, such as the 
Luttinger liquid behavior. It would be certainly interesting to see the interplay between different 
interactions, especially when one of them, the interlayer interaction, is highly tunable. 
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Chapter 5 – Pseudospin Mixing Potential in 
Graphene/hBN Heterostructure 

5.1	Introduction	and	Background	

From	Direct	Mixing	to	Effective	Potential	

In chapter 3 and 4, we have seen two representative examples of how direct mixing in low-
dimensional materials can strongly modify their properties; ranging from the simplest case of ડ 
point coupling in well-aligned phosphorene layers; to much more complicated one-dimensional 
“bilayers” that are not only twisted but also intrinsically strained. 

There are two main reasons why we have only considered the effect of direct mixing: First, we 
have been only looking on the first type of interesting states, i.e. those at band extrema. Because 
the direct mixing process is of the lowest order perturbation, it will generally generate the largest 
energy shift, which is our main focus in previous two chapters. In addition, the involved layers 
are from the same material, and therefore they all have electronic states in the energy range of 
interest, enabling strong interaction and also formation of interesting pattern depending on 
interlayer configuration. 

On the other hand, as we have discussed in chapter 2, section 2.5.3, if we are interested in the 
second type of phenomena, i.e. dramatic change of spectral response instead of a simple shift; 
then in some systems the 2nd order term in Eq. 2-22, the effective potential, may play the 
dominant role. A representative example is a hetero-bilayer where only one layer has electronic 
states in the energy range of interest. Graphene/hBN is one such system, as the Dirac point of 
graphene is deeply sitting within the large bandgap of hBN. Therefore, we would expect the 
effective potential to take a dominant role here when considering states with degenerate coupling. 
i.e. in the weak non-perturbative regime. 

 

Exciting	Possibilities	from	the	Effective	Poetential	

Following discussion in chapter 2, section 2.7, one unique and exciting aspect of the effective 
potential is its capability of providing some components that can be otherwise extremely difficult 
to generate. What is better, the spectral change of a system is usually coming from electronic 
states that are near-degenerate to start with, whose properties are therefore susceptible to even a 
small effective potential. For example, a gap will be opened between two degenerate states given 
arbitrarily small coupling. As a result, the spectral change of the system will generally be very 
sensitive to different types of effective potential generated by interlayer interaction, which 
provides both a convenient method to investigate components in the effective potential; as well 
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as great opportunities to engineer materials properties in a designed way with specific 
component in the potential. 

In this chapter, I will present one such example in graphene/hBN heterostructure: Electrons in 
graphene are described by relativistic Dirac-Weyl spinors with a two-component pseudospin(38, 
40, 73-82). The control of pseudospin, such as opening a pseudospin gap at the Dirac point (83-
89), has been among the center issues in graphene research. Practically, however, it is rather 
difficult to directly access the pseudospin degree of freedom in graphene with traiditional 
external field. On the other hand, the interaction in van der Waals heterostructure creates a 
“spinor potential” that can readily manipulate the pseudospin in distinctively different ways with 
different components.  

As an overview of the chapter, I will first elucidate the respective role of direct mixing and 
effective potential in graphene/hBN system, which helps further clarify situations where the 
latter one can be dominant. Then I will combine results from chapter 2, section 2.5.7 to discuss 
the distinctive physical nature of each component in the effective potential, as well as how they 
can directly manipulate graphene pseudospin in different ways. Section 5.3 will present 
experimental studies that reveal peculiar spectral change in graphene/hBN heterostructure, which 
suggests the dominance of “pseudospin-mixing” component in the effective potential, and is 
consistent with theoretical result. Part of the discussion is also presented in a published paper (3). 
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5.2	Effective	Potential	in	Graphene/hBN	Heterostructure		

5.2.1	Role	of	Direct	Mixing	

In chapter 2, section 2.5.3, I have given a general argument on conditions that the direct mixing 
may be neglected. Now we can see how the argument works in the specific example of 
graphene/hBN heterostructure. 

Let us first calculate the effect of direct mixing. The wavefunction mixing given by 1st line of Eq. 
2-22 should be very small, because of the large energy difference in denominator. Therefore let 
us consider the corresponding energy shift of states and the change in energy spectrum of the 
system. 

The energy shift from direct mixing is given by (in perturbative regime): 

Δܧଵ࢑ ൌ෍
ଶ|ூ|1࢑ۧܪ|ࢗ2ۦ|

ଵ࢑ܧ െ ࢗࢗଶܧ

					ሺ5 െ 1ሻ 

which is simply the 2nd order perturbation in energy. Layer 1, 2 represent the graphene and hBN 
layer, respectively. Similar to derivation in chapter 2, section 2.5.7, again we can divide states 
from hBN to boron state (conduction band) and nitrogen state (valence band), and consider them 

separately. Therefore, assuming ࢑ is close to ࡷ so that ࢑ ൎ
ଵ

ଷ
ሺ࢈ଵ െ  ଶሻ, there are three substrate࢈

states with largest coupling matrix element: 

ଵࢗ ൌ ࢑ ൎ
1
3
ሺ࢈ଵ െ ,ଶሻ࢈ ଶࢗ ൌ ࢑ ൅ ଶ࢈ ൎ

1
3
ሺ࢈ଵ ൅ ,ଶሻ࢈2 ଷࢗ ൌ ࢑ െ ଵ࢈ ൎ

1
3
ሺെ2࢈ଵ െ ሺ5					ଶሻ࢈ െ 2ሻ 

The wavefunction of graphene state ࢑ can be expanded in to contribution from two sublattices: 

|1࢑ۧ ൌ ߰ଵ࢑ሺ࢘ሻ ൌ
1

√2ܰ
෍݁௜࢑∙࢘ൣ߮ሺ࢘ െ ଵሻࡾ ൅ ݁௜థሺ࢑ሻሺ࢘ െ ଵࡾ െ ࣎ሻ൧
భࡾ

ൌ ߰஺
ଵ࢑ ൅ ߰஻

ଵ࢑			ሺ5 െ 3ሻ	 

߶ሺ࢑ሻ represent the phase difference between the two sublattices. Following the derivation in Eq. 
2-45, we have: 

ۧࢗூ|2ܪ|1࢑ۦ ൌ
1

√2
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ௌ݁ݐ

ି
ௗ
ఒ݁ି

ఒௗ
ଶ ௄

మ
൫1 ൅ ݁௜థሺ࢑ሻ݁௜ࢗ∙࣎൯ ൌ

ௌܯ

√2
൫1 ൅ ݁௜థሺ࢑ሻ݁௜ࢗ∙࣎൯				ሺ5 െ 4ሻ 

where ܵ ൌ  to represent the contribution from boron and nitrogen states, respectively. We ܰ,ܤ
therefore have: 

ଶ|ூ|1࢑ۧܪ|ࢗ2ۦ| ൌ ௌܯ
ଶሾ1 ൅ cosሺ߶ሺ࢑ሻ ൅ ࢗ ∙ ࣎ሻሿ				ሺ5 െ 5ሻ 
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Plugging Eq. 5-2 into Eq. 5-5 and using ࣎ ൌ
ଵ

ଷ
ሺࢇଵ െ  :ଶሻ, Eq. 5-1 becomesࢇ2

Δܧଵ࢑ ൎ െ
ௌ|ଶܯ|

ௌܧ
ሾ3 ൅ cosሺ߶ሻ ൅ cos ൬߶ ൅

ߨ2
3
൰ ൅ cos ൬߶ ൅

ߨ4
3
൰ሿ ≡ െ

ௌ|ଶܯ|3

ௌܧ
				ሺ5 െ 6ሻ 

We find that although ߶ሺ࢑ሻ is ࢑-dependent, the energy shift is not. As a result, the effect of 
direct mixing is a constant shift in energy for all electronic states reasonably close to the Dirac 
point. i.e. equivalent to a constant potential with amplitude 3|ܯௌ|ଶ/ܧௌ. Such amplitude is 
actually comparable or even larger than the effective potential given by Eq. 2-47; however, it 
only induces a rigid shift in the energy spectrum of graphene, instead of any new spectral feature. 
These results are consistent with the general argument in section 2.5.3. Therefore, while direct 
mixing is still critical in some situations such as when the energy shift or the overall interlayer 
interaction is important, it can be safely neglected if we are focusing on the spectral profile 
change of the system. 

 

5.2.2	Physical	Nature	of	Different	Components	in	Spinor	Potential	

In chapter 2, section 2.5.7, we have already calculated the effective potential: 

௘ܸ௙௙ ൌ෍ ௝ܸ݁
௜࢑࢐∙࢘

଺

௝ୀଵ

, ଵܸ ൌ ൬
଴ݑ ൅ ଷݑ݅ ଵݑ

ଵݑ ଴ݑ െ ଷݑ݅
൰					ሺ5 െ 7ሻ 

Overall, it is a two-by-two matrix acting on the two sublattices of graphene. These two 
sublattices lead to wavefunction that mimics the two-component spinor wavefunction for spin 
1/2 particle in Pauli formalism; and is often called “pseudo-spin” degree of freedom. The 
effective potential is actually a “spinor” potential in this sense.  

Apparently, the three components, ሺݑ଴, ,ଷݑ  ଵሻ, will have distinctive physical meaning. Figureݑ
5.1 uses a 1D lattice to illustrate physical nature of each component in the effective potential. To 
capture the two component physics, each unit cell necessarily has two atoms, labeled by the blue 
rectangle. The simplest component, diagonal symmetric term ݑ଴, is the same at the two 
sublattices of graphene, shown as a constant potential over a unit cell in Figure 5.1. It 
corresponds to “pseudospin-blind” potential because it will not differentiate between the two 
sublattices. 

Similarly, the ݑଷ term is diagonal but anti-symmetric; and therefore should be the opposite at the 
two sublattices, see Figure 5.1. We may in turn call it “pseudospin-dependent” potential. 

The last term, ݑଵ, is quite special in that it is off-diagonal. While superficially it modifies the 
interaction between two sublattices and can be called a “pseudospin-mixing” potential; its 
physical nature is a little bit subtle: Instead of simply changing the nearest-neighbor hopping 
amplitude ߛ଴, it modifies bonding along different directions in different way, as illustrated in the 
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bottom panel of Figure 5.1 (Not exactly the same as 2D graphene case, however conceptually 
similar). 

 

 

 

Figure 5.1 Illustration of different components from the effective potential in a 1D lattice. Each unit cell 
has two atoms, as indicated by the blue rectangle. 

 

Now we can take a look how difficult it is to generate these components if without van der Waals 
system. The ݑ଴ term is reasonably easy to generate since it is equivalent to an electrostatic 
potential that varies slowly over space. However, such slowly-varying potential only have minor 
effect on the properties of graphene. e.g. It cannot open any gap the energy spectrum, therefore 
may not be very interesting (74, 75). 

The ݑଷ term, or the “mass term”, has been the pursuit by many studies, since it can open a 
bandgap, which is critical for using graphene as field effect transistor. However, ݑଷ term 
oscillates extremely fast spatially in the order of graphene unit cell (~0.25nm); and therefore is 
virtually impossible to achieve with external electric field. 

The ݑଵ term is even more peculiar. The 1D case in Figure 5.1 corresponds to the famous 
polyacetylene structure, which can host fascinating physics such as half-integer charge and 
domain wall transport. In 2D honeycomb system the ݑଵ term is described by Kekulé distortion, a 
lattice model predicted to show various interesting behaviors (90, 91). Nevertheless, it is not 
even possible to generate with commonly used external fields. 

On the contrary, viewing from the perspective of interlayer interaction, we can naturally 
understand how these components are generated in van der Waals systems: The ݑ଴ term has a 
large spatial periodicity equal to that of the Moiré superlattice, and therefore is coming from the 
average effect of Boron and Nitrogen atoms. In contrast, the “pseudospin-dependent” potential 
 ଷ originates from the fast spatial oscillation between Boron and Nitrogen atoms. In addition, aݑ
single Boron or Nitrogen atom can simultaneously couple to two neighboring graphene atoms, 



89 
 

acting as a bridge that effectively modify the bonding between the two graphene atoms. Such 
modification will generally depend on the direction of the bonding, giving rise to the ݑଵ term. 

 

5.2.3	Gap	Opening	from	the	Spinor	Potential	

With above discussion, now we can confidently say that the interlayer interaction in van der 
Waals systems can indeed generate effective potential that is otherwise is difficult to achieve. 
While have already given a brief preview of effects from each component, in this section I will 
discuss in more detail. 

According to chapter 2, the states degenerately coupled by effective potential will be at the 
boundary of the Mini Brillouin Zone (MBZ), and the lowest energy one is at the center of zone 
boundary (ۻ୑ point in Figure 2.1C) in the specific case of graphene. Hereafter we will focus on 
the behavior of ۻ୑ point states with the modification of effective potential. For simplicity, we 
call ۻ୑ point ܕ point in short from now on. 

 

Figure 5.2 Mini Brillouin Zone (MBZ) of graphene/hBN system. Two ܕ points on each end of MBZ can 
be degenerately coupled by ࢑ଵ component of the effective potential. Original Dirac point of graphene is 
folded to ડ point in MBZ. 

 

Two ܕ points on each end of MBZ can be degenerately coupled by ࢑ଵ component of the 
effective potential, see Figure 5.2. Their coupling matrix element is given by: 

ൻ߰ଵ
ఙห ௘ܸ௙௙ห߰ଶ

ఙൿ ൌ
1
2
ቀ 1
െ݅ߪ

ቁ ൬
଴ݑ ൅ ଷݑ݅ ଵݑ

ଵݑ ଴ݑ െ ଷݑ݅
൰ ቀ 1
െ݅ߪ

ቁ ൌ ݅ሺݑଷ െ ሺ5					ଵሻݑߪ െ 8ሻ 

where ߪ ൌ ൅,െ labels ܕ point states from conduction band and valence band, respectively.  

ડ 

 ܕ

࢑ଵ

 ܕ
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First thing we notice is that, there is finite coupling between originally degenerate states, which 
should generally lead to gap-opening. i.e. A gap should open at ܕ point of MBZ, with gap size 
|2ሺݑଷ െ  ଴ cannot, which isݑ ,point ܕ ଵ component can open a gap atݑ ଷ andݑ ଵሻ|. While bothݑߪ
expected because a scalar potential like ݑ଴ cannot directly access pseudospin degree of freedom. 

An even more interesting part is the sign of gap: the coupling matrix elements are the same at 
conduction and valence band with pseudospin-dependent potential	ݑଷ; however the opposite with 
pseudospin-mixing potential ݑଵ. As a result, 	ݑଷ and	ݑଵ will create gaps with opposite sign in 
either conduction or valence band. Such concept of “negative gap” is always fascinating, because 
it implies band inversion, and is closely related to the topological insulator. For example, 
topologically protected edge states will generally emerge at the boundary between regions with 
positive gap and negative gap. 

The different sign of gaps opened by 	ݑଷ and	ݑଵ is definitely an intriguing demonstration of the 
distinctive consequence of different components from the effective potential, as well as the rich 
physics involved. However, it can be difficult to determine whether an insulator is topological or 
trivial by merely measuring the bulk properties. Similarly, if we only look at the density of states 
or energy dispersion of the graphene/hBN system, both 	ݑଷ and	ݑଵ potential can generate a 
spectrum that is very close to each other. e.g. both can open gaps of the same size in conduction 
and valence band. Actually, even if only the 	ݑ଴ term is present and no gap is opened, the density 
of states might still look reasonably similar if its amplitude is large enough. 

As a result, direct observation of the spinor potential has been challenging. For example, the 
density of states change in graphene/BN heterostructures revealed by previous scanning 
tunneling spectroscopy (STS) and transport measurements can be largely accounted for by a 
scalar periodic potential (27-29, 92-94), since they cannot directly probe the pseudospin degree of 
freedom in graphene. 

On the other hand, optical transitions is not only sensitive to joint density of states (JDOS), but 
also the wavefunction of initial and final states from the optical selection rule. Therefore optical 
spectroscopy can be one potential tool to directly prove the pseudospin structure of graphene and 
investigate different components of the spinor potential. In the following section, we will 
calculate the consequence of each component on the optical spectrum of the heterostructure. 

 

5.2.4	Optical	Selection	Rules	with	the	Spinor	Potential	

Optical	Selection	Rules	Near	m	Point	of	Mini	Brillouin	Zone	

An illustration of band dispersion in MBZ is shown in Figure 5.3B-D, where a gap will be 
opened at ܕ point in both conduction and valence band with either 	ݑଷ or 	ݑଵ term. We can label 
the above/below gap state within conduction/valence band with 2e, 1e, 1h, 2h, respectively. 
These four states are results of the degenerate coupling between ܕ point states at each end of 
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MBZ, shown as state “1” and “2” in Figure 5.3A. Without effective potential, the unperturbed 
conduction/valence band states at “1” and “2” are defined as ߰ଵ

௖, ߰ଵ
௩, ߰ଶ

௖, ߰ଶ
௩, respectively. 

 

 

Figure 5.3 (A) Illustration of degenerate coupling between two states “1” and “2” both at m point of MBZ. 
(B-D) Optical selection rules with each component of the spinor potential. (B) ݑ଴ component cannot open 
a gap at m point of MBZ. Both ݑଷ (C) are  ݑଵ (D) components can open a gap at m point of MBZ, giving 
very similar energy dispersion. However, the optical transitions are only allowed between symmetric 
bands for ݑଷ component (C), and between largely parallel bands for  ݑଵ component (D). 

 

Considering the case of only pseudospin-dependent potential 	ݑଷ, the wavefunctions of states 2e, 
1e, 1h, 2h at ܕ point are: 

߰ଶ௘ ൌ ሺ߰ଵ
௖ ൅ ݅߰ଶ

௖ሻ/√2, ߰ଵ௘ ൌ ሺ߰ଵ
௖ െ ݅߰ଶ

௖ሻ/√2, 

߰ଵ௛ ൌ ሺ߰ଵ
௩ ൅ ݅߰ଶ

௩ሻ/√2, ߰ଶ௛ ൌ ሺ߰ଵ
௩ െ ݅߰ଶ

௩ሻ/√2					ሺ5 െ 9ሻ 

For both conduction and valence sides, the higher energy bands (2e and 1h) have the same “+” 
sign due to the same coupling matrix elements. Based on optical transition matrix element in 
bare graphene (95), for unperturbed graphene electronic states the optical matrix element is: 

ൻ߰ଵ
௩หܪ௢௣௧ห߰ଶ

௩ൿ ൌ ൻ߰ଵ
௩หܪ௢௣௧ห߰ଶ

௖ൿ ൌ ൻ߰ଵ
௖หܪ௢௣௧ห߰ଶ

௩ൿ ൌ െൻ߰ଵ
௖หܪ௢௣௧ห߰ଶ

௖ൿ ൌ 0 
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ൻ߰ଵ
௩หܪ௢௣௧ห߰ଵ

௖ൿ ൌ ൻ߰ଶ
௖หܪ௢௣௧ห߰ଶ

௩ൿ ൌ െൻ߰ଵ
௖หܪ௢௣௧ห߰ଵ

௩ൿ ൌ െൻ߰ଶ
௩หܪ௢௣௧ห߰ଶ

௖ൿ 

ൌ ොࢠிݒ݅ ∙ ሺࡱ ൈ ࢑෡ଵሻ ൌ ଶܶ				ሺ5 െ 10ሻ 

Here ܪ௢௣௧ ൌ ࡱ ∙ સ	 is the optical transition Hamiltonian, ࡱ is the light electric field, ࢑෡ଵ is the unit 

vector along momentum of state “1”, ࢠො is the unit vector along z direction perpendicular to 
graphene plane. 

The optical transition matrix element for perturbed states 

ൻ߰ଵ௛หܪ௢௣௧ห߰ଶ௘ൿ ൌ ൻ߰ଶ௛หܪ௢௣௧ห߰ଵ௘ൿ ൌ ሺൻ߰ଵ
௩หܪ௢௣௧ห߰ଵ

௖ൿ ൅ ൻ߰ଶ
௩หܪ௢௣௧ห߰ଶ

௖ൿሻ/2 ൌ 0 

ൻ߰ଵ௛หܪ௢௣௧ห߰ଵ௘ൿ ൌ ൻ߰ଶ௛หܪ௢௣௧ห߰ଶ௘ൿ ൌ ሺൻ߰ଵ
௩หܪ௢௣௧ห߰ଵ

௖ൿ െ ൻ߰ଶ
௩หܪ௢௣௧ห߰ଶ

௖ൿሻ/2 ൌ ଶܶ				ሺ5 െ 11ሻ 

Therefore only transitions between 1h-1e and 2h-2e states are allowed (Figure 5.3C). 

In the case of pseudospin-mixing potential 	ݑଵ, we have: 

߰ଶ௘ ൌ ሺ߰ଵ
௖ െ ݅߰ଶ

௖ሻ/√2, 						߰ଵ௘ ൌ ሺ߰ଵ
௖ ൅ ݅߰ଶ

௖ሻ/√2, 

߰ଵ௛ ൌ ሺ߰ଵ
௩ ൅ ݅߰ଶ

௩ሻ/√2, 						߰ଶ௛ ൌ ሺ߰ଵ
௩ െ ݅߰ଶ

௩ሻ/√2				ሺ5 െ 12ሻ 

The optical transition matrix element 

ൻ߰ଵ௛หܪ௢௣௧ห߰ଵ௘ൿ ൌ ൻ߰ଶ௛หܪ௢௣௧ห߰ଶ௘ൿ ൌ ሺൻ߰ଵ
௩หܪ௢௣௧ห߰ଵ

௖ൿ ൅ ൻ߰ଶ
௩หܪ௢௣௧ห߰ଶ

௖ൿሻ/2 ൌ 0 

ൻ߰ଵ௛หܪ௢௣௧ห߰ଶ௘ൿ ൌ ൻ߰ଶ௛หܪ௢௣௧ห߰ଵ௘ൿ ൌ ሺൻ߰ଵ
௩หܪ௢௣௧ห߰ଵ

௖ൿ െ ൻ߰ଶ
௩หܪ௢௣௧ห߰ଶ

௖ൿሻ/2 ൌ ଶܶ				ሺ5 െ 13ሻ 

The pseudospin-mixing potential 	ݑଵ therefore limits the transitions to between 1e-2h and 2e-1h 
states. 

The last component 	ݑ଴, does not open a gap at ܕ point of MBZ, and therefore will not strongly 
affect optical transitions near ܕ point of MBZ, see Figure 5.3B. 

 

Optical	Selection	Rules	away	from	m	Point	of	Mini	Brillouin	Zone	

Having obtained the optical selection rules near ܕ point of MBZ, we need also examine states 
away from ܕ point to see if they have any contribution to absorption spectrum. These states can 
have very different perturbation from the spinor potential: while states near MBZ boundary 
(region II in Fig. 5.4A ) are described using the degenerate perturbation theory; states away from 
MBZ boundary (region I in Fig. 5.4A) only couple to other states with very different energies 
and the coupling can be described by the non-degenerate perturbation theory. Therefore they 
may have distinctive selection rules. 

Consider one typical transition of this type from two states ܽ, ܾ at  ࢑௔ and ࢑௕. Figure 5.4B shows 
the two states in graphene’s original Brillouin zone. The two wavevectors need satisfy the 
momentum selection rule |࢑௔ െ ࢑௕| ൌ |࢑ଵ| ൌ  ெ. As a result, they will be folded back to theݍ
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same point in MBZ, as shown in Figure 5.4A. The involved four unperturbed graphene states are 
߰௔௖, ߰௔௩, ߰௕

௖, ߰௕
௩.  

 

 

 

Figure 5.4 (A) Electronic coupling between states away from the MBZ boundary (region I, the red shaded 
area) are described by non-degenerate perturbation theory. Optical transitions in this region are only 
allowed between symmetric bands, and the resulting absorption is almost identical to that from 
corresponding transitions in bare graphene. In region II (blue shaded area) the Moiré superlattice potential 
mixes almost degenerate states, and leads to strong modification in optical absorption. (B) Representative 
coupled states from region I (a and b) and from region II (1 and 2) in the original graphene Brillouin zone. 
The blue hexagon is the MBZ. 

 

Using the second order perturbation theory, we can obtain the perturbed electronic state 
wavefunction as 

߰௔௩ᇱ ൌ ߰௔௩ ൅
଴ݑ
െܧெ

߰௕
௖ ൌ ߰௔௩ െ ଵ߰௕ܥ

௖	

߰௔௖ᇱ ൌ ߰௔௖ ൅
଴ݑ
ெܧ

߰௕
௩ ൌ ߰௔௩൅ܥଵ߰௕

௩	

߰௕
௩ᇱ ൌ ߰௕

௩ ൅
଴ݑ
െܧெ

߰௔௩ ൌ ߰௕
௩ െ	ܥଵ߰௔௖	

߰௕
௖ᇱ ൌ ߰௕

௖ ൅
଴ݑ
െܧெ

߰௔௩ ൌ ߰௕
௖ ൅	ܥଵ߰௔௩				ሺ5 െ 14ሻ 

Similar to Eq. 5-10, optical transition matrix element between unperturbed states are given by: 

ൻ߰௔௩หܪ௢௣௧ห߰௕
௩ൿ ൌ ൻ߰௔௩หܪ௢௣௧ห߰௕

௖ൿ ൌ ൻ߰௔௖หܪ௢௣௧ห߰௕
௩ൿ ൌ െൻ߰௔௖หܪ௢௣௧ห߰௕

௖ൿ ൌ 0				ሺ5 െ 15ሻ 

ൻ߰௔௩หܪ௢௣௧ห߰௔௩ൿ ൌ ൻ߰௕
௖หܪ௢௣௧ห߰௕

௖ൿ ൌ െൻ߰௔௖หܪ௢௣௧ห߰௔௖ൿ ൌ െൻ߰௕
௩หܪ௢௣௧ห߰௕

௩ൿ ൌ െݒிࡱ ∙ ࢑෡௔ ൌ ଵܶ 



94 
 

ൻ߰௔௩หܪ௢௣௧ห߰௔௖ൿ ൌ ൻ߰௕
௖หܪ௢௣௧ห߰௕

௩ൿ ൌ െൻ߰௔௖หܪ௢௣௧ห߰௔௩ൿ ൌ െൻ߰௕
௩หܪ௢௣௧ห߰௕

௖ൿ ൌ ොࢠிݒ݅ ∙ ൫ࡱ ൈ ࢑෡௔൯ ൌ ଶܶ 

Eq. 5-15 shows that, in unperturbed bare graphene optical transitions between ߰௔௩ and ߰௕
௖  are not 

allowed because	ܓ௔ ്  ௕, as expected. In general, this constraint can be relaxed by the Moiréܓ
potential because it mixes electronic states with different momentum. However, we find that 
optical transition between ߰௔௩ᇱ and ߰௕

௖ᇱ is still forbidden because the transition matrix element is: 

ൻ߰௔௩ᇱหܪ௢௣௧ห߰௕
௖ᇱൿ ൌ ௢௣௧ห߰௔௩ൿܪଵ൫ൻ߰௔௩หܥ െ ൻ߰௕

௖หܪ௢௣௧ห߰௕
௖ൿ൯ ൌ ଵሺܥ ଵܶ െ ଵܶሻ ൌ 0					ሺ5 െ 16ሻ 

Meanwhile for transitions between symmetric bands we have (to first order) 

ൻ߰௔௩ᇱหܪ௢௣௧ห߰௔௖ᇱൿ ൌ ൻ߰௔௩หܪ௢௣௧ห߰௔௖ൿ ൌ ଶܶ 

ൻ߰௕
௩ᇱหܪ௢௣௧ห߰௕

௖ᇱൿ ൌ ൻ߰௕
௩หܪ௢௣௧ห߰௕

௖ൿ ൌ െ ଶܶ					ሺ5 െ 17ሻ 

Therefore we obtain the selection rule in region I that optical transitions only happen between 
symmetric bands, which give negligible optical conductivity change compared to bare graphene. 
We have not assumed any specific value of Moiré potential, therefore this conclusion is valid for 
arbitrary effective potential in Eq. 5-7. 

 

5.2.5	Optical	Conductivity	Change	from	the	Spinor	Potential	

Combining the discussion for both states near and away from ܕ point of MBZ, we can predict 
the optical conductivity change of graphene with each component in the spinor potential. 

With zero gap at the m point, the effect of a pseudospin-blind potential on the optical absorption 
is rather small (Figure 5.5B). 

As for the pseudospin-dependent potential 	ݑଷ, since optical transitions can only happen between 
symmetric bands, the optical conductivity will look quite similar to electron density of states (92, 
94) except that the energy scale is multiplied by 2. As a result, an absorption dip will emerge at 
energy of ܧெ ൌ ெݍிݒ ൎ 380meV, see Figure 5.5C. We can therefore call it a “normal” gap. 

In contrast, the allowed transitions in the pseudospin-mixing potential 	ݑଵ case are between 
largely parallel bands with almost the same transition energy at ܧெ ൌ ெݍிݒ ൎ 380meV, leading 
to a large joint density of states. An absorption peak will therefore emerge at this energy, 
opposite to the case of 	ݑଷ, as shown in Figure 5.5D. The gap generated by 	ݑଵ is therefore can be 
termed as “inverse” gap.  

When both 	ݑଷ and 	ݑଵ exist, the nature of the mini-gap opened at ܕ point is determined by their 
relative amplitude: if |ݑଵ| ൏  ଷ|, the mini-gap is more similar to a “normal” gap, and gives anݑ|
optical absorption dip at ܧெ; on the other hand, |ݑଵ| ൐  ଷ| leads to an “inverse” type of gap andݑ|
an optical absorption peak at ܧெ; |ݑଵ| ൌ  ଷ| corresponds to mini-gap closing at either valenceݑ|
of conduction band.  
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Figure 5.5 (A) Illustration of degenerate coupling between two states “1” and “2” both at m point of MBZ. 
(B-D) Optical conductivity change of graphene with each component of the spinor potential with 
amplitude of 10meV. Inset shows corresponding band structure in MBZ, as well as optical selection rules. 
(B) ݑ଴ component cannot open a gap at m point of MBZ, therefore only slightly affects the optical 
spectrum of graphene. In contrast, both ݑଷ (C) are  ݑଵ (D) components can open a gap at m point of MBZ, 
giving very similar energy dispersion. However, the optical selection rules is the opposite, leading to 
opposite change in optical conductivity.  

 

As have been pointed out in section 5.2.3, the two types of gaps here, the “inverse” gap and 
“normal” gap, gives an interesting analogy to topological insulator and normal insulator. Our gap 
equation ݑଷ ∓ ଷ߂ ଵ is very similar to the gap equationݑ ∓  ଵ obtained in the four band߂
topological insulator model by Kane and Mele (96). In that model, topological phase transition 
happens at ߂ଷ ൌ  ଵ, which is analogous to the transition between “inverse” and “normal” gaps in߂
our case. And this transition corresponds to a change from absorption peak to dip at EM in 
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optical spectra. In this sense, optical spectroscopy is an ideal tool to investigate the distinctive 
consequences from different components in the spinor Moiré potential, owing to its transition 
matrix element dependence, and therefore sensitivity to wavefunction. 
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5.3	Probing	the	Spinor	Potential	in	Graphene/hBN	

Heterostructure	with	Optical	Spectroscopy	

5.3.1	Absorption	Spectra	of	Graphene/hBN	Heterostructure	

This section will presents experimental results from optical absorption measurement of 
graphene/hBN heterostructure. The graphene/hBN structure is obtained through directly growing 
graphene on hBN following a van der Waals epitaxy mode (93). Such growth method provides 
both high and uniform graphene coverage on hBN, see AFM image in Figure 5.6A; as well as 
preferential interlayer configuration of zero twist angle, as confirmed by the 15nm Moiré 
superlattice periodicity observed in high resolution AFM (Figure 5.6A inset). The transport 
behavior of a two terminal device (Figure 5.6B) is similar to results from previous studies (27-29, 
93), which shows prominent resistance peak at ୥ܸ ൌ 0	V and ୥ܸ ൌ െ40	V, see Figure 5.6C. These 

two peaks correspond to the original Dirac point and the ܕ point in MBZ, as we have discussed 
in last section (see also Figure 5.6C inset). In addition, apparent asymmetry is observed between 
electron- and hole-doping side: the side resistance peak on the hole-doping side is much more 
obvious. This behavior will be explained later in section 5.3.2. 

 

Figure 5.6 (A) AFM image of graphene epitaxially grown on hBN. Inset shows high resolution AFM 
image, where a Moiré pattern of ~15nm is observed, corresponding to zero twist angle between graphene 
and hBN. (B) Optical microscope image of graphene/hBN device on Si/SiO2 substrate. (C) 
Representative transport data from graphene/hBN device. The two resistance peaks at  ୥ܸ ൌ 0	V and 

୥ܸ ൌ െ40	V correspond to the original Dirac point and mini-Dirac point on hole side. Inset illustrates the 

linear band dispersion of graphene, with Moiré wavevector ݍெ and corresponding energy ܧெ shown in 
red and green arrows. 
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To probe components in the spinor effective potential, we performed infrared micro-
spectroscopy on graphene/BN heterostructures, as illustrated in Figure. 5.7A. 

 

Figure 5.7 (A) Illustration of experimental setup measuring the optical conductivity of graphene/hBN 
heterostructure in infrared (IR) range. (B) Two dimensional mapping of the transmission difference 
ܶ െ େܶ୒୔ depending on excitation light energy (ݔ axis) and doping level  (ݕ axis). େܶ୒୔ is the 
transmission spectra when graphene is at charge neutral. The broad feature shifting with ܧி originates 
from the blocking of interband transitions; while the sharp feature at fixed energy ܧெ ൎ 380meV 
(vertical dashed line) is a consequence of the Moiré potential. (C) ܶ െ େܶ୒୔ spectra at representative 
doping level. (D) Optical conductivity change ߪெ induced by the Moiré potential 	at different gate 
voltages. ߪ଴ ൌ π݁ଶ/2݄ is graphene universal conductivity. 

 

Figure 5.7B shows the measured transmission difference ሺܶ െ େܶ୒୔ሻ of graphene/BN 
heterostructures depending on both excitation light energy (ݔ axis) and doping level  (ݕ axis), 
with  େܶ୒୔ the transmission spectra when graphene is at charge neutral. Two prominent features 
are observe in the 2D-plot: One broad feature shifting with ܧி, which has been observed in bare 
graphene on SiO2/Si substrate (77-79), and was assigned to the Pauli-blocking of interband 
transitions when ܧி is larger than half of the transition energy. Another sharp feature, on the 
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contrary, always show up at ܧெ ൎ 380meV regardless of ܧி. From our discussion, this feature 
should be originating from the effect of spinor effective potential. 

Figure 5.7C shows several ሺܶ െ େܶ୒୔ሻ spectra at representative ܧி level (and corresponding gate 
voltage), from which we can clearly see the feature at ܧெ ൎ 380meV. To isolate the response to 
the Moiré potential, we subtract the broad background and extract the interlayer interaction-

induced optical conductivity change in Figure 5.7D. We have taken ߪ଻଴୚
୑  as the refenrence, 

because at ୥ܸ ൌ 70	V	(	ܧ୊ ൌ 220	meV) the optical absorption around ܧெ should be negligible 

due to Pauli blocking at 2ܧி ൐   .ெܧ

 

5.3.2	Comparison	to	Theory	

With the experimentally obtained optical conductivity change in Figure 5.7D , we can now have 
a direct comparison with theoretical prediction in section 5.2.5. 

When graphene is charge neutral, a prominent absorption peak emerges at ܧெ ൎ 380meV. 
According to our discussion in section 5.2.5, this suggest that the dominant component in the 
spinor potential is the “pseudospin-mixing” type ݑଵ, and that an “inverse” gap is opened at ܕ 
point in MBZ.  

Theoretically, we have obtained expression of the effective potential at zero twist angle in Eq. 2-

47: ሺݑ଴, ,ଷݑ ଵሻݑ ൌ ௌܸሺ
ଵ

ଶ
, െ √ଷ

ଶ
, െ1ሻ. Indeed, we find that |ݑଵ| ൐  ଷ|, i.e. the pseudospin-mixingݑ|

potential ݑଵ will dominate, and an absorption peak should emerge at ܧெ. We can further directly 
compare the experimental optical conductivity change to the one calculated with parameters 

given by Eq. 2-47, see Figure 5.8. ௌܸ ൌ
|ெೄ|మ

ாೄ
ൎ 10meV is estimated from the pair-interaction 

between carbon-carbon atoms, with modification to consider the different p orbital radii of boron, 
carbon and nitrogen atoms (roughly 80, 60, and 50 pm, respectively). The theoretical and 
experimental results match amazingly well, given that there is no fitting parameters in the 

theoretical model. (The only two parameters, ߛ and ߣ in the pair interaction ݐሺݎሻ ൌ  ௥/ఒ, areି݁ߛ
also obtained from generally accepted values in literature). 

Another unanswered question is the prominent asymmetry in electron- and hole-doping side of 
gate-dependent transport data in Figure 5.6C. Such observation can also be naturally explained 
by the gap equation at ܕ point in MBZ, see Eq. 5-8. The gap size on hole side, |ݑଵ ൅  ଷ|, is anݑ
order of magnitude larger than |ݑଵ െ  .ଷ|, the gap on electron side, with the above parametersݑ
Figure 5.8B illustrates the band dispersion of graphene in MBZ with the Moiré Potential, from 
which we can clearly see a much larger gap opened on the hole side at ܕ point in MBZ 
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Figure 5.8 (A) Comparison between experimental and theoretical optical conductivity change with the 
Moiré potential. ௌܸ ൌ 10meV. (B) Band dispersion of graphene in MBZ with the Moiré potential. A 
much larger gap is opened at ܕ point on the hold side (vertical green arrow), giving the prominent 
asymmetry in transport. 
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5.4	Summary	and	Outlook	

In this chapter, we have examined the interlayer interaction in graphene/hBN, as a representative 
example of both van der Waals heterostructure and the effective potential description in the weak 
non-perturbative regime. The experimental results confirm our expectation from chapter 2, that 
indeed the effective potential can provide rich effects on material properties through directly 
accessing the sublattice degree of freedom of the system. For graphene, such degree of freedom 
corresponds to the two-component pseudo-spin, and different components in the effective 
potential therefore correspond to “pseudospin-blind”, “pseudospin-dependent”, and “pseudospin-
mixing” potential. One can readily extend the conclusion to arbitrary system: generally the 
diagonal term in the effective potential corresponds to a modification of the on-site energy of 
sublattices (or orbitals), while the off-diagonal term modifies the hopping between them. These 
components can be difficult to realize unless with an optical lattice; however are also highly 
desirable, since many fascinating physics emerge exactly from manipulating these parameters in 
toys models. 

Another important message from this chapter is the unique advantage of optical spectroscopy in 
investigating the distinctive phases of a system: Optical transitions are sensitive to the transition 
matrix element, and therefore naturally encode wavefunction information of initial and final 
states. For example, while the energy dispersion of two bands may look almost identical after 
band inversion, their wavefunction will be inverted. Therefore, if originally optical transitions 
are only allowed between the upper band and some other states; then after band inversion only 
the lower band can have optical transitions to those states, which provides a natural way to 
distinguish between the two cases without measuring the boundary states. Indeed, the use of 
optical technique to study phases with nontrivial topology, such as Weyl semimetal, has been 
growing rapidly, because the topology information is necessarily stored in the wavefunction. 

From theoretical aspect, we again see the success of approaches developed in chapter 2, this time 
in the case of effective potential description. It is quite impressive that the theoretical predictions 
match quite well with experimental results even without fitting parameter. Combining great 
simplicity and reasonable accuracy, the effective potential description will be very helpful in 
providing a physically intuitive picture relating interlayer configuration to its effect on system 
properties; as well as guidance to directional engineering via design of van der Waals structures. 
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Chapter 6 – Things Not Included 

I hope that present article can provide useful tools to investigate the properties of van der Waals 
heterostructures. Certainly, not all situations are covered; therefore here I will briefly discuss 
things not included to avoid potential confusion. 

Firstly, all the discussions are based on tight binding model and apparently do not include many-
body interaction, i.e. Coulomb interaction. As we have explained in chapter 2, the single particle 
picture can be good enough to determine certain properties in many cases, especially when we 
are focusing on the effects of interlayer interaction but not many-body interaction. Even in case 
that we do want to focus on many-body effects, such as excitons, obtaining the single particle 
eigen-states with interlayer interaction is still important, because single particle eigen-states are 
often the basis and starting point to solve equations considering higher order interactions. e.g. 
Exciton wavefunction can be expressed as an superposition of product of electron and hole 
eigenstates, as one can see from the Bethe-Salpeter equation. Furthermore, much information can 
already be acquired without even going into the complicated Feynman diagram. For example, 
some selection rules should still hold regardless of the strength of interaction. Another example 
is to obtain band parameters, such as the effective mass, from the single particle picture first, and 
then calculate exciton binding energy semi-classically with hydrogen model. 

Secondly, we have been discussing “eigen-states”, or steady states of the system, therefore all the 
properties we obtained can be essentially called “static properties”. On the other hand, the 
“dynamic properties”, e.g. dynamics of excited states, can also be dramatically modified through 
interlayer interaction. One representative example is the charge transfer process in van der Waals 
heterostructure with type II band alignment. The induced ultrafast charge separation into 
different layers, and thereby exciton-free-carrier conversion, can be of great potential in 
optoelectronics, spintronics and valleytronics, allowing us to realize both near-unity generation 
efficiency of spin/valley polarization and microseconds-long valley lifetime in a recent work (4). 
These dynamic properties are also closely related to the static properties, because the scattering 
cross section is ultimately another type of matrix element; therefore we would expect that the 
concepts and approaches we have developed should still work, in slightly different form. 

All the results up to this point are still considering interactions between electrons from different 
layers. However, there are also other important quasi-particles and interactions between them, 
such as the electron-phonon interaction. Recently we demonstrate that strong interlayer electron-
phonon interaction indeed exist in the van der Waals heterostructure of WSe2/hBN (5), leading 
to the emergence of hBN ZO mode and an “X” peak in the emission and absorption spectrum, 
respectively. The interlayer electron-phonon coupling should generally exist in van der Waals 
systems, enabling another set of new rich possibilities, such as interlayer-mediated charge 
density wave and superconductivity. Given the similarity between phonon modes and electron 
modes, e.g. their periodicity and energy dispersion, we would again expect a reasonably 
straightforward transfer of results here into the context of interlayer electron-phonon interaction.
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