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Extreme Quantum Memory Advantage for Rare-Event Sampling

Cina Aghamohammadi,* Samuel P. Loomis,† John R. Mahoney,‡ and James P. Crutchfield§

Complexity Sciences Center and Physics Department, University of California at Davis,
One Shields Avenue, Davis, California 95616, USA

(Received 9 August 2017; revised manuscript received 28 December 2017; published 13 February 2018)

We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by
classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and
classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-
quantum ratio of required memory. We show for two example processes that there exists an infinite number
of rare-event classes for which the memory ratio for sampling is larger than r, for any large real number r.
Then, for a sequence of processes each labeled by an integer size N, we compare how the classical and
quantum required memories scale with N. In this setting, since both memories can diverge as N → ∞, the
efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the
classical memory diverges in the limit N → ∞, but the quantum memory has a finite bound. We then show
that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of
their rare-event classes.

DOI: 10.1103/PhysRevX.8.011025 Subject Areas: Quantum Physics,
Quantum Information,
Statistical Physics

I. INTRODUCTION

From earthquakes to financial market crashes, rare
events are associated with catastrophe—from decimated
social infrastructure and the substantial loss of life to global
economic collapse. Though rare, their impact cannot be
ignored. Prediction and modeling such rare events is
essential to mitigating their effects. However, this is par-
ticularly challenging, often requiring huge data sets and
massive computational resources, precisely because the
events of interest are rare.
Ameliorating much of the challenge, biased or extended

sampling [1,2] is an effective and now widely used method
for efficient generation and analysis of rare events. The
underlying idea is simple to state: transform a given
distribution to a new one where previously rare events
are now typical. This concept was originally proposed in
1961 by Miller to probe the rare events generated by
discrete-time, discrete-value Markov stochastic processes
[3]. It has since been extended to address non-Markovian

processes [4]. The approach was also eventually adapted
to continuous-time first-order Markov processes [5–7].
Today, the statistical analysis of rare events is a highly
developed toolkit with broad applications in sciences and
engineering [8]. Given this, it is perhaps not surprising that
the idea and its related methods appear under different
appellations, depending on the research arena. For exam-
ple, large deviation theory refers to the s-ensemble method
[9,10], the exponential tilting algorithm [11,12], or as
generating twisted distributions.
In 1997, building on biased sampling, Torrie and Valleau

introduced umbrella sampling into Monte Carlo simulation
of systems whose energy landscapes have high energy
barriers and so suffer particularly from poor sampling [13].
Since then, stimulated by computational problems arising
in statistical mechanics, the approach was generalized to
Ferrenberg-Swendsen reweighting, later still to weighted
histogram analysis [14], and more recently to Wang-
Landau sampling [15].
When generating samples for a given stochastic process,

one can employ alternative types of algorithms. There are
two main types—Monte Carlo or finite-state machine
algorithms. Here, we consider finite-state machine algo-
rithms based on Markov chains (MC) [16,17] and hidden
Markov models (HMM) [18–20]. For example, if the
process is Markovian, one uses MC generators and, in
more general cases, one uses HMM generators.
When evaluating alternative approaches, the key ques-

tions that arise concern algorithm speed and memory
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efficiency. For example, it turns out that there are HMMs
that are always equally or more memory efficient than
MCs. There are many finite-state HMMs for which the
analogous MC is infinite state [21]. And so, when compar-
ing all HMMs that generate the same process, one is often
interested in those that are most memory efficient. For a
generic stochastic process, the most memory-efficient
classical HMM known currently is the ϵ-machine of
computational mechanics [22]. The memory it requires
is called the process’s “statistical complexity” Cμ [23].
Today, we have come to appreciate that several important

mathematical problems can be solved more efficiently
using a quantum computer. Examples include quantum
algorithms for integer factorization [24], search [25],
eigendecomposition [26], and linear system solutions
[27]. Not long ago and for the first time, Ref. [28] provided
a quantum algorithm that can perform stochastic process
sample generation using less memory than the best-known
classical algorithms. Recently, using a stochastic process’s
higher-order correlations, a new quantum algorithm—the
q-machine—substantially improved this efficiency and
extended its applicability [29]. More detailed analysis
and a derivation of the closed-form quantum advantage
of the q-machine was given in a sequel [30]. Notably, the
quantum advantage has been verified experimentally for a
simple case [31].
The following brings together techniques from large

deviation theory, classical algorithms for stochastic process
generation, computational complexity theory, and the
newly introduced quantum algorithm for stochastic process
generation to propose a new, memory-efficient quantum
algorithm for the biased sampling problem. We show that
there can be an extreme advantage in the quantum
algorithm’s required memory compared to the best-known
classical algorithm where the required memory for the
classical algorithm grows unboundedly with problem size,
but is bounded from above for the quantum algorithm.
Three examples are analyzed here. The first is the simple,
but now well-studied perturbed coin process. The second is
a more physical example—a stochastic process that arises
from the Ising next-nearest-neighbor spin system in contact
with a thermal reservoir. The third is a sequence of
processes generated by a series of Ising N-nearest-neighbor
Hamiltonians.
Today, we know of several different sampling problems

for which their best quantum algorithm has an advantage
compared to the best classical algorithm. These sampling
problems fall into two categories. First are those in which
the problem is quantum in nature, such as boson sampling
[32]. Second are the ones in which the target problem is
classical. Function sampling [33] and mixing [34] are in
this category.
On the one hand, the advantage for both boson sampling

and mixing appears in shorter run times for the quantum
algorithm. For the problem of rare-event sampling we study

here, the run times for both classical and quantum algo-
rithms are the same. On the other hand, for function
sampling, the advantage appears in the smaller required
memory; this is similar to our problem. In both boson
sampling and function sampling, the advantage appears as
an increasing function of problem size. For mixing, it is
function of the spectral gap—that is, a property of the
problem input—the Markov chain of interest, in that case.
The quantum memory advantage we introduce here is both
a function of problem size and a property of the input
instance.
In the boson sampling problem, a linear system scatters

N individual bosons into M ≫ N output modes. The goal
then is to sample from the output distribution. It is known
that, for large N and M, the run time for the quantum
algorithm is much smaller than for the classical algorithm,
while both algorithms need memory on the order of the
required sample size. In mixing, a Markov chain and an
initial state are given and the goal is to sample from the
stationary distribution over Markov chain’s states with
some acceptable error margin. Denoting the spectral gap
for the Markov chain’s transition matrix by δ, the run time
for the best-known classical algorithm increases faster than
the quantum algorithm when δ → 0 [35]. As a result, the
notion of an advantage is captured by a function of δ. In
function sampling, a function f∶X × Y → f0; 1g and a
probability distribution PðX; YÞ over X × Y are given.
Alice and Bob start with no inputs. The goal then is to
sample X, Y, and Z from the distribution ðP; fðPÞÞ, where
Alice ends up with X and Bob with Y and Z. Algorithm
efficiency is then defined by how much information Alice
and Bob must communicate during the algorithm. It turns
out that the best-known quantum algorithm has markedly
smaller communication costs than the classical. In the
function sampling problem, as in many other similar
problems, communication cost can be framed as a memory
cost, since Alice can always write the message in a memory
that Bob reads.

II. CLASSICAL ALGORITHM

The object for which we wish to generate samples
is a discrete-time, discrete-value stochastic process
[18,36]: a probability space P ¼ fA∞;Σ;Pð·Þg, where
Pð·Þ is a probability measure over the bi-infinite chain
…X−2X−1X0X1X2…; where each random variable Xi
takes values in a finite, discrete alphabet A; and where
Σ is the σ-algebra generated by the cylinder sets in A∞.
For simplicity, we consider only ergodic stationary proc-
esses: that is, Pð·Þ is invariant under time translation
[PðXi1Xi2 � � �XimÞ¼PðXi1þnXi2þn � � �XimþnÞ for all n, m]
and over successive realizations.
Sampling or generating a given stochastic process refers

to producing a finite realization that comes from the
process’s probability distribution. There are two main
generation (sampling) problems: sequential generation

CINA AGHAMOHAMMADI et al. PHYS. REV. X 8, 011025 (2018)

011025-2



and simultaneous generation [37]. In sequential generation
or one-shot sampling, the goal is to generate one long
sample from the given process. However, in simultaneous
generation, the goal is to generate M ≫ 1 realizations of a
process simultaneously, each of which is statistically
independent of the others.
Generally, generating a process via its probability

measure Pð·Þ is impossible because of the vast number
of allowed realizations and, as a result, this prosaic
approach requires an unbounded amount of memory.
Fortunately, there are more compact ways than specifying
in full the probability measure on the sequence sigma
algebra. This recalls the earlier remark that HMMs can be
arbitrarily more compact than alternative algorithms for the
task of generation.
A HMM is specified by a tuple fS;A; fTðxÞ; x ∈ Agg.

In this, S is a finite set of states; A is a finite alphabet; and
fTðxÞ; x ∈ Ag is a set of jSj × jSj substochastic symbol-
labeled transition matrices whose sum T ¼ P

x∈AT
ðxÞ is a

stochastic matrix.
As an example, consider the HMM state-transition

diagram shown in Fig. 1, where S ¼ fA;B;C;D; E; Fg;
A ¼ f0; 1; 2g; and we have three 6 × 6 substochastic
matrices Tð0Þ, Tð1Þ, and Tð2Þ. Each edge is labeled pjx,
denoting the transition probability p and a symbol x ∈ A,
which is emitted during the transition. In this HMM, of the
two edges exiting state C, one enters state B and the other
enters state A. The edges from C to A andC to B are labeled
by 1

2
j1 and 1

2
j0. This simply means that, if the HMM is in

the stateC, then, with probability 1
2
, it goes to the state A and

emits the symbol 1, and, with probability 1
2
, it goes to the

state B and emits symbol 0. Following these transition rules
in succession generates realizations in the HMM’s process.
How does this generation method compare to generating

realizations of the same process via a finite Markov chain?
(Recall that states in a MC are not hidden: A ¼ S.) It turns
out that this cannot be implemented, since generating a
symbol can depend on the infinite history. That is, the

process has infinite Markov order. As a result, to generate a
realization using a Markov chain, one needs an infinite
number of Markovian states. In other words, implementing
the Markov chain algorithm to generate process samples on
a conventional computer requires an infinite amount of
memory.
To appreciate the reason behind the process’s infinite

Markov order, refer to the HMM in Fig. 1. There are two
length-3 state loops consisting of the edges colored red (the
right side of the state-transition diagram) and those colored
maroon (the left side). Note that, if the HMM generates n
1’s in a row, we will not know the HMM’s current state,
only that it is A, D, or E. This state uncertainty (entropy) is
bounded away from 0. The observation holds for the other
loop and its sequences of symbol 0 and the consequent
ambiguity among states B, C, and F. Thus, there exist
process realizations from which we cannot determine the
future statistics, independent of the number of symbols seen.
This means that the process statistics depend on infinite past
sequences—the process has infinite Markov order. We
repeat, for emphasis, that implementing a MC algorithm
for this requires infinite memory. The contrast with the finite
HMM method is an important lesson: HMMs are strictly
more powerful generators, as a class of algorithms, than
Markov chain generators.
For any given process P, there are an infinite number of

HMMs that generate it. Therefore, one is compelled to ask,
which algorithm requires the least memory for implemen-
tation? To appreciate the answer, let us first address how
much state memory one needs to run a HMM.
Consider sequential generation, in which the goal is to

produce a very long realization of a process. For this, we use
one computer with a code that runs the algorithm (HMM).
At each step, the computer must memorize the current
HMM state. Assuming the HMM has N states, this requires
log2ðNÞ bits of memory. As a result, if one wishes to
implement one-shot sampling using the minimum required
memory, then, over all the process’s HMM generators, one
needs to find the generator with the minimum number of
states.
Here, though, we are interested in simultaneous gen-

eration, for which the goal is to simultaneously generate
M ≫ 1 process realizations, each of which is statistically
independent of the others. The effective implementation
usesM computers, each with the above code. Similar to the
sequential problem, each computer must memorize the
current state of its HMM. If each computer uses its own
memory, each needs log2ðNÞ bits of memory, as before.
The total memory is thenM log2ðNÞ bits. However, we can
reduce the required memory by using one large memory
shared among the computers. Figure 2 depicts this sche-
matically. In this way, according to Shannon’s coding
theorem [38], we can encode HMM states to reduce the
amount of memory down to MHðSÞ ≤ M log2ðNÞ bits,
where HðSÞ is the Shannon entropy of the probability

FIG. 1. Hidden Markov model generator of a stochastic process
with infinite-range statistical dependencies that requires a HMM
with only six states. To generate the same process via a Markov
chain requires one with an infinite number of states and so infinite
memory.
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distribution over HMM’s states. The memory per sample is
then justHðSÞ. As a result, if one needs to do simultaneous
sampling of a given process using the minimum required
memory, over all its HMM generators, one needs to find the
HMM whose state distribution has the minimum Shannon
entropy.
For both one-shot and simultaneous sampling, the best-

known implementation, and provably the optimal predictor,
is known as the ϵ-machine M [22,39]. Its states are called
causal states; we denote this as set S. The average memory
required for MðPÞ to sequentially sample process P is
given by the process’s statistical complexityCμðPÞ [23]. To
calculate it,
(1) Compute the stationary distribution π over causal

states. π is the left eigenvector of the state-transition
matrix T with eigenvalue 1: πT ¼ π.

(2) Calculate the state’s Shannon entropy H½S� ¼
−
P

σ∈SπðσÞ log2 πðσÞ.
Cμ ¼ H½S� measures the (ensemble average) memory
required for the simultaneous sampling of the process.
Another important, companion measure is hμ, the proc-

ess’s metric entropy (or Shannon entropy rate) [40]:

hμðPÞ ¼ − lim
n→∞

1

n

X
w∈An

PðwÞ log2 PðwÞ:

Although it is sometimes confusing, it is important to
emphasize that hμ describes randomness in realizations,
while Cμ is the average memory required to generate them.

III. QUANTUM MEMORY ADVANTAGE

Recently, it was shown that a quantum algorithm for
process generation can use less memory than the best-
known classical algorithm (ϵ-machine) [28]. By accounting
for a process’s higher-order correlations, a new quantum
algorithm—the q-machine—was introduced that substan-
tially improved the original and is, to date, the most
memory-efficient quantum algorithm known for process
generation [29]. We refer to the ratio of required classical

memory Cμ to quantum memory Cq as the “quantum
memory advantage.” Closed-form expressions for the
quantum memory advantage are given in Ref. [30].
Importantly, the quantum advantage was recently

verified experimentally for the simple perturbed coins
process [31]. It was also discovered that the q-machine
can confer an extreme quantum memory advantage. For
example, when generating configurations in a Dyson-type
spin model with N-nearest-neighbor interactions at temper-
ature T, the quantum advantage scales as NT2/ log2 T
[41,42]. Another example of an extreme quantum memory
advantage has appeared recently in the simulation of
continuous-time stochastic processes [43].
One consequence of quantum advantage arises in model

selection, where the basic question “Which process is
simpler?” no longer has a well-defined answer [44].
Recently, this phenomenon has been experimentally
observed [45]. Statistical inference of models for stochastic
systems often involves controlling for model size or
memory. So, quantum statistical inference may see large
improvements. Another consequence of this advantage in
the context of simulations is that reduced memory can
reduce the heat dissipation of simulation [46].
The following determines the quantum advantage in

biased sampling of a process’s rare events. In particular, we
develop tools to determine how the memory requirements
of classical and quantum algorithms vary over rare-event
classes.

IV. QUANTUM ALGORITHM

We define a stochastic process P’s q machine
by QðPÞ ¼ fH;A; fKx; x ∈ Agg, where H denotes the
Hilbert space with dimension jSj in which quantum states
reside; A is the same alphabet as that of the given process;
and fKx; x ∈ Ag is a set of Kraus operators that we use to
specify the measurement protocol for states [47]. (We adopt
a particular form for the Kraus operators. In general, they
are not unique.) Assume that we have the quantum state
(density matrix) ρ0 ∈ BðHÞ in hand. We perform a meas-
urement by applying Kraus operators and, as a result,
measure X. The probability of yielding symbol X ¼ x is

PðX ¼ x0jρ0Þ ¼ trðKx0ρ0K
†
x0Þ:

After measurement with outcome X ¼ x0, the new quan-
tum state is

ρ1 ¼
Kx0ρ0K

†
x0

trðKx0ρ0K
†
x0Þ

:

Repeating these measurements generates a stochastic proc-
ess. The process potentially could be nonergodic, depend-
ing on the initial state ρ0. However, starting the q-machine
in the stationary state defined by

FIG. 2. Left: Even process ϵ-machine. Right: Schematic of
simultaneous generation problem. Each black box contains an
even process generator. They all share the same memory for
tracking the individual generator states.
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ρs ¼
X
x∈A

KxρsK
†
x

and repeatedly measuring generates a stationary stochastic
process over x ∈ A. For any given process, ρs can be
calculated by the method introduced in Ref. [30].
Our immediate goal is to design a quantum generator of a

given classical process. (Section VI will then take the given
process to represent a rare-event class of another process.)
For now, we start with the process’ ϵ-machine. The
construction consists of three steps, as follows.

First step: Map every causal state σi ∈ S to a pure
quantum state jηii. Each signal state jηii encodes the
set of length-R sequences that may follow σi, as well
as each corresponding conditional probability:

jηii≡
X
w∈AR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðwjσiÞ

p
jwi;

where w denotes a length-R sequence, PðwjσiÞ ¼
PðX0 � � �XR−1 ¼ wjS0 ¼ σiÞ, and R is the process’
Markov order. The resulting Hilbert space is Hw with
size jAjR, the number of length-R sequences,with basis
elements jwi ¼ jx0i ⊗ � � � ⊗ jxR−1i, where the states
fjxi∶x ∈ Ag form an orthonormal basis. From here on
out, assume all jηii’s are linearly independent. (The
procedure requires only slight modification for linearly
dependent signal states and, in any case, does not affect
the results.) As a result, one defines jSj new states jξii
that reside in a Hilbert space of size jSj. (This is much
smaller than the jηii’s Hilbert space, which has size
jAjR.) Moreover, the jξii’s have the same pairwise
overlaps as the jηii’s. That is, for all i, j,

hξijξji ¼ hηijηji:

The authors of Ref. [30] developed a method to
calculate all the overlaps hηijηji for a given process
in closed form. Since the jηii’s are linearly indepen-
dent, one can use the overlaps to construct the jξii’s.

Second step: Form a matrix Ξ by assembling the signal
states:

Ξ ¼ ½ jξ0i jξ1i � � � jξjSj−1i �:

Define jSj new bra states jeξii:
2666664

heξ0j
heξ1j
� � �

h gξjSj−1j

3777775 ¼ Ξ−1:

That is, we design the new bra states such that we
obtain the identity2666664

heξ0j
heξ1j
� � �

h gξjSj−1j

3777775½ jξ0i jξ1i � � � jξjSj−1i � ¼ I:

Third step: Define jAj Kraus operators Kx for all
x ∈ A via

Kx ¼
X
i;j

ffiffiffiffiffiffi
Tx
ij

q
jξjiheξij:

(Appendix A proves the completeness of these op-
erators.)

By applying Kraus operators repeatedly, one generates
the target stochastic process. For example, consider the case
in which the q-machine is in state jξiihξij and we apply the
Kraus operators. Then, if we do not make a measurement,
the next state is

P
j;xT

x
ijjξjihξjj. Let us say, though, that we

make a measurement and the result is x. The next state is
jξjihξjj, where j is the unique index and where Tx

ij is
nonzero. Appendix B shows that the stationary state is

ρs ¼
X
i

πijξiihξij:

The Hilbert space in which the algorithm operates has
dimension jSj. Since the operation is not unitary in this
space and measurements are not projective, one may argue
that jSj is not the actual size of the Hilbert space needed to
physically implement the algorithm. However, it was
recently shown that the algorithm presented here can be
implemented by unitary operations and projective mea-
surements in a Hilbert space with dimension jSjjAj [48].
This new result gives an experimental implementation of
our algorithm.
Using the quantum generatorQðPÞ, the required average

memory for simultaneous generation of process P is
CqðPÞ ¼ SðρsÞ, where SðρÞ ¼ −trðρ log ρÞ denotes the
von Neumann entropy [47]. (Von Neumann entropy is a
well-accepted measure of quantum advantage in commu-
nication games [49].) Since the algorithm can be imple-
mented by unitary operations and projective measurements,
the entropy of the quantum model stays constant at Cq at all
times during the simulation process. This confirms that Cq

is a valid measure of memory, while the minimal dimen-
sions needed for sequential (one-shot) generation of P are
at most jSjjAj.
Comparing memory efficiencies of classical and quan-

tum algorithms requires an efficiency metric. Depending on
the setting, there are two that one can use. In the single-
process case, P is given, and memory efficiency is defined
as the ratio of required memory for the classical algorithm
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to the quantum algorithm. Here, since we only explore
finite-size stochastic processes, both memories are finite,
and the ratio is a good quantitative efficiency measure.
In the multiprocess case, a series of stochastic processes

is given, with each process labeled by an integer N that
measures process size. Then, memory efficiency is defined
by how the memory scales in N for the classical algorithm
compared to the quantum. This metric is closer to relative-
complexity definitions familiar in computation complexity
theory. In the present case, since both memories are allowed
to diverge when N → ∞, the quantitative measure of
efficiency tracks how fast they diverge. We say we have
extreme quantum memory advantage when the classical
memory diverges as N → ∞, but quantum memory con-
verges to a finite quantity.

V. TYPICAL REALIZATIONS

At this point, we established classical and quantum
representations of processes and characterized their respec-
tive memory requirements. Using this, our purpose now
shifts to monitor classical and quantum resources required
to generate rare-event classes of a process’s realizations.
Our first task is to review the theory of typical events and
their complement—rare events.
The concept of a stochastic process is quite general. Any

physical system that exhibits stochastic dynamics in time or
space may be thought of as generating a stochastic process.
In the spatial setting, one considers not time evolution, but
rather the spatial “dynamic.” For example, consider a one-
dimensional noninteracting Ising spin-1

2
chain with classical

Hamiltonian H ¼ −
P

n
i¼1 hσi in contact with a thermal

reservoir at temperature T. After thermalizing, a spin
configuration at one instant of time may be thought of
as having been generated by a process that scans the lattice
left to right (or, equivalently, right to left). The probability
distribution over these spatial-translation-invariant configu-
rations defines a stationary stochastic process—a simple
Markov random field.
For n ≫ 1, one can ask for the probability of seeing k up-

spins. The Strong Law of Large Numbers [50] guarantees
that for large n, the ratio k/n almost surely converges to
p↑ ¼ 1

2
½1þ tanhðh/kBTÞ�. That is,

P

�
lim
n→∞

k
n
¼ p↑

�
¼ 1:

Informally, a typical sequence is one that has close to p↑n
up-spins. However, this does not preclude seeing other
kinds of long runs, e.g., all up-spins or all down-spins. It
simply means that the latter are rare events, compared to the
typical ones.
Now, let us formally define the concept of typical

realizations and, consequently, rare ones. Consider a given
process P and let An denote the set of all possible length-n
realizations. Then, for an arbitrary 0 < ϵ ≪ 1, the process’
typical set [38,51,52] is defined:

An
ϵ ≡ fw∶2−nðhμþϵÞ ≤ PðwÞ ≤ 2−nðhμ−ϵÞ; w ∈ Ang; ð1Þ

where hμ is the process’ Shannon entropy rate, intro-
duced above.
According to the Shannon-McMillan-Breiman theorem

[53–55], for a given ϵ ≪ 1, sufficiently large n�, and
w ∈ An,

Pðw ∉ An
ϵ Þ ≤ ϵ; ð2Þ

for all n ≥ n�. There are two important lessons here. First,
from Eq. (1) we see that all sequences in the typical set have
approximately the same probability. More precisely, the
probability of typical sequences decays at the same
exponential rate. The following adapts this to use decay
rates to identify distinct sets of rare events. Second, coming
from Eq. (2), for large n, the probability of sequences
falling outside the typical set is close to zero—these are the
sets of rare sequences.
Another important consequence of the theorem is that

sequences generated by a stationary ergodic process fall
into one of three partitions; see Fig. 3. The first contains
sequences that are never generated; they fall into the
forbidden set. For example, the HMM in Fig. 1 never
generates sequences that have consecutive 2s. The second
partition consists of those in the typical set—the set with
probability close to 1, as in Eq. (1). The last contains
sequences in a family of atypical sets—realizations that are
rare to different degrees. We now refine this classification
by dividing the atypical sequences into identifiable subsets,
each with their own characteristic rarity.
Mirroring the familiar Boltzmann weight in statistical

physics [56], in the n → ∞ limit, we define the subsets
ΛP
u ⊂ A∞ for a process P as

ΛP
u;n ¼

�
w∶ −

log2PðwÞ
n

¼ u; w ∈ An

�
and

ΛP
u ¼ lim

n→∞
ΛP
u;n: ð3Þ

Atypical  
Set

Typical  
Set

Forbidden  
Set

FIG. 3. For a given process, the space A∞ of all sequences is
partitioned into forbidden sequences, sequences in the typical set,
and sequences neither forbidden nor typical—the atypical or rare
sequences.
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This partitions A∞ into disjoint subsets ΛP
u , in which all

w ∈ ΛP
u have the same probability decay rate u. Physics

vernacular would speak of the sequences having the same
energy density u. (u, considered as a random variable, is
sometimes called a “self-process” [57].) Figure 4 depicts
these subsets as “bubbles” of equal energy density.
Equation (1) says that the typical set is that bubble with
energy equal to the process’ Shannon entropy rate: u ¼ hμ.
All the other bubbles contain rare events, with some rarer than
others. They exhibit faster or slower probability decay rates.
Employing a process’ HMM to generate realizations

produces sequences in the typical set with probability close
to 1 and, rarely, atypical sequences. Imagine that one is
interested in a particular class ΛP

u of rare sequences, say,
thosewith energyu. (Onemight be concerned about the class
of large-magnitude earthquakes or the emergence of major
instabilities in the financial markets, for example.) How can
one efficiently generate these rare sequences? We now show
that there is a new process Pu whose typical set is ΛP

u , and
this returns us directly to the challenge of biased sampling.

VI. BIASED SAMPLING

Consider a finite set of configurations fcig with prob-
abilities specified by distribution Pð·Þ and an associated set
fωig of weighting factors. Consider the procedure of

reweighting that introduces a new distribution P̃ð·Þ over
configurations where

P̃ðciÞ ¼
PðciÞ expðωiÞP
iPðciÞ expðωiÞ

:

Given a process P and its ϵ-machine MðPÞ, how do we
construct an ϵ-machine MðPuÞ that generates P’s atypical
sequences at some energy density u ≠ hμ or, as we denoted
it, the set ΛP

u ? Here, we answer this question by construct-
ing a map Bβ∶P → Pβ from the original process P to a
new one Pβ. The map is parametrized by β ∈ R/f0g,
which indexes the rare set of interest. (We use β for
convenience here, but it is related to u by a function
introduced shortly.) Both processes P ¼ fA∞;Σ;Pð·Þg
and Pβ ¼ fA∞;Σ;Pβð·Þg are defined on the same meas-
urable sequence space. The measures differ, but their
supports (allowed sequences) are the same. For simplicity
we refer to Bβ as the “β-map.”
Assume we are given MðPÞ ¼ fS;A; fTðxÞ; x ∈ Agg.

We showed that for every probability decay rate or energy
density u, there exists a particular β such that MðPβÞ
typically generates the words in ΛP

u;n for large n [37]. The
β-map that establishes this is calculated by a construction

that relatesMðPÞ toMðPβÞ ¼ fS;A; fSðxÞ
β ; x ∈ Agg—the

HMM that generates Pβ:
(1) For each x ∈ A, construct a new matrix TðxÞ

β for

which ½TðxÞ
β �ij ¼ ½TðxÞ�βij.

(2) Form the matrix Tβ ¼
P

x∈AT
ðxÞ
β .

(3) Calculate Tβ’s maximum eigenvalue λ̂β and corre-
sponding right eigenvector r̂β.

(4) For each x ∈ A, construct new matrices SðxÞ
β for

which

ðSðxÞ
β Þij ¼

ðTðxÞ
β Þijðr̂βÞj
λ̂βðr̂βÞi

:

Having constructed the new process Pβ by introducing
its generator, we use the latter to produce some rare set of
interest ΛP

u;n.
Theorem 1. In the limit n → ∞, within the new process

Pβ, the probability of generating realizations from the set
ΛP
u;n converges to 1:

lim
n→∞

PβðΛP
u;nÞ ¼ 1;

where

u ¼ β−1
�
hμðPβÞ − log2λ̂β

�
: ð4Þ

In addition, in the same limit, the process Pβ assigns equal
energy densities over all the members of the set ΛP

u;n.

Typical  
Set

Forbidden  
Set

FIG. 4. Space of all sequences A∞ partitioned into ΛP
u ’s—

isoenergy density or bubbles with equal probability-decay rates—
in which all sequences in the same ΛP

u have the same energy
density u. The typical set is one such bubble with energy equal to
the Shannon entropy rate: u ¼ hμ. Another important class is the
forbidden set, in which all sequences do not occur. The forbidden
set can also be interpreted as the subset of sequences with infinite
positive energy. By applying the map Bβ to the process and
changing β continuously from −∞ to þ∞ (excluding β ¼ 0), one
can generate any rare class of interest ΛP

u . β → −∞ corresponds to
the most probable sequences with the largest energy density umax,
β ¼ 1 corresponds to the typical set, and β → þ∞ corresponds to
the least probable sequences with the smallest energy density umin.
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Proof.—See Ref. [37].
As a result, for large n, the process Pβ typically

generates the set ΛP
u;n with the specified energy u. The

process Pβ is sometimes called the auxiliary, driven, or
effective process [58–60]. Examining the form of the
energy in Eq. (4), one can prove that there is a one-to-
one relationship between β and u. So, we can equivalently
denote the process Pβ by Pu. More formally, every word in
ΛP
u with probability measure 1 is in the typical set of

process Pβ.
The β-map construction guarantees that the HMMs

MðPÞ and MðPβÞ have the same states and transition

topology: ðTðxÞ
β Þij ≠ 0 ⇔ ðSðxÞ

β Þij ≠ 0. The only difference
is in their transition probabilities. MðPβÞ is not necessarily
an ϵ-machine—the most memory-efficient classical algo-
rithm that generates the process. Typically, though, MðPβÞ
is an ϵ-machine. Moreover, there are only finitely many βs
for which it is not. (More detailed development along these
lines will appear in a sequel.)

VII. QUANTUM AND CLASSICAL MEMORY
FOR BIASED SAMPLING

Having introduced the necessary background to compare
classical versus quantum models and to appreciate typical
versus rare realizations, we are ready to investigate the
quantum memory advantage when generating a given
process’ rare events.
The last section concluded that the memory required by

the classical algorithm to generate P’s rare sequences with
energy density u is

CμðPβÞ ¼ Cμ½BβðPÞ�;

where u and β are related via u ¼ β−1ðhμðPβÞ − log2λ̂βÞ.
Similarly, the memory required by the quantum algorithm
to generate the rare class with energy density u is

Cq½BβðPÞ�:

For simplicity, we denote these two quantities as CμðβÞ≡
CμðPβÞ and CqðβÞ≡ CqðPβÞ.
The following analyzes the advantage for three example

processes—two in the single-process setting and one in the
multiprocess setting. For the first two, we consider par-
ticular given stochastic processes and study the advantage
(memory ratio) as the metric of memory efficiency. In the
third example, we consider a series of stochastic processes
labeled by their size N and compare how both classical and
quantum memories scale with N. Comparing the scaling is
the metric for memory efficiency.

A. Quantum memory advantage for a simple
Markov process

Let us start in the single-process setting in which an
individual stochastic process is given. Consider the case
where we have two biased coins, call them A and B, and
each has a different bias p and 1 − q both for heads
(symbol 0), respectively. When we flip a coin, if the result
is heads, then on the next flip we choose coin A. If the result
is tails, we choose coin B. Flipping the coins over and over
again results in a process Ppc called the Perturbed Coins
Process [28]. Figure 5 shows the process’ ϵ-machine
generator MðPpcÞ, where S ¼ fA;Bg and A ¼ f0; 1g.
One can also generate this process with a q-machine

QðPpcÞ. Using the construction introduced in Sec. IV, we
see that the q-machine has two Kraus operators corre-
sponding to symbols 0 and 1:

K0 ¼
� ffiffiffiffi

p
p

0ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
0

�
K1 ¼

�
0

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p

0
ffiffiffi
q

p
�
:

For its stationary state distribution, we have

ρs ¼
1

2 − p − q

�
1 − q α

α 1 − p

�
;

whereα¼ð1−qÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−pÞp þð1−pÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qð1−qÞp
. Calculation

details are given in Appendix C.
Figure 6 shows the classical and quantum memory

costs to generate rare realizations: CμðβÞ and CqðβÞ
versus β for different β-classes. Surprisingly, the two costs
exhibit completely different behaviors. For example,
limβ→0Cq ¼ 0, while limβ→0Cμ ¼ 1. More interestingly,
as the inset demonstrates, even though both CμðβÞ and
CqðβÞ vanish exponentially fast, in the limit of β → ∞,
CqðβÞ goes to zero noticeably faster.
We define the memory efficiency ηðβÞ of biased sam-

pling in the single-process setting as the ratio of classical to
quantum memory:

FIG. 5. ϵ-Machine generator of the Perturbed Coins Process.
Edges are labeled with conditional transition probabilities and
emitted symbols. For example, for the self-loop on state A, pj0
indicates that the transition is taken with probability Pð0jAÞ ¼ p,
and the symbol 0 is emitted.
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ηðβÞ≡ CμðβÞ
CqðβÞ

:

Figure 7 graphs ηðβÞ, revealing how it divides into three
distinct scaling regimes.
First, for small jβj, the memory ratio scales as Oðβ−2Þ.

Second, for large positive β, the memory ratio scales

exponentially O½expðcβÞ� as one increases β, where c is
a function of p and q. Third, for large negative β, there is no
quantum advantage. Since we are analyzing finite-state
processes, this regime appears and is the analog of
population inversion. So, formally, there are β-class events
with negative β.
Such is the quantum advantage for the perturbed coins

process atp ¼ 0.6 andq ¼ 0.8. The features exhibited—the
different scaling regimes—are generic for any p > 1 − q.
Moreover, for Perturbed Coins Processes with p < 1 − q,
the positive and negative low-temperature behaviors switch.

B. Quantum memory advantage for
next-nearest-neighbor spin systems

Again, consider the single-process setting in which an
individual stochastic process is given. Let us, however,
analyze the quantum advantage in a more familiar physical
system. Consider a general one-dimensional ferromagnetic
next-nearest-neighbor Ising spin-1

2
chain [61,62] defined by

the Hamiltonian

H ¼ −
X
i

�
sisiþ1 þ

1

4
sisiþ2

�
; ð5Þ

in contact with the thermal bath at temperature kBT ¼ 1.
The spin si at site i takes on values fþ1;−1g.
After thermalizing, a spin configuration at one instant of

time may be thought of as having been generated left to
right (or, equivalently, right to left) along the lattice. The
probability distribution over these spatial-translation-
invariant configurations defines a stationary stochastic
process. Equations (84)–(91) in Ref. [63] showed that
for any finite and nonzero temperature T, this process has
Markov order R ¼ 2. More to the point, the ϵ-machine that
generates this process has four causal states and those states
are in one-to-one correspondence with the set of length-2
spin configurations.
Figure 8 displays the parametrized ϵ-machine that

generates this family of spin-configuration processes. To
simulate the process, the generator only needs to remember
the last two spins generated. This means the ϵ-machine has
four states, ↓↓, ↓ ↑, ↑ ↓, and ↑↑. If the last two observed
spins are ↑↑, for example, then the current state is ↑↑. We
denote the probability of generating a spin given that the
previous two spins were ↑↑ by . If the generator is in the
↑↑ state and generates a spin, then the generator state
changes to ↑ ↓.
To determine the ϵ-machine transition probabilities

fTðxÞgx∈A, we first compute the transfer matrix V for the
Hamiltonian of Eq. (5) at temperature T and then extract
conditional probabilities, following Ref. [63] and the
appendix of Ref. [41].
What are the classical and quantum memory costs for

bias sampling of the rare spin-configuration class with

FIG. 6. Classical memory CμðβÞ and quantum memory CqðβÞ
versus β for biased sampling of the Perturbed Coins Process’ rare
sequence classes: See Fig. 5, with p ¼ 0.6 and q ¼ 0.8. As the
inset shows, for large β, both classical and quantum memories
decay exponentially with β, but the quantum memory decays
faster. The vertical dashed black line and two red markers at
β ¼ 1 show the memory costs to generate typical sequences.

FIG. 7. The classical-to-quantum memory ratio for generating
rare realizations of the Perturbed Coins Process with p ¼ 0.6 and
q ¼ 0.8when employing its q-machine instead of its (classical) ϵ-
machine. Three different advantages occur: (i) near β ¼ 0 the
ratio scales as Oðβ−2Þ; (ii) for large positive β, it scales
exponentially with β, Ofexp ½fðq; pÞβ�g; and (iii) no advantage
occurs at large negative β. The vertical dashed black line and red
marker at β ¼ 1 show the memory advantage for generating
typical sequences.
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decay rate u, as defined in Eq. (3)? First, note that u is not a
configuration’s actual energy density E. If we assume that
the system is in thermal equilibrium and, thus, exhibits a
Boltzmann distribution over configurations, then u and E
are related via

u ¼ log2ðeÞ
kBT

½E − F ðTÞ�;

where

F ðTÞ ¼ −kBT lim
n→∞

1

n
ln

� X
fw∈Ang

e−
nEðwÞ
kBT

�
:

This simply tells us that if a stochastic process describes
thermalized configurations of a physical system with some
given Hamiltonian, then every rare-event bubble in Fig. 4
can be labeled with β, u, or E. Moreover, there is a one-to-
one mapping between every such variable pair.
Figure 9 plots ηðuÞ versus u—the memory ratio for

generating rare configurations with decay rate u. To
calculate ηðuÞ for a given process P, first we determine
the process’ classical generator MðPÞ using the method
introduced in Ref. [39]. Second, for every β ∈ R/f0g,
using the map introduced in Sec. VI, we find the new
classical generator MðPβÞ. Third, using the construction
introduced in Sec. III, we find QðPβÞ. Fourth, using
Theorem 1, we find the corresponding u for the chosen
β. Using these results gives η½uðβÞ� ¼ CμðβÞ/CqðβÞ. By
varying β in the range R/f0g we cover all the energy
density us. Practically, to calculate ηðuÞ in Fig. (9), we
choose 2000 β ∈ ½−10; 7.5�.
As pointed out earlier, β ¼ 1 always corresponds to the

process itself. Also, one obtains its typical sequences. As
one sees in Fig. 9, the memory ratio ηð1Þ < 2. This simply
means that, although there is a quantum advantage gen-
erating typical sequences, it is not that notable. However,
the figure highlights four other interesting regimes.
First, there is the β → ∞ limit corresponding to

the rare class with minimum decay rate equal to

. From Eq. (5), it is easy
to see that this rare bubble only has two configurations as
members: all up-spins or all down-spins. Let us consider a
finite but large β ≫ 1 that corresponds to the rare class with
a low energy density close to umin. Figure 10 (top right)
shows a general ϵ-machine for this process. Low color
intensity for both edges and states means that the process
rarely visits them during generation. This means, in turn,
that a typical realization consists of large blocks of all up-
spins and all down-spins. These large blocks are joined by
short segments.
Second, there is the β → −∞ limit that corresponds to

the rare class with a maximum decay rate equal to
. From Eq. (5), it is easy to see

that this rare bubble only has one configuration as a
member: a periodic repetition of spin down and spin up.
Consider a finite β ≪ −1, corresponding to a rare class
with a high energy density close to umax. Figure 10 (top left)
shows the general ϵ-machine for the associated process.
The typical configuration consists of large blocks tiled with
spin-up and spin-down pairs that are connected by other
short segments.
Third, there is the β → 0þ limit. In this limit, we expect

to see completely random spin-up/spin-down configura-
tions. Figure 10 (bottom right) shows the ϵ-machine for this
class labeled with nonzero small β. The transition proba-
bility for the edges labeled þ is 1

2
þ ϵ and for the edges

labeled − is 1
2
− ϵ, where ϵ is a small positive number. As

one can see, even though each transition probability is close
to one half, the self-loops are slightly favored.

FIG. 8. ϵ-Machine that generates the spin configurations
occurring in the one-dimensional ferromagnetic next-nearest-
neighbor Ising spin chain with the Hamiltonian in Eq. (5).

FIG. 9. Classical-to-quantum memory ratio for biased sampling
of Ising spin configurations: ηðuÞ versus decay rate u for bias
sampling of equal-energy density spin configurations. Vertical
lines locate β’s corresponding to particular us. Note that the
memory ratio ηðuÞ diverges at u ¼ u0 ≈ 1.878, corresponding to
β ¼ 0. The quantum memory advantage is not limited to β ¼ 0,
but occurs in a large neighborhood around it. Quantitatively, for
any arbitrary large number r, there exists a number ϵ for which
the rare class β0 ¼ ϵ has the memory ratio ηðβ0Þ > r.
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Fourth and finally, there is the β → 0− limit. The
generator here, Fig. 10 (bottom left), is similar to that at
positive infinite temperature, except that the edge-sign
labels are reversed. This means that the self-loops are
slightly less favored.
Appendix D explains the meaning of the β regimes and

why each is important.
Remarkably, the memory ratio ηðuÞ diverges at

u ¼ u0 ≈ 1.878, where u0 ¼ limβ→0u, that is, at both the
positive and negative high-temperature limit. Moreover, the
memory ratio ηðuÞ diverges as ðu − u0Þ−2 in both limits.

C. Extreme quantum memory advantage
for N-nearest-neighbor spin systems

Now, consider the multiprocess setting in which we
specify a series of stochastic processes labeled by an integer
N that determines the size of each. In this, efficiency is
defined by how the memory scales in N for the quantum
algorithm compared to the classical.
We explore a general one-dimensional ferromagnetic

N-nearest-neighbors Ising spin-1
2
chain defined by the

Hamiltonian

HN ¼ −
X
i

XN
k¼1

1

kδ
sisiþk;

in contact with a thermal bath at temperature kBT ¼ 1 and
for which there is monopole-dipole coupling (δ ¼ 2).
As in the nearest-neighbor spin system, after thermal-

izing, the probability over configurations at one instant of
time defines a spatially stationary stochastic process. We
denote the process generated by this Hamiltonian by PðNÞ.
PðNÞ has Markov order R ¼ N. More to the point, the ϵ-
machine that generates this process has 2N causal states and

those states are in one-to-one correspondence with the set
of length-N spin configurations. To determine the ϵ-
machine transition probabilities fTðxÞgx∈A, one can use
Ref. [63] and the appendix of Ref. [41].
Let PðN; βÞ denote the process that typically generates

the rare β-class of process PðNÞ. Now, for an arbitrary
fixed β, one can ask how the required classical memory
CμðN; βÞ and quantum memory CqðN; βÞ for generating
PðN; βÞ scale with N.
Figure 11 shows CμðN; βÞ and CqðN; βÞ versus β for

different N’s. Cμs are plotted by solid lines and Cq’s
by dashed lines. To make them distinguishable, curves
at different N’s are displayed with different colors.
Interestingly, in both the β → 0þ and β → 0− limits,
CμðN; βÞ scales linearly with N, while CqðN; βÞ goes to
zero. More importantly, one can also check that for any
finite nonzero β and sufficiently large N, CμðN; βÞ is an
increasing function of N. Surprisingly, it can be shown that
for any nonzero β and anyN,CqðN; βÞ is bounded above by
1. The result is an extreme quantum memory advantage for
rare-event sampling of this series of stochastic processes.

VIII. CONCLUSIONS

We introduced a new quantum algorithm for simulta-
neous sampling rare events in classical stochastic proc-
esses. We showed that it confers a significant memory
advantage when compared to the best-known classical
algorithm.

FIG. 10. Classical generators of four important rare classes. Top
left: Negative infinite temperature limit. Top right: Positive
temperature limit. Bottom left: Negative zero-temperature limit.
Bottom right: Positive zero temperature limit. Gray edges and
states denote them being rarely visited.

FIG. 11. Classical memory CμðN; βÞ (solid lines) and quantum
memory CqðN; βÞ (dashed lines) required for generating process
PðN; βÞ for interaction ranges N ¼ 1;…; 4; a range of
β ∈ ½−5; 3�; and δ ¼ 2. At both limits, β → 0þ and β → 0−,
CμðN; βÞ scales linearly withN, whileCqðN; βÞ vanishes. For any
finite β, for sufficiently large N, CμðN; βÞ is an increasing
function of N, while CqðN; βÞ is bounded above by 1. The
vertical dashed red line at β ¼ 1 shows the memory costs for
generating typical sequences.
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We explored two settings: single-process and multi-
process sampling. For single processes, an individual
stochastic process is given and memory efficiency is
defined as the ratio of memory required by the classical
algorithm compared to that by the quantum one. For two
example systems, we showed that there exist infinite
classes of rare events for which the classical-quantum
memory ratio for sampling is larger than r, for any large
real number r. In the multiprocess setting, a series of
stochastic processes, each labeled by an integer size N, is
given. There, the memory efficiency is defined by how the
required memory scales in N for the classical algorithm
compared to the quantum algorithm. In this setting, we
demonstrated an extreme quantum memory advantage in
which the classical memory grows with N unboundedly,
but the quantum memory is bounded.
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APPENDIX A: COMPLETENESS CONDITION

To establish Kraus operator completeness,
P

xK
†
xKx ¼ I,

it is enough to show that, for all l and k,

hξlj
�X

x

K†
xKx

�
jξki ¼ hξljξki:

Using the definition of Kraus operators, we have

X
x

K†
xKx ¼

X
i;j
m;n
x

ffiffiffiffiffiffiffiffi
TðxÞ
mn

q ffiffiffiffiffiffiffiffi
TðxÞ
ij

q
jfξmihξnjξjiheξij:

As a result, for all l and k,

hξlj
�X

x

K†
xKx

�
jξki ¼

X
n;j
x

ffiffiffiffiffiffiffiffi
TðxÞ
ln

q ffiffiffiffiffiffiffiffi
TðxÞ
kj

q
hξnjξji ¼ hξljξki:

This completes the proof.

APPENDIX B: STATIONARY DISTRIBUTION

We calculate the stationary distribution over causal
states. First, we have

X
x

KxρsK
†
x ¼

X
r;i;j
m;n
x

πr
ffiffiffiffiffiffiffiffi
Tx
mn

p ffiffiffiffiffiffi
Tx
ij

q
jξjiheξijξrihξrjfξmihξnj

¼
X
n;j;r
x

πr

ffiffiffiffiffiffiffiffi
TðxÞ
rn

q ffiffiffiffiffiffiffiffi
TðxÞ
rj

q
jξjihξnj:

Since ϵ-machines are unifilar [64], we always haveffiffiffiffiffiffiffiffi
TðxÞ
rn

q ffiffiffiffiffiffiffiffi
TðxÞ
rj

q
¼ Tx

rn. From this, we find

X
x

KxρsK
†
x ¼

X
n;r
x

πrT
ðxÞ
rn jξnihξnj:

The stationary distribution over causal states satisfies

πT ¼ π or, equivalently, πn ¼
P

x;rπrT
ðxÞ
rn . Replacing πn

in the above equation leads to

X
x

KxρsK
†
x ¼

X
n

πnjξnihξnj ¼ ρs:

APPENDIX C: PERTURBED COINS PROCESS
QUANTUM MACHINE

First step: (Find the jηiis): Map causal states A and B to
two pure quantum states jηAi and jηBi:

jηAi ¼
ffiffiffiffi
p

p j0i þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j1i

jηBi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
j0i þ ffiffiffi

q
p j1i;

where j0i and j1i form orthogonal bases on Hilbert
spaces of size 2.

Second step: (Find jξiis and jξ̃iis): Since the size of
alphabet jAj ¼ 2 and Markov order is R ¼ 1, then
jAjR ¼ 2. The number of causal states is also jSj ¼ 2.
As a result jξAi ¼ jηAi, jξBi ¼ jηBi,

Ξ ¼ ½ jξAi jξBi � ¼
" ffiffiffiffi

p
p ffiffiffiffiffiffiffiffiffiffiffi

1 − q
pffiffiffiffiffiffiffiffiffiffiffi

1 − p
p ffiffiffi

q
p

#
;

and

Ξ−1 ¼
"
h eξAj
h eξBj

#
¼

" ffiffiffi
q

p −
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p ffiffiffiffi
p

p
#

ffiffiffiffiffiffi
pq

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞð1 − qÞp :
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Third step: (Find Kraus operators Kis):

K0 ¼
ffiffiffiffi
p

p jξAih eξAj þ ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
jξAih eξBj

¼
� ffiffiffiffi

p
p

0ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
0

�
K1 ¼

ffiffiffi
q

p jξBih eξBj þ ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
jξBih eξAj

¼
�
0

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p

0
ffiffiffi
q

p
�
:

We can easily check the completeness condition
K†

0K0 þ K†
1K1 ¼ I.

Fourth step: (Find stationary distribution ρs): For the
stationary state distribution over causal states, we have
πT ¼ π, where

T ¼
�

p 1 − p

1 − q q

�
:

As a result,

π ¼
�
πA

πB

�
¼ 1

2 − p − q

�
1 − q

1 − p

�
:

Using ρs ¼ πAjξAihξAj þ πBjξBihξBj, we find

ρs ¼
1

2 − p − q

�
1 − q α

α 1 − p

�
;

where α ¼ ð1 − qÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞp þ ð1 − pÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qð1 − qÞp
.

APPENDIX D: MEANING OF THE β REGIMES

By Eq. (3), ΛP
u;n is the subset of all words with length n,

ΛP
u;n ⊆ An, whose probability decay rate u ¼ − 1

n log2 PðwÞ.
This partitionsAn into disjoint subsetsΛP

u;n shown by green
bubbles in Fig. 12. By definition, all the words in the bubble
ΛP
u;n have the same probabilities 2−nu, as Fig. 12 shows.
One important question is how the probability of the

whole bubble PðΛP
u;nÞ decays with n. This quantity can be

written as a product of two factors: PðΛP
u;nÞ ¼ 2−nujΛP

u;nj.
The first is the probability of each word in the bubble, and
the second is the number of words in it.
Since jΛP

u;nj grows exponentially with n, we define

SðuÞ≡ lim
n→∞

log2ðjΛP
u;njÞ

n
:

Now, for the probability of the bubble with energy density
u, one can write

PðΛP
u;nÞ ¼ 2−nðu−SðuÞÞ:

The quantity IðuÞ ¼ u − SðuÞ is often called the large
deviation rate. IðuÞ is always positive except for the typical
set where it vanishes. This simply tells us that PðΛP

u;nÞ, the
probability of every bubble except the typical set, decays
exponentially with n.
This provides the background needed to interpret the

meaning behind different β regimes.
β ≪ −1 regime: This regime includes bubbles with very

high energy density u. Recalling that the probability of each
word in the bubblewith energy density u is 2−nu, we see that
this regime includes the bubblewith the rarest words. Notice
that this does not refer to the probability of an entire bubble
but, rather, the probability of each word in the bubble.
β ≫ 1 regime: This regime includes bubbles with very

low energy density u. Again, since the probability of each
word in the bubble is 2−nu, then this regime includes the
bubble with the most probable words. To emphasize, this is
the probability of each word in the bubble. For example, the
bubble that has the most probable word can potentially
have one member and still be very rare.
β ¼ 1 class: This points to a particular bubble, the

typical set.
β ∈ ð−ϵ; ϵÞ regime: This includes bubbles with βs near

zero. One can show that ∂uS½uðβÞ� ¼ β. As a result, the
maximum of S½uðβÞ� happens at β ¼ 0. Recalling the
definition of SðuÞ, this means that the bubble with
the maximum number of words is labeled by β ¼ 0 or,
equivalently, uðβ ¼ 0Þ. In other words, β ∈ ð−ϵ; ϵÞ includes
bubbles that have the largest number of words in them or,
equivalently, the largest SðuÞ.
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