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Natalie M. Larson, Daniël M. Pelt, Wes Bethel, Frank Zok and James Sethian,
“Insight into 3D micro-CT data: exploring segmentation algorithms through per-
formance metrics”. Journal of Synchrotron Radiation 24, 1065 – 1077 (2017). [doi]

2. Harold S. Barnard, Alastair A. MacDowell, Dilworth Y. Parkinson, Pratiti Man-
dal, Michael Czabaj, Yan Gao, Emmanuel Maillet, B. Blank, Natalie M. Larson,
Robert O. Ritchie, Bernd Gludovatz, Claire Acevedo, Dong Liu. “Synchrotron
X-ray micro-tomography at the Advanced Light Source: Developments in high
temperature in-situ mechanical testing”. Journal of Physics: Conf. Series 849
012043 (2017). [doi]

1. Alastair A. MacDowell, Harold Barnard, Dilworth Y. Parkinson, Abdel Haboub,
Natalie M. Larson, Frank Zok, Francesco Parerai, Nagi N. Mansour, Hrishikesh
Bale, Bernd Gludovatz, Claire Acevedo, Dong Liu, Robert O. Ritchie. “High
Temperature X-Ray Micro-Tomography”. AIP Conference Proceedings 1741, 050005
(2016). [doi]

vii

http://dx.doi.org/10.1016/j.compositesa.2018.11.021
http://dx.doi.org/10.1016/j.compositesa.2017.12.024
http://dx.doi.org/10.1016/j.actamat.2017.10.054
http://dx.doi.org/10.1017/S1431927618014472
http://dx.doi.org/10.1107/S1600577517010955
http://dx.doi.org/10.1088/1742-6596/849/1/012043
http://dx.doi.org/10.1063/1.4952925


Abstract

X-Ray Computed Tomography of Microstructure Evolution during Polymer

Impregnation and Pyrolysis Processing of Ceramic Matrix Composites

by

Natalie Marie Larson

SiC f /SiC ceramic matrix composites (CMCs) have the potential to enable significant

increases in thermal efficiency of aerospace engines. However, fabrication of dense

CMCs that can operate for extended periods at targeted use temperatures (1500°C)

remains an outstanding challenge. In this dissertation, fundamental studies on one

promising fabrication approach – polymer impregnation and pyrolysis (PIP) – pro-

vide new insights on microstructure evolution during matrix processsing. X-ray com-

puted tomography (XCT) is used to elucidate the key underlying phenomena, includ-

ing fluid flow, fiber movement, bubble formation, and pyrolysis crack formation, dur-

ing the first PIP cycle in unidirectional fiber beds. New analysis techniques are de-

veloped to enable qualitative observations and quantitative metrics of microstructure

evolution. The results are used to elucidate coupled effects of capillary number, fiber

movement and preferred flow channeling on axial permeability of fiber beds. Ad-

ditionally, relationships between processing conditions, local fiber bed porosity, fiber

movement, and void locations and sizes after both impregnation and curing are iden-

tified. Finally, a unified taxonomy of pyrolysis crack geometries and crack structures

is developed, and the temporal sequence of their formation is revealed. Effects of

local microstructural dimensions on crack spacing, initiation temperature and final

hierarchical order are also quantified. Techniques employed in this work as well as

the resulting insights on microstructure evolution could be used in development and

validation of physics-based models for advancement of PIP processing.
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Chapter 1

Introduction

1.1 Ceramic Matrix Composites for More Efficient

Engines

SiC f /SiC ceramic-matrix composites (CMCs) are of significant technological interest

for development of more powerful and more efficient aerospace engines [1–5]. In-

creasing engine efficiency demands materials that can operate in more hostile con-

ditions with higher temperatures and higher stresses [1–5]. While development of

thermal barrier coatings (TBCs) has enabled significant increases in operating tem-

peratures over the last several decades, the temperature capability of the primary

structural materials, Ni-based superalloys, has shown relatively smaller gains (Fig.

1.1(A)). Due to the widening gap in temperature capability between TBCs and super-

alloys, additional cooling is required and inefficiency losses are greater (Fig. 1.1(B)).

To combat this issue, primary structural materials with higher temperature capability

are required. Relative to Ni-based superalloys currently used in engines, SiC f /SiC

CMCs offer about triple the specific strength and can survive sustained loading up to

temperatures that are 100-200°C higher (Fig. 1.2) [1, 3, 4].
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CMCs of prime interest comprise continuous SiC fibers with thin BN coatings

surrounded by a matrix of SiC. The coatings promote crack deflection and frictional

pullout, imparting high toughness to the CMC [1, 3, 5]. The SiC matrix protects the

fibers and distributes load [3, 6, 7]. Despite their promise, fabrication of fully-dense,

compositionally-pure SiC matrices that can withstand the targeted upper-use temper-

atures (1500°C) remains an outstanding challenge [1, 3]. One promising fabrication

approach, polymer impregnation and pyrolysis (PIP), is explored in this dissertation.

This Chapter provides an overview of four potential matrix processing methods (in-

cluding PIP) and potential hybrid approaches (Section 1.2) as well as an outline of the

remainder of the dissertation (Section 1.3).

1.2 Matrix Processing Methods

SiC matrices in SiC f /SiC CMCs may be processed via several routes. In all cases,

fibers are first coated with a thin layer of BN followed by a thin protective layer of

SiC or Si3N4 by chemical vapor infiltration (CVI) [2, 3, 8]. Next, the matrix phase is

introduced via one or more processes: (1) CVI, (2) slurry infiltration, (3) (reactive) melt

infiltration ((R)MI), and (4) polymer impregnation and pyrolysis (PIP) [2–4, 6, 8]. An

overview of these and hybrid approaches follows.

1.2.1 Chemical Vapor Infiltration

In the CVI route, SiC is deposited within the preform from gaseous precursors. The

process is carried out at relatively low temperatures (900-1100°C) with minimal risk

of fiber degradation [2, 8]. Furthermore, CVI is amenable to fabrication of CMCs with

large and complex shapes, yielding near-net-shape parts [2, 8]. The resulting layers of

deposited SiC are pure, crystalline, and fully dense, with high local hermeticity and

high thermal conductivity and creep resistance [2, 3, 8].
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The key challenge with CVI is to maintain open porosity through the end of den-

sification [2, 3, 8]. As the layers of SiC build within the fiber tows and on the tow

surfaces, small channels within the preform close off, trapping large, sharp and irreg-

ularly shaped voids in the matrix [2, 3, 8]. Strategies for delaying void entrapment

include the use of low deposition rates, engineered pressure and temperature gra-

dients (e.g., low temperatures at void entrances), and periodic surface machining to

re-open sealed void entrances [2, 3, 8]. Because of the low deposition rates required

to minimize pore entrapment, the CVI process is relatively slow and costly [2, 8]. Fur-

thermore, even under the best circumstances, significant residual porosity (typically

10-15%) remains, yielding composites with compromised thermal conductivity, low

matrix cracking strength, and low interlaminar strength [2, 3, 8].

1.2.2 Slurry Infiltration

In the slurry infiltration route, the matrix precursor consists of a suspension of SiC

powder in a liquid typically containing sintering aids and a fugitive binder [2, 3].

After the fiber preform is impregnated with the slurry, the matrix is sintered at high

temperature under pressure [2]. However, even with sintering aids, sintering of SiC

particles is extremely slow at temperatures below which SiC fibers begin to degrade

[2]. Additionally, due to physical constraints imposed by the fibers, full densification

of the matrix cannot be achieved by sintering alone.

Despite challenges with sintering, the use of SiC powders in SiC matrix process-

ing is highly advantageous because slurry impregnation can be used to fill interstices

between fibers and tows with pure, dense, crystalline SiC at high particle packing

densities. The remaining challenge is to bind the particles together via subsequent

processing routes such as PIP or (R)MI [2, 3, 8–11]. In the case of PIP processing, SiC

particles may also be introduced to the preceramic polymer prior to impregnation,

eliminating the need for a separate slurry impregnation and drying stage [2–4, 12–15].
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1.2.3 (Reactive) Melt Infiltration

Matrix processing via (reactive) melt infiltration ((R)MI) involves two steps. In the

first, the fiber preform is filled with (passive) SiC or (active) C fillers via slurry in-

filtration, tape-casting with a polymer-based binder, or impregnation and pyrolysis

of a liquid SiC or C precursor [2, 3, 8]. In the second step, residual open pores are

impregnated with liquid Si or Si-based alloy [2, 3, 8]. In the case where C fillers are

used, Si reacts with C to form SiC [2, 3, 8]. Relative to the other SiC matrix processing

techniques, (R)MI offers a short processing time and yields composites with minimal

porosity and thus excellent hermeticity, high thermal conductivity, high interlaminar

strength, and high in-plane matrix cracking stress [2, 3].

The most successful RMI SiC f /SiC thus far was developed by General Electric,

leading to the first large-scale use of SiC f /SiC CMCs in commercial gas turbine en-

gines in 2016 [1, 3, 8]. Here coated tows are pre-pregged into unidirectional tapes with

a polymer binder containing SiC and C particles [3, 8]. The prepreg tapes are then cut,

oriented, laid up, and consolidated at high temperature [3, 8]. In the final step, the

preform is impregnated with molten Si which reacts with the C particles to form SiC

[3, 8]. Although ideally the molten Si would be fully consumed by reaction with C in

the formation of SiC, in practice some amount of free Si always remains [3].

There are several drawbacks to the (R)MI process. First, impregnation tempera-

tures for liquid Si and Si alloys are relatively high (1,400-1,600°C), thus requiring use of

fibers with high thermal stability [2, 3]. Additionally, in the case of reactive melt infil-

tration, reaction products may block the channels for Si infiltration via a phenomenon

known as reaction choking [2, 16]. Thus, special care must be taken in optimizing the

preform microstructure and the impregnation process to ensure that flow channels for

liquid Si remain open long enough for complete impregnation [2, 16]. Finally, since

(R)MI yields some free Si, the upper use temperature of the composite is limited by the
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(relatively low) melting point of Si (1,400°C) [2, 3, 8, 16]. At temperatures approach-

ing 1,400°C, free Si can attack the BN coatings and SiC fibers, and beneficial residual

stresses resulting from RMI processing tend to disappear [2, 8]. Even below the Si

melting point, the low creep resistance of Si leads to undesirable matrix creep starting

at about 1,100°C and becoming excessive above 1,300°C, thus limiting the CMC use

temperature to ≈1250°C [8].

Efforts to eliminate free Si from RMI products primarily involve utilizing Si alloys

that display (i) low eutectic points (<1,400°C, to enable low-temperature impregna-

tion) and (ii) residual silicides with high melting points (to enable higher CMC use

temperatures) [3, 16].

1.2.4 Polymer Impregnation and Pyrolysis

The PIP process involves impregnation of a preceramic polymer into a fiber preform,

followed by curing and pyrolysis to produce a polymer-derived ceramic (PDC) ma-

trix [2, 3, 6, 8, 11, 13, 14, 17]. A variety of SiC precursors may be employed, such

as polycarbosilanes or polyvinylsilanes, which are converted to amorphous SiC after

pyrolysis to ≈800-1,000°C and may be subsequently crystallized at 1,000-1,600°C [2,

3, 6, 17–21]. Due to shrinkage of the preceramic polymer during polymer-to-ceramic

conversion (≈20-30% volumetric yield), the resulting matrix is heavily micro-cracked

with high residual porosity [2, 3, 8, 21, 22]. In order to further densify the matrix,

the PIP process is repeated several times (typically 6-14 times), progressively filling

voids and shrinkage cracks remaining from previous processing cycles [2, 3, 6, 8, 11,

13, 14, 17]. Even after several repeated PIP cycles, the resulting matrix is typically

micro-cracked and somewhat friable, with relatively low matrix cracking strength and

thermal conductivity [2, 3, 8, 11, 13, 14]. Furthermore, the resulting microstructures

are often heterogeneous in nature, with pores and cracks in the matrix ranging in size

from nanometers to hundreds of micrometers [3, 6, 7, 23]. These heterogeneities can,

5



in turn, lead to spatial inhomogeneities in the degree of protection that the matrix

can provide to the fibers and hence compromise long-term composite durability [3, 6,

7]. Additional drawbacks of the PIP process include the time-consuming (and often

costly) nature of repeated impregnation and pyrolysis, the high temperatures required

(typically 1,400-1,600°C) to crystallize the matrix on a reasonable time scale, and the

potential for oxygen and free carbon impurities that reduce composite durability [2, 3,

6, 8, 17].

Despite these shortcomings, the PIP process offers a highly flexible route for pro-

ducing CMCs without free Si, with opportunities for process developments that could

produce denser, stronger and more thermally conductive matrices [2, 4, 8, 10, 12–14,

17, 24]. One of the advantages of the PIP process is that it can make use of well-

established methods of fabrication of polymer matrix composites (PMCs) [2, 8, 13,

24]. These methods have demonstrated (1) ease of large-scale processing with com-

plex part geometry, (2) low cost, and (3) potential for high impregnation efficiency [13,

14, 24]. Processing with preceramic polymers also offers control over ceramic yield,

chemical composition, microstructure, and nanostructure through careful design of

polymer type and molecular structure and through tailoring of the temperature, pres-

sure and gaseous environment during curing, pyrolysis and crystallization [12, 13, 17,

22, 24, 25].

1.2.5 Hybrid approaches

None of the aforementioned processes in isolation have proven effective in produc-

ing SiC matrices that can operate under sustained loading at target use temperatures

of 1,500°C. It is widely recognized that innovative approaches involving hybrids of

these processes need to be developed to reach performance goals. Already, CVI is the

method of choice for the first stage of processing: deposition of a thin coating of the

interphase (BN) followed by a thin protective coating of SiC or Si3N4 [2, 3, 8]. Re-

6



maining matrix densification may be performed with various combinations of CVI,

slurry infiltration, (R)MI, and PIP [2–4, 8]. One proposed combination involves first

performing CVI or several rounds of PIP to maximize the fraction of pure SiC in the

matrix, followed by (R)MI to fill the residual pores inherent to both techniques and

thus increase hermeticity and thermal conductivity [2, 3]. Another approach involves

partial densification with CVI followed by PIP (additional details below) [8]. Alter-

natively, several rounds of PIP (and subsequent crystallization) might be followed by

(R)MI or CVI to fill remaining pores [2, 3]. In another approach, infiltration of a SiC

powder slurry is performed first to rapidly fill a significant amount of the preform

with pure, crystalline SiC [2]. Slurry infiltration may be followed by repeated PIP and

(possibly) a final round of CVI, or by MI [2, 8–11]. Alternatively, the first PIP cycle

(in any of the aforementioned processes starting with PIP) may be performed with a

preceramic polymer loaded with an inactive filler, typically fine SiC particles, to in-

crease the effective volumetric yield [2–4, 12–15]. Later PIP cycles require preceramic

polymers alone as particles tend to clog narrow channels in the remaining pore net-

work and thus prevent full impregnation [11]. In all cases, these multi-step processes

require that a contiguous network of ingress pathways is present after intermediate

PIP or CVI stages to attain nearly-full densification in subsequent processing steps.

Potential benefits of a hybrid route for fabricating CMCs without free Si have been

demonstrated [8]. The route utilizes CVI for partial filling of the preform followed

by PIP to fill the remaining pores (process designated CVI-PIP). This method was de-

signed to exploit the advantages of full CVI and full PIP while avoiding some of their

drawbacks (Fig. 1.3). For example, utilizing only partial CVI allows for shorter de-

position times and reduced closed-void entrapment, while retaining some of the high

strength, creep resistance and thermal conductivity of CVI SiC. Meanwhile, utilizing

PIP for the final densification stages allows for more rapid processing of SiC with

fewer cycles and thus fewer opportunities for oxygen contamination than the PIP ap-
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proach alone. Although this approach does not achieve full densification, the resulting

composites appear to show the best high-temperature stress rupture behavior relative

to those made by other routes (Fig. 1.4).

1.3 Dissertation Outline

The PIP process is of great interest because it can be used to fabricate SiC f /SiC CMCs

without free Si and because of its processing flexibility and potential to be further

developed for use in independent or hybrid approaches. The goal of the research pre-

sented in this dissertation is to enable advancement of the PIP process through devel-

opment of a stronger fundamental understanding of microstructure evolution during

each stage of PIP. The research approach involves direct observation of microstruc-

ture in 3D using X-ray computed tomography (XCT), paired with complementary

studies on preceramic polymer pyrolysis. Novel experimental methods and analysis

techniques are developed to enable detailed qualitative observations and quantitative

metrics of microstructure evolution. Insights gained from this work provide a foun-

dation for development of a physics-based modeling framework for advancement of

the PIP process.

The dissertation is organized in the following way. Chapter 2 presents background

on the use of the PIP process in engineering practice and on the materials and funda-

mental processes involved in PIP. Chapter 2 concludes with a discussion on prelimi-

nary studies that demonstrate the critical importance of the first PIP cycle in repeated

PIP processing. The preliminary studies set the foundation for work presented in the

remaining Chapters. Chapters 3-5 present original research on microstructural evolu-

tion during the first impregnation, curing, and pyrolysis cycle in unidirectional fiber

beds. The focus of the work is on unidirectional minicomposites in order to obvi-

ate the complexities associated with multidirectional laminates or weaves, and thus
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enable fundamental studies on the key underlying phenomena associated with mi-

crostructure evolution during PIP. Chapter 3 presents a study in which XCT imaging

is performed in-situ during impregnation, enabling observation of fiber movement,

preferred flow channeling, and void formation over a range of capillary numbers.

Quantification of the effects of fiber movement and preferred flow channeling on per-

meability are used to rationalize the increase in measured permeability with capillary

number. Chapter 4 presents methods and analysis techniques to reveal correlations

between void sizes, void locations, and local fiber packing over the course of im-

pregnation and curing. Notably, the results reveal the combined effects of capillary

number and pressure removal on void formation during impregnation. In Chapter

5, experimental results revealing the three-dimensional nature and evolution of CMC

microstructure during pyrolysis to 1,200°C are presented. In this study, a unified tax-

onomy of crack structures is developed, and the temporal hierarchy of their formation

is identified. Additionally, the effects of local microstructural dimensions on the con-

ditions required to form various crack types are quantified. Finally, conclusions and

recommendations for future research are discussed in Chapter 6.
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Figure 1.1: (A) Evolution and projection of temperature capabilities of TBCs (green),
CMCs (blue), and Ni-based superalloys (grey), and highest allowable gas tempera-
tures with cooling (red). Projected use of CMCs is expected to enable significant in-
creases in gas temperature. (B) Specific core power of gas-turbine engines increases
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current material systems. Figure reprinted from Padture [1] with permission from
Springer Nature.
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Figure 1.3: Typical effect of matrix processing methods on properties of SiC/SiC
panels. (MCS = matrix cracking strength, UTS = ultimate tensile strength). Figure
reprinted from DiCarlo [8] with permission from John Wiley and Sons.
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Figure 1.4: On-axis rupture strength in air for SiC/SiC CMCs fabricated with differ-
ent matrix processing methods. Fiber reinforcement consists of 2D-woven 0°/90°-
balanced Sylramic-iBN fabric. The Larson-Miller parameter, q, depends on absolute
temperature, T, and rupture time, t. Figure reprinted from DiCarlo [8] with permis-
sion from John Wiley and Sons.
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Chapter 2

Polymer Impregnation and Pyrolysis:

Engineering Practice and Fundamentals

This Chapter begins with a review of studies on PIP processing in engineering practice

(Section 2.1). The next three Sections provide context for the fundamental studies pre-

sented in Chapters 3-5 of this dissertation. First, Section 2.2 presents background on

preceramic polymers, methods used to characterize polymer-to-ceramic conversion,

and previous studies on allylhydridopolycarbosilane (AHPCS, trade name SMP-10):

the state-of-the-art SiC precursor used in this work. Next, Section 2.3 presents back-

ground on impregnation and curing in fiber preforms, with focuses on impregnation

kinetics, permeability, and void formation mechanisms. Finally, Section 2.4 provides

background on the mechanics of shrinkage cracking in thin films and adhesive joints.

The Chapter closes with a presentation of preliminary processing studies performed

in the present work that highlight compounding effects of heterogeneous microstruc-

ture evolution and demonstrate the critical importance of the first PIP cycle (Section

2.5).
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2.1 PIP Processing in Engineering Practice

Research on the PIP process has explored the effects of preceramic polymer compo-

sition, temperature and pressure profiles, use of particle fillers, and use of novel pre-

processing routes and composite geometries [4, 9–15, 22, 25–27]. This section provides

a review of the findings of those studies and provides motivation for the research pre-

sented in this dissertation.

To provide a broad picture, the review includes studies on a variety of PIP derived

CMCs, including oxide CMCs, CMCs with carbon fibers, CMCs with SiCN matrices,

and the SiC f /SiC CMC systems of present interest. Despite differences in composi-

tion, CMCs fabricated with preceramic polymers exhibit similar microstructural de-

fects and thus provide meaningful insights and background pertinent to PIP-derived

SiC f /SiC CMCs.

A predominant modification to the PIP process is the use of inert particulate fillers,

incorporated either independently via slurry infiltration (prior to PIP) or loaded into

the preceramic polymer itself [4, 9–15]. In one study, Kotani, et al. [13] investigated

the effects of particle filler content in preceramic polymers in the first round of PIP.

SiC f /SiC CMCs were processed via seven repeated PIP cycles using varying filler

contents in the first PIP cycle (the 2nd-7th PIP cycles did not employ particle fillers).

Particle loading of 57% was identified as being optimal from the perspective of reduc-

ing matrix porosity (Fig. 2.1(A)) and maximizing ultimate flexural strength and work-

of-fracture (Fig. 2.1(B)). This optimum provides an appropriate balance between fiber

volume fraction and inter-fiber porosity (Fig. 2.1(B)). For lower particle loadings, me-

chanical properties are compromised by poor inter-fiber densification, even though

the fiber volume fraction is at its highest. For higher particle loadings, the lower fiber

volume fraction leads to reduced mechanical properties.

The use of particle fillers of varying sizes (coarse and fine) introduced via slurry in-
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filtration prior to PIP processing was studied by Nannetti, et al. [11]. Here, SiC f /SiC

CMCs were processed by first depositing thin layers (0.2µm) of pyrolytic carbon and

then SiC by CVI, followed (in some cases) by infiltration of an aqueous SiC slurry, and

then 7-14 PIP cycles with allylhydridopolycarbosilane. In the specimens infiltrated

with particle slurries (both coarse and fine), the particles effectively filled the macro-

and meso-porosity between the fiber tows, leading to the attainment of lower compos-

ite porosity with a reduced number of PIP cycles (Fig. 2.2). Furthermore, CMCs pro-

cessed with the slurry infiltration step showed higher thermal diffusivity than those

processed by PIP alone.

Another approach, investigated by Yin, et al. [10], involves the use of particle

fillers introduced via electrophoretic deposition (EPD) prior to PIP processing. Here,

SiC f /SiC CMCs were fabricated by first immersing a pyro-carbon coated 2D SiC wo-

ven cloth into a suspension of nano-SiC powder. Direct-current EPD was used to di-

rect SiC particles onto the SiC fabric. After EPD, the plies were stacked into a laminate

and subjected to seven PIP cycles using allylhydridopolycarbosilane (SMP-10). The

EPD pre-treatment followed by PIP yielded a CMC with 7% higher relative density

than a CMC processed by PIP cycling alone.

Slurry impregnation (prior to PIP) utilizing monomodal and bimodal particle size

distributions was investigated by Yang, et al. in the fabrication of oxide composites

[9]. In the baseline method, a monomodal slurry of fine (≤ 1µm) mullite and alumina

particles is introduced into a 3D oxide fiber preform via vacuum-assisted infiltration.

Following drying, two rounds of PIP using an alumina precursor solution were em-

ployed. The matrices invariably contain ”mud cracks” that result from shrinkage of

the particle networks during drying (Fig. 2.3(A)). A mitigation strategy using a bi-

modal slurry containing both fine (≤ 1µm) mullite and alumina particles and coarse

(23µm) SiC particles was developed. The coarse particles fill large inter-tow spaces

and show less shrinkage during drying, while the fine particles fill spaces within tows
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and between coarse particles. The most effective strategy for introducing both parti-

cle types into the preform appears to be vacuum- and vibration- assisted infiltration

of a bimodal slurry. This method effectively mitigates the formation of mud cracks in

matrix-rich regions in both 3D (Fig. 2.3(B)) and 2D composites.

An innovative modification on the use of particle fillers involves the use of chopped

fiber or whisker fillers to reinforce large matrix pockets, referred to as microcomposite

matrices [4]. Microcomposite matrices are of particular interest in 3D textile preforms

which tend to have large gaps between fiber tows (Fig. 2.4(A)(inset)) and require a

tough matrix that can withstand in-service thermal cycling. One successful imple-

mentation of microcomposite matrices is illustrated in Fig. 2.4. Here, a carbon fiber

preform was coated and infiltrated with chopped SiC fibers and then coated with

thin layers of pyrolytic carbon and SiC using CVI. PIP processing with a SiC-particle

loaded SiC preceramic polymer was used for further densification. This method pro-

duces matrices that can be machined and polished to a smooth finish.

Another common approach to modifying CMC microstructures involves tailoring

temperature and pressure profiles during PIP processing [12, 14, 15, 26, 27]. In one

study, by Kotani, et al. [14], effects of curing temperature during green body process-

ing and pressure and heating rate during consolidation were explored systematically

for PIP processing of a SiC f /SiC CMC. The CMCs were processed by first dipping the

fiber preform into polyvinylsilane containing 25wt.% particle fillers and then curing

the sheets at varying temperatures. Next, the consolidated body was formed by stack-

ing the cured sheets and heating to 1200°C at varying heating rates under varying

pressures. Finally, six additional rounds of PIP with polyvinylsilane (without fillers)

were performed to further densify the composite. The study demonstrated that the

composite density tends to increase as the heating rate decreases due to increased

PDC volumetric yield and reduced gas evolution (Fig. 2.5(A)). Furthermore, compos-

ites with good consolidation (high density, minimal cracks and pores) and the maxi-
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mal flexural strength were obtained by curing at low temperatures and consolidating

under intermediate applied pressures (Fig. 2.5(B)). At low curing temperatures, the

matrix was plastically formable, allowing increased consolidation under pressure and

ultimately a higher fiber volume fraction (Fig. 2.5(C)). By consolidating at intermedi-

ate pressures, issues associated with low pressure (e.g., formation of voids and cracks

due to insufficient compression) and high pressure (e.g., pushing too much matrix out

of the fiber bed) are avoided.

In another study, by King, et al. [12], a vacuum heat treatment process was de-

veloped to volatilize low molecular weight oligomers in allylhydridopolycarbosilane

(SMP-10) prior to curing. As illustrated in Fig. 2.6, this heat treatment improves the

mass yield of SMP-10 (from a room-temperature liquid state) by≈6-9%, with the vari-

ability being attributed to differences in molecular weight distributions between SMP-

10 lots provided by the manufacturer. Vacuum heat treatment of SMP-10 prior to PIP

processing thus enables higher ceramic yield within the fiber preform. Building on

their understanding of the low-temperature behavior of SMP-10, King, et al. devel-

oped a B-staging process in which heat treated SMP-10 is impregnated into a fiber

preform and semicured to produce solid but flexible prepreg plies that can be subse-

quently layed-up, ply-by-ply, and autoclave cured. This process enables ply-by-ply

control of matrix compositions with PMC-like prepreg layup, and results in less waste

than conventional wet layup fabrication methods. The study demonstrated that B-

staging does not adversely affect densification during subsequent PIP processing (Fig.

2.7).

One drawback of the PIP process is the lengthy pyrolysis cycles (ranging from sev-

eral hours to days) [10, 12–15, 17, 22, 25, 26]. In an effort to make the PIP process more

time-efficient, Dong, et al. investigated the use of high frequency microwave radia-

tion to pyrolyze CMC matrices in under 5 minutes [15]. An even faster pyrolysis ap-

proach, referred to as flash pyrolysis, was developed by Zoli, et al. [26] and Azarnoush,
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et al. [27]. The method was successfully implemented for processing minicompos-

ites composed of SiCN matrices within tows of uncoated carbon fibers [26] and tows

of uncoated SiC fibers [27]. Minicomposites were fabricated by depositing a dilute

(0.01 wt.% to 1 wt.%) solution of polysilazane precursor dissolved in tetrahydrofu-

ran (THF) on a fiber tow, drying at 300-350°C to evaporate the solvent and crosslink

the precursor, flash pyrolyzing the composite under an infrared radiation furnace for

about one second, and finally cooling with a heat sink [26, 27]. The entire process was

performed manually and took about 1-3 minutes (for one cycle) [26]. This process pro-

duced a uniform and crack-free nanometer-scale SiCN coating on the fibers [26, 27].

The process was repeated up to 80 times to deposit SiCN layer-by-layer, resulting in

relatively dense, crack-free SiCN matrices with porosity as low as 6% [26, 27].

Preceramic polymer chemistry also influences the microstructure and properties

of PIP-derived CMCs. Important considerations in choosing a precursor include mass

yield, volumetric yield, viscosity at relevant processing temperatures, and wetting

properties [9, 10, 12, 13, 17, 22, 25]. Several studies have compared the use of various

precursors in CMC processing.

In one such study, the densification efficiency of polyvinylsilane (PVS) was com-

pared with that of polycarbosilane (PCS) [13]. SiC f /SiC CMCs were fabricated by

performing the first PIP cycle with particle-loaded PVS, followed by six PIP cycles

with PVS or PCS (without particle fillers). The primary differences between PVS and

PCS as matrix precursors were their yields and their states at room temperature. The

mass yield of PCS (68%) is much greater than that of PVS (32%). However, at room

temperature PVS is a liquid while PCS is a solid. Thus, the PCS needed to be di-

luted with a solvent for the impregnation process, which reduced its effective ceramic

yield. During densification, the PVS-derived CMC formed closed porosity while the

PCS-derived CMC did not. This behavior was attributed to poor wetting of the PCS

solution and reduced impregnation into small pores, resulting in a final composite
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with about 1% higher porosity than the composite processed with PVS (Fig. 2.1(A,B)).

The PVS-derived composite also showed superior mechanical properties (Fig. 2.1(B)).

In another study, the densification efficiency and mechanical properties of C f /SiC

CMCs produced with two different polycarbosilane precursors were compared [25].

The primary focus of the study was a novel high yield (83 wt%) commercial liquid

polycarbosilane (LPCS), which is similar to AHPCS but contains vinyl groups instead

of allyl groups. For comparison, composites fabricated using solid-state polycarbosi-

lane (PCS) diluted with a solvent were also studied. The LPCS shows superior den-

sification behavior compared to PCS, reaching a higher final density after 9 PIP cy-

cles (2.13 g/cm3) than the PCS-derived composites after 13 cycles (1.87 g/cm3) (Fig.

2.8(A)). The superior performance of LPCS is attributed to its higher ceramic yield,

lower viscosity, and solvent-free composition. The LPCS-derived CMCs also show

superior mechanical properties, with significantly higher bending strength and flexu-

ral modulus than the PCS-derived CMC (Fig. 2.8(B)).

Three types of polycarbosilane precursors were investigated by Yin, et al. for pro-

cessing of SiC f /SiC CMCs [22]. The precursors – SMP-10, SMP-730, and NaBond –

have mass yields of about 82%, 62-67%, and 55-64% (variations account for crosslinked

and non-crosslinked polymers) and densities of 2.43, 2.22, and 2.21 g/cm3, respec-

tively, after pyrolysis at 1400°C. Both SMP-730 and NaBond are solid at room tem-

perature, while SMP-10 is a liquid. SiC f /SiC CMCs were fabricated using seven PIP

cycles in which pyrolysis was conducted under a constant pressure of 75kPa up to a

maximum temperature of 1400°C. For the PCS precursors (solid at room temperature),

impregnation was conducted above the polymer softening temperature, enabling ef-

ficient filling of the preform. The densification behaviors of the three precursors are

shown in Fig. 2.9. Despite having a lower ceramic yield than SMP-10, SMP-730 pro-

duced CMCs with a higher relative density over the course of the entire PIP sequence.

This disparity may be due to differences in impregnation efficiency or accessibility of
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void space after each PIP cycle.

2.2 Polymer-Derived Ceramics

Polymer-derived ceramics (PDCs) have gained substantial interest because of their

unique properties and processing flexibility [17, 28]. Preceramic polymers can be

formed into fibers, thin layers, composites and bulk parts by methods such as fiber

drawing, extrusion, injection molding and resin transfer molding – approaches not

available through traditional ceramic processing techniques [17, 28]. Following proper

thermal treatment, preceramic polymers yield ceramics of well-defined composition

and microstructure [17, 28]. Applications of PDCs include thermal protection systems,

biomedical components, micro- and nano- electromechanical systems, electronic de-

vice packaging, propulsion components, porous burners, and in-situ crack repair in

space shuttle heat shields [17, 29]. In addition to their myriad of diverse applica-

tions, PDCs have a wide variety of molecular design and processing parameters which

significantly influence the final ceramic component [17, 28]. This section provides a

brief overview on organosilicon polymer molecular structures, polymer-to-ceramic

conversion, and PDC characterization methods. Additional background on allylhy-

dridopolycarbosilane (AHPCS, trade name SMP-10) – the preceramic polymer used in

this work – is also provided.

The molecular structure of a preceramic polymer influences its processability, in-

cluding rheology and ceramic yield, and properties of the final ceramic, including

composition, number of phases, and microstructure [17, 28]. A general simplified

molecular structure for an organosilicon preceramic polymer (for production of Si-

based ceramics) is shown below [17].
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The X group in the polymer backbone determines the class of the Si-based polymer

[17]. For example, if X=CH2, the polymer is a polycarbosilane and produces a SiC-

based ceramic. Alternatively, if X=NH, the polymer is a polysilazane and produces a

SiCN-based ceramic [17, 28]. Molecular structures for each of the main organosilicon

classes are shown in Fig. 2.10 [17]. The R groups in the polymer backbone influence

chemical and thermal stability, solubility and rheological properties [17, 28]. Typically

the R groups comprise hydrogen, aliphatic groups or aromatic groups [17]. The R

groups may therefore be used to tailor the amount of excess carbon in the ceramic

which in turn influences thermal stability of metastable amorphous phases and crys-

tallization behavior (grain size, degree of crystallinity, grain boundary composition)

[17].

The yield of a preceramic polymer is influenced by the degree to which it can

be cross-linked, the use of initiators (to promote cross-linking), and its molecular

weight and degree of branching [17, 28]. If a preceramic polymer is not cross-linked

before mineralization and ceramization, depolymerization and volatilization of low-

molecular weight polymers and oligomers will occur upon heating, significantly re-

ducing the ceramic yield [17, 28]. By incorporating crosslinking groups of latent re-

activity into the molecular structure, the polymer may be cross-linked during or after

shaping via thermal curing or photo curing (among other methods), allowing more

of the mass to be retained and thus increasing ceramic yield [17, 28]. Furthermore,

initiators may be used to increase the degree of cross-linking and/or initiate thermal

cross-linking at lower temperatures, further reducing evaporation of low molecular

weight polymers and oligomers and thus further increasing the ceramic yield [17].

In addition, the preceramic polymer must be of sufficiently high molecular weight to
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avoid volatilization and depolymerization [17, 28].

Polymer-to-ceramic conversion is accompanied by significant chemical, volumet-

ric, and microstructural changes [17, 19–21, 28] The process involves crosslinking (100-

650°C), ceramization (800-1100°C), and, optionally, crystallization and grain growth

(1000-2000°C) [17, 20, 21]. Ceramization refers to conversion of the polymer into an

amorphous ceramic, and thus requires complete decomposition or elimination of or-

ganic moieties [17]. Crystallization of the resulting PDC is desired in some applica-

tions while others demand that the metastable amorphous state be retained [17]. For

example, the remarkable properties of amorphous SiBCN ceramics (e.g., high tem-

perature stability, oxidation resistance, and creep resistance) are due to the B and C

atoms that kinetically stabilize the amorphous state and the absence of grain bound-

aries that could otherwise control creep properties [17]. In the case of PIP-derived

SiC matrices for CMC applications, low thermal conductivity, poor mechanical prop-

erties and poor oxidation resistance have been associated with the amorphous state

and with excess carbon [6, 30]. In these cases, stoichiometric crystalline SiC is desired

[6, 30]. In general, crystallization involves a phase separation process in which free

carbon is segregated into nanosized turbostratic or graphitic sheets while crystalline

SiC domains nucleate and grow [17].

Various processing parameters influence the characteristics of the final ceramic

product [17, 28]:

• The heating profile affects the ceramic yield, composition and microstructure

[17]. During crosslinking, the heating rate and hold temperatures affect both

the extent of crosslinking and the reactivity of the crosslinked polymer [17]. If

the heating rate is too high, there will be insufficient time for crosslinking [17].

Subsequent depolymerization and volatilization alter the final ceramic composi-

tion and reduce the ceramic yield [17]. The heating profile also affects the extent

of crystallization, carbothermal reduction reactions, and reactions with active
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fillers [17].

• The gaseous environment influences the composition and yield of the PDC [17].

For example, AHPCS readily absorbs and reacts with oxygen and environmental

moisture, invariably leading to oxygen impurities in the (ideally pure) SiC PDC

if the polymer is not handled in an oxygen-free environment [18]. Additionally,

oxygen contamination in the inert gas during pyrolysis can lead to unwanted

removal of carbon-containing moieties [17].

• Pressure application, either mechanical or gaseous, during pyrolysis has been

shown to affect the composition, density, and crystallization of the PDC [17].

Pressure application has been used to suppress bubble formation during curing

and to consolidate the material during curing and pyrolysis. Furthermore, at

high gas pressures (up to 200 atm) it is possible for gas molecules to become

incorporated into the final ceramic, allowing tailoring of the composition [17].

Pressure has also been shown to affect crystallization. For example, vacuum

favors carbothermal reduction reactions and can thus promote crystallization

[17]. Conversely, high gaseous or mechanical pressure can hinder crystallization

[17].

Various techniques have been implemented to monitor polymer-to-ceramic con-

version in-situ and to characterize the final and intermediate stages of the PDC. These

techniques include X-ray diffractometry (XRD) [6, 17, 20–22], selected area electron

diffraction (SAED) [6], fourier transform infrared spectroscopy (FTIR) [17, 19–21], en-

ergy dispersive x-ray spectroscopy (EDS) [6], electron energy-loss spectroscopy (EELS)

[6], elemental analysis [20], magic-angle spinning nuclear magnetic resonance (MAS-

NMR) [17, 19], mass spectrometry (MS) [17, 20, 22], gel permeation chromatography

(GPC) [12], rheometry [10, 12, 17], thermogravimetric analysis (TGA) [12, 17, 20–22],

differential thermal analysis (DTA) [17, 21], thermomechanical analysis (TMA) [17],
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pycnometry [21, 22], scanning electron microscopy (SEM) [6, 17, 20], transmission

electron microscopy (TEM) [6, 17, 19, 21], and nanoindentation [21]. These tech-

niques have been used to monitor curing, ceramization and crystallization kinetics,

microstructure evolution, and chemical transformations. In the next section, the use

of several of these techniques will be illustrated for the characterization of allylhydri-

dopolycarbosilane.

2.2.1 Allylhydridopolycarbosilane (AHPCS)

Allylhydridopolycarbosilane (AHPCS) is a commercially-available state-of-the-art SiC

preceramic polymer manufactured by Starfire Systems, Inc. under trade name SMP-

10. A simplified depiction of the molecular structure of AHPCS is shown in Fig. 2.11.

AHPCS consists of a hyperbranched carbosilane oligomer backbone with allyl side

groups to facilitate subsequent crosslinking [18]. Because the addition of allyl groups

introduces excess carbon into the otherwise Si:C stoichiometric balance of the polymer,

the molecular design has been optimized to ensure that allyl groups are incorporated

uniformly on the outer fringes of the polymer clusters, to maximize crosslinkability

while avoiding excessive allylation [18]. The resulting SMP-10 has an allyl content

of about 10-15% [18, 20, 21]. One study found that the peak linear differential molar

mass1 of as-received SMP-10 is at a molar mass of 290g/mol (Fig. 2.12) [12]. It can

be increased to a molar mass of 380g/mol via a heat treatment at 86°C for 15h which

volatilizes low molecular weight oligomers (Fig. 2.12) [12].

The benefit of AHPCS for PIP processing is its engineered balance between rheo-

logical properties, ceramic yield, and Si:C stoichiometry. At room temperature (25°C)

AHPCS is a liquid with viscosity ranging from 40× 10−3 to 100× 10−3 Pa s, allow-

ing it to be readily impregnated into a fiber preform without the use of solvents or

1The cumulative mass distribution as a function of molar mass (measured with gel permeation chro-
matography) is differentiated to give the linear differential molar mass as a function of molar mass.
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higher temperatures (viscosity values from StarPCS™ SMP-10 Technical Data Sheet).

Additionally, AHPCS can form near-stoichiometric SiC in the final pyrolyzed product

[18, 20, 21]. Although the resulting ceramics invariably contain oxygen impurities and

excess carbon, treatments at elevated temperatures (≈ 1500-1700°C) can significantly

reduce oxygen and excess carbon contents (Figs. 2.13 and 2.14) [6, 20]. Finally, the ce-

ramic yield of AHPCS pyrolyzed to ≥900°C is typically in the range of 68-81wt% [12,

20–22]. Reported variability in ceramic yield may arise from batch variability, as well

as variations in heating rate and maximum temperature employed in these studies.

As discussed in Section 2.1, the ceramic yield of AHPCS may be increased via a vac-

uum heat treatment that volatilizes low molecular weight oligomers prior to shaping,

curing, and pyrolysis (Fig. 2.6) [12].

Polymer-to-ceramic conversion of AHPCS includes three crosslinking steps be-

tween 120-650°C, complete ceramization by ≈1150°C, and crystallization between

1150-1650°C [6, 18, 20, 21]. The first crosslinking step, free radical crosslinking, con-

sumes allyl groups and may be initiated by a butyl or cumyl peroxide at tempera-

tures of ≈100°C [18, 31]. The second crosslinking step, hydrosilylation, is completed

by 250°C and also consumes allyl groups [20]. The hydrosilylation reaction and ac-

companying FTIR spectra illustrating the complete consumption of allyl groups are

shown in Fig. 2.15 [20]. The third crosslinking step, dehydrocoupling, occurs between

300-650°C and corresponds to a large mass loss due to evolution of hydrogen [20].

The dehydrocoupling reaction and accompanying thermogravimetry and mass spec-

trometry (TGMS) results are shown in Fig. 2.16 [20]. Completion of the ceramization

process by 1150°C is illustrated in the FTIR spectra in Fig. 2.17, in which the C-H and

Si-H peaks have disappeared and an Si-C peak remains at 1150°C [21]. The crystal-

lization behavior of AHPCS has been characterized via XRD, DTA and TEM, among

other methods [6, 20, 21]. The onset of β-SiC crystallization occurs at about 1100°C, as

illustrated by a distinct peak in DTA measurements (Fig. 2.18) and by the appearance
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of distinct β-SiC peaks in XRD patterns (Fig. 2.19) [6, 21]. With increasing tempera-

ture (at constant dwell time) and increasing dwell time (at constant temperature), the

fraction of crystalline β-SiC and the crystallite size tend to increase (Figs. 2.19 and

2.20) [6, 21]. Crystallization is rather sluggish at 1300°C, with only slight increases in

the fraction of crystalline β-SiC and the crystallite size with increasing dwell time [6].

After 100h at 1300°C, the fraction of crystalline β-SiC is only 68wt% and the crystallite

size only 6nm [6]. In contrast, crystallization is more rapid at 1400°C and 1500°C, with

a 100h treatment at 1500°C yielding 80wt% crystalline β-SiC and ≈120nm crystallite

size [6].

2.3 Impregnation and Curing in Fiber Preforms

One of the advantages of CMC matrix processing with preceramic polymers is that it

can build upon the large science-base and advanced fabrication infrastructure in the

polymer matrix composite (PMC) community [2, 8, 13, 24]. Impregnation and curing

of a preceramic polymer in the first PIP cycle is analagous to impregnation and curing

of a thermosetting polymer in PMC fabrication. Thus, in this section, background

on microstructure evolution during impregnation and curing is provided largely by

studies from the PMC community.

The processing technique of interest in this work involves pressure-assisted im-

pregnation of a liquid precursor into a dry fiber preform, a process referred to as liq-

uid composite molding (LCM). It is well understood that void content is correlated

with the capillary number, Ca = µν/γ, during impregnation, where ν is the tracer

velocity, µ is the liquid viscosity, and γ is the liquid surface tension [32–34]. Thus,

controlling impregnation kinetics is crucial for minimizing void content in the com-

posite. In this section, background is provided on both impregnation kinetics (Section

2.3.1) and void formation mechanisms (Section 2.3.2).
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2.3.1 Impregnation Kinetics

Saturated fluid flow through fibrous preforms is typically modeled by Darcy’s Law

[32–40]. The Darcy velocity is given by

~q = − κ̃s

µ
∇P (2.1)

where κ̃s is the saturated permeability tensor of the fibrous preform and ∇P is the

pressure gradient [32–40]. The tracer velocity, ~ν is related to the Darcy velocity by

~ν = ~q/ε, where ε is the porosity of the fiber bed [32].

As fluid displaces air within the preform, the saturation, S, typically rises from zero

at the flow front to a steady-state value at some distance behind the flow front [32]. A

modified version of Darcy’s law that accounts for incomplete saturation is given by

~q = − κ̃u

µ
∇P = −kr(S)κ̃s

µ
∇P (2.2)

where κ̃u = kr(S)κ̃s is the unsaturated permeability and kr is a non-dimensional rela-

tive permeability, ranging from 0 to 1 as S varies from 0 to 1 [32, 41]. In this case, the

tracer velocity is related to the Darcy velocity by~ν = ~q/(εS) [32].

Controlling the Darcy velocity (and thus the capillary number during impregna-

tion) thus requires an accurate estimate of saturation and both saturated permeability

and relative permeability (in order to estimate unsaturated permeability). The remain-

der of this section provides an overview of (1) analytical models for saturated perme-

ability, (2) studies on effects of fiber packing on permeability, and (3) experimental

findings on the effects of Ca on permeability.

Notable analytical models of longitudinal saturated permeability were developed

by Gebart (known as the Kozeny-Carman (KC) equation) [42] and Shou, et al. [37].

The KC equation was derived on the basis of a static, idealized, ordered fiber array and
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provides a simple, general expression for saturated permeability in terms of properties

of the fibrous medium:

κ
(KC)
s =

1
4κ0

ε3

(1− ε)2 r̄2
f (2.3)

where r̄ f is the average fiber radius and κ0 is the Kozeny constant [35, 37, 42]. Gebart

derived values of the Kozeny constant for longitudinal flow in square (κ0 = 1.78)

and hexagonal (κ0 = 1.66) fiber arrangements. However, these Kozeny ”constants”

show a dependence on fiber bed porosity [37, 42]. Furthermore, the Kozeny ”con-

stant” has been found to vary by over an order of magnitude (≈ 0.3− 3), requiring

experimental measurement for real fiber preforms [35–37, 40]. In an effort to develop

a more accurate analytical model for longitudinal permeablity, Shou, et al. used a

scaling analysis to determine a scaling relationship between κs, ε, and r̄ f and then cali-

brated the model with primarily numerical results for permeability of both square and

hexagonally packed fiber beds [37]. As illustrated in Fig. 2.21, the model developed

by Shou, et al. (labeled Present Model in Fig. 2.21) shows an excellent fit with numer-

ical permeability results over the entire range of fiber volume fraction for both square

and hexagonal arrays (fiber volume fraction is equal to 1− ε) [37]. Meanwhile, the KC

equation (labeled Gebart in Fig. 2.21) shows significant deviations, especially at low

values of fiber volume fraction [37].

The analytical models presented above were developed on the basis of unit cell

geometries that tile to create uniform fiber arrays [35, 37, 42]. Several studies have

shown that the longitudinal saturated permeability of fiber beds increases with non-

uniformity in fiber packing due to the presence of both wide and narrow channels

within the medium [36–39]. The wider channels accommodate a higher fluid flux per

unit area because the fluid speed increases proportionally with the gap area, allow-

ing for increased overall fluid flux in non-uniform fiber beds [38, 39]. In the study

by Shou, et al., effects of non-uniformity on permeability were explored by comput-

ing the permeability of an assemblage of unit cells with a distribution of cell areas [37].
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The study demonstrated that a random distribution of fibers has a higher permeability

than an ordered fiber bed at the same fiber volume fraction, and that the permeabil-

ities of random fiber arrangements more closely align with experimentally measured

permeabilities (Fig. 2.22) [37]. Shou, et al. also explored effects of the degree of non-

uniformity by varying parameters of the distribution of cell areas [37]. A parameter

to describe the degree of non-uniformity was defined: α = 〈A2〉/〈A〉2, which is the

ratio of the average cell area squared to the square of the average area of the cells [37].

Fig. 2.23 shows how permeability increases with increasing non-uniformity [37]. Ef-

fects of non-uniformity on longitudinal permeability were also studied by Chen, et al.

[39]. Longitudinal permeabilities of non-uniformly packed fiber beds were estimated

using computational fluid dynamics [39]. In this study, the mean minimum inter-fiber

distance (MIFD) was used to describe the degree of non-uniformity in fiber packing

(MIFD decreases with increasing non-uniformity) [39]. The results of this study also

quantitatively illustrate that permeability increases with increasing non-uniformity

(Fig. 2.24) [39]. The aforementioned studies assume saturated flow through a static

fiber bed. During impregnation, fibers may rearrange as a result of fluid-fiber inter-

actions. Several studies have suggested that increases in permeability with capillary

number may be due in part to cooperative fiber rearrangement that increases the de-

gree of non-uniformity and hence permeability [43–45]. The first direct evidence of

this phenomenon is given in Chapter 3.

Increases in permeability with capillary number have been observed experimen-

tally in several studies [43, 46–49]. In addition to potential effects of fiber rearrange-

ment (as previously mentioned), two other potential origins of this trend have been

proposed. The first involves preferential flow channeling, wherein fluid preferentially

travels in either the smaller or the larger channels in the preform. Several studies

on unsaturated flow in woven fabrics have suggested that the increase in permeabil-

ity with Ca is due to preferential flow channeling through larger channels (typically
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intra-tow channels in a weave) as the flow rate increases [43, 44, 46, 47]. The second

involves the degree of saturation behind the flow front during impregnation, as unsat-

urated permeability increases with S. At sufficiently high capillary numbers, bubbles

can be mobilized and swept away by subsequent fluid flow [32, 33]. In fiber beds

with a monomodal fiber packing distribution, infiltration at higher Ca correlates with

a higher final degree of saturation due to increased bubble mobilization [33]. The ef-

fects of both preferred flow channeling and saturation on permeability are explored

in Chapter 3.

2.3.2 Void Formation

The evolution of voids during liquid composite molding and subsequent curing oc-

curs via several mechanisms [32–34, 50–55]. During impregnation, voids may be en-

trapped in the composite or they may be mobilized and swept out of the composite,

both mechanisms depending strongly on capillary number [32–34, 50–52]. Pressure

changes during impregnation can lead to void compression, dissolution and/or ex-

solution [32]. Finally, during curing, gas evolution and exsolution from the matrix

precursor can lead to additional void formation [53–55]. In this section, each of these

mechanisms and their implications for composites processing are reviewed.

Void entrapment occurs during impregnation when the flow front advances non-

uniformly, pinching off bubbles in regions where impregnation is lagging [32, 34,

50–52, 56]. Non-uniformity in fluid flow can occur when the fiber preform itself is

non-uniformly arranged and thus the relative effects of capillary forces and viscous

forces vary depending on the local spacing between the fibers [32, 34, 50–52, 56]. Fiber

preforms consisting of tows of fibers exhibit a dual-scale structure with micron-scale

spaces between fibers within tows –where capillary forces dominate– and compar-

atively larger-scale (hundreds of microns) channels between tows – where viscous

forces are more important [32, 34, 51, 52, 56]. If liquid flows faster in the large channels
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between tows, needle-like or cylindrical voids will be entrapped within tows (referred

to as tow voids) as illustrated in Fig. 2.25(A,C) [32, 34, 51, 52]. On the other hand, if

liquid flow is faster inside the tows, voids will form in the large channels (referred to

as channel voids) as illustrated in Fig. 2.25(B,D) [32, 34, 51, 52]. It is then unsurprising

that numerous studies have shown that both the void type (tow vs. channel) and void

content have been correlated with the capillary number [32, 34, 51, 52]. Experimen-

tal results for different liquids fall on a master curve relating the void content to the

capillary number for a given fiber preform (Fig. 2.26) [32, 34, 51, 52]. When the cap-

illary number is low, the leading flow front occurs in the small channels within tows,

leading to the formation of channel voids [32, 34, 51, 52]. Tow voids form when the

capillary number is high [32, 34, 51, 52]. Correspondingly, there is an optimal capillary

number at which the flow speeds within the tows and the channels are matched to the

greatest degree possible and hence the void content is minimized [32, 34, 51, 52]. For

bidirectional woven fabrics, the void content does not drop to zero at the optimal cap-

illary number because it is not possible to match flow speeds for channels and tows in

different orientations [32]. However, several studies with random mats and unidirec-

tional fabrics have demonstrated removal of virtually all voids at the optimal capillary

number [32].

In an effort to better understand the physical mechanisms of fluid flow and void

formation, various models have been developed to predict void content in simplified

systems [32, 50, 51, 56]. One of the simplest systems yielding insights into the fun-

damentals of bubble entrapment is that of the pore doublet model (PDM) [50, 56]. A

PDM developed by Wielhorski, et al. is shown schematically in Fig. 2.27 [50]. The

PDM consists of two circular capillaries of different radii: a microchannel with radius

Rm, and a macrochannel with radius RM > Rm. In one section, the capillaries are

continuously interconnected over a length, l. In the other section, the capillaries are

connected only at nodes on both ends, separated by a distance L. Bubbles entrapped
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within the second section are referred to as microbubbles (in the microchannel) and

macrobubbles (in the macrochannel). Per the assumptions and definition of the model,

fluid flow is driven by capillary forces (the fluid is assumed to be wetting) and may be

assisted by an injection pressure, Pi. Another key assumption of the model is that the

macrochannel supplies mass to the microchannel in the first section. This hypothesis

is referred to as the ”supplying principle” and, depending on Pi, either the macrochan-

nel flow front or the microchannel flow front may reach the first node faster. When

the capillaries are not connected (as in the second section of the PDM), the flow front

inside the large channel will always move faster than that in the small channel. In real

fiber preforms, channels are often interconnected and allow mass transfer. The PDM

illustrates the effects of interconnectivity between dual-scale flow channels.

In the PDM defined by Wielhorski, et al., the formation of either macrobubbles

or microbubbles is possible [50]. First, an injection pressure, P∗, is defined for which

the menisci in the macrochannel and microchannel arrive at the first node at the same

time. Below this pressure, the meniscus in the microchannel reaches the first node first.

If the meniscus in the microchannel has a sufficiently large lead, it can reach the second

node first, leaving a macrobubble in the macrochannel. However, if the flow front in

the macrochannel catches up and overtakes that in the microchannel, a microvoid will

form in the microchannel. In the case that the injection pressure is larger than P∗,

the meniscus in the macrochannel will reach both the first and second nodes first,

leaving a microvoid in the microchannel. One set of results for this model is shown

in Fig. 2.28 [50]. This plot shows minimal bubble content at Pi = P∗, increasing

macrobubble content as Pi decreases below P∗ and increasing microbubble content as

Pi increases above P∗. For Pi < P∗, the microbubble content is negligible compared

to the macrobubble content. This behavior is analagous to that in Fig. 2.26 where the

content of channel and tow voids is plotted against capillary number.

The capillary number also affects the mobility of bubbles with continued fluid flow
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[32, 33, 51]. Bubble mobility also depends on both bubble size and constriction size [32,

33, 51]. When the viscous drag force due to the pressure gradient across the bubble is

larger than the capillary force resisting bubble movement in the capillary constriction,

the bubble is mobilized [32, 33, 51]. Thus, there exists a critical capillary number for

the onset of void mobilization [32, 33].

This mechanism of void transport offers a route to eliminate residual voids even

if formation of voids at the flow front cannot be avoided [32, 51]. In a process called

”bleeding”, the injection pressure is increased and kept high for a period of time after

the mold filling process is complete [32, 51]. With the increase in pressure, the fluid

velocity increases and existing bubbles may be compressed (thus reducing the bubble

radius) or dissolved, facilitating void migration and elimination [32].

Another approach for eliminating bubbles is to apply vacuum on the outlet during

impregnation and bleeding [32]. This ensures that the initial air pressure within voids

is low and reduces the amount of dissolved gas that may be exsolved during pressure

removal or heating [32]. The combined effects of pressure changes and capillary num-

ber on microstructure evolution during impregnation are explored further in Chapter

4.

Voids may also form during curing by exsolution of dissolved gases or of gases

formed through the curing reaction [53, 54, 57–61]. In practice, temperature and pres-

sure profiles are carefully engineered, accounting for evolving rheological properties

of the polymer [53, 57–59]. In some cases, the bleeding process is performed at higher

temperatures, while the polymer has a low viscosity (i.e., before gelling), to drive out

voids and excess resin [57, 58]. In many cases, composites are cured under autoclave

pressure in order to maximally evacuate, dissolve, and compress voids [53, 57–59, 61].

To enable on-line control and optimization of complex curing processes, many models

have been developed to predict profiles of polymer pressure, polymer flow velocity,

void mobilization and void compression/dissolution as a function of temperature,
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applied pressure, polymer properties, and fiber bed geometry [57–59]. The effects of

curing on microstructure evolution in unidirectional minicomposites are explored in

Chapter 4.

2.4 Mechanics of Shrinkage Cracking

Pyrolysis of AHPCS gives a ceramic yield of roughly 20-30 vol% [21, 22]. When this

shrinkage is constrained, stresses that build up in the PDC are relieved in part by

cracking. The constraints imposed by continuous fibers are complex and can change

over the course of pyrolysis if the fibers rearrange to accommodate matrix shrink-

age. Prior to the present work, geometries and evolution patterns of shrinkage cracks

within PDCs confined by a fiber preform were largely unknown. The work presented

in Chapter 5 uses XCT to observe shrinkage crack formation in-situ during pyrolysis.

The study reveals that primary cracks – the first cracks to form in a particular local ma-

trix region – nucleate almost exclusively from fiber-matrix interfaces. If the putative

cracks kink into the matrix, they may stop upon reaching other fibers surrounding the

local matrix region or they may evolve into alternating or wavy geometries. As py-

rolysis continues, additional cracks may form in regions containing primary cracks.

The crack geometries and evolution patterns described in Chapter 5 show parallels

to those observed in thin films and adhesive joints [62–68]. Thus, in this section, a

brief background on pertinent topics within fracture mechanics of layered bimaterial

systems is provided.

The Dundurs’ parameters, αD and βD, are used to characterize the elastic mismatch

in bimaterial systems [62, 65, 66, 68]. These parameters, defined below for plane strain

conditions, are greater than zero for a compliant film or adhesive (material #2) on or
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between a stiffer substrate (material #1):

αD =
µ1(1− ν2)− µ2(1− ν1)

µ1(1− ν2) + µ2(1− ν1)
(2.4)

βD =
1
2
∗ µ1(1− 2ν2)− µ2(1− 2ν1)

µ1(1− ν2) + µ2(1− ν1)
(2.5)

where µi and νi are shear modulus and Poisson’s ratio of material i [62, 65, 66, 68].

Energy release rates, G, for cracks in thin films and adhesive layers follow the

scaling

G = Z
σ2h
Ē2

(2.6)

where h is the film/adhesive thickness, σ is the stress in the film/adhesive, Ē2 =

E2/(1− ν2)
2 is the plane strain film/adhesive modulus, E2 is the elastic modulus of

the film/adhesive, and Z is a dimensionless driving force that depends on crack geom-

etry and elastic mismatch [62–64]. The energy release rate increases with film/adhesive

thickness and stress [62–64]. Driving forces for additional cracks between existing

cracks exhibit similar trends [62].

In adhesive layers, cracks in both wavy (Fig. 2.29(A)) and alternating (Fig. 2.29(B-

C)) geometries have been observed [62, 65, 68]. The alternating geometry has been

studied in depth by Akisanya and Fleck [65, 68]. In the alternating mode, cracks alter-

nate between the two interfaces at regular intervals [62, 65, 68]. They form by periodic

kinking of interfacial cracks into the adhesive, followed by growth across the adhesive

layer and formation of new interfacial cracks at the other interface [62, 65, 68]. Kink-

ing occurs when the phase angle of a kink-like flaw at the tip of the interfacial crack

reaches a critical value [65–68]. The interfacial crack length at which kinking occurs

is a function of adhesive layer thickness, elastic mismatch, remote stress intensity fac-

tor, residual stress, interfacial toughness, adhesive layer toughness, angle and length

of putative flaws, and Young’s moduli of the two materials[65, 68]. These studies on
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alternating cracks in adhesive layers provide a foundation for interpreting alternating

cracks observed in minicomposites (Chapter 5).

2.5 Preliminary Processing Studies on Repeated PIP

Preliminary processing studies on repeated PIP were performed using model sys-

tems consisting of unidirectional fiber beds. The composite specimens were fabricated

by first inserting nine to ten tows (≈ 4500− 5000 fibers) of BN-coated Hi-Nicalon™

Type-S SiC fibers into quartz or borosilicate tubes with 1.5mm inner diameter (Vitro-

Tubes™), and then heat-shrinking the tubes onto the fibers under vacuum. Next, the

fiber bed was impregnated with AHPCS via pressure-assisted impregnation. Prior to

impregnation, the AHPCS was mixed with 0.2 wt% dicumyl peroxide (DP) initiator

to promote subsequent curing. A standard cure cycle was performed at 120°C for two

hours. A standard pyrolysis was performed under flowing argon with a temperature

profile recommended by Starfire® Systems: 25°C to 250°C at 2°C/min, 250°C to 650°C

at 1°C/min, 650°C to 850°C at 3°C/min, 850°C hold 1hr, and cool to room tempera-

ture at -5°C/min [31]. Specimens were further densified via repeated PIP cycles with

AHPCS + 0.2 wt% DP precursor using the same curing and pyrolysis cycles.

Minicomposites were imaged with XCT2 after various stages of processing: (A)

after first impregnation and cure, (B) after one PIP cycle, (C) after one PIP cycle and

the second impregnation and cure, (D) after two PIP cycles and the third impregna-

tion and cure, (E) after three PIP cycles and the fourth impregnation and cure, and (F)

after four PIP cycles and the fifth impregnation and cure. Transverse sections from

each of these specimens are presented in Fig. 2.30. The microstructures are highly

heterogeneous. First, the fiber packing is non-uniform: fibers tend to appear in rel-

2XCT was performed at Beamline 8.3.2 at the Advanced Light Source at Lawrence Berkeley Na-
tional Laboratory. Tomographic slices were reconstructed using a commercial reconstruction algorithm
(Octopus v8; IIC UGent, Zwijnaarde).
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atively closely packed clusters separated by large channels that are several fiber di-

ameters wide and up to hundreds of fiber diameters long. Second, matrix material

is found preferentially in smaller channels between the fibers, with large voids typi-

cally present in larger channels. Third, continued densification is observed in smaller

channels with continued PIP processing, while large empty channels remain mostly

vacant. Due to the cyclic compounding nature of the repeated PIP process, microstruc-

tural heterogeneities introduced in early stages of the process are expected to set the

stage for continued heterogeneous processes in later stages. The following pathway

for microstructure evolution is proposed:

1. During impregnation and curing in the first cycle, non-uniformity in fiber pack-

ing causes non-uniformity in fluid flow and bubble formation, leading to void

formation primarily in the largest channels (due to the lower capillary pressure)

and possibly further increasing non-uniformity in fiber packing.

2. During the first pyrolysis, non-uniform distribution of the precursor creates non-

uniform forces on the fibers as the precursor shrinks. Shrinkage within the

smaller channels may bring closely-packed fibers closer together and cause ex-

pansion of large empty neighboring channels. Furthermore, shrinkage cracks of

various geometries may form heterogeneously with a dependence on channel

size and local fiber configuration.

3. Non-uniformity in void microstructure after the first PIP cycle further exacer-

bates non-uniformity in fluid flow and bubble formation during impregnation

and curing in the second cycle. During pyrolysis, shrinkage and cracking again

occur heterogeneously. Continued PIP processing is expected to follow this pat-

tern.

4. In addition, with continued PIP cycling, access to large voids may be closed off

due to densification of smaller connected channels.
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This preliminary study demonstrates the compounding effects of a PIP process that

fails to fill the largest channels between the fibers. It also highlights the importance of

understanding the fundamentals of microstructure evolution during PIP processing.

In particular, it illustrates the critical importance of the first PIP cycle and its impact on

microstructures during subsequent PIP cycles. Several critical open questions about

the first PIP cycle motivate the work of this dissertation:

1. How do fiber movement and preferred flow channeling influence precursor im-

pregnation?

2. How do fibers rearrange during impregnation and curing?

3. What factors influence formation, location, and size of bubbles that form during

impregnation and curing?

4. What types of cracks form during pyrolysis and how does the local geometry

influence their formation?

The remainder of the dissertation aims to provide insights that address these ques-

tions through direct observation of microstructures in unidirectional minicomposites

paired with complementary studies on preceramic polymer pyrolysis.
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Figure 2.1: Effects of particle loading on composite properties [13]. (A) Matrix poros-
ity decreases with repeated re-impregnations of the preceramic polymer. In the key,
percentages indicate SiC particle content in the preceramic polymer during the 0th re-
impregnation. (Subsequent PIP cycles did not use particle fillers.) The first three spec-
imens (filled circle, empty triangle, empty square) were densified with a polyvinyl-
silane (PVS) precursor, while the fourth specimen (star symbol) was densified with a
polycarbosilane (PCS) precursor. (B) Microstructural and mechanical properties of the
composites. Figures reprinted from Kotani [13] with permission from Elsevier.

Figure 2.2: Porosity reduction during repeated PIP cycles for 3D composites processed
with and without slurry infiltration. Figure reprinted from Nannetti [11] with permis-
sion from John Wiley and Sons.
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Figure 2.3: Representative microstrutures of composites with 3D fiber architectures
fabricated with vibration- and vacuum- assisted slurry infiltration [9]. (A) Composite
fabricated with a monomodal slurry of fine (≤ 1µm) mullite and alumina particles
[9]. (B) Composite fabricated via coinfiltration of a bimodal slurry containing coarse
(23µm) SiC particles and fine (≤ 1µm) mullite/alumina particles [9]. Figures reprinted
from Yang [9] with permission from John Wiley and Sons.
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Figure 2.4: Robust microcomposite matrix in a C f /SiC CMC. (A) (inset) Heat ex-
changer reinforcement contains tricorn-shaped voids at the intersection of a wall and
the outer surface. (A) Tricorn-shaped voids are effectively filled with a robust mi-
crocomposite matrix consisting of chopped SiC fibers and a PIP-derived SiC matrix.
(B) Tricorn-shaped region filled with chopped SiC fibers coated with CVI pyrolytic
carbon and SiC. Figure reprinted from Marshall and Cox [4] with permission from
Annual Reviews.
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Figure 2.5: Effects of curing temperature, consolidation pressure and heating rate
on composite microstructure and mechanical properties. (A) SEM images of CMCs
consolidated at (a) 600 K/h, (b) 300 K/h, and (c) 10 K/h. (B) Flexural strength and
(C) fiber volume fraction increase as curing temperature decreases. Figures reprinted
from Kotani [14] with permission from Elsevier.
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Figure 2.6: Mass yield of two lots (solid and dashed lines) of SMP-10 with (red lines)
and without (black lines) vacuum heat treatment (HT) at 90°C for 10 h [12]. In both
lots, vacuum heat treatment increases the mass yield of the PDC [12]. Figure reprinted
from King [12] with permission from John Wiley and Sons.

Figure 2.7: Mass gain of wet and B-staged CMC laminates after each re-infiltration
[12]. B-staging shows no adverse effects on the rate of densification in subsequent
PIP cycles [12]. Figure reprinted from King [12] with permission from John Wiley and
Sons.
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Figure 2.8: Densification efficiency and mechanical properties of LPCS- and PCS-
derived CMCs. (A) LPCS shows superior densification behavior compared to PCS
over several PIP cycles. (B) Flexural testing reveals superior mechanical properties of
LPCS-derived CMCs. Figures reprinted from Zhong [25] with permission from Else-
vier.
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Figure 2.9: Densification of SiC f /SiC CMCs fabricated with three different polycar-
bosilane precursors [22]. Figure reprinted from Yin [22] with permission from Else-
vier.
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Figure 2.10: Classes of organosilicon preceramic polymers. Figure reprinted from
Colombo [17] with permission from John Wiley and Sons.

Figure 2.11: Schematic depiction of AHPCS molecular structure. Figure reprinted
from Kaur [20] with permission from Elsevier.
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Figure 2.12: The molecular weight distribution of SMP-10 shifts to higher molecular
weights with increasing time duration of thermal treatment at 86°C in vacuum [12].
This is due to the volatilization of low molecular weight oligomers from the SMP-10.
Molecular weight measurements were performed using gel permeation chromatogra-
phy. Figure reprinted from King [12] with permission from John Wiley and Sons.
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Figure 2.13: Elemental content of AHPCS-derived ceramic after annealing at various
temperatures for 3h in argon [20]. With increasing annealing temperature, the frac-
tion of oxygen and excess carbon decrease while the fraction of stoichiometric SiC
increases. Figure reprinted from Kaur [20] with permission from Elsevier.
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Figure 2.14: Progression of crystallization and elimination of oxygen and excess
carbon with thermal treatment of AHPCS-derived ceramic in gettered argon [6].
Brightfield-TEM micrographs, SAED patterns, and TEM-EDS spectra are illustrated
for each thermal treatment. EDS spectra are normalized to the Si peak intensity (not
shown). The results show reductions in C and O content with increasing temperature
and time. The results also show that both crystallization and C and O reduction occur
more readily along particle surfaces (exterior) than particle interiors, suggesting that
egress of gaseous decomposition products limit crystallization. Figure reprinted from
Poerschke [6] with permission from Elsevier.
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Figure 2.15: (A) Simplified schematic of the hydrosilylation crosslinking mechanism
and (B) accompanying FTIR spectra showing the corresponding consumption of allyl
groups [20]. The band at 1631cm−1 represents the C=C bond in the allyl group. This
band completely disappears after treatment at 250°C, suggesting that hydrosilylation
has ooccured. Figure reprinted from Kaur [20] with permission from Elsevier.
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Figure 2.16: (A) Simplified schematic of the dehydrocoupling crosslinking mechanism
and (B) accompanying TGMS results showing hydrogen evolution (dashed line) and
mass loss (solid line) [20]. Figure reprinted from Kaur [20] with permission from Else-
vier.
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Figure 2.17: FTIR spectra showing the disappearance of C-H and Si-H peaks and ap-
pearance of a Si-C peak during the ceramization process [21]. Figure reprinted from
Zunjarrao [21] with permission from John Wiley and Sons.

52



Figure 2.18: DTA and TG curves for AHPCS during thermal treatment to 1300°C at a
heating rate of 5°C/min [21]. The peak in the DTA curve at about 1100°C is attributed
to the onset of crystallization. Figure reprinted from Zunjarrao [21] with permission
from John Wiley and Sons.
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Figure 2.19: XRD patterns illustrate crystallization progress with increasing temper-
ature and increasing dwell time [6]. The as-pyrolyzed (as-pyro) pattern indicates an
amorphous microstructure and is for specimens pyrolyzed to a maximum tempera-
ture of 800°C. Figure reprinted from Poerschke [6] with permission from Elsevier.
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Figure 2.20: Brightfield-TEM images of specimens annealed for 100h at (a) 1300°C, (b)
1400°C, and (c) 1500°C [6]. The specimen treated at 1500°C shows the highest fraction
of crystalline β-SiC and the largest crystallite size. Figure reprinted from Poerschke
[6] with permission from Elsevier.
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Figure 2.21: Comparison of models for longitudinal permeability with experimental
and numerical results for (a) square and (b) hexagonal fiber arrangements [37]. The
KC model (labeled Gebart) is shown with a dashed black line and the model devel-
oped by Shou, et al. is shown with a solid blue line. Dimensionless permeability is
defined as the permeability divided by the fiber radius, r, squared. Figure reprinted
from Shou [37] with permission from SAGE Publications.

Figure 2.22: Comparison of models for longitudinal permeability of random fiber ar-
rays with experimentally measured permeabilities [37]. Models for uniform (ordered)
fiber arrays are also plotted for comparison. Figure reprinted from Shou [37] with
permission from SAGE Publications.
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Figure 2.23: Longitudinal permeability increases with increasing degree of non-
uniformity as defined by a randomness factor α [37]. Results are shown for three
different fiber volume fractions, v. Figure reprinted from Shou [37] with permission
from SAGE Publications.

Figure 2.24: Longitudinal permeability increases as mean minimum inter-fiber dis-
tance decreases [39]. Results are shown for several fiber bed porosities, φ [39]. The
permeability, 〈K||〉 is normalized by the fiber radius, a, squared. The mean minimum
inter-fiber distance, 〈δ̄1〉 is normalized by the fiber radius. Figure reprinted from Chen
[39] with permission from Elsevier.
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Figure 2.25: Entrapment of voids due to non-uniform fluid flow in (a-b) the longitu-
dinal direction and (c-d) the transverse direction [32]. In (a) and (c), the leading flow
front occurs in the large channels between tows, leading to entrapment of tow voids.
In (b) and (d), the leading flow front occurs within the tows, leading to entrapment of
channel voids. Figure reprinted from Park [32] with permission from SAGE Publica-
tions.

Figure 2.26: Void type and void content correlate with capillary number for various
liquids within the same type of fiber bed [32]. Channel voids are plotted with open
symbols and tow voids are plotted with filled symbols. Figure reprinted from Park
[32] with permission from SAGE Publications.
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Figure 2.27: Schematic of the pore doublet model (PDM) developed by Wielhorski, et
al., illustrating (a) the supplying principle, (b) formation of a macrobubble, and (c) for-
mation of a microbubble [50]. Figure reprinted from Wielhorski [50] with permission
from Springer.

Figure 2.28: Content of macrobubbles and microbubbles as a function of dimension-
less injection pressure (Pi/P∗) in pore doublet model [50]. Results are shown for dif-
ferent values of α = Rm/RM with β = L/l = 0.002, l = 500mm and Rm = 10µm.
Figure reprinted from Wielhorski [50] with permission from Springer.
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Figure 2.29: Schematics of (A) wavy and (B) alternating crack geometries. (C) Fracture
surface of an alternating crack in an epoxy/aluminum double cantilever beam spec-
imen [68]. Figure (C) reproduced from Akisanya [68] with permission from Springer
Nature.
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(A) 1st I&C (B) 1st PIP

(C) 1st PIP + 2nd I&C (D) 2nd PIP + 3rd I&C

(E) 3rd PIP + 4th I&C (F) 4th PIP + 5th I&C

200 μm

Figure 2.30: Transverse sections from XCT of unidirectional fiber beds after various
stages of repeated PIP. Processing stages shown are (A) after 1st impregnation and
cure (I& C), (B) after 1st PIP*, (C) after 1st PIP + 2nd impregnation and cure, (D) after
2nd PIP + 3rd impregnation and cure, (E) after 3rd PIP + 4th impregnation and cure,
and (F) after 4th PIP + 5th impregnation and cure. Transverse sections in (A) and
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(B) are from the same location within the same specimen before and after pyrolysis.
Transverse sections in (C)-(F) are all from different specimens. Scale bar applies to all
images.
*The pyrolysis temperature profile used for this specimen is different from that of the standard py-
rolysis. The primary difference is the maximum pyrolysis temperature, which was 1200°C instead of
850°C. The thermal profile used for this specimen was: 25°C to 250°C at 2°C/min, 250°C to 700°C at
1°C/min, 700°C to 930°C at 3°C/min, 930°C hold 70min, 930°C to 1090°C at 3°C/min, 1090°C hold
70min, 1090°C to 1200°C at 2°C/min, 1200°C hold 70min, cool at -5°C/min. This profile is similar to
that recommended by Starfire® Systems [31]; slight differences are due to limitations in calibration
precision and temperature control for the heating system used in this experiment.
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Chapter 3

Axial Permeability of Unidirectional

Fiber Beds

Abstract

In-situ X-ray computed tomography during axial impregnation of unidirectional

fiber beds is used to study coupled effects of fluid velocity, fiber movement and pre-

ferred flow channeling on permeability. In order to interpret the experimental mea-

surements, a new computational tool for predicting axial permeability of very large

2D arrays of non-uniformly packed fibers is developed. The results show that, when

the impregnation velocity is high, full saturation is attained behind the flow front and

the fibers rearrange into a less uniform configuration with higher permeability. In

contrast, when the velocity is low, fluid flows preferentially in the narrowest channels

between fibers, yielding unsaturated permeabilities that are lower than those in the

saturated state. These insights combined with a new computational tool will enable

improved prediction of permeability, ultimately for use in optimization of composite
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manufacturing via liquid impregnation1.

3.1 Introduction

In manufacturing of fiber-reinforced composites, the matrix phase is commonly intro-

duced by pressure-assisted impregnation of a fluid into a dry fiber preform, a process

referred to as liquid composite molding (LCM) [32]. One of the challenges with this

process involves formation and entrapment of voids and hence incomplete saturation

of the fiber preform [32–34, 50]. Experimental studies have demonstrated that void

content is correlated with the capillary number, Ca = µν/γ, where ν is the tracer fluid

velocity, µ is the fluid viscosity, and γ is the fluid surface tension [32–34]. In preforms

of woven tows of fibers, void content attains a minimum at an optimal capillary num-

ber [32]. Below the optimum, fluid flows faster in the small channels within tows,

due to capillary wicking, leading to remnant voids between tows [32]. In contrast, at

high capillary numbers, preferred flow within the large channels between tows leads

to voids within tows [32]. In unidirectional fiber beds subject to transverse flow, void

content decreases with increasing Ca [33]. This effect has been attributed to increased

mobilization of voids at higher Ca [33].

Controlling the impregnation velocity (and thus the capillary number) during liq-

uid composite molding is crucial for minimizing void content in the final composite

product. Impregnation kinetics through fiber beds are typically modeled by Darcy’s

Law. The Darcy velocity (or Darcy flux) during saturated fluid flow is given by

~q = − κ̃s

µ
∇P (3.1)

1The content of this chapter has previously appeared in Composites Part A: Applied Science and
Manufacturing (Natalie M. Larson, Frank W. Zok. “Insights from in-situ x-ray computed tomography
during axial impregnation of unidirectional fiber beds”. Composites Part A 107, 124-134 (2018)) [69]. It
is reproduced here with the permission of Elsevier.
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where κ̃s is the saturated permeability tensor and∇P is the pressure gradient [32–40].

The corresponding tracer velocity is:

~ν =
~q
ε

(3.2)

where ε is the porosity of the fiber bed [32]. Fundamental models for saturated per-

meability of fiber beds have been developed on the basis of analyses of unit cells rep-

resenting static, uniformly-packed fibers and idealizations of flow fields in the inter-

vening channels [35–37, 42, 47]. The longest-standing model for the permeability of a

unidirectional fiber bed is attributed to Kozeny and Carman and is based on an anal-

ysis of a collection of uniform aligned tubes [33, 35–37, 40, 42, 70].

In composite processing, impregnation involves displacement of air by fluid within

the fiber preform and thus the unsaturated permeability is also relevant [32, 41, 43]. In

this process, there generally exists a partially-saturated zone in which the saturation

S increases from zero at the flow front to a steady-state value at some distance behind

the flow front [32]. Preferred flow channeling may occur in either small or large chan-

nels within the preform at the flow front [32]. Furthermore, the steady-state saturation

may be less than unity due to bubble entrapment, which may also result in continued

preferred flow channeling well behind the flow front and partially-saturated zone. To

account for incomplete saturation, Darcy’s law (eq. 3.1) and the tracer velocity (eq.

3.2) are modified as follows [32]:

~q = −kr(S)κ̃s

µ
∇P (3.3)

~ν =
~q
εS

(3.4)

where kr is a non-dimensional relative permeability, ranging from 0 to 1 as S varies
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from 0 to 1 [32, 41]. The unsaturated permeability, κ̃u, is defined as κ̃u = kr(S)κ̃s [32,

41].

Estimating unsaturated permeability requires knowledge of S, kr(S), and κ̃s. These

parameters have been shown to depend on uniformity of fiber packing and capillary

number as follows [41, 43, 44, 46, 47, 71]. First, the axial saturated permeability in-

creases with the degree of non-uniformity in fiber packing [36–39]. It has been further

suggested that cooperative fiber movement may lead to an increase in the degree of

non-uniformity and hence permeability [43–45]. However, direct evidence of such

movement and its effect on permeability are lacking. Second, the unsaturated perme-

ability of fiber preforms increases with Ca [43, 46–49]. In woven fabrics, this behavior

has been attributed to preferred flow channeling at the flow front within the large

inter-tow channels at high Ca [43, 46, 47]. As noted earlier, unsaturated fluid flow can

occur preferentially in either the smallest or the largest channels at or well behind the

flow front and partially-saturated zone, depending on the impregnation velocity and

the fiber bed geometry. Direct microstructural evidence of preferred flow channeling

and its effects on permeability are also lacking.

The present study aims to address these deficiencies through direct observations

of fiber movement and preferred flow channeling via in-situ X-ray computed tomog-

raphy (XCT) during impregnation over a wide range of velocities. An improved un-

derstanding of such effects should lead to improved permeability models which, in

turn, could be used to enhance process control in liquid composite molding.

Mechanisms of fluid flow and void transport within fiber tows were previously

studied by Vilà et al. [72] using XCT. In that study, fluid was impregnated into the

tow incrementally (not continuously) using a syringe [72]. Since the acquisition time

for each XCT scan in that study was long (about 2 h), the fluid front could only be

imaged under static conditions [72]. (Otherwise, significant blurring would have oc-

curred.) The experiments in the present study differ from those of Vilà et al. [72] in
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two important respects. First, imaging was performed in-situ during impregnation.

Second, the XCT scan times were much shorter (1.5 min). As a result, the present ex-

periments enable observation of fiber movement and preferred flow channeling over

a range of impregnation velocities. One drawback of the short scan time and poten-

tial movement of the phases during impregnation is reduced image quality. Conse-

quently, a significant amount of manual intervention is required to properly segment

the various phases during image processing.

In order to interpret the observations of fiber movement and preferred flow chan-

neling as well as their effects on permeability, we also present and employ a new

computational tool for estimating permeability of very large arrays of non-uniformly-

packed fibers. Here 2D segmented XCT images of fibers, voids and fluid are used as

inputs into the computations; preferred flow channeling and changes in fiber position

before and during impregnation are therefore explicitly addressed. The results are

calibrated and assessed through comparisons with results from computational fluid

dynamics (CFD) simulations of flow in uniform and non-uniform fiber beds. Compar-

isons of predicted permeabilities with those obtained using computational schemes

based on unit-cell analyses of non-uniform fiber beds demonstrate the superiority of

the current approach.

3.2 Materials and methods

3.2.1 Test specimens

The material system selected for the study is based on a commercial SiC fiber and a

SiC preceramic polymer that, together, have been the focus of attention in the ceramic

matrix composites community in recent years [1, 5, 73]. Unidirectional fiber beds

were made by filling 10 cm long thin-walled borosilicate glass tubes (1.5 mm ID, 1.8

mm OD, VitroCom, Mountain Lakes, NJ) with 10-12 tows of Hi-NicalonTM Type S
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SiC fibers (500 fibers/tow), and then heat-shrinking the tubes onto the fibers under

vacuum. During heat shrinking, the tubes conform to the profile of the outermost

fibers. The terminal inner diameter of the tubes was about 1.4 mm. The resulting fiber

bed porosity within the tubes was 0.32− 0.38. Based on analysis of ≈3,800 fibers over

a length of 1.4 mm in a representative specimen, fiber misalignment relative to the

tube axis was determined to be 1.4±0.8°. The polyvinyl alcohol sizing that had been

present on the fibers at the outset was removed with a 1h thermal treatment at 600°C.

A commercial SiC pre-ceramic polymer — allylhydridopolycarbosilane (SMP-10,

Starfire Systems, Inc., Glenville, NY) — was used as the impregnating fluid (surface

tension, γ = 30× 10−3 J/m2, provided by manufacturer). SMP-10 is a transparent

amber fluid at room temperature. It is converted to SiC by pyrolysis at temperatures

above 850°C. The fluid was stored under Ar in a freezer to inhibit cross-linking and

liberation of hydrogen. Notwithstanding, some changes occur over periods of several

months. Their effects manifest in a gradual increase in viscosity. All experiments were

conducted with the same batch of SMP-10. Its viscosity was measured periodically

over the course of the study; it ranged from 68× 10−3 Pa s at the outset to 82× 10−3

Pa s at the end. Viscosity values pertinent to the subsequent analysis were obtained by

interpolating the measurements to the time of each experiment. Immediately before

using the precursor, 0.2 wt% dicumyl peroxide was added to it, to promote subsequent

curing at 120°C.

3.2.2 Impregnation experiments

Two types of impregnation experiments were conducted. The first was designed to

measure unsaturated axial permeability from impregnation rates under constant pres-

sure (Fig. 3.1(A)). Impregnation was performed with the tubes oriented horizontally.

Pressure was applied in one of two ways. For high pressures (> 100 kPa), compressed

air at constant pressure Pm was applied to the fluid reservoir while the outlet was left
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open to atmospheric pressure. Pressures up to 607 kPa were used. For low pressures

(< 100 kPa), the reservoir was left open to atmospheric pressure and vacuum was

drawn at the tube outlet. In other cases, neither compressed air nor vacuum were ap-

plied (Pm = 0); here capillary pressure alone drives imbibition. The distance, x f f , from

the tube inlet to the flow front was monitored over time (Fig. 3.1(B,C)) with a Dino-

Lite AD7013MZT optical microscope with resolution of 1280×960 pixels and a field of

view of 2.8 mm×2.1 mm. The specimen was manually translated beneath the micro-

scope lens in order to keep the flow front within the field of view. Uniformly-spaced

fiducial marks on the tube surface were used for distance measurements. Following

impregnation, specimens were cured at 120°C in air for 2 h and imaged ex-situ with

XCT.

In a complementary set of experiments, impregnations into six comparable fiber

beds were performed while continuous in-situ XCT imaging was performed at one

location within the tube. These experiments were performed with the tubes oriented

vertically: the fluid reservoir and inlet being at the top of the specimen and the outlet

at the bottom. Pressures up to 552 kPa were employed. To minimize specimen vibra-

tion during rotation, the compressed air line was sent through a slip ring that rotates

with the specimen. The pressure due to gravity was calculated to be ≈ 1.5 kPa: more

than an order of magnitude less than the average capillary pressure, P̄c = 16± 1 kPa

(discussed in section 3.2.5). XCT images were taken before, during and after impreg-

nation as well as after pressure removal. By definition, data taken at time t = 0 are

from images taken prior to impregnation. Because the location of the flow front could

not be monitored in these experiments, capillary numbers were estimated from the

results of the first set of experiments at the corresponding pressures.
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3.2.3 X-ray computed tomography (XCT)

XCT was performed at Beamline 8.3.2 at the Advanced Light Source at Lawrence

Berkeley National Laboratory. Ex-situ imaging was performed in multilayer mode

using 17 keV light (20-30% transmission) with a PCO edge camera and 10x optique

lens. For each scan, a total of 1,025 radiographs each with 500-800 ms exposure time

were collected over the course of about 14-22 minutes. The field of view was about

1.6×1.6×1.4 mm3 and the voxel edge length was 0.65 µm. In-situ imaging was per-

formed in white light mode with a dimax camera and 10x lens. The field of view was

about 2.0×2.0×2.0 mm3 and the voxel edge length was 1 µm. A full dataset, consist-

ing of 1,025 radiographs each with 40 ms exposure time, was collected over the course

of about 1.5 minutes; an additional 3.5 min was required to export the data from the

camera between scans. The images were reconstructed using filtered back-projection

methods.

3.2.4 Image segmentation

XCT images of the composites were segmented using the MATLAB image processing

toolbox in the following way. First, fibers were identified using the Circle Hough

Transform. Improperly identified pixels were corrected with filters based on con-

nected region size and pixel value, and by using a slice-by-slice comparison of the

identified fibers in the 10 slices above and below the slice of interest. Next, regions

outside of the composite were identified using a grayscale threshold, 2D order-statistic

filtering with a 5 by 5 pixel domain, and a flood-fill operation. The segmentation was

improved by filtering out incorrectly identified pixels based on connected region size

and by using a slice-by-slice comparison of the identified non-composite regions in

the 17 slices above and below the slice of interest.

For one slice of each in-situ scan, fluid and void regions were segmented by man-
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ually tracing and labeling the various regions. (Segmentation based on grayscale

thresholds alone is not effective.) Regions with and without fluid were identified

on the basis of several image characteristics and their variation with time and loca-

tion. First, surfaces of bare fibers (adjacent to voids) typically produce boundaries

that are slightly darker than those at the fiber-fluid interfaces. Second, fluid regions

appear slightly lighter than voids. Third, fluid-void interfaces show a relatively abrupt

change in grayscale values (Fig. 3.2(A)(ii)). In addition to using these characteristics

to identify the pertinent boundaries from individual transverse cross-sections, changes

in these characteristics from one transverse section to the next or from one scan to the

next were used for verification. For example, scrolling through a series of transverse

sections from one scan reveals changes in grayscale when passing from void to fluid.

Analogous changes are obtained by comparing scans taken at different times during

impregnation. A representative raw image and corresponding segmented image are

shown in Fig. 3.2.

Segmented images from in-situ experiments were used to compute the areas of

fluid, fibers and voids, denoted Al, A f and Av, respectively, as well as porosity and

degree of saturation in accordance with ε = (Al + Av)/(Al + Av + A f ) and S =

Al/(Al + Av). For the ex-situ images, fluid and void regions were not segmented and

only ε was computed; the area Al + Av was obtained from the difference between the

total composite area and the fiber area.

3.2.5 Measurement of permeability from impregnation rates

Impregnation rates were analyzed using Darcy’s law for one-dimensional flow: q =

−[kr(S)κs/µ][dP/dx] where ν = q/εS, κs is the axial saturated permeability, κu =

kr(S)κs is the axial unsaturated permeability, q is the Darcy velocity in the flow direc-

tion, and ν is the corresponding tracer velocity. Here we assume a sharp flow front

dividing the dry regions and the impregnated regions at a steady-state saturation.
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(That is, the partially saturated zone at the flow front and time dependence of satu-

ration at the flow front are neglected.) In this case, mass conservation requires that

dq/dx = 0, yielding dP/dx = −Pm/x f f . Accounting for capillary pressure, Pc, the

results can be re-expressed as [32–40]:

x2
f f

t
=

2kr(S)κs(Pm + Pc)

µεS
. (3.5)

The capillary pressure is given by:

Pc =
Fγcos(θ)(1− ε)

2εr̄ f
(3.6)

where θ is the contact angle between the fluid and the fibers, r̄ f is the average fiber

radius (r̄ f = 6.3± 0.9µm, as measured from XCT images), and F is a form factor that

depends on flow direction and fiber bed geometry [40, 74]; for axial flow in unidi-

rectional fiber beds, F = 4 [40, 72, 74]. The contact angle was measured from voids

identified in in-situ XCT images taken after pressure removal (Fig. 3.1(D)). Fifty such

measurements were made, yielding θ = 26.3± 8.2°.

Linear regression analyses of impregnation rate data, presented as x2
f f vs. t, yield

the Darcy slopes, D (Fig. 3.1(B)). In turn, the instantaneous capillary number Ca f f at

the flow front is:

Ca f f =
µν f f

γ
=

µ

γ

D
2x f f

. (3.7)

and the permeability in the form of κu/S is:

κu

S
=

µεD
2(Pm + Pc)

(3.8)

The results are ultimately cast in terms of a non-dimensional permeability, κ̂u/S =

κu/Sr̄2
f .
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3.2.6 Geometric Permeability Estimator (GPE)

In order to interpret the experimental measurements, we developed a new computa-

tional tool for estimating saturated and unsaturated permeability of very large arrays

of non-uniformly packed fibers conducting flow with full or incomplete steady-state

saturation. The development is motivated by deficiencies in previous computational

methods based on a combination of analytical results of permeabilities of unit cells

and distributions in local porosities (detailed in Section 3.2.7). It also recognizes that

computational fluid dynamics (CFD) simulations of the entire array (comprising about

5000-6000 fibers) would be intractable and that identification of a representative sub-

set of the entire fiber array would not be feasible because of the non-uniformity in

fiber movement. Being based solely on the geometry of a 2D fiber array and spatial

distributions of fluid and voids from segmented images, the tool is referred to as the

Geometric Permeability Estimator (GPE).

The GPE calculates relative axial fluid velocities, hereafter referred to as pseudo-

velocities, at each pixel location at which fluid flow is allowed. Pseudo-velocities are

calculated on the basis of the Hagen-Poiseuille model for steady-state laminar flow of

an incompressible fluid through a cylindrical tube. Here the velocity in the direction

of the tube axis at each point scales as v ∝ R2 − r2, where R is the cylinder radius

and r is the distance between the point of interest and the tube center. The algorithm

follows.

1. The Euclidean distance transform of regions available for fluid flow is computed.

In turn, the Euclidean distance d between each pixel and the nearest boundary

(either fiber, glass tube or void) is determined.

2. Local maxima of d from the first step are identified. Each maximum represents

the radius R of the largest cylindrical tube that would fit within that region. At

these pixel locations, r = 0 and thus the pseudo-velocity, vi, is assigned a value
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of R2.

3. For every other pixel, the nearest local maximum is identified and the distance

r between the two is computed. These pixels are assigned a pseudo-velocity

vi = R2 − r2. Examples of pseudo-velocity contour maps for saturated flow

from the GPE are shown in Fig. 3.3(D).

4. The corresponding non-dimensional pseudo-permeability, Ψ̂, is then calculated

as: Ψ̂ = ∑i vi/Acpr̄2
f p, where r̄ f p is the average fiber radius (in pixels) and Acp is

the total cross-sectional area of the composite (in pixels).

The GPE results were calibrated using CFD simulations of Stokes flow in the ax-

ial direction through unidirectional hexagonally-packed fiber beds with porosities in

the range 0.2-0.7 [39]. The hexagonally-packed beds analyzed with the GPE technique

contained 518 full fibers and 70 partial fibers (along image edges), each with a radius

of about 10 pixels (Fig. 3.3(A)). We find that the saturated pseudo-permeability is ap-

proximately proportional to the CFD permeability results [39] over the entire porosity

range. To relate the two, we use a calibration factor, c, defined by Ψ̂s = cκ̂
(CFD)
s ,

where Ψ̂s is the saturated pseudo-permeability. The calibration curve, shown in Fig.

3.3(B), falls in the (relatively narrow) range of 1.8–3.1 over the entire range of porosi-

ties2. Additionally, c varies monotonically with ε in a nearly linear fashion, thereby en-

abling use of simple interpolation functions to obtain real permeabilities from pseudo-

permeabilities for other porosity values via: κ̂(GPE) = Ψ̂/c(ε).

An assessment of the calibrated GPE technique was made by comparisons with

CFD results for two non-uniformly packed 2D fiber arrays with porosity ε = 0.7 [39].

The permeability results are shown in Figs. 3.3(A-B); the fiber beds and the velocity

2The GPE results depend on image resolution. As a result, the images were re-sized to obtain a
common resolution, characterized by a mean fiber radius of r̄ f p ≈ 10 pixels. Our studies showed
that c decreases as r f p increases, converging to a constant value (for a given porosity) at r f p of several
hundred pixels. Furthermore, as r f p increases, the dependence of c on porosity weakens, indicating
that the accuracy of the GPE technique improves with increasing image resolution.
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maps from both CFD and GPE are shown in Figs. 3.3(C-D). Upon applying a cali-

bration factor of c = 1.82 (the value inferred from the hexagonally-packed fiber bed

for ε = 0.7), the estimated permeabilities of the two non-uniformly packed beds fall

within about 6% of the values obtained by CFD. This correlation indicates that the GPE

technique, calibrated accordingly, can indeed provide useful quantitative predictions

of changes in permeability associated with non-uniform fiber packing.

In applying the GPE technique to the fiber beds obtained from in-situ XCT, the

formula κ̂(GPE) = Ψ̂/c(ε) was used with the pertinent calibration factors obtained

from a linear regression fit of the results for hexagonal fiber arrays (Fig. 3.3(B)) over

the porosity range ε = 0.3− 0.4. This fit yields c(ε) = 3.98− 3.09ε.

3.2.7 Alternative numerical techniques for estimating permeability

Various other schemes for estimating permeability of non-uniformly packed fiber ar-

rays have been explored previously [36, 37, 72]. Broadly, these schemes combine an-

alytical results for permeabilities of unit cells with distributions in local porosities of

fiber arrays of interest.

Notable analytical models of permeability are those of Gebart (known as the Kozeny-

Carman (KC) equation) [42] and of Shou [37]. In these models, permeabilities are

expressed in terms of unit cell porosity and a shape factor dependent on cell geome-

try (typically square or hexagonal). For uniformly packed hexagonal fiber arrays, the

permeabilities predicted by KC and Shou are given by [37, 42]:

κ̂
(KC)
s =

8
53

ε3

(1− ε)2 (3.9)

κ̂
(Shou)
s = 0.9

(1− 0.9(1− ε)0.5)4

1− ε
(3.10)

In applying these results to non-uniformly packed fiber arrays, area-weighted local
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porosity distributions are first calculated using one of three methods.

1. A Voronoi tessellation, with each cell containing one fiber, is constructed and the

cell porosities are computed. [37].

2. A Delaunay triangulation, with fiber centers used as vertices, is constructed and

the cell porosities are computed [36].

3. A pixel-by-pixel sliding cell technique is used, whereby the average porosity

within a prescribed radial distance from each pixel of interest is computed [72].

The local permeability for each cell (for the Voronoi and Delaunay methods) or

each pixel (for the sliding cell method) is computed using the local porosity and either

the KC or the Shou models for square or hexagonal packing. The permeability of the

entire fiber bed is then taken as the area-weighted average of local permeabilities [36,

37]. One drawback of these computational schemes is that they tacitly assume that

fiber arrangements are locally either square or hexagonal.

To assess these approaches, permeabilities of the fiber beds in Fig. 3.3(C-D) and

of a hexagonally-packed fiber bed with ε = 0.7 (518 full fibers and 70 partial fibers)

were computed using every combination of local porosity measurement (Voronoi tes-

sellation, Delaunay triangulation, sliding cell) and permeability model for hexagonal

packing (KC: eq. 3.9 and Shou: eq. 3.10). These six computational schemes for perme-

ability estimation, referred to collectively as unit-cell models, are denoted Voronoi KC,

Voronoi Shou, Delaunay KC, Delaunay Shou, sliding cell KC, and sliding cell Shou.

To facilitate valid comparisons with the GPE results, the fiber radius was taken to be

10 pixels. For the Voronoi cell calculations, cell areas were adjusted to account for cell-

boundary pixels; the saturated permeability was computed from an area-weighted

average of the cell permeabilities. An analogous averaging procedure for overlapping

cell-boundary pixels was followed for the Delaunay triangulation. For the pixel-by-

pixel sliding cell technique, a circular cell was used. The cell size was selected to be
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large enough so that every cell contained at least one fiber pixel (ie. each cell must have

porosity < 1 and hence finite permeability). For the current analysis, the cell radius

was selected to be 41 pixels. The saturated permeability was computed as the average

of the permeabilities calculated for each pixel. The resulting computed permeabilities

along with those from CFD [39] and from the GPE are shown in Fig. 3.4(A). Among

the computational methods considered here, the GPE yields results that most closely

match those from CFD for all three fiber beds (maximum 6% error).

Also shown in Fig. 3.4(A) are the analytical solutions for the hexagonal KC and

Shou expressions for a unit cell porosity of 0.7. If the unit-cell models properly cap-

ture the fiber bed geometry, their results should match very closely with the analytical

solution for the hexagonal fiber bed (small differences are expected due to the finite

resolution of the images used, with fiber radius = 10 pixels, and pixel-scale estima-

tion of the local porosities and permeabilities). For both the Voronoi and sliding cell

techniques, the estimated permeabilities differ by < 2% from the analytical solutions.

However, for the Delaunay techniques, the estimated permeabilities differ by about

20%, suggesting that this technique does not adequately capture the local geometries

and porosities within the fiber bed at the pertinent image resolution.

In Fig. 3.4(B) the results are re-expressed in terms of ratios of permeabilities of

non-uniformly and hexagonally packed fiber beds for each computational technique

(the goal being to assess the sensitivities of the techniques to non-uniformity, inde-

pendent of the absolute values of permeability). Again, the GPE technique yields the

closest match to the CFD results. Three of the unit-cell models (Voronoi KC, Voronoi

Shou, and sliding cell Shou) significantly underestimate the effects of increasing non-

uniformity on permeability, while the Delaunay KC technique significantly overesti-

mates it. In light of these results, the GPE technique was chosen for analysis of the

XCT images.
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3.3 Results and discussion

3.3.1 Unsaturated permeability measurements

The measured unsaturated permeabilities, in the form of κ̂
(m)
u /S, of specimens imaged

ex-situ with XCT were computed from the measured impregnation rates as described

in section 3.2.5. Representative results for impregnation kinetics, presented as x2
f f vs.

t, are plotted in Fig. 3.1(B,C). Linearity of the data in this form affirms that impregna-

tion follows Darcy’s law and that the permeability is constant over the length of the in-

filtrated region. The instantaneous capillary number at the flow front, Ca f f = µν f f /γ

(ν f f being velocity of the flow front), decreases as the flow front advances; its variation

over the duration of an individual experiment typically falls in the (relatively narrow)

range of about 2 - 4. By comparison, variations in Ca f f among various tubes (because

of pressure differences) span a range of almost a factor of 100, from about 10−5 to 10−3.

The latter effects are the ones of interest in subsequent analyses.

The measured unsaturated permeabilities (in the form of κ̂
(m)
u /S) were calculated

for 31 locations across 22 specimens. The results are plotted against Ca f f (taken at the

XCT imaging location) in Fig. 3.5. The measured permeabilities increase by nearly an

order of magnitude over the tested range of Ca f f . Elucidating the origins of this trend

represents the principal goal of the remainder of the study.3

3To assess the effects of slight variations in porosity between specimens (ranging from 0.32-0.38),
we performed a multivariable linear fit of the form: Log10(κ̂

(m)
u /S) = BLog10(Ca f f ) + Cε + D. The fit

yields: B = 0.37± 0.04 (p = 1.4× 10−9), C = 2.4± 1.9 (p = 0.20) and D = −1.3± 0.7 (p = 0.09) (values
following ± signs are standard errors). The results indicate that the variation in measured unsaturated
permeability with capillary number is statistically significant (as manifest in the low p-value for B)
whereas the variation with porosity is not (high p-value for C). The latter is attributable to the narrow
range of porosities probed by these experiments coupled with the scatter in the measurements.
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3.3.2 In-situ observations of fluid flow and fiber movement

Capillary imbibition

Two specimens that were infiltrated without applied pressure were imaged in-situ at

the same location, 1.5 cm from the top of the tube (Ca f f ≈ 4× 10−5). Fluid flow is

driven by capillary forces alone; for these two specimens, the capillary pressure falls

between 15− 16 kPa. The first sign of fluid appears within the narrowest channels be-

tween fibers where the local capillary pressure is highest, illustrating preferred flow

channeling at the flow front (Fig. 3.6(A)(i)). As impregnation proceeds, other (slightly

larger) channels are filled (e.g., Fig. 3.6(B,C)). The degree of saturation increased from

about 0.02 to 0.81 during a transient period of about 5 min (corresponding to passage

of the partially saturated zone). One of the specimens was given additional time for

the flow front to move well past the imaging location; it exhibited only minimal in-

crease in saturation, to a steady-state value of about 0.83, about 5 min later. Many of

the largest channels contain trapped voids even after long times (Fig. 3.6(C)). In some

cases, such as the middle-top region of Fig. 3.6B(i) and C(i), channels that were once

filled contain voids. We surmise that this is due to trapped voids migrating longitudi-

nally or transversely within the fiber beds as flow proceeds.

The images also reveal fiber movement during capillary imbibition. For example,

Fig. 3.7(A) shows that, by t = t* (the time of the first scan after the flow front had

passed the imaging location), some fibers within the filled channels had moved closer

to one another. In turn, channels in adjacent unfilled regions became somewhat larger.

This fiber rearrangement is attributed to elastocapillary effects [75–79], wherein fibers

in closely-packed regions, which are imbibed first, are pulled together by capillary

forces.

Distributions of local porosity and their differences before and after impregnation

are given in Fig. 3.8(A). Local porosity at each pixel was calculated over a 17 µm
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radius circle centered at the pixel of interest. (This was the smallest radius for which

every cell contained at least one fiber pixel and at least one fluid or void pixel, yielding

0 < ε < 1). Typically, the most significant changes occur in regions where the local

porosity is initially higher than average. Either the large channels open wider or the

fibers rearrange to form other large channels nearby. Cooperative fiber movement

of this kind leads to a greater density of both small and large channels and fewer

intermediate-sized channels. This is illustrated quantitatively in Fig. 3.9(A-B). The

figure shows the differences in the porosity probability density, ∆PD(t) = PD(t) −

PD(0), in the dry and the impregnated states. At t = t*, both specimens exhibit

positive values of ∆PD at low and high porosity levels and negative values of ∆PD at

intermediate porosities. The physical interpretation is that the fiber bed becomes less

uniformly packed, with more small and large channels and fewer intermediate-sized

channels as a result of impregnation.

Pressure-driven impregnation

A different sequence of events was obtained at high impregnation pressures (Pm > 276

kPa >> Pc, Ca f f ≈ 7× 10−4 − 2× 10−3). The first XCT image obtained after the fluid

front had passed the imaging location showed essentially full saturation (S > 0.99).

Evidently saturation occurs over a time scale shorter than that needed for imaging (1.5

min). Thus, manifestations of preferred flow channeling at the flow front, if present,

were not observed. However, the fluid is expected to first find the paths of least resis-

tance within the larger channels because Pm/Pc >> 1 and thus capillary imbibition is

slow compared to pressure-driven flow.

XCT again reveals fiber movement during impregnation (Figs. 3.7(B), 3.8(B), and

3.9(D-F)), often leading to expansion or rearrangement of regions with high local

porosity to form larger channels locally. Similarly to the specimens infiltrated by cap-

illary pressure alone, Figs. 3.9(E-F) show greater densities of small and large channels
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and fewer intermediate-sized channels at t = t*. However, at higher pressures, the

changes in porosity probability density are significantly larger, suggesting that the

applied pressure plays a significant role in fiber movement.

Over the range of local porosities present in the fiber bed, the capillary pressure

ranges between 6 − 40kPa. Meanwhile, the applied pressure drops from Pm at the

fiber bed entrance to zero at the flow front. Fiber movement may occur ahead of,

at, or behind the flow front in response to these forces. If the fluid does indeed first

find the path of least resistance within relatively large channels, two potential mech-

anisms of fiber movement may be operative. Among the narrower of the relatively

large channels, capillary forces are more likely to dominate, causing relatively closely-

packed fibers to be pulled closer together – in some cases potentially increasing local

non-uniformity and in other cases decreasing it. Among the widest channels, it is

possible for the applied pressure to dominate fluid flow and fiber movement, causing

wide channels to expand. Furthermore, even under saturated flow conditions, fibers

may move because of pressure variations resulting from slightly misaligned fibers and

corresponding changes in channel width (convergent or divergent) along the flow di-

rection. In practice, fiber movement is likely a combination of drifting and bending.

After pressure removal (at t = 15.6 min in Fig. 3.9(E) and at t = 15.2min in Fig.

3.9(F)), the distributions of ∆PD are similar to those at t = t*, suggesting that most

of the fiber movement is due to drift; stress relaxation of bent fibers produces a small

effect over the time period of these experiments (specimens were imaged within five

minutes after pressure removal).

Fig. 3.8(B) shows the spatial distributions of local porosity and porosity change

at the highest impregnation pressure (552 kPa); changes in porosity distributions are

plotted in Fig. 3.9(F). As we show in section 3.3.3, the changes in the porosity distri-

butions lead to an increase in saturated permeability. The results in Fig. 3.9(D), for

an intermediate pressure, show slightly different behavior at t = t*: a slight increase
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in the density of very small and very large channels and, as shown in section 3.3.3, a

slight increase in saturated permeability.

3.3.3 Effects of fiber movement

To examine effects of fiber movement on permeability, the GPE was used, first, to es-

timate the saturated permeability, κ̂
(GPE)
s , from 2D segmented XCT images of the six

specimens imaged in-situ. Fig. 3.10 shows the variation in κ̂
(GPE)
s with time t. In

all cases, κ̂
(GPE)
s is initially greater than that of a uniform, hexagonally-packed fiber

bed with the same porosity level, consistent with previously-reported results for non-

uniform fiber beds [36–39]. Once impregnation begins, the accompanying fiber move-

ment leads to an increase in κ̂
(GPE)
s . This is followed in some cases by a slight reduction

in computed permeability as the pressure is released, presumably due to internal re-

laxation of stress.

The values of κ̂
(GPE)
s for these six specimens at both t = 0 and t = t* are also plotted

in Fig. 3.5. Although these permeabilities invariably increase during infiltration, the

effects are most pronounced at high values of Ca f f , consistent with the finding that

the degree of fiber movement is greatest in this domain. Changes in geometry and

in the fluid pseudo-velocity field for the specimen infiltrated at the highest pressure

(Pm = 552 kPa, Ca f f ≈ 0.002) are illustrated in Fig. 3.11(A,B). The images show both

expansion of initially larger-than-average channels during impregnation and corre-

sponding elevations in computed fluid pseudo-velocity.

3.3.4 Effects of preferred flow channeling

To assess effects of preferred flow channeling behind the flow front, the GPE was em-

ployed to compute the unsaturated permeability, in the form of κ̂
(GPE)
u /S, of the fiber

beds from XCT images taken in-situ at time t = t*. Segmented images of fibers and
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voids were used as inputs4. In these calculations, fluid flow was allowed only in re-

gions where fluid was evident in the XCT images. If fluid flow were random (not

preferred in either small or large channels), κ̂
(GPE)
u /S would be identical to κ̂

(GPE)
s (i.e.

kr = S). Meanwhile, preferred flow in the small channels would yield κ̂
(GPE)
u /S <

κ̂
(GPE)
s while preferred flow in large channels would yield κ̂

(GPE)
u /S > κ̂

(GPE)
s .

At the highest impregnation pressures (Pm > 276 kPa, Ca f f ≥ 7× 10−4), saturation

is essentially complete at t = t* and thus the values of κ̂
(GPE)
u /S and κ̂

(GPE)
s are nearly

identical to one another (Fig. 3.5). Moreover, the values at t = t* are broadly consistent

with (though slightly lower than) the measured permeabilities. The slight underesti-

mate may be associated with preferred flow channeling in the largest channels at the

flow front, a phenomenon not captured in the present work.

In contrast, without applied pressure (Ca f f ≈ 4× 10−5), saturation is incomplete

well behind the flow front, with steady-state saturation S ≈ 0.81 at t = t*. In these

cases, the computed unsaturated permeabilities (κ̂(GPE)
u /S) are lower than the corre-

sponding saturated values at t = t* by about 30% (on average) and fall broadly in

line with measured permeabilities (κ̂(m)
u /S) (Fig. 3.5). The differences are a direct re-

sult of incomplete saturation behind the flow front in which flow is preferred in the

narrowest channels, wherein the fluid flux is lower than average.

In the intermediate pressure domain (Pm =138 kPa, Ca f f ≈ 3× 10−4) a saturation

of S ≈ 0.93 was achieved as the flow front passed (t = t* = 11.5 min). The degree

of saturation remained essentially the same after longer time periods (t = 21.7 min).

The results show only a very slight reduction in GPE-computed permeability, from

κ̂
(GPE)
s = 0.0214 to κ̂

(GPE)
u /S = 0.0196 at t = t*.

4As discussed in section 3.2.4, fluid and void regions were segmented manually. To quantify error
made by manual segmentation, an image taken at t* for one of the specimens impregnated without
applied pressure was manually re-segmented months after the original segmentation was performed.
The percent variance in fluid area between the two segmented images was 0.6%. The percent variance
in the unsaturated permeability, κ̂

(GPE)
u /S, computed for the two segmented images was 2.7% – a small

error relative to the effects of preferred flow channeling at low Ca (i.e., Ca f f ≈ 4× 10−5).
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3.4 Conclusions and outlook

Through this study we have elucidated the coupled effects of fiber movement, pre-

ferred flow channeling and impregnation velocity on axial permeability of aligned

fiber beds. For beds with porosity of about 1/3, the measured unsaturated permeabil-

ity (in the form of κ̂
(m)
u /S) increases by about an order of magnitude as the capillary

number increases from 10−5 to 10−3. The effects are attributed in part to increased

fiber movement at high Ca and corresponding elevations in non-uniformity and thus

permeability. At low Ca, wherein flow is dominated by capillarity, preferred flow

channeling in the smallest channels causes contraction of those imbibed regions and a

corresponding increase in the size of the largest (often unfilled) channels. The combi-

nation of incomplete saturation and preferred flow channeling in the narrowest chan-

nels well behind the flow front leads to reduced unsaturated permeability (in the form

of κ̂
(GPE)
u /S) at low Ca. These insights could be used to improve existing permeability

models, ultimately for use in optimizing liquid composite molding. Moreover, they

could be used to rationalize microstructural changes caused by impregnation.

We have also developed a new computational tool (GPE) for estimating the ax-

ial permeability of large, non-uniform, 2D fiber beds. We have found that the GPE

method, when calibrated, yields useful quantitative predictions of permeability in

non-uniform fiber beds and is superior to alternative computational methods that em-

ploy results from unit cell analyses. In fact, many of the techniques based on unit cell

analyses significantly over or underpredict the effects of non-uniformity on perme-

ability. With the development of the GPE, we present an alternative technique that

enables exploration of effects of fiber packing and preferred flow channeling on axial

permeability.

In summary, we have demonstrated that in-situ XCT can be used to study dynamic

processes during fiber bed impregnation over a wide range of velocities, and that the
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GPE can be used to quickly compute the axial permeability of non-uniform unidi-

rectional fiber beds. An extension of this study would involve exploring the effects

of varying fiber volume fraction on permeability in the contexts of both preferred

flow channeling and fiber movement. We expect that the effect of fiber movement on

permeability would be greater at lower fiber volume fractions, because of the larger

amount of space available for fiber movement. The experimental methods presented

here could also be adapted to study impregnation into preforms with more complex

architecture, e.g., woven cloth. Such studies would allow the coupled effects of flow

parallel and perpendicular to the fibers as well as through large inter-tow channels to

be probed and their effects on permeability and remnant porosity to be uncovered.
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Figure 3.1: (A) Test geometry used in impregnation experiments. (B-C) Impregna-
tion kinetics from several representative specimens, (B) without and (C) with applied
pressure. (D) Representative longitudinal raw XCT image illustrating contact angle
(θ) measurements at void/fluid interfaces.
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Figure 3.2: (A) Representative transverse raw XCT image of infiltrated fiber bed and
(B) corresponding segmented image. In the latter, fibers are light gray, fluid is medium
gray, voids are black, and regions outside the specimen are light gray. In (A)(ii), arrows
point to locations where void/fluid interfaces are evident.
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selected to depict only relative values of velocity: blue being low and red being high.
All four scales represent different ranges of relative velocity. (C) Reprinted from
Composites Science and Technology, 67, X. Chen and T. D. Papathanasiou, Micro-
scale modeling of axial flow through unidirectional disordered fiber arrays, 1286-1293,
Copyright 2006, with permission from Elsevier.
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Chapter 4

Microstructure Evolution During

Matrix Impregnation and Curing in

Unidirectional Fiber Beds

Abstract

Microstructural evolution during axial impregnation and subsequent curing of a

preceramic polymer in unidirectional ceramic fiber beds is studied using x-ray com-

puted tomography. The principal goal is to identify connections between void loca-

tions, void sizes, local fiber bed porosity, fiber movement, and impregnation condi-

tions. The degree of saturation after impregnation is found to increase with instanta-

neous capillary number. But, because of the need to create pathways for gas escape

during curing, fiber beds with high saturation after impregnation show the largest

reductions in saturation during curing. Notwithstanding, saturation after curing in-

creases with instantaneous capillary number. Voids tend to form in the largest chan-

nels between fibers, where the local fiber bed porosity is high, during both impreg-

nation and curing. Void formation is typically accompanied by fiber movement that
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increases both the local fiber bed porosity near voids and the overall non-uniformity

in the fiber bed, as measured by local porosity entropy1.

4.1 Introduction

Fiber-reinforced ceramic-matrix composites (CMCs) promise to enable higher temper-

atures and increased efficiency for hot section components in aerospace gas turbine en-

gines, hypersonic jet engines, nuclear reactors, and space vehicles [1–3, 5]. Composites

currently of most interest consist of SiC matrices and BN-coated SiC fibers. The coat-

ings promote crack deflection and frictional pullout, imparting high toughness to the

CMC [1, 3, 5]. The SiC matrix protects the fibers and distributes load [3, 6, 7]. Despite

their promise, fabrication of fully-dense, compositionally-pure SiC matrices that can

withstand the targeted upper use temperatures (1500°C) remains an outstanding chal-

lenge [3]. One processing method that might achieve this goal involves impregnation

of preceramic polymers into fiber preforms, followed by curing and pyrolysis (to tem-

peratures of ∼ 1000 to 1600°C) [2, 3, 6, 11, 13, 14, 17, 23, 24]. The process of polymer

impregnation and pyrolysis (PIP) is repeated several times in order to further densify

the matrix, progressively filling voids and shrinkage cracks remaining from previous

processing cycles [2, 3, 6, 11, 13, 14, 17, 24]. Although the process is straightforward in

principle, the resulting microstructures are often heterogeneous in nature, with pores

and cracks in the matrix ranging in size from nanometers to hundreds of micrometers

[3, 6, 7, 23]. These heterogeneities can, in turn, lead to spatial inhomogeneities in the

degree of protection that the matrix can provide to the fibers and hence compromise

long-term composite durability [3, 6, 7]. The present study investigates changes in

matrix microstructure during the first impregnation and curing cycle of a SiC prece-

1The content of this chapter has previously appeared in Composites Part A: Applied Science and
Manufacturing (Natalie M. Larson, Charlene Cuellar, Frank W. Zok. “X-ray computed tomography of
microstructure evolution during matrix impregnation and curing in unidirectional fiber beds”. Com-
posites Part A (available online Nov. 2018)) [80]. It is reproduced here with the permission of Elsevier.
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ramic polymer in a SiC fiber bed. The work is motivated in part by the expectation

that, due to the cyclic compounding nature of the PIP process, microstructural het-

erogeneities introduced in early stages of the process will set the stage for continued

heterogeneous processes in later stages [23].

Previous studies have shown that voids can form during impregnation of poly-

mer resins into fiber beds by two sets of mechanisms: those dependent primarily on

capillary number (void entrapment, mobilization), and those dependent on changes

in pressure within the impregnating fluid (void compression, dissolution, exsolution)

[32, 81, 82]. Numerous experimental studies have shown that void content is cor-

related with the capillary number, Ca = µν/γ, where ν is tracer fluid velocity, µ is

fluid viscosity, and γ is fluid surface tension [32–34, 81]. (Ca represents the relative

effects of viscous drag and capillary forces.) Because both viscous drag and capillary

forces depend on channel size, non-uniformities in fiber packing can cause the flow

front to advance in a non-uniform fashion, potentially leading to void entrapment

within regions in which the flow front impregnates most slowly [32]. Voids entrapped

in this manner can be, under some circumstances, effectively transported away by

subsequent fluid flow. Void mobilization and hence the propensity for void removal

increases with capillary number [32, 33]. In many manufacturing processes, the in-

jection pressure (and thus capillary number) is increased for a period of time after

initial impregnation is complete to facilitate further void mobilization and removal

[32]. Entrapped voids may also be dissolved or compressed as the pressure within the

impregnating fluid increases over time [32]. If the applied pressure is subsequently

removed, dissolved gas may be exsolved, leading to the formation of new bubbles.

These effects can be mitigated by drawing vacuum at the outlet [32].

Thermal curing of allylhydridopolycarbosilane (AHPCS) – the preceramic poly-

mer used in this study – involves crosslinking and decompostion, accompanied by

evolution of low molecular weight gases [18, 20]. Thermogravimetric mass spectrom-
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etry (TGMS) of this polymer during the ramp-up to the curing temperature (120°C

in this work) shows evolution of hydrogen, methane, and silanes (TGMS results pre-

sented in Fig. 4.1). When this evolution occurs within the confines of a fiber tow, gas

bubbles form within the (still-fluid) polymer, displacing the surrounding fluid and,

possibly, neighboring fibers. Similarly, in polymer matrix composite (PMC) process-

ing, voids may form during curing due to evolution of gases dissolved in the polymer

or formed as curing reaction products [53, 54, 57–61]. For high performance PMCs,

the curing process typically consists of carefully-engineered temperature and pres-

sure profiles designed to evacuate, dissolve, and compress voids to achieve minimal

matrix porosity [53, 57–59].

Over the course of impregnation and curing, interactions between fibers and ma-

trix precursor can lead to fiber rearrangement and void formation. Effects of process-

ing conditions and initial fiber arrangement on fiber movement and void location and

size have yet to be fully elucidated. The present study aims to provide direct observa-

tions and quantitative measurements of microstructural evolution via X-ray computed

tomography (XCT) of unidirectional fiber beds over the course of processing. To this

end, we develop metrics to characterize fiber arrays, including the local porosity en-

tropy and spatial distribution of local fiber bed porosity, and correlate them with the

locations and sizes of voids within the matrix.

Some aspects of impregnation and curing have previously been studied using XCT

[53, 69, 72, 83]. In one study, by Hernández et al. [53], laminates consisting of ten plies

of commercial carbon/epoxy prepreg sheets were subjected to various thermal curing

cycles. The shapes and spatial distributions of the resulting voids were characterized

by XCT (image resolution 0.6-1.8 pixels across a fiber diameter). The study found that

most of the voids were the result of air entrapment and wrinkles produced during the

layup process. In a more recent study, by Vilà et al. [72], a single vacuum-bagged

tow of glass fibers was impregnated axially with a water/syrup mixture that demon-
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strated non-wetting behavior at the flow front. The tow was imaged at high resolution

(about ten pixels across a fiber diameter) at three points in time: (1) prior to impreg-

nation, (2) when the flow front had reached the imaging location in the middle of the

tow, and (3) when the flow front had reached the end of the tow. Due to the long XCT

acquisition time (about 2 h), impregnation was paused periodically, allowing imaging

under static conditions [72]. The study revealed that the flow front was non-uniform,

with flow occurring preferentially in regions of low fiber volume fraction, and that the

resulting voids were elongated in the longitudinal direction. In an even more recent

study, by Hemmer et al. [83], a vacuum-bagged stack of plies of a quasi-unidirectional

non-crimp glass fabric with dual-scale porosity was impregnated with glycerol. The

specimen was imaged in the dry state and the saturated state (in-situ during continu-

ous axial fluid flow). Because of the focus on mesoscale phenomena – notably changes

in stack thickness, tow swelling, and tow displacement during saturated fluid flow –

imaging was performed at relatively low resolution (0.7-1.6 pixels across a fiber diam-

eter). Patterns in mesoscopic reorganization of the preform were identified and their

effects on in-plane permeability were explored.

The experiments in the present study (and our previous study [69]) differ from the

aforementioned studies in two important respects. First, some specimens were im-

aged in-situ during continuous impregnation over a wide range of capillary numbers,

starting from the dry state and up until after pressure removal. XCT scan times for

these experiments were relatively short (1.5 min). Second, other specimens were im-

aged dry, after impregnation and pressure removal, and after curing. Imaging was

performed at high resolution (13-20 pixels across a fiber diameter). In combination,

the two sets of experiments provide information on fiber rearrangement and void for-

mation through critical stages of the process cycle. With the goal of developing funda-

mental insights into the processes affecting microstructural heterogeneity, the present

study focuses on model systems consisting of unidirectional fiber beds.
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4.2 Materials and methods

4.2.1 Test specimens

The test specimens used here are essentially the same as those used in our previ-

ous work [69]. Each consists of 10-12 tows of Hi-NicalonTM Type S SiC fibers (500

fibers/tow) shrink-wrapped within thin-walled borosilicate glass capillary tubes (1.5

mm ID, 1.8 mm OD, VitroCom, Mountain Lakes, NJ) with terminal inner diameter of

about 1.4 mm. The resulting global fiber bed porosity within the tubes was 0.32− 0.39

and the average fiber radius was 6.4 ±0.9 µm (standard deviation), as measured from

XCT images. The polyvinyl alcohol sizing that had been present on the fibers at the

outset was removed with a 1h treatment at 600°C.

The fiber beds were impregnated with allylhydridopolycarbosilane (SMP-10, Starfire

Systems, Inc., Glenville, NY), a commercial SiC pre-ceramic polymer with surface ten-

sion γ = 30 × 10−3 J/m2 and fluid density ρ = 0.998 g/cm3 at room temperature

(values provided by manufacturer). All experiments were conducted with the same

batch of SMP-10. The polymer viscosity, measured periodically at room temperature

over the course of the several-month study, ranged from 68× 10−3 Pa s at the outset to

82× 10−3 Pa s at the end. Viscosity values pertinent to the subsequent analysis were

obtained by interpolating the measurements to the time of each experiment. Immedi-

ately before impregnation, 0.2 wt% dicumyl peroxide (DP) was added to the polymer,

to promote subsequent curing2. Our previous study on this system demonstrates that

the polymer (including DP) wets the fibers (with contact angle of 26±8°) and that

impregnation occurs spontaneously with no applied pressure [69]. Curing was per-

formed in air at 120°C for 2 h, after which the polymer density was 1.009 ± 0.003

g/cm3 [23].

2Effects of the addition of 0.2 wt% DP on polymer surface tension were not considered in this study.
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4.2.2 Impregnation and curing

Fiber beds were impregnated axially either by capillary imbibition alone or via ap-

plication of pressure on the fluid reservoir, using one of two test configurations. In

the first, specimens were oriented horizontally and situated beneath an optical micro-

scope. The distance, x f f , from the glass tube inlet to the flow front was monitored

continuously during impregnation until the flow front reached the end of the tube

(Fig. 4.2). Our previous work showed that impregnation rates, presented as x2
f f vs.

t, follow a linear relationship, i.e. they adhere to Darcy’s Law combined with mass

conservation for one-dimensional flow under constant impregnation pressure [69].

Linear regression of the data was used to determine the Darcy slope, D, and, in turn,

the instantaneous capillary number Ca f f at the flow front via:

Ca f f =
µν f f

γ
=

µ

γ

D
2x f f

. (4.1)

Following impregnation and after pressure removal, specimens were imaged in the

wet state ex-situ with XCT. Reported values of Ca f f for each specimen are taken at the

XCT imaging location, xI (i.e., at x f f = xI in Eq. 4.1). In these experiments, reported

values of Ca f f fell in the range of 3 × 10−5 to 1 × 10−2. A subset of the specimens

were then cured in a horizontal orientation at 120°C in air for 2 h and re-imaged at the

same location. A subset of specimens had also been imaged in the dry state (prior to

impregnation).

In the second test configuration, impregnations were performed while continuous

in-situ XCT imaging was performed at one location within the tube. (These experi-

ments are also reported in our previous work [69]). The tubes were oriented verti-

cally: the fluid reservoir and inlet being at the top of the specimen and the outlet at

the bottom. Pressures, Pm, ranging from 138 to 552 kPa were applied to the fluid reser-

voir with compressed air. The pressure due to gravity was calculated to be ≈ 1.5 kPa:
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more than an order of magnitude less than the average capillary pressure, P̄c = 16± 1

kPa, and almost two orders of magnitude less than the minimum pressure applied

[69]. XCT images were taken before and during impregnation as well as immediately

before and immediately after pressure removal. The time interval between the start of

the latter scans was about 5-7 min. Because the location of the flow front could not be

monitored in these experiments, Darcy slopes and thus values of Ca f f at the imaging

location were estimated from the results of a previously reported set of experiments at

the corresponding pressures [69]. The fluid pressure, PI , at the imaging location at a

given time was estimated assuming a linear pressure drop (expected based on Darcy’s

Law and mass conservation) between the tube inlet (at P = Pm) and the flow front (at

P = 0):

PI(t) = Pm
x f f (t)− xI

x f f (t)
(4.2)

The flow front position was estimated by x f f (t) =
√

Dt. In cases where the flow

front had reached the end of the specimen, the flow front position was set equal to the

specimen length. In the remainder of this work, reported values of PI are taken at the

average time of the XCT scan performed immediately before pressure removal.

4.2.3 X-ray computed tomography (XCT)

XCT was performed at Beamline 8.3.2 at the Advanced Light Source (ALS) at Lawrence

Berkeley National Laboratory. Ex-situ imaging was performed in multilayer mode us-

ing 17 keV light (20-30% transmission) with a PCO edge camera and 10x optique lens.

The field of view was about 1.7×1.7×1.4 mm3 and the voxel edge length was 0.65 µm.

In one set of scans (performed while the ALS was in normal multibunch mode), a total

of 1025 radiographs each with 500 ms exposure time were collected over the course of

about 13-15 min. In another (performed while the ALS was operating in a low flux,

two-bunch mode), a total of 4097 radiographs each with 1500 ms exposure time were
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collected over the course of about 3 hours.

In-situ imaging was performed in white light mode with a dimax camera and 10x

lens while the ALS was in normal multibunch mode. The field of view was about

2.0×2.0×2.0 mm3 and the voxel edge length was 1 µm. A full dataset, consisting of

1025 radiographs each with 40 ms exposure time, was collected over the course of

about 1.5 minutes; an additional 3.5 min was required to export the data from the

camera between scans.

4.2.4 Image segmentation

Tomographic slices were reconstructed using TomoPy [84]. Ring removal parame-

ters were optimized to minimize imaging artifacts. All datasets were reconstructed

without phase retrieval. For the ex-situ scans of wet and cured specimens, additional

reconstructions were performed with phase retrieval for automated segmentation of

voids and matrix as described below. The reconstructed 3D data from dry and cured

specimens were registered with the corresponding wet scans, to facilitate point-to-

point comparisons of microstructures. Registration was performed by selecting eight

well-defined stationary points in the corresponding volumes (e.g. at bubbles or fibers

in the tube wall) and then solving for the rotations and the translations needed to bring

the sets of points into coincidence using Horn’s quaternion-based method3. These ro-

tations and translations were then applied to the reconstructed images of the dry and

cured specimens using bilinear interpolation.

Segmentation was performed using the MATLAB Image Processing ToolboxTM4

and ImageJ5. For reference, representative raw ex-situ XCT images and corresponding

segmented images are shown in Fig. 4.3. Fiber segmentation was performed slice-

3Matt J (2015). Absolute Orientation - Horn’s method, MATLAB Central File Exchange. Retrieved
March 22, 2018.

4R2017b, The MathWorks, Inc., Natick, Massachusetts, United States
5Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,

http://imagej.nih.gov/ij/, 1997-2016
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by-slice using the transverse XCT images reconstructed without phase retrieval (Fig.

4.3(A)). Fibers were initially detected using the Circle Hough Transform. Improperly

identified pixels were corrected with filters based on connected region size and pixel

value and through comparisons with the 10 slices above and below the slice of inter-

est. Finally, fibers were separated using the watershed algorithm. Fiber segmentation

was evaluated and optimized via visual inspection of fiber outlines overlaid on cor-

responding XCT images; the final segmentations showed excellent agreement with

visual identifications.

Next, regions outside of the composite were identified slice-by-slice using trans-

verse images reconstructed without phase retrieval. Regions outside of the composite

were identified using one of two algorithms. In cases in which the glass tube contained

bubbles (as in Fig. 4.3), regions outside of the composite were identified by dilating

the fiber segmentation mask, filling in holes in the dilated mask, and then eroding and

inverting the mask. In cases in which the glass tube did not contain bubbles, regions

outside of the composite were identified using a gray-scale threshold followed by 2D

order-statistic filtering. In both cases, segmentation was improved by filtering out in-

correctly identified pixels based on connected region size and by using a slice-by-slice

comparison of non-composite regions in the 17 slices above and below the slice of

interest. Finally, remaining unidentified regions outside of the composite were iden-

tified as those that were not filled during a hole-filling operation. Segmentation was

evaluated via visual inspection of the composite boundary overlaid on corresponding

XCT images; the final segmentations showed excellent agreement with visual identi-

fications.

Next, void and matrix regions were segmented as follows. For 1000 slices of each

ex-situ scan (totaling 2560 × 2560 × 1000 voxels), void and matrix regions were seg-

mented slice-by-slice using the transverse images reconstructed with phase retrieval

(Fig. 4.3(B)). For scans performed under low-flux conditions, a background subtrac-
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tion operation was performed on the images prior to segmentation to remove ring

artifacts that had not been removed during reconstruction. In the first step of segmen-

tation (for both normal and low-flux scans), void area was identified using a gray-scale

threshold. Additional void area was identified by thresholding the results of the So-

bel operator on the images. Candidate void regions in the latter results were filtered

based on maximum pixel intensity and then dilated. Next, the candidate void regions

from both thresholds were combined and a sequence of operations (dilation, erosion,

hole-filling) and filters on connected void regions (based on maximum intensity, mean

intensity, and eccentricity) were used to further refine the segmentation. Finally, the

segmentation was refined via slice-by-slice comparisons of the voids identified in the

4 slices above and below the slice of interest. All remaining unlabeled regions were

identified as matrix.

The fidelity of algorithmic segmentation of voids was evaluated by comparing the

degree of saturation, S, within eight randomly-selected slices obtained from algorith-

mic void segmentation and from manual void segmentation (the latter being more

reliable but time-prohibitive for segmentation of entire data sets). The mean of the

absolute values of the percent error between the values of S for the eight algorithmi-

cally and manually segmented images was 0.95% This value is used subsequently as

an estimate of uncertainty on S for specimens imaged ex-situ.

For in-situ scans, detection of void and matrix regions was hindered by reduced im-

age quality resulting from the short scan times and potential movement of the phases.

Thus, for one slice of each scan, void and matrix regions were segmented by a manual

tracing procedure based on gray-scale values within and along boundaries of the three

phases and their variations with time [69]. Finally, for consistency, the segmented im-

ages were resized to yield the same resolution as that of the ex-situ images (0.65 µm

per voxel edge), giving a total segmented image volume of 3156 × 3156 × 1 voxels.
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4.2.5 Image analysis

Several local and global microstructural characteristics were obtained from the seg-

mented images. First, the volumes of matrix, fibers, and voids, denoted Ym, Yf and

Yv, respectively, were measured. The global fiber bed porosity, ε, (that is, the volume

fraction of dry fiber bed available for matrix impregnation) and the degree of matrix

saturation, S, were calculated in accordance with ε = (Ym + Yv)/(Ym + Yv + Yf ) and

S = Ym/(Ym + Yv). Sizes of individual voids were characterized by the square-root

of their cross-sectional area in transverse sections,
√

A, computed via a 2D connected

components analysis (connectivity = 8). (Most voids extend out of the longitudinal

field-of-view, precluding meaningful measurement of their volumes.) Reported distri-

butions and statistics for void size include all measurements of
√

A from all voids in all

transverse slices. The global metric of void size is taken as the area-weighted median

of
√

A, henceforth referred to as the median void size,
√̃

A. The range of
√

A, indi-

cated by error bars in subsequent plots, is characterized by the area-weighted quartiles

(Q1 and Q3). Distributions of void size are presented in terms of area-weighted rela-

tive frequencies. In this form, each frequency represents the fraction of fillable area in

the fiber bed occupied by voids of the specified size, while the sum of all frequencies

equals 1− S.

Spatial distributions of fibers and their changes during processing were inferred

from distributions of local fiber bed porosity, ε, measured at each pixel location us-

ing a circular cell of radius 34 µm (52 pixels) centered at the pixel of interest. This

radius was selected to ensure that, for all specimens, every cell contained at least one

fiber pixel and at least one matrix or void pixel and hence the local porosity at each

point fell in the range 0 < ε < 1. The results are presented as normalized frequency

distributions of local porosities, spatial distributions of local porosity, and changes in

spatial distributions following impregnation, pressure removal and curing. Addition-
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ally, distributions of fillable local porosity – counting only local porosity values within

fillable regions, in the spaces between fibers – and distributions of voided local porosity

– counting only local porosity values within void regions – are also presented. Distri-

butions of fillable local porosity are normalized to yield a total area of 1. The voided

local porosity distribution is normalized by the fillable local porosity distribution such

that the ratio of the area under the voided distribution to the area under the fillable

distribution is equal to 1− S. Reported distributions include all transverse slices.

Non-uniformity of local fiber bed porosity was measured by local porosity entropy

[85], E(rc), defined in this work by

E(rc) = −
256

∑
i=1

Pi(rc)log2Pi(rc) (4.3)

where rc is the radius of the circular cell used to compute local porosity, and Pi(rc)

are the discrete relative frequencies of local porosity values. Since local porosity val-

ues are computed using an 8-bit image, ε can take on 28 = 256 possible values:

0
255 , 1

255 , 2
255 , ..., 255

255 . This sets the limit on the number of discrete values of local poros-

ity and hence the number of terms in the summation. Selection of rc for the present

calculations was done in the following way.

The dependence of local porosity entropy on rc for one slice of a representative

specimen imaged in dry, wet, and cured states is shown in Fig. 4.4(A). For all three

states, the maximum value of porosity entropy occurs at rc = 9 pixels (5.8 µm), which

corresponds approximately to the fiber radius. This correlation is unsurprising, since

the entropy length – the length scale at which the local entropy becomes extremal – is

typically an accurate measure of linear size of features in an image [85]. Plots of the

changes in local porosity entropy between states show that, for this particular speci-

men, the local porosity entropy at rc = 9 pixels decreases over the course of processing

(Fig. 4.4(B)). However, as we show later, fiber rearrangement during impregnation
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and curing is typically manifested by local expansion or contraction of large channels

between the fibers over a length scale of several (2-10) fiber radii: significantly greater

than the entropy length scale. In order to detect such changes, the local porosity en-

tropy must be calculated over a comparable length scale. Here we find it convenient

to use a cell radius of 52 pixels (34 µm). As noted earlier, this cell radius ensures that

0 < ε < 1 for all specimens and thus ensures that changes in fiber packing near large

channels are captured (Fig. 4.4 inset). The results in Fig. 4.4(B) show that the poros-

ity entropy at rc = 52 pixels increases over the course of processing. The observation

that changes in porosity entropy at low and high rc values are opposite in sign sug-

gests that increases in non-uniformity over long length scales can lead to reductions

in non-uniformity at shorter length scales. In the case of large channels expanding to

make the fiber bed, as a whole, less uniform, an increase in porosity entropy at rc =

52 pixels is expected, as this measure of local porosity is sensitive to changes in large

channels. At the same time, closely packed fibers must become more closely packed

and, in doing so, may move closer to (ideal) hexagonal close packing, resulting in an

increase in uniformity in those regions. Since local porosity entropy at rc = 9 pixels is

not sensitive to changes in the larger channels (which have local porosity saturated at

1 for rc = 9 pixels), changes in porosity entropy will largely reflect fiber rearrangement

only in closely-packed regions. Results for changes in local porosity entropy vs. rc for

all specimens imaged dry, wet after pressure removal, and cured are given in Fig. 4.5.

Between dry and cured states, local porosity entropy invariably decreases at smaller

length scales (rc ≈ 9 pixels) and increases by a larger amount at larger length scales

(rc ≈ 52 pixels). This behavior is also observed in most cases between dry and wet

states and wet and cured states, with the exception of a couple specimens that show

increases at small length scales and decreases at large length scales from the wet state

to the cured state (one of these specimens, designated s2, is discussed in detail later).

In this work, changes in non-uniformity for the entire fiber bed are of interest and
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thus local porosity entropies reported and discussed below are all computed for rc =

52 pixels (unless otherwise stated). Henceforth, the symbol E represents the porosity

entropy at rc = 52 pixels.

4.3 Results

4.3.1 Scope and organization

In this study, 26 specimens were imaged with XCT in each of one or more states.

Results presented here correspond to four general states:

1. Dry, prior to impregnation (indicated by subscript d) [in-situ and ex-situ speci-

mens]

2. Wet, immediately before pressure removal (BPR) (indicated by subscript w com-

bined with superscript o) [only in-situ specimens]

3. Wet, after pressure removal (APR) (indicated by subscript w) [in-situ and ex-situ

specimens]

4. Cured (indicated by subscript c) [only ex-situ specimens]

We present comprehensive sets of results for six exemplary specimens in figs. 4.6

to 4.11. The specific examples were selected to illustrate the full range of microstruc-

tural observations, including extreme and intermediate behaviors. These specimens,

designated s1-s6, are labeled in subsequent figures. Each set of figures shows, for the

same center transverse slice: (A) segmented data in the pertinent imaged states; (B)

corresponding spatial distributions of local fiber bed porosity; and (C) changes in the

latter porosity distribution associated with changes in state. For segmented images

of the dry states, empty spaces between fibers are shown in purple. For segmented

images of wet and cured states, void regions are color-coded in the following way:

blue for voids present only in the first imaged impregnated state (state 2 for specimens
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imaged in-situ and state 3 for specimens imaged ex-situ), red for voids present only in

the final imaged state (state 3 for specimens imaged in-situ and state 4 for specimens

imaged ex-situ), and light green for voids that are present in both states. Fibers are

white and regions between fibers are gray. The figures also show: (D) distributions of

local fiber bed porosity, (E) distributions of fillable and voided local fiber bed porosity,

and (F) distributions of void sizes. Our discussion of results begins with a synopsis of

broad trends in measurements and observations and later returns to the six exemplary

test specimens.

4.3.2 Fiber arrangement

The fiber beds exhibit global porosities that vary from about 0.32 to 0.39. The corre-

sponding local porosity entropy of specimens imaged ex-situ varies from about 5.4 to

6.2 and increases approximately linearly with global porosity in the dry, wet (APR),

and cured states (Fig. 4.12). To provide context for the latter result, the sensitivity of

entropy to porosity alone was calculated for the center transverse slice of three differ-

ent ex-situ specimens. This was accomplished by computationally either expanding

or shrinking the fiber diameters by a small amount, thereby decreasing or increasing

fiber bed porosity without altering fiber locations. Changes in fiber diameter were

selected to achieve porosity levels that span the full range of interest, from about 0.3

to 0.4. For each fiber arrangement, the entropy (indicated by filled blue circular plot

markers and thin black lines in Fig. 4.12) decreases only very slightly with increasing

porosity. The inference is that the measured increase in entropy with porosity across

all specimens is largely attributable to the increased capacity for fibers to arrange into

less uniform configurations at higher porosity levels, not to the porosity level per se.

The preceding results also indicate that porosity is sensitive to segmentation pa-

rameters that might slightly expand or shrink the fiber diameters. This explains the

deviation of the trends for specimens imaged in-situ and ex-situ. The four specimens
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imaged in-situ had lower image quality and required use of slightly different parame-

ters in fiber segmentation. However, similarly to the ex-situ specimens, the sensitivity

of entropy to porosity for an individual in-situ specimen is negligible (indicated by

filled purple square plot markers and thin black line in Fig. 4.12). Thus, in the re-

maining results, entropies of in-situ specimens are reported alongside those of ex-situ

specimens, while global porosity results of in-situ specimens are excluded. Specimens

imaged in-situ are designated as s1, s7, s8, and s9 in subsequent figures.

4.3.3 Microstructure evolution during impregnation and pressure

removal

In cases where fiber beds are not completely saturated with fluid after impregnation

and pressure removal, the remaining voids show common geometric characteristics

(figs. 4.6 to 4.11 and Fig. 4.13). Most voids are very long parallel to the fiber axis (Fig.

4.13). Indeed, for all specimens containing observable voids, an average of 95% of the

total imaged void volume was connected to either the top, the bottom, or both the

top and the bottom of the segmented volume. As a result, the voids can be charac-

terized principally by their appearance in transverse sections; in turn, void area in a

transverse section can be interpreted effectively as void volume per unit length. In

transverse views, voids are bounded by closely-packed fibers. Void dimensions are

typically less than 5 fiber diameters wide and of a length that varies from a few to

tens or hundreds of fiber diameters. They typically form in the largest pre-existing

(dry state) channels between fibers, where the local fiber bed porosity in both dry

and wet states is particularly high (figs. 4.6 to 4.10). Comparisons of distributions

from the wet state of local porosity within all fillable regions and within voids alone

show that voids form preferentially in regions of high local porosity (parts B and E

of figs. 4.6 to 4.11. In some cases, channels where voids form during impregnation

expand slightly, increasing the local porosity in those regions.
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Impregnation also typically leads to a slight increase in porosity entropy, on av-

erage by about 0.06 (Fig. 4.14(A)). Because these changes are small compared to the

observed range of entropies, Ed is fairly predictive of Ew. Thus, the following analysis

uses entropy of the wet fiber beds (because only a subset of the specimens was imaged

dry), and we can infer that trends with Ew would be similar to those with Ed.

The median void size and the amount of void space (characterized by Sw) appear

to be governed by a combination of the instantaneous capillary number and the local

porosity entropy. Specifically, the degree of saturation increases from about 0.8 at

Ca f f ≈ 3× 10−5 to 1 at Ca f f ≈ 10−2 (Fig. 4.15(A)); local porosity entropy of the fiber

bed (either dry or wet) does not appear to have an effect (Fig. 4.16(A)). Global porosity

shows a very weak positive correlation with Sw (Fig. 4.16(B)). In contrast, the median

void size,
√̃

Aw, appears to depend most strongly on local porosity entropy and is not

correlated with Ca f f (Fig. 4.15(B,C)). But this dependence does not follow a one-to-

one mapping, in the sense that the void size may increase with increasing entropy, but

it does not necessarily do so (Fig. 4.15(B)). The nature of this trend is elucidated by

splitting the void size data into three groups: one for Sw < 0.95, another for 0.95 <

Sw < 0.999, and another for Sw > 0.999. For the first group, void size appears to

increase with Ew. But this increase is not observed for the latter groups (where the

degree of saturation is high). These results suggest that high porosity entropy allows

for the formation of large voids, but it does not necessarily cause formation of large

voids. In light of the relationship between global fiber bed porosity and local porosity

entropy, the void size shows a corresponding, albeit weaker, relationship with global

porosity, (Fig. 4.15(D)).

While the preceding results reveal the effect of Ca f f on degree of saturation after

impregnation and pressure removal, they fail to capture effects of pressure removal

alone. To this end, results for four test specimens imaged in-situ immediately before

and immediately after pressure removal are presented here (Fig. 4.17). To provide a
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baseline, impregnation by capillary imbibition alone (without applied pressure) leads

to incomplete saturation (on average, Sw = 0.85) (green points in Fig. 4.17(A)). When

impregnation is driven by applied pressure, the degree of saturation immediately be-

fore pressure removal, So
w, increases with pressure, reaching complete saturation at

PI ≈ 180 kPa (blue points in Fig. 4.17(A)). Despite the attainment of complete satura-

tion during impregnation, pressure removal can lead to a loss in saturation. The effects

appear to be greatest at intermediate pressures (PI ≈ 80− 200 kPa) (Fig. 4.17(B)). In

the most extreme case obtained in the present experiments (at PI = 151 kPa), the de-

gree of saturation drops by 0.16, from 0.99 to 0.83, during pressure removal (s1, Fig.

4.6). Images of this specimen (in Fig. 4.6) show that many new voids are formed

during pressure removal while only a small number are eliminated. Meanwhile, at

sufficiently high pressures (exceeding 300 kPa), complete saturation is maintained af-

ter pressure removal. The inferences and implications of these results are addressed

in the discussion.

4.3.4 Microstructure changes during curing

Curing leads to changes in the quantity, locations, sizes and shapes of voids. Some

voids present after curing show similar characteristics to those observed after impreg-

nation (figs. 4.7 to 4.11 and Fig. 4.13); they are long parallel to the fiber axis and are

bounded by closely packed fibers in transverse sections. In other cases, voids consist

of long clusters of smaller voids aligned with the fiber axis (Fig. 4.13). The bridges be-

tween these bubbles can be thick (tens of microns), very thin (less than a voxel width)

or, in some cases, appear to be broken (Fig. 4.13). These voids are typically bounded

by a film of matrix material surrounding the individual bubbles and beyond the film

by other columns of bubbles, long non-bridged voids, or closely-packed fibers.

Similarly to voids found after impregnation, voids found after curing are mainly

in the largest channels between fibers (evident in local porosity distributions within
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voided regions and in transverse sections in figs. 4.7 to 4.11. They are also typically

less than 5 fiber diameters wide and up to hundreds of fiber diameters in length.

Curing also typically leads to an increase in fiber disorder, as manifested in an ele-

vation in local porosity entropy, on average by about 0.07 relative to the wet impreg-

nated state (Fig. 4.14(B)). Furthermore, the combination of impregnation and curing

invariably leads to an increase in local porosity entropy, on average by about 0.11 rel-

ative to the dry state (Fig. 4.14(C)). Again, these changes in entropy are small relative

to the full range of entropies observed, and thus Ed and Ew are fairly predictive of Ec.

Changes in saturation during curing, Sc− Sw, depend most strongly on the satura-

tion before curing, Sw (Fig. 4.18(A)). Specimens with high saturation before curing tend

to show the largest reductions in saturation, with changes of about -0.13 on average

at Sw = 1, whereas specimens with low initial saturation (Sw ≈ 0.80− 0.85) undergo

much smaller changes. In some cases, especially when the starting saturation is low,

the saturation increases slightly during curing. Despite the larger reductions in satu-

ration at high initial values of saturation, the degree of saturation after curing is still

greatest in cases in which the instantaneous capillary number was high and hence the

initial saturation was high (Fig. 4.18(B)). Neither the local porosity entropy nor the

global porosity affect saturation after curing (Fig. 4.19).

As with the wet specimens, the median size of curing voids depends most strongly

on the local porosity entropy (Fig. 4.20(A)) and shows a similar, yet weaker, relation-

ship with global porosity (Fig. 4.20(D)). The largest median void sizes invariably occur

in specimens with high entropy, although high entropy does not necessarily lead to

large median void sizes. In most cases, the median void size after curing is greater

than that after impregnation (Fig. 4.20(B)). The instantaneous capillary number has

no effect on the median void size (Fig. 4.20(C)).
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4.3.5 Detailed observations of exemplary test specimens

Further insights are gleaned from detailed examinations of the exemplary cases shown

in figs. 4.6 to 4.11. The first (s1, Fig. 4.6) shows effects of impregnation and pressure

removal for the case with the largest reduction in saturation following pressure removal.

During impregnation (before pressure removal), saturation is nearly complete (So
w =

0.99) and the few existing voids are relatively small. The corresponding change in

entropy, Eo
w− Ed, is also small, with a slight increase by 0.006. Upon pressure removal,

the degree of saturation drops by 0.16, to Sw = 0.83. Many new voids (red) form in

regions of high and intermediate local porosity in the wet state, which also correspond

to regions of high and intermediate local porosity in previous wet and dry states.

Thus, voids form primarily in large pre-existing channels (as opposed to creating said

channels during void formation). Pressure removal is also associated with a decrease

in entropy, Ew − Eo
w = −0.04, perhaps due to slight relaxation of the fibers.

The second (s2, Fig. 4.7) shows effects of impregnation and curing for a case in

which the degree of saturation after impregnation was relatively low (Sw = 0.85) and

increased slightly (to Sc = 0.88) during curing. During impregnation, voids form

primarily in pre-existing large channels and those channels appear to expand slightly,

leading to an increase in local porosity entropy of Ew − Ed = 0.08. During curing,

as the saturation increases, both the median void size and the local porosity entropy

exhibit reductions, contrary to the broader trends found with most test specimens.

The increase in saturation is presumably due to migration of matrix material into the

imaged region from adjacent regions, possibly driven by bubble formation in regions

with higher saturation. Several regions containing large impregnation voids in the

wet state are partially filled with matrix during curing (blue regions), creating several

smaller voids (green regions) present after curing. Only a few new voids (red regions)

formed during curing. These changes are evident in void size distributions before and
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after curing. Furthermore, in regions where large voids had been partially filled, large

channels appear to have contracted slightly, causing the fiber bed to become more

uniform with a change in local porosity entropy of Ec − Ew = −0.07.

The third example (s3, Fig. 4.8) shows a specimen that had been fully saturated

after impregnation and exhibited a large reduction in saturation, from 1.00 to 0.85,

upon curing. This specimen also has the largest median void size after curing. The largest

void is highly elongated in the transverse section and appears near the tube wall and

in the bed interior (presumably along prior tow boundaries). Void formation also

appears to have caused significant fiber movement, resulting in expansion of several

of the largest channels (visible in red in the images of ∆ε in (C) and evident in the

changes in the histogram of local porosity in (D)). Meanwhile, previously-existing

large channels that did not contain voids after curing (for example along the top of

the specimen near the tube wall) appear to have contracted slightly. Overall, fiber

movement results in a net increase in entropy, implying an increase in fiber bed non-

uniformity.

The fourth example (s4, Fig. 4.9) shows the specimen with the highest entropy in

the dry, wet, and cured states. During impregnation, voids form in pre-existing large

channels near the tube wall and internally along possible prior tow boundaries. Some

of the large channels in which voids form appear to expand slightly, leading to an in-

crease in local porosity entropy of Ew − Ed = 0.05. Upon curing, this specimen shows

the largest reduction in saturation, from 0.94 to 0.77. Several large voids present in the

wet state remain after curing (shown in light green). Curing also leads to formation

of several large (red) voids that appear in regions of pre-existing high local porosity

near the tube wall and internally along possible prior tow boundaries. Expansion of

old voids and formation of new voids cause significant displacement of nearby fibers

and an increase in non-uniformity of fiber packing, with Ec− Ew = 0.10. Formation of

large voids and regions of higher local porosity during curing are evident in changes
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in void size and local porosity distributions.

The fifth example (s5, Fig. 4.10) shows the specimen with the lowest saturation

after impregnation (Sw = 0.79). This specimen shows almost no change in saturation

upon curing (Sc− Sw < 0.01), and thus the integrated frequencies of the histograms of

voided local porosity and void size are nearly the same. However, there is a significant

redistribution of void locations and sizes. Several small impregnation voids in the

specimen interior disappear (blue regions) while several larger voids (in regions of

high local porosity) near the tube wall expand during curing. Overall, curing results

in a slight increase in median void size and a moderate increase in entropy.

The final example (s6, Fig. 4.11) shows curing effects in an intermediate case (this

specimen had not been imaged dry). Here, during curing, saturation decreases by a

moderate amount, from 0.91 to 0.83, while both the median void size and the local

porosity entropy increase by moderate amounts. Many of the large voids in both the

wet and the cured states appear near the tube wall and internally along possible tow

boundaries. Many of the new (red) voids appear to have expanded from pre-existing

voids in the regions of high local fiber bed porosity, causing expansion of several large

channels within the fiber bed.

4.4 Discussion

Here we examine the connections between processing conditions, fiber bed proper-

ties, and ensuing microstructures of unidirectional minicomposites. The discussion

begins with the processes involved in impregnation, including fiber movement, void

entrapment, void mobilization, gas dissolution and gas exsolution. This is followed

by a discussion of effects of curing.

The results presented here along with those of our previous related study [69] of

fluid impregnation into unidirectional fiber beds reveal the following operative mech-
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anisms of fluid flow and defect formation. The schematic in Fig. 4.21 depicts the im-

portant trends. At low capillary number, the impregnation rate and the nature of the

flow front are capillary-driven. Flow occurs preferentially within the narrowest chan-

nels between fibers where capillary forces are greatest [69]. Capillary forces further

draw the affected fibers inward, thereby expanding adjacent channels. The process

may lead to permanent entrapment of voids in the larger channels; further flow does

not aid in void mobilization nor does it enable dissolution of any trapped gas.

With increasing impregnation pressure and hence increasing capillary number, the

differential between flow rates in large and small channels is expected to be reduced

and hence the flow front is expected to be more uniform. Under these conditions, the

tendency for void entrapment in the wake of the flow front is reduced [32, 50]. Ad-

ditionally, higher capillary numbers promote mobilization of entrapped voids during

further fluid impregnation. The higher pressures also promote dissolution of trapped

gas into the fluid, followed later (upon pressure removal) by exsolution of gas and for-

mation of bubbles. This dissolution/exsolution process is clearly undesirable since it

yields only a temporary enhancement in saturation. At yet higher pressure, the combi-

nation of increasing uniformity of fluid flow with increased void mobility lead to com-

plete saturation, without gas entrapment and accompanying dissolution/exsolution.

The uniformity of fiber packing in the initial fiber bed, as measured by the local

porosity entropy, does not appear to play a role in the degree of saturation. With

respect to remnant voids after impregnation, however, fiber packing plays a role in

void size. Notably, fiber beds with high porosity entropy contain larger channels;

because the capillary pressure is lower within larger channels, these channels are the

preferred void locations. Slight fiber movement accompanying impregnation causes

a further increase in porosity entropy (by about 0.06).

Curing of the fluid of present interest (the SMP-10 ceramic precursor) leads to lib-

eration of low molecular weight gases. In cases where the degree of saturation after
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impregnation is low, the reduced amount of precursor material leads to a reduced

amount of gas that can form and that needs to be liberated. The gas that forms can

readily escape via available pathways resulting from incomplete saturation. Conse-

quently, changes in saturation following curing are small. In contrast, when complete

saturation is obtained during impregnation, the amount of fluid and the amount of

gas evolved are greater, but the pathways for gas escape are not initially present. In

these cases, reductions in saturation following curing can be large. Capillarity favors

formation of bubbles in the largest channels and thus such channels become preferred

pathways for gas release. The latter channels are typically located near the tube walls,

where fiber packing may be compromised somewhat by the encasement process, as

well as in the interior of the fiber bed in regions of anomalously low fiber packing,

such as those obtained along prior tow boundaries. The result is that pathways pro-

duced for gas liberation are highly heterogeneous, occurring preferentially in a small

number of large channels. These effects are exacerbated by non-uniformity in the ini-

tial fiber packing; higher porosity entropy enables larger voids to form. Formation of

these voids leads to a further increase in fiber bed non-uniformity.

Extrapolating the present trends to further steps in the PIP process, we expect

that pyrolysis of impregnated and cured composites will further exacerbate the non-

uniformity of the fiber bed. This is because the large volume change associated with

pyrolysis will tend to further shrink small channels – where the precursor is abundant

– at the expense of expansion of the large (voided) regions. Microstructural changes

following additional impregnation and pyrolysis cycles are expected to continue along

a similar path. One implication is that the degree of uniformity in the pore network

following the first cycle may be crucial to the filling efficiency, especially in the larger

channels, during subsequent process cycles.
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4.5 Conclusions

The present study has revealed qualitative features and quantitative measures associ-

ated with microstructural evolution during axial impregnation and subsequent curing

of a preceramic polymer in unidirectional ceramic fiber beds. The methods developed

and demonstrated here are used to identify correlations between local fiber packing

and regions where voids are formed as well as connections between impregnation

conditions and the nature and extent of voids that result from impregnation and cur-

ing. Arguably, the present collection of experimental results could not be obtained

through any route apart from XCT. Additionally, use of spatial local porosity distribu-

tions and local porosity entropy to characterize fiber bed uniformity before and after

various processing stages represents a novel step forward in quantifying important

microstructural changes during processing, especially those related to void location

and void size.

Key conclusions and implications follow.

• Saturation after impregnation increases with instantaneous capillary number: a

consequence of reduced void entrapment likely resulting from more uniform

flow fronts and/or increased void mobilization during subsequent flow. Over

the range of experimental conditions employed here, saturation does not appear

to be affected by local porosity entropy.

• Because of the need to create pathways for gas escape, specimens with higher

saturation after impregnation typically show the largest reductions in satura-

tion during curing. Despite this, specimens with higher instantaneous capillary

number during impregnation tend to have the highest saturation after curing.

• Because of capillarity, voids tend to form in the largest channels between fibers

during both impregnation and curing. Increased fiber non-uniformity, as mea-

sured by local porosity entropy, allows for higher median void sizes. Median
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void size is not influenced by instantaneous capillary number.

• As the fiber beds are taken from the dry state to the cured state, local porosity en-

tropy drops slightly over length scales (characterized by the circular cell radius

used to compute local porosity) comparable to the fiber radius (because of the

tendency of closely packed fibers to become even more closely and uniformly

packed) and increases by a greater amount at longer length scales (≈ 34µm), the

latter corresponding to the scales sensitive to changes in fiber packing near large

channels. The trend is expected to continue with further processing steps, in-

cluding pyrolysis and additional precursor impregnation and pyrolysis cycles,

as needed to further densify the matrix.
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Figure 4.1: Thermogravimetric analysis and mass spectrometry (TGMS) during curing
of a neat specimen of AHPCS + 0.2wt% DP. Measurements were made at NETZSCH
Instruments North America, LLC (Burlington, MA) using an STA 449 F1 Jupiter® ther-
mogravimetric analyzer with an Oxygen Trap System (OTS®) coupled to a QMS 403
Aëolos® quadrupole mass spectrometer. The tests were run under flowing argon. Lib-
eration of hydrogen (ratio of mass number to charge number, m/z = 2), methane
(m/z = 16), and silanes (silane, methylsilane, dimethylsilane, trimethylsilane, and
tetramethylsilane, with m/z = 29, 30, 31, 43, 44, 45, 58, 59, 73) leads to a mass loss of
2.7% during curing.
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Figure 4.2: Test geometry consists of a capillary tube filled with fibers and impreg-
nated axially with a preceramic polymer.
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Figure 4.3: Representative transverse section from XCT reconstructed (A) without and
(B) with phase retrieval. (C) The corresponding segmentation shows fibers in light
gray, matrix in medium gray, voids in black, and regions outside the specimen in
white.
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Figure 4.4: Cell radius used to compute local porosity influences (A) local fiber bed
porosity entropy and (B) changes in entropy between processing states. Shown here
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Figure 4.7: Results for specimen 2 (s2) imaged ex-situ in the dry state, the wet state after
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Figure 4.8: Results for specimen 3 (s3) imaged ex-situ in the dry state, the wet state after
pressure removal (APR), and the cured state. For this specimen, Ca f f = 6.4× 10−4.
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Figure 4.9: Results for specimen 4 (s4) imaged ex-situ in the dry state, the wet state after
pressure removal (APR), and the cured state. For this specimen, Ca f f = 1.1× 10−3.
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Figure 4.10: Results for specimen 5 (s5) imaged ex-situ in the dry state, the wet state
after pressure removal (APR), and the cured state. This specimen was impregnated
by capillary imbibition alone (without applied pressure) (Ca f f = 2.9× 10−5).
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Figure 4.11: Results for specimen 6 (s6) imaged ex-situ in the wet state after pressure
removal (APR) and the cured state. This specimen was impregnated by capillary im-
bibition alone (without applied pressure) (Ca f f = 9.1× 10−5).
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Figure 4.12: Unfilled plot markers show dependence of local porosity entropy on
global porosity for all specimens in all imaged states using results from the standard
segmentation procedure. For specimens imaged ex-situ, entropy increases approxi-
mately linearly with global porosity. Filled plot markers and corresponding black
lines show the dependence of local porosity entropy on global porosity alone for four
different specimens whose fibers were expanded or shrunk in the segmentation to
alter the global porosity without altering fiber locations.
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Figure 4.13: Longitudinal sections from corresponding locations within wet (APR)
and cured specimens illustrate void formation and changes in void shape and size.
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all high-magnification images (with compound black borders) share the same scale
bar.
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Figure 4.16: (A) Degree of saturation in the wet state after pressure removal does not
show a significant dependence on local porosity entropy. (B) Global porosity shows
a very weak positive correlation with Sw, with a p-value of 0.04 for the slope of the
linear fit.
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Figure 4.17: (A) Although the degree of saturation before pressure removal increases
with pressure (blue), saturation is reduced following pressure removal at intermediate
pressures (red). At sufficiently high pressures (over 300 kPa), complete saturation
is obtained while the fluid is under pressure and is maintained following pressure
removal. (B) As a result, the loss in saturation following pressure removal is greatest
at an intermediate pressure, in this case 151 kPa. To provide a baseline, results for
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shown in green.
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Figure 4.18: (A) Changes in saturation during curing, Sc − Sw, depend on the satura-
tion before curing, Sw. The statistical significance of this trend was confirmed from a
linear fit of Sc − Sw vs. Sw, which yields a p-value of 4× 10−3 for the slope. (B) The
degree of saturation after curing is still greatest in cases in which the instantaneous
capillary number during impregnation was high, albeit with a weaker correlation than
that between Sw and Ca f f . The p-value for the slope of the linear fit to Sc vs Log(Ca f f )
is 0.02.
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Figure 4.19: The degree of saturation after curing shows no dependence on (A) local
porosity entropy or (B) global porosity. Linear fits to Sc vs. Ec and Sc vs. ε both yield
p-values of 0.8 for the slopes.
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Chapter 5

Microstructure Evolution During

Polymer-to-Ceramic Conversion in

Unidirectional Fiber Beds

Abstract

The PIP process relies crucially on the development of networks of contiguous

cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full

densification. The present study employs in-situ x-ray computed tomography (XCT)

to reveal in three dimensions the evolution of matrix structure during pyrolysis of a

SiC-based preceramic polymer to 1200°C. Observations are used to guide the develop-

ment of a taxonomy of crack geometries and crack structures and to identify the tem-

poral sequence of their formation. A quantitative analysis is employed to characterize

effects of local microstructural dimensions on the conditions required to form cracks

of various types. Complementary measurements of gas evolution and mass loss of the

preceramic polymer during pyrolysis as well as changes in mass density and Young’s

modulus provide context for the physical changes revealed by XCT. The findings pro-
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vide a foundation for future development of physics-based models to guide composite

fabrication processes1.

5.1 Introduction

Preceramic polymers are used to produce CMCs through repeated polymer impreg-

nation and pyrolysis (PIP) in fiber preforms [2, 3, 5, 11, 13, 14, 24]. Due to mass loss

from gas evolution and a significant increase in mass density during pyrolysis, large

shrinkage strains ensue. When shrinkage is constrained – as it is within the confines

of a continuous fiber array – it is accommodated at least in part by formation of pyrol-

ysis cracks. Importantly, to ensure complete impregnation of the void spaces in sub-

sequent process cycles, the conversion process must ideally yield a matrix structure

comprising a contiguous network of pyrolysis cracks. In some variants of the process,

the final pyrolysis treatment may be followed by either melt or chemical vapor infil-

tration to produce SiC or other refractory Si-based compounds within the remaining

void spaces. Here again a contiguous network of ingress pathways must be present

after the final pyrolysis treatment in order to attain nearly-full densification during

subsequent processing steps.

X-ray computed tomography (XCT) has been used previously to non-destructively

characterize the 3D microstructure of SiC-based CMCs [86, 87]. Recent advancements

in XCT instrumentation have enabled in-situ four-dimensional (3D+time) imaging of

materials under load in controlled environments at very high temperatures [5, 88].

The current study demonstrates the use of XCT to observe microstructure evolution

in-situ during material processing at high temperatures.

The study focuses specifically on the evolution of composite microstructure during

1The content of this chapter has previously appeared in Acta Materialia (Natalie M. Larson, Frank
W. Zok. “In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion”.
Acta Materialia 144, 579-589 (2018)) [23]. It is reproduced here with the permission of Elsevier.
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pyrolysis of a SiC-based preceramic polymer contained within a bed of unidirection-

ally aligned SiC fibers. Intricate details of the three-dimensional nature of crack struc-

tures (each consisting of multiple individual cracks) and their evolution are obtained

by in-situ x-ray computed tomography (XCT) during heating up to 1200°C. Examina-

tions of over 140 crack structures are used to guide the development of a unified tax-

onomy of crack geometries and crack structures and to identify the temporal sequence

of their formation. Crucially, the 3D nature of the observations enables insights into

crack structures that would otherwise not be possible through, for example, ex-situ

observations of specimens from interrupted tests or by 2D imaging alone. Effects of

temperature and local geometry on the formation of various crack types are character-

ized. This work represents the first step in understanding crack evolution during the

conversion process and sets the foundation for development of physics-based models

to guide future composite fabrication processes.

5.2 Materials and Methods

5.2.1 Composite design and fabrication

In-situ XCT was conducted during pyrolysis of a composite specimen made with state-

of-the-art fibers and a preceramic polymer. The composite specimen was fabricated

by first inserting nine tows (≈ 4500 fibers) of BN-coated Hi-Nicalon™ Type-S SiC

fibers into a quartz tube with a 1.5mm inner diameter (VitroTubes™). The interstices

between the fibers were filled with allylhydridopolycarbosilane (AHPCS) (SMP-10,

Starfire® Systems), which yields SiC following pyrolysis above 850°C. Prior to im-

pregnation, the AHPCS was mixed with 0.2 wt% dicumyl peroxide (DP) initiator to

promote subsequent curing. The preceramic polymer was introduced into the com-

posite via pressure-assisted impregnation. First, the fiber-filled quartz tube and a cup

of liquid AHPCS were placed into a vacuum chamber and the chamber was evacu-
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ated. The AHPCS was then poured over the tube, fully submerging the specimen in

the liquid. Next, the chamber was brought back up to atmospheric pressure. The sub-

merged specimen was then transferred to a pressure chamber and the chamber was

pressurized to 275 kPa using compressed air. The entire chamber (with the specimen)

was placed in an oven at 120°C for two hours, during which the AHPCS was lightly

pre-cured.

5.2.2 In-situ x-ray computed tomography

XCT was performed at the hard X-ray beamline 8.3.2 at the Advanced Light Source

at Lawrence Berkeley National Laboratory. The specimen was imaged inside a high-

temperature testing rig [5, 88]. Heating was accomplished with a hexapole arrange-

ment of halogen lamps. The test specimen was mounted vertically in the testing rig in

water-cooled grips. An inert environment was maintained by flowing argon through

the chamber at a rate of 20g/h. The testing rig was mounted on a rotation stage, and

supply lines for argon gas, cooling water, and lamp power were carefully arranged

to ensure negligible rig vibration during rotation. Specimen temperatures during py-

rolysis were obtained from offline calibration experiments with an identical specimen

containing an embedded R-type platinum-rhodium thermocouple, positioned in the

center of the hot zone inside of the testing rig. With a calibrated temperature vs. lamp

power relationship, a lamp power vs. time program was generated and used to pro-

duce the desired heating cycle for the pyrolysis experiments performed in the beam-

line. Over the course of about 20 hours, the specimen was heated to 1200°C according

to the temperature profile shown in Figure 5.1(A) (25°C to 250°C at 2°C/min, 250°C

to 700°C at 1°C/min, 700°C to 930°C at 3°C/min, 930°C hold 70min, 930°C to 1090°C

at 3°C/min, 1090°C hold 70min, 1090°C to 1200°C at 2°C/min, 1200°C hold 70min,

cool at -5°C/min. This profile is similar to that recommended by Starfire® Systems

[31]; slight differences are due to limitations in calibration precision and temperature
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control).

XCT images were collected continuously during the entire pyrolysis cycle, with

each complete scan taking about 12 minutes. The reported scan temperatures are the

averages of those at the beginning and at the end of each scan. Each scan consisted

of 4096 radiographs of 40ms exposure time, over a 180° rotation. Filtered white light

was used for illumination. The light was passed through a 6mm-thick aluminum filter

to reduce the heat load on the scintillator. The specimen-to-detector distance was

approximately 110mm. Radiographs were collected with a pco.dimax camera. The

field of view was approximately 2mm by 2mm by 2mm. The resulting 3D tomograms

have a spatial resolution of 0.98µm per voxel edge, which is sufficient to resolve the

SiC fibers (each approximately 13µm in diameter) and the pyrolysis cracks within the

matrix.

Tomographic slices were reconstructed using a commercial reconstruction algo-

rithm (Octopus v8; IIC UGent, Zwijnaarde). The data were analyzed manually using

ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Mary-

land, USA, http:// imagej.nih.gov/ij/, 1997-2016), and 3D visualizations were seg-

mented manually and rendered in Avizo® version 9.2.0 (FEI Visualization Sciences

Group). Crack initiation is characterized by the temperature at which the first signs of

the crack are evident.

5.2.3 Characterization of polymer-to-ceramic conversion

During pyrolysis, AHPCS undergoes significant changes in physical, chemical, and

mechanical properties [18, 20, 21, 89–92]. The conversion process includes crosslink-

ing between about 100 and 650°C, ceramization between about 850 and 1100°C, and

crystallization between about 1150 and 1650°C (Starfire® Systems documentation [31]

and [18, 20, 21]). The polymer-to-ceramic conversion is accompanied by gas evolution

and associated mass loss, an increase in mass density and corresponding volume re-
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duction, and an increase in stiffness. The changes were characterized in the following

ways.

Thermogravimetric analysis and mass spectrometry

Thermogravimetric analysis and mass spectrometry (TGMS) were performed on a

neat specimen of AHPCS + 0.2wt% DP that had been pre-cured at 120°C for 2h in

argon. The tests were performed at NETZSCH Instruments North America, LLC

(Burlington, MA) with a STA 449 F1 Jupiter® thermogravimetric analyzer with an Oxy-

gen Trap System (OTS®) coupled to a QMS 403 Aëolos® quadrupole mass spectrom-

eter. The tests were run under flowing argon with a heating rate of 1.4°C/min from

room temperature to 1550°C. A constant heating rate was used to eliminate artifacts

in the mass spectrometry data that would result from isothermal holds and changes

in heating rate.

Mass density

Density measurements were performed at room temperature (21°C) on powders pre-

pared from pellets of AHPCS + 0.2wt% DP. The pellets had been pre-cured in air at

120°C for 2h followed by interrupted pyrolysis treatments in argon to various temper-

atures (temperature profile: 25°C to 250°C at 2°C/min, 250°C to 650°C at 1°C/min,

650°C to 850°C at 3°C/min, 850°C hold 60min, 850°C to 1000°C at 3°C/min, 1000°C

hold 60min, 1000°C to 1200°C at 3°C/min, 1200°C hold 60min, cool at -5°C/min, as

recommended by Starfire® Systems [31]). The measurements reported for room tem-

perature (21°C) are those of powders after pre-curing. The measurements reported for

375-1200°C are those of powders following pyrolysis to the designated temperature.

The density, ρ, was determined via mass measurements using an analytical scale

and volume measurements using a Quantachrome Ultrapyc™ 1200e (Boynton Beach,

Florida) pycnometer. The coefficients of variation of the measured densities at each
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temperature were ≤ 0.7%. The volumetric yield was estimated as (m/m0)/(ρ/ρ0),

where m is mass, m0 is initial mass at room temperature, and ρ0 is density at room

temperature.

Young’s modulus

The Young’s modulus of pellets of AHPCS + 0.2wt% DP were measured at room tem-

perature (21°C) by nanoindentation. The pellets had been pre-cured in air at 120°C

for 2h followed by interrupted pyrolysis treatments in argon to various temperatures

(temperature profile: 25°C to 250°C at 2°C/min, 250°C to 650°C at 1°C/min, 650°C

to 850°C at 3°C/min, 850°C hold 60min, 850°C to 1200°C at 2°C/min, 1200°C hold

60min, cool at -5°C/min, as recommended by Starfire® Systems [31]). The measure-

ments reported for room temperature (21°C) are those of pellets after pre-curing. The

measurements reported for 375-1200°C are those of pellets following pyrolysis to the

designated temperature.

Nanoindentation was performed with a Hysitron TriboIndenter® using a Berkovich

tip for indentation and fused quartz for tip-shape calibration. The Young’s modulus

was calculated from the unloading curves following standard protocols [93]. The co-

efficients of variation of the measured moduli at each temperature were < 6%.

5.3 Results and discussion

5.3.1 Polymer-to-ceramic conversion

The evolution of physical, chemical, and mechanical properties for the polymer-to-

ceramic conversion is summarized in Figures 5.1(B-F). The TGMS results show a 21.5%

mass loss caused by liberation of hydrogen (m/z = 2), methane (m/z = 16), and

silanes (silane, methylsilane, dimethylsilane, trimethylsilane, and tetramethylsilane,

with m/z = 29, 30, 31, 43, 44, 45, 58, 59, 73). Furthermore, the combination of mass

151



loss and density increase (from about 1.0 to 2.5 g/cm3) results in a volumetric yield of

32% upon completion of pyrolysis. As a result of these changes, the Young’s modulus

increases by over three orders of magnitude, from 0.0234± 0.0005 GPa after pre-curing

to 153± 7 GPa after heating to 1200°C. Most of the changes occur over the temperature

range of 200 to 800°C. These results provide context for the physical changes revealed

by XCT images of the composite specimen.

5.3.2 In-situ x-ray computed tomography

XCT images in Figures 5.2-5.5 show the progression of crack formation with increas-

ing temperature. Figure 5.2 shows three 3D images of the same location at various

stages of pyrolysis. The image after complete pyrolysis was taken at room temper-

ature, after cooling from 1200°C. The cracks are the least absorbing features and are

rendered transparent while the fibers, being most absorbing, are rendered light yel-

low. Meanwhile, as the matrix material converts from AHPCS to SiC, it becomes more

highly absorbing (red to orange to yellow color scheme in Figure 5.2), nearly matching

that of the fibers after complete pyrolysis. In the rendering of the CMC after complete

pyrolysis (Figure 5.2(C)), the fibers bounding the crack planes can be seen behind

the remaining cracked pieces of matrix material. The first cracks to form are evident

at about 200°C. New cracks continue to form at temperatures as high as 700°C. Un-

surprisingly, this temperature range corresponds to that of the most significant gas

evolution, mass loss, and volume reduction. Throughout this process and at higher

temperatures, the opening displacements of existing cracks progressively increase, a

result of continued matrix evolution and constraints imposed by the fibers.

In the following discussion, crack geometries and crack evolution are discussed

in the context of local matrix regions bounded by surrounding fibers. Because the

fibers are nearly parallel with only gradual variations in their lateral spacing along

the length of the composite, the size of the matrix region containing cracks is charac-
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terized by
√

An where An is the cross-sectional area of that region measured normal to

the fiber direction.

The focus here is on regions in which impregnation of the preceramic polymer be-

tween fibers was complete. (Although occasional mesoscale defects such as bubbles

and long (> 500µm) longitudinal cracks were observed, the cracks around them are

not considered here.) The results are based on exhaustive examinations and measure-

ments of more than 140 crack structures.

5.3.3 Geometry, taxonomy and temporal sequence of pyrolysis

cracks

Several prototypical crack types and evolution sequences are obtained. The first crack

to form in a particular local matrix region is referred to as the primary crack. Other

cracks can form in the same region as the matrix continues to evolve; these are re-

ferred to as secondary, tertiary, and quaternary cracks, dictated by the temporal sequence.

The concatenation of connected cracks within a local matrix region at the completion

of pyrolysis is referred to as a crack structure. Primary cracks are one of two broad

types. The first comprises alternating (A) and wavy (W) cracks, collectively designated

A/W (Figures 5.3(A), 5.4(A), and 5.6(A)). The cracks form rapidly (within a single XCT

scan), and thus their temporal evolution is not directly observed. However, based on

geometric analyses and reports of similar crack geometries in adhesive joints [62, 65,

68], we infer that both crack types initiate from putative interfacial cracks and grow

nominally parallel to the fibers.

Alternating cracks of similar geometry have been observed previously in adhesive

joints and other layered structures and have been analyzed using established frac-

ture mechanics principles [65, 68]. We thus infer that these cracks extend through a

repeating process in which an interfacial crack propagates to a critical length, kinks

into the matrix at a shallow angle, follows a curved trajectory across the local matrix

153



region, and deflects at the fiber-matrix interface on the opposite side of this region

to form another interfacial crack (Figure 5.3(A), Figure 5.6(A)). Because of the char-

acteristic angles at which alternating cracks emanate from one interface and deflect

into another, the direction of propagation can be readily inferred from crack shape

(e.g. vertical red arrow in Figures 5.3(A)(i) and 5.6(A)). The 3D crack surfaces form an

occasionally kinked ribbon with the edges of the ribbon cupped inward toward the

matrix region (the cupped feature is not observed in 2D adhesive joint geometries [65,

68]).

Wavy cracks have also been observed previously in adhesive joints [62]. Because

the wavy cracks observed here do not begin or end in the middle of local matrix re-

gions, we infer that they initiate similarly from putative interfacial cracks. In contrast

to alternating cracks, wavy cracks exhibit a smooth (nearly sinusoidal) shape (Fig-

ures 5.4(A), 5.6(A)). Occasionally they contact the bounding fibers tangentially at their

peaks and troughs. The 3D crack surfaces form smooth wavy ribbons with inwardly-

cupped edges (Figure 5.4(A)).

The nature of alternating and wavy cracks cannot be ascertained from 2D sec-

tions alone. For example, when viewed within some longitudinal sections, alternating

cracks can appear to be wavy in nature (seemingly without the kinked features); in

other sections, they can appear to be periodically spaced cracks perpendicular to the

fibers (Figure 5.3(A)(vii)). Only 3D imaging provides conclusive evidence of their true

geometry.

Although both alternating and wavy cracks are observed, alternating cracks ap-

pear to be more common; about 75% of 91 cracks analyzed in the alternating/wavy

family show a purely alternating geometry. However, alternating and wavy cracks

are not always entirely distinct from one another; one type can morph into the other

as the crack grows. For example, a crack can grow in an alternating fashion for some

distance and then grow further in a wavy fashion, and vice versa. Because of the
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similarities in their geometric characteristics, the two crack types are grouped as one,

alternating/wavy (A/W), in subsequent discussion.

In the second category, primary cracks are, for the most part, nearly perpendicular

to the surrounding fibers. The edges of these cracks are bounded by a wall of nearly-

touching fibers (Figures 5.5(A,E) and 5.6(B)). These are named perimural (P) cracks.

(The term stems from the Greek root peri, meaning around, and the Latin root mur,

meaning wall.)

Most perimural cracks appear to be preceded by and emanate from one end of

a small interfacial crack. The cracks kink into the matrix and grow predominantly

perpendicular to the fibers. Similarly to the A/W cracks, primary crack formation

occurs rapidly (within a single XCT scan). Figure 5.5(A) shows an example in which

two parallel perimural cracks were spawned by two ends of a single thin interfacial

crack; a 2D section revealing the interfacial crack is shown in Figure 5.7. Among 51 sets

of perimural cracks examined, about 80% show clear evidence of originating at a fiber-

matrix interface. Indeed, among the perimural cracks with evident interfacial cracks,

each was connected to only one interfacial crack in the early stages after formation.

From this observation we infer that the interfacial cracks precede and nucleate the

perimural cracks, not vice versa. (Otherwise, if perimural cracks were to nucleate

within the matrix and then kink into the interface, at least some of these cracks would

be expected to kink at two or more locations.) This nucleation process is similar to

that associated with alternating cracks. In some sense perimural cracks formed this

way can be viewed as incipient alternating cracks that failed to grow past the first

half-wavelength. It is important to note that, because of the localized nature of the

putative interfacial cracks that spawn the (typically much larger) perimural cracks,

2D cross-sections (e.g. Figure 5.5(F-I)) rarely reveal the presence of the initiating crack,

leading to the false conclusion that most perimural cracks nucleate homogeneously

within the central regions of the matrix pockets.
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Additional cracks often form within matrix regions containing primary cracks.

Their geometry and temporal sequence depend on the primary crack type.

For alternating/wavy primary cracks, secondary and tertiary cracks may be of

two types: (i) interfacial (I) cracks, which form and propagate along fibers still at-

tached to the matrix; and (ii) cracks perpendicular to the fibers, bounded partially

by fibers and partially by another crack surface (in this case, the alternating/wavy

crack surface, and possibly an interfacial crack surface). The latter are referred to as

semi-perimural (SP) cracks. Similarly to perimural cracks, semi-perimural cracks may

also be spawned from putative interfacial cracks. The potential temporal sequences

of these secondary and tertiary cracks are summarized in Figure 5.6(C); examples are

shown in Figure 5.3, as well as Figures 5.4 and 5.6(A). Each crack type labeled in Fig-

ures 5.3-5.6 (e.g., P, A/W, and I) forms independently as a unique event, with purely

interfacial (I) cracks distinct from the interfacial cracks included within the P and A/W

crack geometries.

In addition to the preceding crack taxonomy based on temporal sequence (e.g.,

primary - quaternary), we define the final hierarchical order (FHO) as the number of

unique crack types within a crack structure in a local matrix region after completion

of pyrolysis. For example, the crack sequence in Figure 5.3 begins with a primary

alternating crack followed by secondary semi-perimural cracks and tertiary interfacial

cracks. The crack structure is characterized by its FHO (3) and the primary crack type,

together denoted 3A/W. Figure 5.4, on the other hand, shows a primary wavy crack

with secondary semi-perimural cracks in some segments and secondary interfacial

cracks in others; these are W-SP and W-I cracks. Both are crack structures with FHO

of 2 in the alternating/wavy family, abbreviated as 2A/W.

Following formation of perimural primary cracks, two types of secondary cracks

may form: (i) straight longitudinal (L) cracks, oriented approximately parallel to the

fibers, within the matrix between two perimural cracks (Figures 5.5(B,G) and 5.6(B));
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and (ii) interfacial (I) cracks between the fibers and the remaining matrix. These

may be followed by tertiary/quaternary interfacial (I) and semi-perimural (SP) cracks

(Figure 5.5(B-D)). The semi-perimural cracks are bounded partially by the fibers and

partially by a longitudinal crack and/or an interfacial crack. The potential temporal

sequences are summarized in Figure 5.6(C); examples are shown in Figures 5.5 and

Figure 5.6(B). Final crack structures in the perimural family may be composed of per-

imural, longitudinal, semi-perimural, and interfacial cracks. For example, the crack

structure in Figure 5.5 is a P-L-SP-I crack. This is a crack structure with a FHO of 4 in

the perimural family, abbreviated as 4P.

5.3.4 Initiation temperatures and characteristic length scales

With a view toward future development of a mechanistic framework to describe the

spatial and temporal evolution of pyrolysis cracks, we present measurements and pre-

liminary analyses on the effects of the size of matrix regions, characterized by
√

An,

on: (i) the temperatures at which primary cracks initiate, Tp
i ; (ii) the FHO; and (iii)

the characteristic spacings, Lc, associated with the two types of primary cracks – the

half-wavelength, λ/2, for alternating/wavy cracks and the longitudinal spacing, lP,

between perimural cracks.

A process flow diagram depicting the steps followed to make these measurements

is illustrated in Figure 5.72. In the first step, primary cracks were identified and catego-

rized by crack type (P, A, or W) by scrolling through longitudinal image stacks taken

at a variety of temperatures (Figure 5.7(A)). For example, the primary cracks in Figure

5.7(A) (same as those in Figures 5.5(A,F)) are identified as perimural because they are

predominantly perpendicular to fibers. Each emanates from one end of an interfacial

crack. The interfacial crack is identified by two key features: (1) the curved trajectory

2Although all data in the current study were collected manually, the resulting database may be used
in the future to inform machine learning algorithms to automate measurements of a similar nature.
Data are available upon request.
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of the perimural cracks near the interface, and (2) the large opening displacement of

the interfacial crack after complete pyrolysis (Figure 5.7(C)). Next, the crack initiation

temperature is determined by examining image stacks taken at progressively lower

temperatures until the primary crack is no longer visible (Figure 5.7(B)). In the third

step, the FHO is determined by examining the same region in the image stack after

complete pyrolysis (Figure 5.7(C)). For example, in Figure 5.7(C), longitudinal, semi-

perimural, and interfacial cracks are identified (in addition to the primary perimural

crack). Thus, the FHO for this crack structure is 4. Purely interfacial cracks are iden-

tified as those that do not kink into the matrix to form perimural, semi-perimural or

alternating cracks. Such cracks can only be identified when their opening displace-

ments are large enough to differentiate them from the fiber-matrix interface. Thus,

crack initiation temperatures reported for purely interfacial cracks are only approxi-

mate. Additionally, not every interfacial crack in the local matrix regions is shown in

Figures 5.3, 5.4, 5.5, and 5.7; only the minimum number of such cracks needed to de-

termine the FHO are presented. Finally, crack areas, An, and characteristic spacings,

Lc, were measured, as described below and illustrated in Figures 5.3-5.5.

For alternating cracks, λ/2 was measured from the start of the fiber-matrix inter-

face crack through the end of the trans-matrix crack that kinked from the interface

(Figure 5.3(A)(i,vi)). The cross-sectional area normal to the fibers, An, corresponds to

the area traversed by the trans-matrix crack (Figure 5.3(A)(ii-v)). For wavy cracks, λ/2

was measured from the peak to the adjacent trough of the crack path (Figure 5.4(A)).

Here, An corresponds to the area traversed by the sinusoidal crack between the peak

and adjacent trough. For alternating/wavy cracks, the average cross-sectional area

was measured for each half-wavelength; 530 segments from 91 distinct cracks were

analyzed.

Areas of perimural cracks were measured in the way illustrated in Figure 5.5(E).

Often, multiple perimural cracks formed nearly simultaneously, i.e. within the same
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XCT scan, in the same local matrix region. Their longitudinal spacings, lP, were mea-

sured only at this point in the pyrolysis cycle. (Additional perimural cracks can form

between the initial cracks at higher temperatures and thus the reported crack spacings

do not necessarily represent the spacings after the completion of pyrolysis.) 51 regions

containing perimural cracks were analyzed.

The results are summarized in Figures 5.8 and 5.9. The results in Figure 5.8(A)

show that the initiation temperatures for both types of primary cracks decrease as
√

An increases. This trend is consistent with other cracking phenomena in thin films

and sandwich layers, wherein the driving forces for cracking generally increase with

the local dimensions of the cracking phase [62, 63]. Figure 5.8(A) also shows that

for primary cracks that initiate at temperatures below approximately 350°C, alternat-

ing/wavy cracks tend to form in smaller matrix regions than perimural cracks. As

noted earlier, most perimural cracks initiate at the fiber-matrix interface and then kink

into the matrix, akin to the first half-wavelength of alternating cracks. These results

suggest that continued growth of such cracks into alternating cracks (rather than ter-

mination as perimural cracks) is more favorable in smaller channels.

The crack initiation temperatures in Figure 5.8(A) are further sorted according to

the FHO of the terminal crack structures and re-plotted in Figure 5.8(B) for A/W cracks

and in Figure 5.8(C) for P cracks. (Information about initiation temperatures of sec-

ondary, tertiary and quaternary cracks is not contained in these figures.) The largest

matrix regions typically crack first (at the lowest temperatures) and contain crack

structures with higher FHO following complete pyrolysis, e.g. 4P cracks, represented

by orange diamonds in Figure 5.8(C). Conversely, the smallest regions are last to crack

and contain crack structures with lower FHO following complete pyrolysis, e.g. 1P

cracks, represented by purple circles in Figure 5.8(C). We find that, for both families of

primary crack, the crack initiation temperatures progressively decrease while the FHO

increases with increasing
√

An. This trend is also consistent with cracking phenom-
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ena in thin films, wherein the driving forces for additional cracking between existing

cracks increase with further increase of the loading and with the local dimensions of

the cracking phase [62].

The characteristic spacings associated with the two types of primary cracks – λ/2

for alternating/wavy cracks and lP for perimural cracks – follow similar scalings with
√

An (Figure 5.9). Notably, (λ/2)/
√

An = 2.2± 0.7 for alternating/wavy cracks and

lP/
√

An = 2.1 ± 1.0 for perimural cracks (± are standard deviations). In sandwich

structures, the ratios of the characteristic length scales to film thickness for both al-

ternating cracks and tunneling cracks have been shown to depend on film thickness,

the elastic moduli of the film and substrate, and the misfit strain, among other factors

[63, 65]. Here we find that, despite significant changes in the Young’s modulus of the

matrix and the misfit strain, Lc/
√

An appears to be essentially constant, independent

of Tp
i and

√
An for both alternating/wavy and perimural cracks.

5.4 Conclusions and outlook

In-situ x-ray computed tomography has been used to ascertain the nature of crack

structures and their evolution during pyrolysis of a SiC-based preceramic polymer

contained within a unidirectional fiber bed. Importantly, the true character of these

cracks can only be definitively identified with 3D imaging; 2D images can readily lead

to false impressions of crack nucleation locations and of crack geometry and topology.

Examinations of a large number of such cracks have guided the development of a

unified taxonomy of crack geometries and crack structures and revealed the temporal

sequences of their formation. Primary cracks appear to nucleate almost exclusively

from putative interfacial flaws and evolve in one of two ways: either through the

formation of alternating/wavy cracks or perimural cracks. The observations further

suggest that the primary crack types and their formation are not entirely distinct; per-

160



imural cracks appear to form analogously to the first half-wavelength of alternating

cracks. As pyrolysis continues, secondary, tertiary and quaternary cracks also form.

The primary crack initiation temperature decreases and the final hierarchical or-

der increases with increasing size of the local matrix region. For primary cracks that

initiate below approximately 350°C, alternating cracks form in preference to perimu-

ral cracks within the smaller channels. Furthermore, the characteristic crack spacings

– longitudinal spacing between perimural cracks and half-wavelengths of alternat-

ing/wavy cracks – are approximately proportional to the size of the regions in which

these cracks are contained.

The findings reported here provide a framework for describing crack networks

that result from a single impregnation and pyrolysis cycle and that, in practice, will

ultimately need to be re-impregnated. Simple imbibition models using the crack ge-

ometries identified here may streamline the optimization of subsequent impregnation

cycles or be used to identify optimal target shrinkage crack geometries. Furthermore,

the present observations provide a foundation for development of a mechanics frame-

work to describe pyrolysis cracking within fiber beds. These findings may simplify ef-

forts to optimize and tailor crack formation, perhaps via altering the pyrolysis thermal

cycle or more precisely tailoring the fiber packing characteristics.

Development of a mechanics framework will require measurements of additional

inputs, including the driving forces for cracking (e.g. local shrinkage strains) as well

as changes in matrix toughness and interfacial properties over the course of pyrolysis.

Furthermore, descriptors of crack topology (e.g. connectivity) and channel dimensions

may provide insights into the limits of densification that can be attained with this

processing route.
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Figure 5.1: Characterization of polymer-to-ceramic conversion. (A) Temperature pro-
file for pyrolysis experiment performed in-situ in the beamline. (B) Changes in mass
density of the preceramic polymer alone. (C) Mass spectrometry results labeled with
m/z values. Also shown are changes in (D) mass, (E) volumetric yield, and (F) Young’s
modulus. (Error bars in (F) are standard deviations.) Curves in (B,E,F) are hyperbolic
tangent fits to the experimental data.
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Figure 5.2: Three-dimensional volume renderings of a select region of the composite
during pyrolysis. Images obtained (A) at 332°C, (B) at 519°C, and (C) after complete
pyrolysis.
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Figure 5.3: Evolution of a crack structure in the alternating family. (A)(i),(B)(i),(C)(i)
Three-dimensional renderings of a crack structure with FHO of 3. In these renderings,
fibers are semi-transparent blue, pyrolysis cracks are shown on a red-yellow scale
that indicates initiation temperature, and matrix material is transparent. Each crack
is labeled with its geometric type and its initiation temperature. Vertical red arrow
in (A)(i) indicates the crack growth direction. (A)(ii-iv) Transverse (2D) views of the
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alternating crack at three points along the crack trajectory shortly after formation. Red
arrows indicate the crack front. (A)(v) Transverse view showing the area spanned by
the alternating crack in (A)(ii-iv). (A)(vi), (B)(ii), (C)(ii) Longitudinal 2D sections of
raw XCT images taken from the same location in the 3D image stacks showing crack
evolution during pyrolysis. (A)(vii) A longitudinal 2D section of the alternating crack,
viewed in a plane orthogonal to that in (A)(vi).
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Figure 5.3.
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(indicated by red plane in (A)) showing the area spanned by the perimural crack. (F-
I) Longitudinal sections (indicated by the gray plane in (A)) showing cracks at the
temperatures corresponding to images in (A) through (D).
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Measurements: process flow diagram
(example crack structure from Fig. 5)
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tures. (A) All data, for alternating/wavy cracks (open purple circles, purple line) and
for perimural cracks (closed orange triangles, orange line). Lines are logarithmic fits.
(B-C) Data in (A) separated by primary crack type and FHO (purple circles represent
FHO=1, green triangles represent FHO=2, blue squares represent FHO=3, orange di-
amonds represent FHO=4). Semi-transparent boxes indicate boundaries of first and
third quartiles in Tp

i and
√

An for each data cluster. Solid lines indicate the full range
of Tp

i and
√

An, and intersect at the median of each data cluster.
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Chapter 6

Conclusions and Recommendations

New experimental methods and analysis techniques have been developed for probing

and characterizing microstructure evolution during impregnation, curing and pyrol-

ysis of preceramic polymers in unidirectional fiber beds. Insights gleaned regarding

fiber bed permeability, void formation, fiber movement, and crack evolution during

pyrolysis provide a foundation for development of a physics-based modeling frame-

work for continued advancement of the PIP process. This chapter presents a summary

of the key conclusions and cross-cutting themes from this work, recommendations for

future research, and several illustrative examples of approaches that might be em-

ployed in carrying out that research.

6.1 Conclusions

Axial Permeability of Unidirectional Fiber Beds: Large (nearly ten-fold) increases in axial

permeability of unidirectional fiber beds with increasing capillary number (ranging

nearly two orders of magnitude) have been partially rationalized through a combi-

nation of in-situ XCT observations and use of a new computational tool (GPE) for

predicting axial permeability of large fiber arrays. The GPE tool yields useful quanti-
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tative predictions of permeability, with fidelity superior to that of methods based on

assemblages of unit cells.

Changes in permeability arise from coupled effects of capillary number, fiber move-

ment, and preferred flow channeling. Specifically, when the capillary number is high,

complete saturation is attained behind the flow front. During this process, fibers rear-

range into less uniform configurations with higher overall permeability. In contrast,

when the capillary number is low, preferred flow channeling is observed in the small-

est channels. This has two important consequences: (i) it leads to incomplete satu-

ration behind the flow front with voids typically remaining in the largest channels,

and (ii) it causes fibers bounding the small channels to be pulled closer together, lead-

ing to expansion of the largest (often unfilled) channels. The net result is a reduced

unsaturated permeability.

Microstructure Evolution During Impregnation and Curing: Correlations between lo-

cal fiber packing and locations of void formation as well as relationships between pro-

cessing conditions and void formation have been elucidated through a combination of

XCT observations and the use of new metrics to describe locations and arrangements

of fibers and voids. The new metrics utilize spatial local porosity distributions and

local porosity entropy to characterize fiber bed uniformity, fiber rearrangement, and

heterogeneity in void locations.

During both impregnation and curing, voids tend to form in the largest channels

between the fibers (i.e., regions of high local porosity). Increased non-uniformity in

fiber arrangement, as measured by local porosity entropy, allows for higher median

void sizes. Fiber rearrangement also occurs during impregnation and curing, evi-

denced by changes in local porosity entropy and qualitative observations of XCT im-

ages. As fiber beds are taken from the dry (unimpregnated) state to the cured state,

fiber arrangements tend to become less uniform. Furthermore, the degree of satura-

tion after impregnation and pressure removal increases with capillary number and

175



appears to be independent of non-uniformity in fiber packing. However, specimens

with high saturation after impregnation show the largest reductions in saturation dur-

ing curing because of the need to create pathways for gas escape. Despite this, satura-

tion after curing also increases with capillary number.

Microstructure Evolution During Polymer-to-Ceramic Conversion: Pyrolysis of a prece-

ramic polymer within a unidirectional fiber bed leads to the formation of a myriad of

rich and varied crack patterns with geometries, initiation locations and evolution se-

quences that would almost certainly be impossible to discern using only 2D imaging.

Through exhaustive examinations and analyses of a large number of cracks imaged

in 3D in-situ during pyrolysis, the study has enabled development of a taxonomy of

crack geometries and crack structures and has revealed the temporal sequences of

their formation.

Primary cracks – the first cracks to form in a local matrix region – typically initiate

at fiber-matrix interfaces. They subsequently grow into the matrix and evolve into ei-

ther alternating, wavy, or perimural cracks. Although the final geometries of the three

cracks differ, the cracks appear to follow similar evolutionary processes. For instance,

wavy and alternating cracks both follow paths that are, on average, parallel to the fiber

axis; alternating cracks periodically impinge on the interfaces with fibers and re-enter

the matrix a short distance later, whereas wavy cracks reach their crests very near the

interfaces before veering away. Perimural cracks appear to form analogously to the

first half-wavelength of alternating cracks. Whether the transition from perimural to

alternating is achieved depends on the size of the matrix region in which the cracks

form. When, for example, the local matrix regions are large, perimural cracks form in

preference to alternating cracks. As the size of the local matrix region increases, the

primary crack initiation temperature decreases and the characteristic primary crack

spacing increases. Secondary, tertiary and quaternary cracks may also form as py-

rolysis continues, depending on the size of the local matrix regions and the nature
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of cracks that precede them. With increasing size of the local matrix region, the final

hierarchical order of the crack structure increases.

6.2 Cross-cutting Themes

A cross-cutting theme of this study is microstructural heterogeneity as both an input

parameter – for example the heterogeneity of the fiber array – and an output param-

eter – for example the rearrangement of the fiber array, the distribution in void size

and location, and the variation in crack geometry and final hierarchical order. Specif-

ically, changes in permeability with capillary number during impregnation are due

to both fiber rearrangement and preferred flow channeling in non-uniformly packed

fiber beds. Fiber beds tend to become less uniform over the course of impregnation

and curing, which in turn influences void size and location. These findings have impli-

cations for existing models for permeability and void formation which often assume

static arrays of uniformly packed fibers (single-scale media) or uniformly packed tows

within a uniform weave (dual-scale media). Such models would be enhanced by

incorporating fluid-fiber interactions and accounting for non-uniformity. The sizes

of the local matrix regions between fibers also influence the characteristics of cracks

formed during pyrolysis, including crack type, initiation temperature, and character-

istic spacing as well as the final hierarchical order of crack structures. These findings

provide a foundation for development of a mechanics framework to be used in pre-

dicting the geometry of the crack networks remaining after PIP. The deleterious ef-

fects of heterogeneity in fiber packing and the compounding nature of heterogeneous

defect formation throughout the PIP process suggest that strategies for creating and

maintaining uniformity in fiber arrays may yield dividends in improvements in the

terminal microstructures.

A second theme emerging from this work (though not explicitly addressed in
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the preceding chapters) involves challenges in identifying representative volume ele-

ments (RVEs) for the observed phenomena – fiber movement, bubble formation, and

crack evolution – even within the seemingly simple geometry of a unidirectional fiber

bed. The fiber beds display non-uniformities in fiber packing over length scales com-

parable to the dimensions of the transverse cross-section of the specimen. Long re-

gions of high local fiber bed porosity are typically located near the tube walls, where

fiber packing may have been compromised by the encasement process, as well as in

the interior of the fiber bed along paths that may have been prior tow boundaries.

Unsurprisingly, transverse fiber movement and void formation during both impreg-

nation and curing occur highly heterogeneously. Furthermore, the geometric features

of the hierarchical pyrolysis crack structures described earlier depend on local fiber

arrangement. Thus, the combination of non-uniform fiber movement, relatively large

features in the spatial distribution of local fiber bed porosity, and non-uniformity in

void formation precludes immediate identification of a representative transverse sub-

set of the composite for further study.

There are also challenges in identifying a representative longitudinal length scale.

Voids that form during impregnation and curing are either very long parallel to the

fiber axis, or, in the case of some post-curing voids, consist of long clusters of smaller

voids aligned with the fiber axis. These voids and void-clusters are often longer than

the longitudinal field of view (LFOV) for a single XCT scan. Furthermore, the pore

network after pyrolysis consists of voids that may have formed during impregnation

and curing, as well as meso-scale longitudinal and interfacial cracks, and hierarchi-

cal pyrolysis crack structures. Meso-scale longitudinal and interfacial cracks as well

as primary wavy and alternating cracks can persist over length scales comparable

to that of the LFOV for a single XCT scan. Subsequent impregnation into this pore

network depends on geometric features (e.g., connectivity and pore dimensions) that

vary locally with pore type (e.g. bubbles vs. hierarchical cracks) and globally based
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on arrangements of various pore types. Without knowledge of the lengths scales over

which features of the voids and pore networks change along the specimen length, it is

not possible to identify the appropriate length of an RVE.

6.3 Recommendations

6.3.1 Geometry of pore networks

The present study has focused on the processes governing the first PIP cycle. The

remaining pore network will ultimately need to be re-impregnated through either

PIP, CVI, or RMI. The network includes the hierarchical crack structures identified

in Chapter 5, meso-scale longitudinal and interfacial cracks, and bubbles formed dur-

ing impregnation and curing of the matrix prior to pyrolysis (Chapter 4). Success of

any of the three prospective densification methods will depend on the geometry of the

pore network, which may be assessed using segmented XCT data of pore networks in

the following ways.

First, an estimate of the upper densification limit of subsequent processing may

be provided by computing the fraction of pores connected to the external compos-

ite surface(s). To be useful, measurements of connectivity must reflect the possible

pathways for material ingress. One consideration in this analysis is the resolution of

the volumetric data (≈ 0.7-1.0µm per voxel edge in this work), which represents the

minimum channel size that can be considered in the analysis. Another consideration

involves definition of the ”open” surfaces from which connectivity is measured. At

the simplest level, in unidirectional fiber composites, impregnation may occur either

parallel or perpendicular to the fiber direction. Thus, connectivity measurements from

surfaces parallel and perpendicular to the two principal directions would be desirable.

A preliminary connectivity analysis of a 3D volume, about 2mm long, extracted

from a unidirectional CMC after one PIP cycle is presented in Fig. 6.1. The resolu-
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tion is 0.98µm per voxel edge. In this example, connectivity to the top surface of the

volume was computed using a voxel connectivity of 6 (i.e. voxels are considered con-

nected if their faces touch). Here, the total porosity is 20.0% whereas the porosity not

connected to the top surface is 1.4%. The porosity includes both bubbles and shrink-

age cracks which vary significantly in transverse cross sectional area. Non-connected

regions typically have lower transverse cross sectional areas. To develop a deeper un-

derstanding of the contribution of different pore types (e.g., bubbles, cracks of varying

FHO) on connectivity, classification of the results on the basis of pore type and paths

of various pore types would be desirable.

Another important geometric feature of the pore network is the size of the pores

and the spatial distribution of small pores. Pore dimensions are highly relevant to

the RMI process, where the smallest channels may become blocked by reaction chok-

ing [2, 16], and the CVI process, where the smallest channels may become closed off

during deposition [2, 3, 8]. Measurements of pore sizes must consider the smallest

dimensions along the possible pathways for material transport. One approach is to

compute the local thickness of the pore network in 3D. These results could then be

used to investigate channel size variation in the bulk and over various potential flow

paths through the pore network. To assess the viability of an RMI or CVI process

with a known minimum critical channel size, a connectivity analysis on the pore net-

work excluding regions that fall below the minimum critical channel size could be

performed. Depending on the spatial distribution of small channels in the connected

network, blockage of small channels may significantly increase the amount of closed

porosity within the network, or it may simply close off access to a small volume of

other smaller dead-end channels.

Finally, computational fluid dynamics (CFD) tools offer a more sophisticated ap-

proach for indirectly assessing the geometry of the pore network and more directly

assessing effects of the pore network on densification. CFD could be used to model
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impregnation of matrix precursors into pore networks. This approach could reveal the

effects of dead-end pathways and spatial distributions in pore size and pore type (e.g.,

bubbles vs. cracks of varying FHO). For example, consider a crack structure consist-

ing of a wide primary wavy crack with thinner semi-perimural cracks branching off

the primary crack. Impregnation at a high capillary number might cause the fluid to

advance along the wavy crack before the branches are filled, trapping voids within the

branches. Subsequent fluid rearrangement due to the higher capillary pressure within

the branches may cause the branches to fill at the expense of void formation within

the primary wavy crack. Continued impregnation at higher capillary numbers may

enable mobilization and removal of voids trapped within the wavy crack. Models ac-

counting for capillary effects and bubble formation would enable prediction of void

formation and mobilization as a function of capillary number. The results would in-

form identification of optimal processing conditions (e.g., capillary number and flow

direction) and may reveal pore geometries that are more favorable for subsequent im-

pregnation. Similar approaches could be taken to study RMI and CVI by accounting

for reaction and deposition products, respectively.

One important consideration in implementation of the methods described above

is the quality of the XCT image segmentation and the sensitivity of the metrics (e.g.,

connectivity, fluid flow characteristics) to the parameters used in image segmentation

(e.g., threshold values for various filters and detection algorithms). Features such as

small pathways (on the order of a single voxel width) could have minimal effects on

total porosity while having significant effects on connectivity.

The preceding proposed analyses also face potential challenges with identification

of a suitable RVE. One approach to simplify these efforts could involve classifying ge-

ometric properties of the pores on the basis of pore type or transverse area between

fibers. This information could be used to develop coarse-grained models based on

assemblages of pore types. This approach could also be used to identify optimal pore
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geometries that give the highest degree of connectivity, encourage full saturation dur-

ing impregnation, and/or give channel sizes amenable to subsequent RMI or CVI

processing.

6.3.2 Shrinkage cracking in simple geometries

The work presented in Chapter 5 revealed the geometries and evolution sequences

of pyrolysis cracks within a large number of very complex and locally unique fiber

bed geometries. To build on this foundation, complementary studies on simpler, uni-

form microtube geometries is recommended. The work would seek to: (i) determine

whether the crack geometries observed in fiber beds can be reproduced in microtubes;

(ii) establish connections between crack geometry, crack initiation temperature, and

tube shape and size; and (iii) combine the preceding results with measurements of

the physical and mechanical properties (e.g., volumetric shrinkage, elastic modulus)

of the precursor material during pyrolysis. Collectively these results could form the

experimental basis for development of a 3D fracture mechanics framework for pyrol-

ysis cracking. Development of this framework would also be informed by existing

solutions for cracking in 2D bimaterial systems [62–68].

Preliminary experimental work has demonstrated that alternating and wavy

cracks form in microtube geometries. The specimens consist of microtubes (Vitro-

Tubes™) filled with allylhydridopolycarbosilane (AHPCS) (SMP-10, Starfire® Sys-

tems) mixed with 0.2 wt% dicumyl peroxide (DP). Microtubes were filled by spon-

taneous capillary wicking from a beaker of the precursor. The microtubes were ori-

ented vertically in the beaker during filling. Several microtube geometries and sizes

were investigated. Borosilicate microtubes with rectangular cross sections of the

following dimensions were used: 100µm×1000µm, 50µm×1000µm, 40µm×400µm,

30µm×300µm, 20µm×200µm, and 10µm×100µm. Additionally, quartz microtubes

with 50µm and 100µm diameter circular cross sections were used. The specimens
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were imaged with XCT at the hard X-ray beamline 8.3.2 at the Advanced Light Source

(ALS) at Lawrence Berkeley National Laboratory. Figs. 6.2 and 6.3 show orthogonal

views and 3D renderings of pyrolysis cracks observed in filled microtubes after py-

rolysis to 500°C in flowing argon. A highly periodic alternating crack is observed in

the 10µm×100µm rectangular microtube (Fig. 6.2). Short longitudinal cracks bridge

several individual half-wavelengths within the alternating crack, suggesting that the

longitudinal cracks formed after the alternating crack. In the circular microtubes, al-

ternating (Fig. 6.3(A)) and wavy (Fig. 6.3(B)) cracks are observed. In both specimens,

additional cracks appear to branch off of the alternating and wavy cracks. Due to the

smoothness and continuity of the alternating and wavy cracks, it is inferred that these

additional cracks form after alternating and wavy crack formation.

In order to resolve sequences of crack formation and crack initiation tempera-

tures, XCT imaging was performed in-situ during pyrolysis for collections of filled

microtubes. The specimens were imaged inside the same high-temperature testing

rig used in Chapter 5 [5, 88]. A sequence of XCT images (Fig. 6.4) from these ex-

periments shows expansion of an alternating crack that forms along one edge of a

100µm×1000µm rectangular microtube. The initiation temperature of the alternating

crack is 371°C (Fig. 6.4(A)(iv)); scans taken below this temperature show no pyrolysis

cracks. An interesting feature of this alternating crack is that it propagates longitudi-

nally and exists only in a small region near one of the short sides of the rectangular

cross section. Following the alternating crack profile towards the center of the tube

reveals that the alternating crack flattens out to form a relatively straight crack in the

center of the preceramic polymer layer (Fig. 6.4(A)(iii)). Alternating cracks in other

rectangular microtubes also often appear only near the short sides of the rectangular

cross section and may morph into straight cracks or other yet-unnamed crack geome-

tries toward the center of the tube. In addition to the alternating crack, several other

crack features of varying geometries are observed. Continuing work involves iden-
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tifying crack geometries and crack evolution sequences as well as measuring crack

initiation temperatures within microtubes of varying shape and size.

6.3.3 Microstructure evolution in complex fiber architectures

The research presented in this dissertation has focused on simple unidirectional mini-

composite systems. However, in practice, fiber architectures typically consist of 2D or

3D weaves, customized integral ceramic textile structures, or 2D laminates of unidi-

rectional plies [1–5, 9]. Thus, it is recommended that the experimental methods and

analysis techniques presented in this work be extended to study microstructure evo-

lution in representative fiber architectures.

In-situ XCT during impregnation of a woven preform would elucidate the coupled

effects of flow parallel and perpendicular to the fibers as well as through large inter-

tow channels on fiber rearrangement, preferred flow channeling, permeability and

void formation. The setup envisaged for these experiments consists of a woven fiber

preform encapsulated in a glass tube or within a vacuum bag, with ports for fluid

inlet and outlet above and below the specimen as in the setup described in Chapters

3 and 4. Here the challenge would be to find the balance between specimen size and

image resolution that would reveal the features of interest. Using current imaging

capabilities, specimens about 4×4×4 mm3 could be imaged at a resolution of 2µm per

voxel (equivalent to ≈ 6 voxels across a fiber diameter). More recent developments

at the ALS have led to significant increases in X-ray flux, enabling faster scan times

without loss of image quality. These capabilities could prove highly desirable in the

proposed experiments.

A corresponding extension of the methods in Chapter 5 could be used to study py-

rolysis crack evolution within the constraints of a woven fiber bed. One of the primary

constraints of the high-temperature testing rig used in those experiments is the size of

the hot zone, which is limited to a spherical region less than 5mm in diameter [5, 88].
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To expand those capabilities, a new high-temperature furnace system (Fig. 6.5) was

recently developed at the ALS. The system allows in-situ XCT imaging of specimens

up to several centimeters in length and about 6mm in diameter, up to temperatures of

1800°C [94]. It consists of a stationary vertically-oriented tube furnace with a 6×6mm2

beam port [94]. Specimens are mounted inside a quartz tube which is closed on one

end and connected to an environmental flow cell on the other end [94]. This capability

would facilitate meaningful in-situ experiments on multidirectional CMCs.

6.3.4 Microstructure evolution during repeated PIP cycles

The research presented in this dissertation has focused on microstructural evolution

during the first round of PIP. Recognizing that, in practice, 6-14 PIP cycles are typ-

ically used to densify the matrix, a more complete understanding of microstructure

evolution would emerge from analogous studies on unidirectional minicomposites

subjected to multiple PIP cycles. Results presented in Chapter 2 suggest that repeat-

able patterns in microstructure evolution are likely to emerge after only a few process

cycles. The observations could inform process models for PIP-based CMCs.
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Figure 6.1: Connectivity analysis for porosity in a 3D volume extracted from a unidi-
rectional CMC after one PIP cycle. Each 3D connected pore is assigned a single color
based on its connectivity to the top surface. Pores that are connected to the top surface

186



are assigned a color in the blue color range, while pores that are not connected to
the top surface are assigned a color in the yellow-red color range. A 3D rendering is
shown on the left, and transverse sections from the top, middle, and bottom of the
volume are shown on the right.

187



Orthogonal views

3D Rendering

Alternating 

crack
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Figure 6.2: Orthogonal views and 3D rendering of pyrolysis cracks in a 10µm×100µm
rectangular microtube. Colored lines on orthogonal views indicate intersectionality of
perpendicular planes in the 3D image data.
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Figure 6.3: Orthogonal views and 3D rendering of pyrolysis cracks in (A) a circular
microtube with 100µm diameter and (B) a circular microtube with 50µm diameter. The
3D rendering in (A) shows a section view of the crack network within the microtube.
Colored lines on orthogonal views indicate intersectionality of perpendicular planes
in the 3D image data.
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Figure 6.4: Sequence of orthogonal views showing pyrolysis crack evolution with in-
creasing temperature in a 100µm×1000µm rectangular microtube. Orthogonal views
are shown for (A) 371°C, (B) 469°C, and (C) 635°C. Colored lines on orthogonal views
indicate intersectionality of perpendicular planes in the 3D image data.
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Figure 6.5: High-temperature furnace system for in-situ XCT of heated specimens in
controlled environments [94]. (A) The furnace is mounted on a translation stage used
to align the beam port with the X-ray beam. The environmental flow cell is inserted
into the furnace from below using the tomography stage. (B) Sectional view of the
environmental flow cell shows gas flow paths. Images courtesy of Harold Barnard,
Lawrence Berkeley National Laboratory.
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